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Abstract This special issue of Ambio compiles a series of

contributions made at the 8th International Phosphorus

Workshop (IPW8), held in September 2016 in Rostock,

Germany. The introducing overview article summarizes

major published scientific findings in the time period from

IPW7 (2015) until recently, including presentations from

IPW8. The P issue was subdivided into four themes along

the logical sequence of P utilization in production,

environmental, and societal systems: (1) Sufficiency and

efficiency of P utilization, especially in animal husbandry

and crop production; (2) P recycling: technologies and

product applications; (3) P fluxes and cycling in the

environment; and (4) P governance. The latter two themes

had separate sessions for the first time in the International

Phosphorus Workshops series; thus, this overview presents

a scene-setting rather than an overview of the latest

research for these themes. In summary, this paper details

new findings in agricultural and environmental P research,

which indicate reduced P inputs, improved management

options, and provide translations into governance options

for a more sustainable P use.

Keywords Cropping system � Eutrophication � Fertilizer �

Governance � P efficiency � Plant nutrition

INTRODUCTION

Phosphorus (P) has been identified as a critical resource for the

bioeconomy and for food security by the European Union

(EU) and at the global scale (Cordell and White 2014). The

biogeochemical P flow has been described as a ‘‘planetary

boundary’’ which, in parts of the world, has already been

exceeded (Carpenter and Bennett 2011; Steffen et al. 2015).

Over the past few years, concern about the growing P

‘paradox‘(the simultaneous over-abundance of P impairing

water quality, and the prospect of global scarcity of P for

future agricultural production) has stimulated new conver-

gence between P-security and water-quality research agendas

(Cordell and White 2015; Jarvie et al. 2015; Nesme and

Withers 2016). This convergence also reflects a growing

recognition that improving societal efficiency in P use will be

fundamental in addressing both sides of the P paradox (Jarvie

et al. 2015; Withers et al. 2015). Increasing availability of

datasets at the national, regional, and global scales, has

stimulated new evaluation of the patterns in P stocks, flows,

and stores in agricultural and urban systems; the fragmenta-

tion of the P cycle; and implications for water-quality

impairment (Cordell and White 2015; Metson et al.

2015, 2016; Rowe et al. 2016; Sharpley et al. 2016; Worrall

et al. 2016); and wider ecosystem services (MacDonald et al.

2016). These assessments are providing new insights into the

disconnects and imbalances in P cycles, and the societal

inefficiencies inP use, across broad spatial scales (Scholz et al.

2015; Scholz and Wellmer 2015). However, there are large

spatial disconnects between the macroscale needs for more

efficient P-resource management, and the local realities of P

management at the farm-scale where decisions are made

(Osmond et al. 2015; Sharpley 2016; Sharpley et al. 2016).

Moreover, there is a growing recognition of the limits towhich

the results from macroscale assessments can be extrapolated

to make recommendations for changes in agricultural policy

andpractice for improvedP stewardship, and that it is vital that

local, environmental, and socioeconomic realities and nuan-

ces are taken into account (Sharpley et al. 2016).

Research activities in response to these challenges have

resulted in a number of international workshop and con-

ferences series, such as the Sustainable Phosphorus Sum-

mits or International Phosphorus Workshops. The 8th

International Phosphorus Workshop (IPW8) held in
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Rostock, Germany in September, 2016 launches this spe-

cial issue of the journal Ambio in which selected contri-

butions to the workshop are published. In this introductory

overview article, we aim to summarize the recent scientific

progress between IPW7 (Sharpley et al. 2015) and IPW8.

The paper is concentrating on issues related to P-rich

environments and countries, while the serious P-related

issues globally—especially in low-income countries, with

many farmers who can hardly afford P fertilizers and

recovering technologies—have not been broadly discussed

at the IPW8, and therefore are not adequately reflected in

this Ambio special issue.

In accordance with the structure of the IPW8-meeting,

and the flow of P through various processes and ecosystems

as visualized in Fig. 1, this overview article is subdivided

into four themes: (1) sufficiency and efficiency of P uti-

lization, especially in animal husbandry and crop produc-

tion; (2) P recycling: technologies and product

applications, (3) P fluxes and cycling in the environment;

and (4) P governance. For each of these themes, we eval-

uated the workshop contributions and the recent literature

for (i) the most significant results of the last three years, (ii)

areas in which most progress has been made and new

research trends, and (iii) areas in which more research and

funding programs and/or in which political/legislative

actions are required. This paper summarizes the outcome of

session reports and expert discussions through the work-

shop, as well as individual research articles in this special

issue.

SUFFICIENCY AND EFFICIENCY

OF PHOSPHORUS UTILIZATION

A sufficient (adequate for the purpose) and efficient (per-

forming with the least waste of effort) utilization of P may

offer a great reduction potential in animal husbandry and

crop production (Withers et al. 2014). The management of

animals, being an integral part of sustainable farming sys-

tems, plays a key role in reducing P inputs to soils and,

consequently P losses from arable lands and grasslands.

Because of the regional concentration of animal husbandry,

improved diets with less P may be most urgently required

and effective in regions with high stocking density. One area

that attracted more research since the 7th IPW is related to

animal performance and genetics. Studies with different

poultry species found a heritability of between 0.10 and 0.22

for different criteria of P utilization (de Verdal et al. 2011;

Beck et al. 2016), which points to the possibility of breeding

for improved P utilization. Oster et al. (2016) found that, for

pigs, genes involved in pathways relevant for P utilization

were differentially expressed due to variable P supply and

thus are potential candidate genes for improved P efficiency.

In a forthcoming study, the impact of dietary P changes on

growth performance (live weight, feed intake, feed con-

version ratio), serum hormones (calcitriol, parathyroid

hormone, triiodothyronine), bone characteristics (dry mat-

ter, crude ash), and transcript abundances of key players in

re-absorbing and re-excreting tissues are reported. Tran-

scripts associated with vitamin D hydroxylation (Cyp24A1,

Fig. 1 Schematic presentation of P fluxes through various process and ecosystems along which originally mined and processed P is diluted and
distributed over increasingly large parts of the terrestrial and aquatic environments
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Cyp27A1, Cyp27B1) were regulated by diet at local tissue

sites. Animals fed with low-P diets showed attempts to

maintain mineral homoeostasis via intrinsic mechanisms,

whereas the animals fed with high-P diets adapted at the

expense of growth and development (Oster et al. 2018, this

issue). A keynote lecture by Rodehutscord reported that

feeding systems have been modified in ways that reduce P

excretion without compromising animal health and perfor-

mance. For dairy cows, mineral P supplementation of the

feed is generally not necessary and might be needed only

when fed with high amounts of corn products. Since IPW7,

research in this area has been intensified with the aim of

further reducing P excretion by livestock. This includes

more precise prediction of the dietary P requirement and a

better characterization of the availability of different P

sources used in animal feed. With regard to nonruminants,

much attention has recently been given to the variation in

plant P sources, in particular phytate-P (Rodehutscord and

Rosenfelder 2016). It has been known for about two decades

that the use of the enzyme phytase as a feed additive can

effectively increase phytate-P availability in pigs and

poultry. New enzyme products and modifications of their

level of inclusion in the diet have achieved phytate-P

digestibility of up to 90% (e.g., Zeller et al. 2015). Conse-

quently, the use of mineral P supplements and livestock P

excretion can be reduced substantially.

