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Abstract—For millimeter-wave networks, this paper presents a
paradigm shift for leveraging time-consecutive camera images in
handover decision problems. While making handover decisions,
it is important to predict future long-term performance—e.g.,
the cumulative sum of time-varying data rates—proactively to
avoid making myopic decisions. However, this study experimen-
tally notices that a time-variation in the received powers is
not necessarily informative for proactively predicting the rapid
degradation of data rates caused by moving obstacles. To over-
come this challenge, this study proposes a proactive framework
wherein handover timings are optimized while obstacle-caused
data rate degradations are predicted before the degradations
occur. The key idea is to expand a state space to involve time-
consecutive camera images, which comprises informative features
for predicting such data rate degradations. To overcome the dif-
ficulty in handling the large dimensionality of the expanded
state space, we use a deep reinforcement learning for decid-
ing the handover timings. The evaluations performed based on
the experimentally obtained camera images and received pow-
ers demonstrate that the expanded state space facilitates (i) the
prediction of obstacle-caused data rate degradations from 500 ms
before the degradations occur and (ii) superior performance to
a handover framework without the state space expansion.

Index Terms—Millimeter-wave communication, deep reinforce-
ment learning, handover management, proactive prediction,
camera image.

I. INTRODUCTION

M
ILLIMETER-WAVE (mmWave) communications are

expected to play an important role in next-generation

wireless networks, such as fifth-generation mobile networks

or wireless local area networks [1]–[4]. The exploitation of

wider spectrum bands in the mmWave band facilitates multi-

gigabit data transmission and thereby supports communication

services, such as ultra-high-definition televisions [2], virtual

reality (VR) [5], or augmented reality (AR) [6] that require

the multi-gigabit data transmission.
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However, designing robust millimeter networks is quite

challenging owing to the high frequency of the mmWave

bands. The distinct feature of mmWave communication is the

use of directional antennas to compensate for high path loss

in mmWave bands. The directional antennas can be imple-

mented by embedding many small antenna elements designed

for mmWave in a limited physical space in mobile terminals

as well as mmWave base stations (BSs). However, the antenna

directivity makes mmWave communication links vulnerable to

link blockage caused by moving obstacles. The link blockage

suddenly penalizes the mmWave link budget by 20–30 dB

in the case of data transmission comprising the use of direc-

tional antennas [7], [8]. The sudden and damaging degradation

in the received power causes frequent interruptions within a

transmission of streamed data, which is a crucial problem for

VR/AR applications.

To overcome the blockage problem and provide reliable

mmWave communications, a handover between multiple BSs

is envisioned as a promising scheme [9]–[13]. By perform-

ing handovers at appropriate times, the decreased link budget

can be compensated with another BSs. In next-generation cel-

lular networks, an increasing number of mmWave BSs will

be deployed to ensure a line-of-sight (LOS) path between a

mobile terminal and one of the deployed BSs; hence, designing

a decision problem concerning when and to which BS a han-

dover should be triggered, which is referred to as a handover

decision problem, is an important research direction.

In a handover decision problem, it is important to predict a

future long-term performance, e.g., the time-average or cumu-

lative sum of the data rates prior to performing a handover

in order to avoid making myopic decisions [14]–[19]. This is

because a handover involves a service disruption caused by

procedures that are necessary for changing association and for

data forwarding to a BS to which handover is performed [20].

Performing handovers based on a short-term performance,

i.e., making myopic decisions, results in frequent handovers

that may cause the overall long-term performances to devi-

ate [16], [17]. Thus, a future long-term performance in both

the currently associated BS and the candidate BSs should be

predicted prior to triggering a handover, and a handover deci-

sion rule should be formed such that the predicted performance

is maximized.

In addition to the avoidance of redundant handovers,

predicting future long-term performance is beneficial to avoid
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a lower data rate situation, particularly in mmWave commu-

nications, what is a main topic of this study. Due to moving

obstacles, mmWave links experience faster data rate variation

compared to microwave links. Given such constraints, the data

rate provided by current BS may be lower than the rates pro-

vided by another BS before a handover execution is performed

if the handover occurs after data rate variation. As a result,

severe loss of the data rate takes place. By predicting future

data rates within a longer time horizon, handover is performed

to avoid data rate loss, so proactive handover is beneficial

rather than detrimental.