Sophisticated analytical techniques like stable isotope-

techniques (33-P, 18-O), NMR- and synchrotron-based

spectroscopies are becoming more popular for quantifying

P cycles, fluxes, and dynamics in the soil and other envi-

ronmental systems. For instance, Tamburini et al. (2014)

reviewed the usefulness, limits, and challenges of mea-

suring the isotopic composition of oxygen within the

phosphate ion, to improve our understanding of P cycling

in soil and plant systems. From a process viewpoint, von

Sperber et al. (2015) quantified the isotopic fractionation of

O due to acid phosphomonoesterase and phytase on

phosphate released by enzymatic activity. Furthermore,

von Sperber et al. (2016) used raman spectroscopy to show

how fast pyrophosphatase, another important enzyme,

could completely exchange the oxygen atoms within the

phosphate ion with oxygen atoms originally within water

molecules. At the organism level, Pfahler et al. (2013)

demonstrated that the isotopic composition of oxygen

within phosphate ions in plant leaves was different from

that observed in the solution delivering P to the plant. The

authors explained this by the pyrophosphatase-mediated

oxygen exchange between water and phosphate and by the

activity of acid phosphatase releasing P from organic

compounds in the leaf. Oxygen isotopes offer useful

insights into the processes controlling P dynamics in ter-

restrial systems, especially the importance of enzymatic

processes.

Analyzing the isotopic composition of oxygen bound to

P (d18O-P) is, however, constrained by a number of ana-

lytical difficulties (Tamburini et al. 2010, 2014; Frossard

et al. 2011). The first one is to purify extracted PO4 from

any possible contamination with other oxygen-containing

compounds. At the end of this process, PO4 is precipitated

as Ag3PO4 that is analyzed by temperature conversion,

element analyzer, isotope ratio mass spectroscopy (TC-EA-

IRMS). Another challenge is to quantify the possible

exchange of O that could take place between phosphate and

the solvent, e.g., during extraction with acids or the release

of phosphate from organic P digestion under ultraviolet

irradiation. Finally, the measure of d
18O-P can also be

challenging as there are no internationally accepted stan-

dards for Ag3PO4. Answers on how to address these pitfalls

to obtain meaningful results have been described in the

above-mentioned publications.

The scientific discussion on the identification of soil

organic P forms—whether soils contain simple well-iden-

tifiable organic P forms or organic P in complex macro-

molecular, nonidentified structures—is continuing. Using

liquid state 31P NMR, McLaren et al. (2015) showed that

high-molecular weight organic P fractions had much less

distinct peaks than low-molecular weight fractions. Fur-

thermore, Jarosch et al. (2015) showed that the proportion

of high-molecular weight P was almost identical to the

proportion of organic P that could not be hydrolyzed in the

presence of different phosphatases. These results suggest

that the high-molecular weight P fraction (i) can account

for a large proportion of total organic P, (ii) presents

structure that remains to be discovered, and (iii) is ‘‘re-

sistant’’ to enzymatic hydrolysis.

Recent research supports the idea that the cycles of the

biogeochemically important nutrient elements C, N, and P

are closely interlinked across environmental systems. For

instance, three long-term experiments, under differing

conditions in Australia, Burkina Faso, and Switzerland, and

subject to different types of organic (including manure and

plant residues) or mineral fertilizer inputs, showed that the

C-, N-, P-stoichiometry of soil organic matter was pri-

marily controlled by soil properties rather than by the

elemental stoichiometry of manure or fertilizer inputs

(Frossard et al. 2016). In this context, a long-term field

experiment running since 1998 in Northern Germany

shows that organic P forms in soil did not correspond with

the P forms in the organic fertilizers applied to the soil

(Requejo and Eichler-Löbermann 2014). Although the

study of C-, N-, and P ratios is needed to understand the

long-term functioning of cropped soils, it must always be

coupled with assessment of elemental inputs and budgets,

and the ability of soils to stabilize C-, N-, and P-containing

compounds.
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A number of manuscripts were recently published on

soil organic P mineralization and on factors controlling the

plant–soil–microbes interactions. The methods used to

assess soil organic P mineralization were reviewed by

Bünemann (2015). The relative importance of P fluxes

arising from soil organic matter (SOM) mineralization

compared to fluxes from P desorption appears to be much

larger in forest and grassland than in arable soils. Factors

such as wetting and drying cycles, green manure inputs,

seasonal fluctuations, and soil parent material also clearly

affect organic P mineralization (Liebisch et al. 2014;

Randriamanantsoa et al. 2015; Bünemann et al. 2016).

Besides these quantitative approaches, functional genes

coding for microbial alkaline phosphatases were analyzed.

The genetic diversity of the phosphatases called PhoD

(phosphodiesterase/alkaline phosphatase) and PhoX (alka-

line phosphatase) was studied as well as environmental

factors controlling this diversity (Ragot et al. 2015, 2017).

The application of microbial inoculants as so-called

biofertilizers has often been described as a component of

sustainable nutrient management. The main efforts in this

field have focused on fungi (Vassilev et al. 2016; Ceci et al.

2018, this issue). However, the application of plant-growth

promoting rhizobacteria (PGPR) has also been shown to

increase nutrient availability in soil and to enhance plant

growth by release of growth stimulating hormones or

protection against soil-borne pathogens (Berger et al.

2015). The effects of biofertilizers can vary and failures of

microorganisms to promote plant growth and increase soil

nutrient availability have also been reported. Using a 33P-

labeling approach Meyer et al. (2017) could not detect any

significant effect of the strain Pseudomonas protegens

CHA0 on soil P solubilization. Furthermore, soil inocula-

tion with P. protegens CHAO slowed down soil respira-

tion, suggesting that this strain, known for its antifungal

activity, slowed down soil microbial activity and had little

net effect on soil P availability. Considering the uncertainty

and the costs of microbial inoculants in practical agricul-

ture, the activation of native soil microorganisms by

agronomic measures like organic matter management and

crop rotation could be a better approach to utilize benefits

of microbes (Tiemann et al. 2015; Hupfauf et al. 2016).

New secondary fertilizer products as well as improved

P-fertilizer placement technologies have gained much

attention in recent times (Brod et al. 2016). These new

fertilizer products include ash, which is produced by the

incineration of sewage sludge in the presence of chloride

compounds to remove heavy metal contaminants. Results

showed that sewage sludge ash treated with MgCl2 are very

effective as P source and more suitable for plant P nutrition

than CaCl2-treated ash (Nanzer et al. 2014a; Vogel et al.

2015, 2017). This was explained by the synthesis of Cl-

apatite at high temperature during the treatment with CaCl2

(Nanzer et al. 2014b). Another secondary fertilizer product

is struvite (magnesium ammonium phosphate), precipitated

from liquid waste streams. Recently, several studies con-

firmed that recovered struvite is an effective P fertilizer

under a wide range of crops and growing conditions (Vogel

et al. 2015; Kataki et al. 2016; Talboys et al. 2016).

P-fertilizer recommendations are based primarily on an

assessment of plant-available P concentrations in the soil

(Jordan-Meille et al. 2012). Over the last few years, the lim-

itations of many traditional methods to assess plant-available

P in the soil have become increasingly apparent (e.g., Christel

et al. 2016). These methods, based on batch extractions with

various chemical extractants, represent the total static amount

of P in the soil which is supposed to be plant available during

the growing season. Comparative studies of the performance

of various extraction procedures reveal that the range of

extracted P (as a proportion of total P) varies widely

depending on the extraction procedure. Moreover, inter-

comparison of different extraction methods often showed

only weak correlations between different methods. Conse-

quently, results of different extraction methods can often not

be directly compared (e.g., Shwiekh et al. 2015).

According to physicochemical considerations, the P

dissolved in the soil solution should be immediately avail-

able for plant uptake. This amount, however, is exceedingly

small and is constantly replenished by desorption from soil

minerals. A relatively new method for predicting soil P

availability which mimics this physicochemical process is

the diffusive gradients in thin films (DGT) technique (Kruse

et al. 2015; Christel et al. 2016). This technique is based on

phosphate accumulation on a ferrihydrite-binding layer

after passage through a hydrogel, which acts as a defined

diffusive layer. It has been shown that P availability

assessed with the DGT can be a better predictor for plant

yield, compared with traditional soil tests (e.g., Six et al.

2013). However, the relatively low binding capacity of the

DGT gel can be a problem for recently fertilized soils and

high amounts of readily available P, and in this situation,

DGT-binding gels with a greater P-sorption capacity are

needed (Christel et al. 2016).

P-fertilization recommendations in most European

countries are currently centered on the plant-available P

content in the soil and the expected nutrient uptake by the

crops (expected yield 9 P concentration of crop). P-fertil-

izer recommendations entail three steps (Jordan-Meille

et al. 2012): (i) extraction of plant-available soil P, (ii)

calibration of those soil test results, (iii) deducing recom-

mended P-fertilizer amounts. Further, many additional

factors besides plant-available P have an influence on the

effectiveness of P fertilization, including soil properties,

weather and climate, morphological and physiological

strategies of crops, fertilizer type, and fertilizer placement

(Jordan-Meille et al. 2012; Recena et al. 2016). However,
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these factors are not considered in traditional P-fertilizer

recommendation schemes, and their assessment is, in most

cases, time consuming and tedious.

The development and improvement of P-fertilizer rec-

ommendation schemes can profit from meta-analyses of

long-term fertilization experiments (Kuchenbuch and

Buczko 2011; Buczko et al. 2018, this issue). Such anal-

yses have shown that optimum yields are attainable even

for soil P contents which are deemed suboptimal according

to P-content classes based on traditional extraction proce-

dures, and that several soil and environmental parameters

have an influence on the yield response of P fertilizers.

Results of the more recent meta-analyses have not yet been

considered in traditional P recommendation schemes and,

too much P fertilizer has been and, in some countries in

Europe, is still being recommended and applied, leading to

P-balance surpluses and a build-up of legacy P in the soil

(van Dijk et al. 2016; von Tucher et al. 2018, this issue).

In response to these undesired soil P enrichments, there

are two key developments that need to be mentioned: (1)

the now global acceptance of the ‘‘4R principles’’ of

nutrient management (right place, right time, right form,

and right rate) (Bruulsema et al. 2009) which have been

updated to a strategic framework of ‘‘5R stewardship’’(Re-

align P inputs, Reduce P losses, Recycle P in bioresources,

Recover P in wastes, and Redefine P in food systems)

(Withers et al. 2015); and (2) nutrient-management-effi-

ciency gains encompassed by the term ‘‘feed the crop not

the soil,’’ which is being now taken up widely by the fer-

tilizer industry as a driver for the development of new

fertilizer products (Withers et al. 2015). In parts, these

principles have been applied in certain countries like

Switzerland (e.g., Flisch et al. 2009; Frossard et al. 2009);

however, a wider acceptance and implementation is needed.

The further development of site-adapted cropping sys-

tems was mentioned as one of the challenges for the future

agriculture during the 7th IPW in Uppsala (Sharpley et al.

2015). There is still the need to increase the overall P

efficiency in cropping systems and to reduce P losses from

agricultural fields. A new research focus on developing

P-efficient cultivars that require less P (lower grain total P

and lower phytate P) is described by Yamaji et al. (2017).

Other measures for a better P efficiency of cropping sys-

tems should also include the application of diverse crop

rotations, the extension of cover crop cultivation, and

mixed cropping (Latati et al. 2014; Rose et al. 2016;

Bakhshandeh et al. 2017). Mixed cropping and multi-

species agroecosystems can result in an enhanced produc-

tivity compared to that of monoculture. The main

advantage of mixed cropping is the efficient utilization of

resources, such as light, water, and nutrients. This can be

explained by complementarity and facilitation processes

(Hinsinger et al. 2011). Combined cultivation of cereals

and legumes is often practiced because of their comple-

mentarity in the use of N resources which may positively

affect the yield and protein content of cereals (Mikic et al.

2015). Positive examples were also given for monocot

fodder crops like maize and sorghum combined with

legumes under suboptimal P supply (Eichler-Löbermann

et al. 2016).

PHOSPHORUS RECYCLING: TECHNOLOGIES

AND PRODUCT APPLICATIONS

For the first time at an IPW meeting, there was a separate

session dealing with current efforts and challenges for

developing a circular P economy, with a focus on P-recy-

cling technologies and product applications. Each year

millions of tons of fossil P are mined and processed (USGS

2015), while the potential to recover and recycle waste P

(in sewage sludge, manure, and food waste) remains

untapped or inefficient. In recent years, various technical

solutions have been developed as alternatives to traditional

nutrient recycling routes and to allow more flexibility and

more precise applications. These allow P recovery and

provide renewable mineral compounds suitable as raw

material for fertilizer production, or directly ready-to-use

‘‘renewable’’ fertilizer (e.g., Vogel et al. 2018, this issue),

and even high-quality P products applicable in chemical

and food industry, like phosphoric acid or the highly

reactive allotrope white P (tetraphosphorous, P4).