However, it is still challenging to predict the future long-

term performance in mmWave links proactively under the

condition that moving obstacles cause the rapid variation of

received powers or data rates. This is because the sudden varia-

tion exhibits little prior indications in the radio frequency (RF)

signal domain such as received power samples and channel

state information.1 Thus, to predict the rapid variations in data

rates or received powers proactively, we should utilize other

information domains that provide more informative features

for predicting such variations.

To address this challenge, this study develops a proac-

tive framework wherein future data rate degradations caused

by moving obstacles are predicted from several hundreds of

milliseconds before the degradation occurs and the handover

timings are optimized based on the predicted values. The key

idea is to leverage the time consecutive camera images2 and

to use deep reinforcement learning (RL). Time consecutive

camera images comprise information of the spatiotemporal

dynamics of moving obstacles, which exhibits informative fea-

tures for predicting the future obstacle-caused degradation of

data rates in mmWave links. The optimization of the handover

timings while predicting such future degradations based on

camera images is a new challenge. We incorporate the usage

of camera images into the RL-based handover frameworks

(discussed in detail in the following section) by expanding

the state space such that the state involves camera images.

Moreover, by using a deep RL [27], we overcome the diffi-

culty in handling the large dimensionality of the state space

incurred by the state space expansion.

The most closely related work was presented at the IEEE

CCNC 2020 [28], while the contributions of this paper are

different from those in [28]. As discussed later in detail, the

main contribution of this study is the presentation of proactive

1With regard to the degradation of the received powers, there is a slight
fluctuation in the received powers within 100 ms prior to the degradation,
which is known as diffraction effects [8], [21]–[23]. Hence, by analyzing the
time-series of the received powers, we can predict the degradation from at
most 100 ms before the occurrence [24]. Nonetheless, it is worthwhile utiliz-
ing the camera image domain for the two reasons. First, as experimentally
confirmed in this paper, based only on the variation, the degradation cannot be
necessarily predicted in a proactive manner. Second, the degradation should
be predicted earlier because the service interruption incurred by a handover
could be several hundreds of milliseconds long [25].

2We used depth images pixels of which are used to measure the distance
between the obstacles and the camera [26]. Depth images allow us to obtain
geometric relations between components within the scene. In the following
discussion, we consider that the depth images are available to a network
controller.

prediction in handover decision problems by leveraging cam-

era images. Meanwhile, [28] addressed the issue of how to

compensate for a blind spot of a single camera while apply-

ing the framework proposed in this paper and proposed a

multi-camera operation. Thus, the contribution of [28] is to

demonstrate the feasibility of incorporating the multi-camera

operation into the framework proposed in this paper.

The contributions of this paper are summarized as follows:

• We highlight that the variation in the received powers

before blockage events is not necessarily informative in

predicting future data rate degradation in mmWave links.

To confirm this, we obtained experimentally a received

power time series that exhibits the variation and pre-

dicted the cumulative sum of future data rates with the

RL method based on the state of received power obtained.

• Based on the following two ideas, we propose a proac-

tive framework wherein handover timing is optimized

while the degradation in data rate caused by obstacles is

predicted within hundreds of milliseconds before degra-

dation. The first idea is to expand the states such that the

states comprise time-consecutive camera images, which

provide informative features for predicting degradations,

i.e., spatiotemporal dynamics of moving obstacles. The

second idea is to leverage deep RL to overcome the com-

putational complexity of learning the optimal handover

policy incurred by the expanded state.

The rest of this paper is organized as follows. Section III

presents an experimental evaluation of the received-power-

based prediction of the cumulative sum of the future data

rates in a handover decision problem. Section IV presents

our image-based handover framework, which leverages time-

consecutive camera images in a handover decision problem.

Finally, Section V presents concluding remarks.

It should be noted that Sections III and IV are related to

each other. The former provides a baseline for the framework

without camera images to be compared with the proposed

image-based handover framework, and the latter details the

image-based handover framework. In concrete, in Section III,

the problem of a received power-based handover frame-

work summarized in the first contribution is highlighted.

This received power-based handover framework is referred

to as baseline without camera images, and compared to the

proposed image-based handover framework in Section IV. In

Section IV, focusing on the highlighted problem, we propose

the image-based handover framework presented in the second

contribution. Subsequently, we discuss the difference between

the handover policies learned with and without camera images

by comparing our image based-handover framework with the

received power-based handover framework.