However, in agricultural areas with a misbalance of P

output and P demand, there is some need for P-extracting

and -recycling technologies, e.g., for concentrated animal

production on industrial scale and biogas plants ‘‘import-

ing’’ their substrates from a larger agricultural area. Beside

the agricultural byproducts, the wastewater treated in

domestic wastewater treatment plants (WWTPs) is one of

the most attractive, renewable P sources in the industrial

world. On average, each person excretes daily about 1.5 g

P worthy of being recovered. Consequently, in the recent

years, a wide variety of technologies aiming at recycling

the P in WWTP have been developed (Fig. 2). Techno-

logically, they can be categorized into two principle routes:

the recovery from solid and that from liquid phases of

waste. Combinations including phase transfers between the

both phases are considered as well.

Technologies which recover P from the liquid phase

(e.g., struvite recovery or adsorption of dissolved phos-

phate by silica hydrates) provide operational benefits for

wastewater treatment plants, such as prevention of unin-

tended struvite precipitation in pipes and aggregates of the

sludge treatment stream, improved sludge dewaterability

for reduced sludge volume to be disposed of and reduced

flocculation aid consumption. However, struvite recovery
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and similar technologies are quite limited in application

range and recovery rate (5–25% without forced re-disso-

lution technologies). Since the prerequisites for their

implementation are orthophosphate concentrations above

100 mg/L in the sludge water, only WWTP which removes

P by enhanced biological P removal (EBPR) and subse-

quent anaerobic digestion (AD) can be seen as having

market potential. On European or even global scales,

struvite recovery is most often applied and represents the

lowest hanging fruit in terms of alternative P-recovery and

subsequent P-recycling options.

Due to the limited number of WWTPs operating

EBPR ? AD, and the limited recovery rates, technical

solutions to remove the P from the sludge solids in WWTP

by applying chemical P precipitation with iron (Fe) or

aluminum (Al) salts are also needed. Most technologies

operate by manipulating pH to acidic (P dissolution) and

alkaline (P precipitation) conditions. A great challenge

here is to minimize consumption of acids, bases, and fur-

ther additives. One of these attempts is the EXTRAPHOS�

process recently developed by the Chemische Fabrik

Budenheim KG, 55257 Budenheim, Germany. Here, the P

is recovered on-site at the WWTP as Dicalciumphosphate

(DCP) after extraction from digested sludge with CO2

under pressure (Schnee and Stössel 2014). At current price

levels for phosphate rock and other raw materials, none of

these technologies could be implemented profitably, unless

the technologies provide other benefits to operators than

just nutrient recovery.

Since undiluted incinerated sludge provides the highest

mineral concentrate within the sewage sludge stream, P

recovered from mono-incineration ash represents a

promising P concentrate after the wastewater treatment.

There is an obvious trend that most technologies at the

brink to the market nowadays intend to yield phosphoric

acid as commercially viable product, as represented by

ECOPHOS (de Ruiter 2014) or TetraPhos (Hanßen et al.

2016). Another ambitious technology is the production of

white P (P4) out of ash by thermochemical conversion

(RecoPhos FP7, ICL; Langeveld 2016).

Also the recovery and recycling of agricultural waste

have been widely discussed during IPW8, for example,

digestate, process animal manure, compost, or biochar. The

advantages of pyrolysis include the significant reduction of

Fig. 2 Overview on P-recovery technologies in Europe (Kabbe et al. 2015; Ohtake and Okano 2015; Kabbe and Kraus 2017)
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the raw material, the destruction of pathogens, and the

formation of a carbon-rich substrate (Bünemann et al.

2016). Research has mainly focused on optimization of the

pyrolysis process, understanding the binding mechanisms

of P and other constituents and on the P availability of the

product for plant growth (Robinson et al. 2018, this issue).

The steel industry represents an important P consumer

and P-waste producer. In Japan, the P flow in waste steel

slag is 104 kt/a, which is nearly the double the P imported

for fertilizer (53.3 kt/a) or human P excretion (55.9 kt/a)

(Matsubae et al. 2011). Basic slag from the Thomas pro-

cess has been used as fertilizer for about 70 years, because

it contained a high P2O5 content of 10–15% w/w. However,

the Thomas process had been replaced by other smelting

processes using iron ores low in P. A large research and

development project is currently been conducted by two

leading steel companies in Japan to recover P from P-rich

steelmaking slag, called dephosphorization slag (Ohtake

and Okano 2015; Ohtake et al. 2018, this issue). Impor-

tantly, the rest after recovering P still contains valuable

resources such as iron, calcium, and silicates. The P

recovery from steelmaking slag aims to recycle the rest as

raw materials to the blast furnace, thereby improving the

resource efficiency of the steelmaking process. Meanwhile,

steelmaking slag can also be used as recyclable calcium

silicates to prepare a bifunctional adsorption–aggregation

agent for a simple phosphate recovery technology (Ohtake

et al. 2018, this issue).

Nutrient recycling only happens if the recovered nutri-

ents are returned into the nutrient or production cycle, as

fertilizer or feed, as food or fodder additive, or as products

of the chemical industry. Since industrial demand for P is

small compared with agricultural use, and industrial

applications demand higher-quality P products, it is likely

that the majority of recovered P will and should be recycled

as fertilizer or in animal husbandry, thus directly closing P

cycle for food production (Fig. 3).

Although several countries (e.g., Germany, Switzerland)

have opted to strengthen P recovery by legislation, the

recycling question still remains unsolved. Various regula-

tions interfere with the nutrient recycling and somehow

discriminate or even exclude nutrients recovered from

renewable resource from recycling. Fertilizer may serve as

an example: During IPW8, it was stated that recovered P

products still cannot compete economically with P from

fossil sources. A first step toward a real recycling should

therefore be to provide a level playing field for all fertil-

izers, irrespective if they are made of fossil or of secondary

sources. Otherwise, legal obligations to recover would fail

because of missing options for commercialization. This has

to be flanked by the definition of End-of-Waste criteria,

i.e., quality criteria for waste-based materials to be destined

for recycling as secondary raw materials or even products,

for recovered nutrients and by binding recycling targets

comparable to the CO2 emission reduction goals. Other-

wise, neither recovery nor recycling technologies will be

widely implemented except under those conditions where

they provide operational or monetary benefits to its oper-

ators by operational side effects.

Nutrient recovery is still lacking a demand-side market

pull for recovered (secondary) nutrients, and the biggest

challenge will be bridging the gap between supply (re-

covery) and demand (recycling). Whereas in the past, the

focus of nutrient recovery technologies was merely on high

recovery rates for single nutrients, now energy efficiency,

synergies, and cost have become more and more important.