II. RELATED WORKS

A. Handover Decision Problems

In many studies, handover decision-making problems

or cell selection problems in heterogeneous microwave

networks or millimeter wave networks were formulated

with the objective of maximizing the future long-term

performance [14]–[19], [29]. The authors of [14], [19], [29]
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TABLE I
COMPARISON OF HANDOVER-RELATED PREVIOUS WORKS

designed the optimal cell selection problem in heteroge-

neous wireless networks with the objective of maximizing the

weighted sum of the network bandwidth and network delay via

the Markov decision process (MDP) models or optimal control

models. The optimal strategies are provided via dynamic pro-

gramming (DP) techniques. In [15], optimal cell selection in

mmWave networks was proposed to maximize the long-term

throughput or total received data in a mobile terminal using a

similar approach. The authors of [16]–[18], [38] applied an RL

algorithm to learn the optimal cell selection with the objective

of maximizing the long-term quality of experiences or channel

capacities, wherein an optimal strategy of cell selection can

be learned without prior knowledge of the transition proba-

bility of the channel states or received powers. However, in

the aforementioned studies, a decision process was considered

wherein a decision maker makes a decision based on a cur-

rent network state such as the channel information, received

power, or network bandwidth. These studies did not detail the

challenge of predicting the future long-term performance in

mmWave links under the condition of moving obstacles caus-

ing blockage effects and received powers at a station (STA) or

the BSs and the data rates in the mmWave links undergoing

rapid degradation.

Other works have addressed handover decision-making

problems in mmWave networks by using user mobility

information or pedestrian mobility information [30]–[32]. User

mobility information facilitates the prediction of future data

rates in mmWave links with blockage effects that occur when

users are entering areas blocked by static obstacles [30], [31].

However, the proactive prediction of the data rate degrada-

tions caused by moving obstacles is not addressed. In our

previous work [32], we addressed handover decision problems

based on the positions and velocities of a moving pedestrian.

However, the proposal is not applicable to handover decision

problems wherein more pedestrians cause blockage effects

because of the challenge of capturing the spatial features of

each pedestrian such as their height or shape. In contrast,

our current proposal uses camera images that comprise spatial

information, thereby capturing the spatial features of moving

obstacles.

B. Camera Image-Based Frameworks in mmWave Networks

The authors of [33]–[35] have conceptualized a camera-

assisted proactive handover system for mmWave networks.

The camera images are employed to predict the occurrence

of blockage effects caused by pedestrians approaching a LOS

path between a BS and an STA. The experiments conducted

in these works demonstrated that using camera images, a

handover can be triggered several seconds before blockage

the occurrence of the blockage effects. However, the methods

embedded in the experiments are focused on predicting the

timings at which blockage effects occur, and they do not quan-

titatively predict the future data rate degradation caused by

pedestrians. As discussed in the previous section, the optimal

handover requires a prediction of the future long-term perfor-

mances; hence, the aforementioned methods cannot provide

the optimal solution to handover decision problems.

Motivated by the issue, a novel method for quantitatively

predicting a future received power value in mmWave com-

munications was proposed in [37]. The method predicts a

received power value from several hundreds of milliseconds

before the value is observed. In this method, camera images are

mapped, via a supervised learning (SL) technique, to a future

received power value that is obtained several hundreds of mil-

liseconds after the camera images are obtained. However, the

prediction method in [37] is not specific to handover decision

problems. While the method in [37] can be used to predict

a future data rate at a certain time period, the optimization

of the handover timings requires a different prediction, i.e.,

the prediction of the expected cumulative sum of future long-

term data rates as confirmed in the previous studies discussed

in Section II-A. Thus, the method in [37] cannot be neces-

sarily adopted directly in handover decision problems. Table I

summarizes the main aspects of the previous works related to

this paper.

III. RECEIVED POWER-BASED HANDOVER FRAMEWORK

The main objective of this section is to highlight that the

future degradation of data rates in mmWave links caused by

moving obstacles cannot necessarily be predicted based only

on a variation in received powers. To illustrate this point, we

perform a prediction of the cumulative sum of the future data

rates using RL with the state information of the experimen-

tally obtained received powers. We will refer to the received

power-based handover framework as a baseline without cam-

era images, to be compared with the proposed image-based

handover framework in Section IV-B4. First, we provide an

overview of the RL. Then, we present the decision pro-

cess considered in this experiment. Finally, we provide an

experimental study of the prediction based on the received

powers.