Resource efficiency can never be tackled for just one

nutrient alone; thus, the link to the other macronutrient

element nitrogen (N) will be an important goal.

The value chain up- and downstreams of the P recovery

is poorly addressed so far (Schoumans et al. 2015).

Upstream, prevention of P-containing waste is a societal

challenge. At least, waste should be generated in forms that

support downstream recovery. Recovery neglecting the

settings and requirements of downstream recycling will

remain only a theoretic option. Only integrative solutions

will provide the chance for sustainable implementation. In

this context, future research should strive even stronger

while seeking for holistic solutions.

PHOSPHORUS FLUXES AND CYCLING

IN THE ENVIRONMENT

Elevated P inputs can have severe long-term effects on

freshwater and marine ecosystems, and large-scale efforts

are needed to reduce P inputs from land. In the case of the

Baltic Sea, P inputs from the drainage basin have been

reduced since the early 1990s, i.e., by 20% between 1994

and 2010 (HELCOM 2015), and progress toward improved

environmental status in some parts of the Baltic Sea has

been observed (Nausch et al. 2016; Andersen et al. 2017).

However, eutrophication is still considered to be the most

serious anthropogenic threat in the Baltic Sea, and the P

target values of the Baltic Sea Action Plan (BSAP) have

not yet been reached: max. allowable input is 21 716 t by

2021. P input from the drainage basin was 36 200 t in 2010

(HELCOM 2014, 2015). The slow recovery of the envi-

ronmental status of the Baltic Sea is also a consequence of

the long residence times and the large quantities of P stored

and recycled in sediments (e.g., Leipe et al. 2017),

although mobilization from marine sediments in a shallow

oxic lagoon was found to be relatively small (Berthold

et al. 2018, this issue).

The mitigation of eutrophication in freshwater, coastal,

and marine systems requires a better understanding of
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mobilization and release of P from soil and catchments

(soil-to-water transfers), P composition and cycling in

water bodies, and measures to decrease P loss. New find-

ings reveal that, in some river basins, P export now exceeds

P inputs, which may result from the net mobilization of P

pools accumulated during earlier decades (Powers et al.

2016). This appears to occur mainly in agricultural and

mixed-used catchments (e.g., in UK and USA), which have

been under fertilizer treatment for several decades, and

which may have already reached a finite P-accumulation

stage. In other areas (e.g., China), where P fertilization has

been introduced only one or two decades ago, P is still

accumulating in soils (Powers et al. 2016). Accounting for,

and predicting, the long-term impacts of P cycling from

legacy stores were highlighted as a key future challenge in

the IPW7 Synthesis paper (Sharpley et al. 2015). Over the

last 2 years, there has been growing interest in utilizing

long-term historical datasets (e.g., Rupp et al. 2018, this

issue) and reconstructing historical watershed P balances to

evaluate trajectories of legacy P accumulation and draw-

down in catchments (e.g., Liu et al. 2016; Powers et al.

2016). Moreover, there have been developments in moni-

toring, measurement, and process studies to estimate

legacy P contributions to contemporary catchment P bud-

gets (e.g., Liu et al. 2015; Waldrip et al. 2015), and also in

identifying opportunities to incorporate the utilization of

legacy P within sustainable P-management strategies

(Rowe et al. 2016).

The mobilization and transport of P at the catchment

scale are strongly influenced by weather/climate changes

causing temporal and spatial differences in P losses (Mel-

lander et al. 2015). Single rainfall events are of high

importance for the annual P load and thereby revealing the

threshold character of P mobilization as well as sediment-

transfer processes (Ockenden et al. 2016, River and

Richardson 2018, this issue). High rainfall and overland

flow intensities provide the kinetic energy necessary to

generate the critical shear stress for mobilizing soil parti-

cles and inducing sediment and sediment-bound P fluxes.

There is increasing evidence that particle-bound P transport

is not only limited to the soil surface, and that colloid-

related transport through the soil profile can drive P losses

(Sharma et al. 2017). Especially when dry periods precede

high intensity rainfall events, (colloidal) P may be trans-

ferred over long distances via subsurface flow (Zhang et al.

2016). The travel distances of P-laden microparticles

within a soil profile can be equivalent to those of dissolved

compounds (Koch et al. 2016). Although agricultural P

loading had been considered a surface runoff-dominated

process, over the last 2 years, there have been new insights

into the role of tile drainage in transport of both particulate

and soluble P fractions (e.g., Smith et al. 2015a; King et al.

2016; Ulén et al. 2016). Tile drainage increases critical

source areas as well as providing conduits for P loss that

by-pass a large proportion of the P-sorbing soil matrix, and

the contribution of subsurface drainage to river P fluxes in

under-drained catchments may have been underestimated

(Smith et al. 2015a). It is also expected that, in lowland

catchments, tile-drainage provides a preferential pathway

for P carriers, for instance, as ochre flocs consisting of Al,

Fig. 3 Three principal routes for nutrient recycling from sewage to agriculture (Kabbe 2013)
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Fe, and Mn components with attached microorganisms

(Zimmer et al. 2016).

P concentrations in river sediments are often high in

comparison to the soils in the catchment (Pulley et al.

2016). A variable water flux with temporary high intensi-

ties may induce re-suspension of particulate P from the

channel bed increasing total P (TP) loading of streams (van

der Grift et al. 2016). As a consequence, P concentrations

may increase along the flow path and spatial scale, from

small ditches to the river basin outlet even without addi-

tional P sources such as effluent from sewage plants.

The effect of catchment hydrology on P export is

P-component specific. It has been observed at mid-size

river basin scale (3300 km2) that the dissolved reactive P

concentrations decrease with the increasing discharge

(daily resolution), whereas the TP concentrations tend to

increase at higher discharge rates (Nausch et al. 2017). The

soluble P fraction in surface waters is probably diluted by

less P-laden groundwater, whereas TP dynamics, which

include the sediment-bound P phase, reflect erosion pro-

cesses (Nausch et al. 2017).

The expansion in the use and application of in situ high-

resolution sensors over the last two years have resulted in

key advances in P monitoring in freshwaters (Blaen et al.

2016; Rode et al. 2016). These technologies are providing

new opportunities to evaluate the dynamics in P sources

and pathways (e.g., Bowes et al. 2015; Lloyd et al. 2016;

Mellander et al. 2016; Ockenden et al. 2016), the pro-

cessing and cycling of P, linked to biological dynamics

(Halliday et al. 2015; Cooper et al. 2016) and for identi-

fying the effects of P relative to other multiple pressures on

algal blooms and crashes (Bowes et al. 2016). Our under-

standing of spatial scale dependent P transport is limited;

for example, the spatial variation in P leaching via sub-

surface drains can be higher than the temporal variation

(Ulén et al. 2018, this issue). This requires deployment of

spatially distributed and nested intelligent sensor networks

which directly measure the dynamics in water and nutrient

fluxes at time scales aligned with the variation of the

physical drivers (Rode et al. 2016).