A. Overview of RL

General RL algorithms are performed over an MDP. An

MDP consists of the following four elements: a state space S ,

an action space A , a reward function r : S × A × S → R,
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and transition probabilities q : S × A → Ω(S), where Ω(S)
denotes the collection of the probability distribution over S .

At each decision epoch t ∈ N, a decision maker observes the

state information st ∈ S . Subsequently, the decision maker

selects an action on the basis of the policy π : S → A(st ),
where A(st ) ⊆ A denotes the set of possible actions when

the state st is observed. Given the current state st and selected

action at ∈ A(st ), the state transitions to st+1 ∈ S at the next

decision epoch t + 1 according to the transition probability

q(st+1, st , at ); thereafter, the decision maker is given a reward

r(st+1, at , st ).
The objective of the decision maker is to determine the

optimal policy π⋆ that maximizes the total expected discounted

reward. The optimal policy satisfies the following condition:

E

[
∞∑

t ′=0

γt
′

r(st+t ′+1, π
⋆(st+t ′), st+t ′)

∣
∣
∣
∣
∣
st = s

]

≥ E

[
∞∑

t ′=0

γt
′

r(st+t ′+1, π(st+t ′), st+t ′)

∣
∣
∣
∣
∣
st = s

]

, (1)

∀s ∈ S and ∀π, where γ ∈ [0, 1) represents the discount factor.

In the MDP wherein S and A are both countable non-empty

sets, there exists at least an optimal policy [39].

To obtain the optimal policy in an MDP, it is sufficient to

obtain the optimal action-value function Q⋆ : S × A → R.

The optimal action-value function is defined as follows:

Q⋆(s , a) := Es′
[
r(s ′, a, s) + γV ⋆(s ′) | s , a

]
,

s ∈ S , a ∈ A(s), (2)

where Es′ [ · | s , a ] denotes the expectation operator under

the transition probability q(s ′, s , a) and V ⋆(s) denotes the

left-hand side in (1). This is attributed to the fact that the

optimal action-value function is related to the optimal policy

as follows [39]:

π⋆(s) = argmax
a∈A(s)

Q⋆(s , a). (3)

In other words, the policy that selects the action that maxi-

mizes Q⋆(s , a) is optimal. In this study, the optimal action-

value function is learned using deep RL [27].

B. States, Actions, Rewards, and State Transition Rules

We present the decision process considered in this exper-

iment by detailing the states, actions, rewards, and state

transition rules. In the process, a network controller makes

handover decisions in the mmWave networks based on the

received power values. We consider a mmWave network

wherein multiple mmWave BSs and an STA are deployed.

There exist obstacles that block the LOS path between the

STA and the BS associated with the STA. We also consider

the decision of whether a handover should be triggered with

respect to the time length of service disruption. The commu-

nication between the BS and STA can be disrupted because of

the necessary procedures for the association, which involves

beam alignment and for data forwarding to a BS to which a

handover is performed [25], [40], [41]. We define the dura-

tion for which the communication is disrupted as the service

disruption time Tdis.

It should be noted that in many existing studies [14], [15],

[19], [30], [31], the handover decision process was formu-

lated as an MDP, although it was assumed that the interval

between the decision epochs was several seconds long, which

is longer than a realistic service disruption time of several tens

or hundreds of milliseconds [40]. Hence, the service disrup-

tion occurs within an interval between the successive decision

epochs. However, the assumption of the large interval is not

suitable for predicting the blockage effects that moving obsta-

cles cause within several hundred milliseconds [23]. Hence,

we reformulate the problem wherein an interval between the

successive decision epochs is shorter than several tens or hun-

dreds of milliseconds, and several decision epochs could be

within a service disruption.

1) States: For the network controller to detect blockage

effects based on received powers, we design the states such

that they include the received power values. Let the number of

time-consecutive received power values used in making han-

dover decisions be denoted by N. We set the state space as

follows:

Srp := P × · · · × P
︸ ︷︷ ︸

N

×J × C. (4)

In (4), P ⊆ R
J denotes the set of all possible received pow-

ers observed at all BSs, J := {1, . . . , J} denotes the set of

the BS indices, and C := { c | c ∈ Z, 0 ≤ c ≤ ⌊Tdis/τ⌋ }
denotes the set of the remaining decision epochs until the ser-

vice disruption time ends, where J denotes the number of the

deployed BSs, ⌊·⌋ : R → R denotes the floor function, and τ
denotes the interval between the successive decision epochs.