New efforts are also underway to investigate innovative

P-mitigation and -removal measures and to improve

existing measures such as constructed wetlands (e.g.,

Geranmayeh et al. 2018, this issue). For example, P

removal in large wastewater treatment plants has been

improved, but in some countries such as Germany, small

rural wastewater treatment plants were neglected; they do

not even have legally binding P emission limits. Most

recently, their emissions have been investigated, and new

solutions of efficient P removal are being developed

(Cramer et al. 2018). Mitigation strategies for controlling P

export to rivers and coastal systems should include the

regulation of water flows such as controlled drainage

(Young et al. 2017). Controlled drainage, a frequently

discussed P-attenuation approach in lowland catchments,

can lower the P load released to surface water bodies

because of a reduction in water flux (Zhang et al. 2017).

However, elevated P concentrations in groundwater may

counteract the positive effect of controlled drainage

(Rozemeijer et al. 2016). In catchments where P concen-

trations increase along the flow path, soluble P attenuation

and particulate P mobilization should be maximized and

minimized, respectively, for example, by cleaning out the

sediments before they become saturated with P and

encouraging vegetation growth on ditch beds (Shore et al.

2016).

There is also growing interest in the long-term water-

quality impacts of agricultural management and conser-

vation practices, and indications that, over time, some

conservation practices aimed at reducing particulate P

losses, may have unintended tradeoffs for soluble P losses

(Jarvie et al. 2015, 2017; Dodd and Sharpley 2016). This is

of particular current concern in the western Lake Erie basin

(WLEB), U.S., which has undergone a marked phase of re-

eutrophication, linked to increased soluble P fluxes (Smith

et al. 2015b; Jarvie et al. 2017). Within the WLEB, there

have been long-term, large-scale changes in land man-

agement: conservation tillage to minimize erosion and

particulate P loss, and increased tile drainage to improve

field operations and profitability. The increased soluble P

fluxes, water-quality impairment, and harmful algal blooms

within the WLEB exemplify much wider challenges for P

and water-quality management, as a result of the conver-

gence of multiple pressures and potential tradeoffs in

agricultural management practices, compounded by cli-

mate change (Smith et al. 2015b; Williams et al. 2016;

Jarvie et al. 2017) and highlight the need for adaptive

management and optimizing land use and management to

address tradeoffs and reduce water-quality impairment

(Doody et al. 2016; McDowell et al. 2016).

Questions remain especially regarding the consequences

of these new findings for the design of P-retention mea-

sures: What is the impact of individual events on P

leaching and what is the implication for mitigation mea-

sures? What measures can be undertaken to reduce the

P-loss risk from soil, considering that strategies, such as

buffer strips and modified tillage practices which yield

great benefits in some settings, can lead to tradeoffs and

adverse effects in other situations? Here, there is growing

recognition that beneficial management practices need to

be spatially and temporally precise and tailored to address

the site-specific characteristics of the land, climate, and

farming system. How can the P fluxes through drainage

tiles be addressed? What measures can remediate high P

emissions from groundwater? How can new emission

sources be detected and defined? How to deal with the
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difficulty of many small P-emission sources within a

catchment, hence many different measures, resulting in

numerous conflicts with landowners and high costs? How

are measures working in the long run? Mitigation measures

have long time lags until improvements become apparent

in lakes and coastal waters.

PHOSPHORUS GOVERNANCE

For the first time in the history of the IPW series, a whole

session was dedicated to the topic of phosphorus gover-

nance from the perspective of social sciences. In this ses-

sion, there were contributions from diverse backgrounds,

including economics, political and social sciences, and law,

to explore the political and legal instruments needed to

close nutrient cycles and to sustain natural resources.

Special concern was given to measures aiming at reducing

consumption of animal products.

Closing nutrient cycles in agriculture at certain spatial

scales and environmentally sound levels, increasing nutri-

ent recovery and fertilizer efficiency clearly belong to the

political agenda. Indeed, strategies are needed to reduce the

heavy environmental and resource impacts associated with

the current industrialized agricultural systems. However, it

is doubtful, whether these consistency and efficiency

strategies alone will be sufficient in order to achieve certain

environmental goals set at the global level: Art. 2 (1) of

Paris Agreement sets out the objective to keep the increase

in global average temperature to well below 2 �C or even

1.5 �C above pre-industrial levels. Furthermore, Art. 1 of

the Convention on Biodiversity (CBD) requires the ‘con-

servation’ of biodiversity. If these ambitious objectives are

taken seriously, it rather seems to be necessary to com-

plement technological measures with supplementary (vol-

untary or mandatory) sufficiency measures. This would

particularly address the food sector and more specifically

the production and consumption of animal products.

When considering the implementation of efficiency,

consistency, and sufficiency strategies, experiences made

with the effectiveness of certain groups of instruments need

to be taken into account. Especially regulatory command

and control measures are subject to considerable doubts.

The potential weaknesses of regulatory command and

control approaches become particularly apparent in the

area of agriculture:

– Enforcement Regulations in the area of agriculture

often suffer from weak enforceability. Despite the

unused potential to improve the efficiency of enforce-

ment, there is no fully satisfactory solution to the

problem, that a strong enforcement would require the

monitoring of a nearly uncountable number of agricul-

tural activities.

– Shifting effects Reducing fertilizer use locally within

the EU or one EU member state might lead to a

stronger transfer of agricultural production abroad. A

merely regional or local reduction of fertilizer use is

thus prone to shifting effects, without guaranteeing an

absolute reduction of emissions or resources used at the

global scale. While not excluding the use of regulatory

instruments in principle, the risk of shifting effects

demonstrates the importance of at least regionally and

ideally globally concerted actions.

– Rebound effects Reducing the average nutrient input

per plant does not prevent overall land-use increases

due to the production of fodder or energy crops.

Therefore, the reduction of emissions and resource-

overuse from one sector might easily be (over)com-

pensated by undesired developments in other sectors.

Rebound effects prevent the achievement of absolute

reductions.

In fact, behavioral sciences (Scholz 2011; Stoll-Klee-

mann 2014; Stoll-Kleemann and O’Riordan 2015; Ekardt

et al. 2015; Ekardt 2016) can explain, why not only

politicians, farmers, and the fertilizer and food industry, but

also consumers are indeed not sincerely interested in

effectively addressing adverse ecological impacts of agri-

culture. This is not only due to the frequently mentioned

lack of information or cost–benefit considerations of single

actors (not discussed in the IPW7 summary by Sharpley

et al. 2015). Instead, the causes lie much deeper: in par-

ticular regarding the consumption of animal products, a

central role must also be assigned to concepts of normality,

comfort, habits, repression, search for recognition or the

tendency to forget about cognitive dissonances.

These insights make clear, that the environmental

challenges ahead cannot be solved with simple adjustments

of existing instruments. These motivational problems and

systematic weaknesses of regulatory instruments rather call

in favor of a policy approach that addresses absolute

quantities of resources and pollutants. In the light of the

level of ambition set by global environmental goals, such a

quantity control would need to pursue efficiency and con-

sistency strategies, but would also need to tap into the

potential of sufficiency (not discussed in the IPW7 sum-

mary by Sharpley et al. 2015).

A first and rather easy step of quantity control would be

the reduction of agricultural subsidies, as this would help to

reduce the associated problems of overproduction. This

alone might, however, not be ambitious enough. Instead, it

would be central to reduce the quantity of fossil fuels used.

Fossil fuels are the key factor for several, closely inter-

connected environmental problems. Data from the IPCC
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suggest, that, in order to stay well below the 2 �C or even

1.5 �C objective, fossil fuels would need to be retrieved

from the market by 2027 (1.5 �C) or 2038 (\2 �C). Such a

radical reduction in the use of fossil fuels could be

implemented by an EU emission-trading scheme that

would cover all fossil fuels, include all emissions from

livestock farming and would be combined with a border

adjustment for imports and exports. A drastically reduced

consumption of animal products, biofuels, and a reduction

of food waste would be a likely consequence. By this

means, a variety of adverse impacts could be addressed

simultaneously: biodiversity loss, degradation of soils,

nutrient water pollution, CO2 emissions from the transport

of agricultural products as well as emissions of ammonia

and nitrous oxide from manure management and fertilized

soils. As mineral fertilization today is often based on the

use of combined NPK fertilizers, a reduced mineral fer-

tilization in general would also conserve scarce P resour-

ces. By the same token, a reduced consumption of livestock

products could improve global food security, since it pro-

vides the potential to leave more calories to the poor (albeit

undernutrition has several reasons; generally speaking,

neither global food security nor geopolitical issues were the

major topics of IPW8).

However, a quantity control of fossil fuels alone does

not address issues due to all greenhouse gases (Ekardt et al.

2015; Ekardt 2016). It might also partly frustrate the

important objective of land-use reduction, which is par-

ticularly important for the conservation of biodiversity.

This tradeoff could be partly avoided by including live-

stock in an emission-trading scheme. However, supple-

mentary measures could be necessary. It could be

considered to either control the quantity of agricultural land

or the P used. The pricing of agricultural land as such, via

taxes or a trading of land certificates, would address the

various agricultural (greenhouse gas and ammonia) emis-

sions and would help to reduce the pressure on land. If a

tax on agricultural land would be progressive, small-scale

farming and organic farming, having sometimes environ-

mental and resource benefits, would be promoted.

Pricing P from primary fossil resources could lead to a

reduction of fertilization. A price (by means of charges

etc.) on mineral P might also help to close disrupted

nutrient cycles not only at the farm level, but also by

fostering recycling from P from sewage and waste.

Because of the potential contamination of secondary P

resources, this also requires effective waste treatment

technologies, as well as legal standards in order to prevent

soil contamination. The problem of contamination illus-

trates that even a comprehensive approach of quantity

control must be complemented by classical regulatory

instruments, such as environmental and technical stan-

dards. In particular, hot-spot problems such as the local

accumulation of contaminants, nutrient surpluses, or the

need to protect particularly sensitive local ecosystems

demonstrate that an approach, including both quantity

control and regulatory standards, is necessary. These issues

of instrument mix and interrelated environmental problems

are also new compared to the IPW7 summary as well as the

broader analysis of behavioral factors and governance

deficits discussed above.

SUMMARY AND CONCLUSIONS

Managing the scarcity and necessity of P requires an adapted

agriculture, i.e., adequate animal feeding and fertilization of

crops. In animal husbandry, recent research has opened up

new opportunities for reducing the P added in feed by

exploring the genetic potential of farm animals, adapted

feeding systems, and improved phytate-P digestibility, to

reduce P excretion by animals. In soil-based cropping sys-

tems, sophisticated techniques of analysis, such as the 18O-

exchange technique, nuclear magnetic resonance (NMR),

and synchrotron-based P-speciation techniques, are pro-

viding new opportunities to quantify the behavior, fate, and

fluxes of P derived from manure and fertilizer sources. The

roles of microorganisms, organic forms of P, and interlinked

C-, N- and P-transformations were found to be more

important than previously assumed, and this knowledge

enables efficient P uses in growing agricultural crops.

Nevertheless, meta-analyses of fertilizer experiment data

have indicated that P-application rates are still too high, e.g.,

in Germany where reductions may be possible without crop

yield losses. There are opportunities to use new soil testing

methods (e.g., diffusive gradients in thin films, DGT) to

develop new P-fertilizer recommendations. Furthermore,

examples were given recently for site-adapted cropping

systems involving catch crops, combined cultivation, or

mixed cropping that could result in a better utilization of soil

and fertilizer resources. Many new technologies have been

developed in recent years for recovering P from liquid and

solid phases of waste. Some of these, like struvite recovery,

have already been upscaled to practical use and the products

successfully tested in fertilization or other experiments. It

was emphasized, however, that prevention of P-containing

waste and recycling needs to be combined in holistic solu-

tions which are actually not yet developed or tested.

Such improvements in agriculture toward a more suffi-

cient and efficient P use very likely reduce the burden of P

in aquatic ecosystems, although short-term improvements

may be rather unlikely. Advances in process-understanding

of the P burden have been made in disclosing the effects of

weather/climate and hydrology on the export of P com-

ponents from catchments. New P-mitigation and -removal

measures have been described, but there is also new
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indication that conservation practices designed to reduce

particulate P losses, when combined with other land-

management practices such as broadcast fertilizer appli-

cations, may have unintended tradeoffs for soluble P losses,

especially in the long term. This calls for long-term mon-

itoring schemes and adaptive management at the landscape

level. Mitigation of eutrophication in freshwater, coastal,

and marine systems requires a better understanding of

factors controlling P delivery from terrestrial systems as

well as the understanding of internal processes such as

recycling of P from sediments. Discussions of governance

options pointed out that the above ‘‘technical approaches’’

probably will not solve the P problem. This has been dis-

cussed in the broader frame of international agreements

like the Paris Climate Agreement and the Convention on

Biodiversity. If these international agreements shall be

fulfilled, general reductions are required in the total use of

fossil fuels and P fertilizers as well as in the consumption

of animal products. Governance approaches to achieve

these goals involve the reduction of agricultural subsidies,

caps for fossil, and nonrenewable fuels and fertilizers or

pricing of these inputs to agriculture.