Let st = (pt , pt−1, . . . , pt−N+1, jt , ct ) ∈ Srp denote the

state at the decision epoch t. The element pt−k ∈ P for

k ∈ {0, 1, . . . ,N − 1} is set as the received power observed

at the decision epoch t − k. The element jt ∈ J is set

as the index of the BS associated with the STA. The ele-

ment ct ∈ C is set as the number of remaining decision

epochs that the network controller experiences until the ser-

vice interruption ends. When the decision epoch is not within

the service disruption time, ct is set as zero.

2) Actions: We let the set of possible actions A(st ) be as

follows:

A(st ) :=

{
J , ct = 0;
{jt}, ct 
= 0.

(5)

In other words, the controller selects one of the BSs when

the decision epoch is not within the service disruption time;

otherwise, the controller selects only the index of the BS to

which a handover is performed.

3) Reward: We set the reward as a performance metric in

the link provided by the BS that is currently associated with

the STA with the exception that when the next decision epoch

t + 1 is within the service disruption duration, we set the

reward as zero as follows:

r(st+1, at , st ) :=

{
Rjt+1,t+1, ct+1 = 0;
0, ct+1 
= 0.

(6)

In (6), Rjt+1,t+1 denotes the performance metric in the link

provided by BS jt+1 at t + 1. In the performance evaluation,
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we set Rjt+1
as the achievable data rate provided by BS jt+1

as discussed in Section III-C.

4) State Transition: The state transition to the next state

is as follows. Let the state at epoch t + 1 be st+1 =
(pt+1, pt , . . . , pt−N+2, jt+1, ct+1) ∈ Srp. Evidently, the

received power values (pt+1, pt , . . . , pt−N+2) at t + 1 are

updated by concatenating the received power values at pt+1

with the current values (pt , pt−1, . . . , pt−N+1) and removing

the oldest value pt−N+1. Based on the definition of the state,

the term jt+1 is determined as follows:

jt+1 = at . (7)

The term ct+1 is determined as follows:

ct+1 =

⎧

⎨

⎩

ct − 1; ct 
= 0,
⌊Tdis/τ⌋; ct = 0, at 
= jt ,
0; ct = 0, at = jt .

(8)

It should be noted that without knowing the transition prob-

abilities, we learn the optimal action-value function using deep

RL [27]. To learn the optimal policy, we only require transition

samples (st , at , rt , st+1) that can be obtained while making

decisions in the learning procedure.

We detail an example of the temporal transition of the

decision process. We consider that at the decision epoch t,

st = (pt , pt−1, . . . , pt−N+1, 1, 0), i.e., the received power

values (pt , pt−1, . . . , pt−N+1) are available, the STA is asso-

ciated with BS 1, and the decision epoch is not within

the service disruption time. If the controller selects action

at 
= 1, i.e., a handover is performed, then the state tran-

sitions to st+1 = (pt+1, pt , . . . , pt−N+2, at , ⌊Tdis/τ⌋). The

controller is subsequently given a reward of zero because

ct = ⌊Tdis/τ⌋ 
= 0 (see (6)). In this case, until the service

disruption time ends, the controller selects action at , is given

a reward of zero, and decreases the last element of the state

by one. Conversely, if the controller selects action at = 1, i.e.,

the handover is not performed, then the state transitions to the

state st+1 = (pt+1, pt , . . . , pt−N+2, 1, 0) and the controller

is then given the reward R1,t+1.

C. Experimental Evaluation

1) Evaluated Scenario: As shown in Fig. 1, two BSs and

an STA are deployed in an indoor room whose length, width,

and height are 4.87 m, 5.34 m, and 2.57 m, respectively. The

size of the room corresponds to that of the room where the

measurement in the next section was conducted. The two BSs

are operated over the 60 GHz channel. The STA is initially

associated with the BS that observes a higher received power

as compared to that of the counterpart when there are no obsta-

cles within the deployed area. We term the BS that is initially

associated with the STA as BS 1 and the other as BS 2. BS 2 is

a candidate BS for a case in which the link between BS 1 and

the STA is blocked by obstacles. In the following discussion,

we detail the considered scenario including coverage area, STA

mobility, channel characteristics, beamforming, initial access

procedure, and beam tracking.

Coverage area: A BS covers an entire room in Fig. 1 at

least in a LOS condition, which is examined as follows. We

Fig. 1. Experimented scenario of mmWave links.