In summary, this special issue of Ambio compiles a

multitude of new findings in agricultural and environ-

mental P research, which are translated into governance

options for a more sustainable P use. Altogether, this

publication provides detailed and recent approaches to

solve the P and related environmental problems, demon-

strating the research progress in the period after the pre-

vious International Phosphorus Workshop.
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A. Oberson. 2017. Gross phosphorus fluxes in a calcareous soil
inoculated with Pseudomonas protegens CHA0 revealed by 33P
isotopic dilution. Soil Biology & Biochemistry 104: 81–94.

Mikic, A., B. Cupinax, D. Rubiales, V. Mihailovi, L. Sarunaite, J.
Fustec, S. Antanasovi, D. Krstic, et al. 2015. Models, develop-
ments, and perspectives of mutual legume intercropping.
Advances in Agronomy 130: 337–419.

Nanzer, S., A. Oberson, L. Berger, E. Berset, L. Hermann, and E.
Frossard. 2014a. The plant availability of phosphorus from
thermo-chemically treated sewage sludge ashes as studied by 33P
labeling. Plant and Soil 377: 439–456.

Nanzer, S., A. Oberson, T. Huthwelker, U. Eggenberger, and E.
Frossard. 2014b. The molecular environment of phosphorus in
sewage sludge ashes: Implications for bioavailability. Journal of
Environmental Quality 43: 1050–1060.

Nausch, M., J. Woelk, P. Kahle, G. Nausch, T. Leipe, and B.
Lennartz. 2017. Phosphorus fractions in discharges from artifi-
cially drained lowland catchments (Warnow River, Baltic Sea).
Agricultural Water Management 187: 77–87.

Nausch, G., M. Naumann, L. Umlauf, V. Mohrholz, H. Siegel, and D.
Schulz-Bull. 2016. Hydrographic-hydrochemical assessment of
the Baltic Sea 2015. Meereswissenschaftliche Berichte (Warne-

münde) 101: 1–97.
Nesme, T., and P.J.C. Withers. 2016. Sustainable strategies towards a

phosphorus circular economy. Nutrient Cycling in Agroecosys-

tems 104: 259–264.
Ockenden, M.C., C.E. Deasy, C.M.H. Benskin, K.J. Beven, S. Burke,

A.L. Collins, R. Evans, P.D. Falloon, et al. 2016. Changing
climate and nutrient transfers: Evidence from high temporal
resolution concentration-flow dynamics in headwater catch-
ments. Science of the Total Environment 548: 325–339.
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Inga Krämer works as a scientist at the Leibniz Institute for Baltic
Sea Research and as the scientific coordinator of the Leibniz Science
Campus Phosphorus Research Rostock. Her research interests
include a broad context of catchment-sea-coupled nutrient manage-
ment, with special focus on phosphorus and water-protection man-
agement.
Address: Leibniz Science Campus Phosphorus Research Rostock

c/o, Leibniz Institute for Baltic Sea Research Warnemünde, Seestr.
15, 18119 Rostock, Germany.
e-mail: inga.kraemer@io-warnemuende.de

Christian Kabbe started his professional career as the Head of the
laboratory and Vice-production manager in the chemical industry in
2003. He joined the German Environmental Protection Agency in
2008 and initiated the national sewage sludge ash-monitoring cam-
paign finally conducted between 2013/2014. He is engaged in various
European and German working groups and bodies dealing with sus-
tainable nutrient management in a circular economy.
Address: P-REX Environment, Am Goldmannpark 43, 12587 Berlin,
Germany.
e-mail: Kabbe.prex@gmail.com

Bernd Lennartz is a full-time Professor of Soil Physics at the
University of Rostock, Germany. He is the spokesperson of the DFG-
research-training-group ‘Baltic TRANSCOAST’, which focuses on
land-sea-interactions. His interest lies on (soil) water dynamics and
solute transports at various spatial scales employing experimental and
modelling methods.
Address: Department of Soil Physics, Faculty of Agricultural and
Environmental Sciences, University of Rostock, Justusvon-Liebig
Weg 6, 18059 Rostock, Germany.
e-mail: bernd.lennartz@uni-rostock.de

Per-Erik Mellander is a Senior Research Officer in Catchment
Science at the Department of Environment, Soils and Landuse, Tea-
gasc, Ireland. His research interests include advancing knowledge in
water-quality issues for a sustainable environment and food produc-
tion system under the impacts of increasing population and changing
climate. His research has focused on nutrient mobilization and
transfer pathways within the agricultural landscape.
Address: Department of Environment, Soils and Landuse, Teagasc,
Johnstown Castle Environmental Research Centre, Johnstown Castle,
Co. Wexford, Ireland.
e-mail: Per-Erik.Mellander@teagasc.ie

Günther Nausch is a Senior Scientist at the Marine Chemistry
Department, Leibniz Institute for Baltic Sea Research Warnemünde
(IOW). This research involves nutrient cycles in the Baltic Sea and its
catchment area, the chemical monitoring of the Baltic Sea including
assessments, and he coordinates the IOQ’s monitoring program for
HELCOM.
Address: Baltic Sea Institute for Baltic Sea Research Warnemünde
(IOW), Seestrasse 15, 18109 Rostock, Germany.
e-mail: guenther.nausch@io-warnemuende.de

Hisao Ohtake is a Guest Professor of Phosphorus Atlas Research
Institute at the Waseda University. His research interests include
recycling phosphorus from wastewater to farmland. He serves as the
Chairman of Phosphorus Recycling Promotion Council of Japan.
Address: Phosphorus Atlas Research Institute, Waseda University,
Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo 162-0056, Japan.
e-mail: hohtake@bio.eng.osaka-u.ac.jp

Jens Tränckner is a Professor for water management at the
University of Rostock. His research covers integrated water-resources
management in urban and rural areas. One focus is to mitigate pol-
lutant and nutrient emissions from the diffusively spread small point
sources, like small wastewater treatment plants and runoffs from
farms and biogas plants. In this context, also P-recovery and -recy-
cling concepts are developed.
Address: Water Management, Faculty of Agricultural and Environ-
mental Sciences, Satower Strasse 48, 18059 Rostock, Germany.
e-mail: jens.traenckner@uni-rostock.de

Ambio 2018, 47(Suppl. 1):S3–S19 S19

� The Author(s) 2018. This article is an open access publication
www.kva.se/en 123


	Handling the phosphorus paradox in agriculture and natural ecosystems: Scarcity, necessity, and burden of P
	Abstract
	Introduction
	Sufficiency and efficiency of phosphorus utilization
	Phosphorus recycling: Technologies and product applications
	Phosphorus fluxes and cycling in the environment
	Phosphorus governance
	Summary and conclusions
	Acknowledgements
	References