Fig. 2. Top view of the measurement environment (left) and measurement
setup showing the mmWave transmitter, measurement device, and camera
placed at the position A (right). The measurement device and mmWave
transmitter correspond to BS 1 and the STA in Fig. 1, respectively.

determine whether a BS can cover a certain position or not by

examining whether a commercially available IEEE 802.11ad

equipped transmitter and receiver can associate with each

other. In this examination, we validated that the transmitter

can associate with the receiver placed 10 m apart from the

transmitter in a LOS condition. Because the maximum dis-

tance between two positions is 7.67 m in the room, we can

say that a BS covers the room in Fig. 1 at least in a LOS

condition, which is sufficient for performing the evaluation.

STA mobility: In this evaluation, the received power varies

only because of moving obstacles, not because of the STA

movements to focus on the sudden variation of the data rate

caused by moving obstacles. To obtain such received power

samples, the experiment is arranged such that the position of

the STA is static, and a handover is performed to compensate

the degraded data rate caused by the obstacles rather than to

support the STA mobility. The evaluation in such a scenario is

sufficient for the two objectives of this study: highlights that

the such sudden variations of the data rate cannot be predicted

from a received power time series (provided in Section III)

and demonstrates the feasibility of the proactive prediction

on such variations achieved by camera images (provided in

Section IV). This scenario of the static STA is reasonable

for certain realistic application such as the transmission of

streaming data to a wireless monitor in an office, discussed in

Section IV-B1 in detail.

Channel characteristics between BS 1 and STA: The channel

between BS 1 and STA is based on the measurement in the

next section, where the overall characteristics are similar to

“dynamic 60 GHz radio channel” [23] in terms of the variation
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Fig. 3. An example of the variation of the received power in a blockage
effect.

TABLE II
ESTIMATED DISTRIBUTION PARAMETERS CHARACTERIZING BLOCKAGE

EVENTS OBSERVED IN MEASUREMENT

of the received powers only due to the moving obstacles. An

example of the variation of the received power in a blockage

effect is shown in Fig. 3, and the overall characteristics are

as follows. In a blockage effect, the received power decreases

by approximately 15 dB within 50–200 ms. Subsequently, the

received power remains constant for 200–300 ms, and then it

recovers to the original value within 50–200 ms.

Blockage distributions: Because the channel between BS 1

and STA is based on the measurement provided in the next

section, the distributions characterizing the blockage events

also depend on the measurement. To quantitatively character-

ize the blockage events in the measurement, in Table II, we

provide the estimated distribution parameters of the following

five variables, which are essential in characterizing blockage

events [23], [42]. In Table II, tdecay,5 dB denotes the dura-

tion in which signal attenuation level increases from 0 dB to

5 dB, trise,5 dB denotes the duration in which signal attenua-

tion level decreases from 5 dB to 0 dB, Amean is the mean

signal attenuation, and tD denotes the duration of the blockage

event. The value tLOS is the duration wherein a LOS condi-

tion sustained. The definitions of the values follow the works

of [23] and [42]. The choice of the distribution functions is

based on [23] or [42], and the parameters of the distributions

are determined by the maximum-likelihood estimation. The

blockage events occurred within the 21% time-length relative

to the whole measurement time.

Channel characteristics between BS 2 and STA: Meanwhile,

the mmWave channel between BS 2 and STA is static, and it

is assumed that BS 2 is free of blockages. The assumption

is reasonable given that a network controller is likely to per-

form a handover to a BS that is not blocked by obstacles. In

the following discussion, it is considered that BS 2 is at a

position where pedestrians cannot block the path between the

STA and BS 2, and the received power at BS 2 is constant

over time. Since the focus of the evaluation is on a blockage

effects between STA and BS 1, we detail the link between the

STA and BS 1 in the following discussion.

Beamforming: The STA and BS 1 communicate with each

other with directional antennas. Because channel characteris-

tics between BS 1 and STA are based on the measurement, the

antenna gain is also attributed to the measurement equipment.

In the next section, we detail antenna gains of a transmitter

and measurement device, which corresponds to the STA and

BS 1, respectively.

Initial access procedure: Prior to the evaluation, we estab-

lished the beam of STA based on an initial access procedure

termed as iterative beam search method [41], which is used

in the IEEE 802.11ad standard. This initial access proce-

dure is because we used the a commercially available IEEE

802.11ad equipped transmitter as the STA in the measurement.

Meanwhile, we established the beam of BS 1 manually such

that the beams of BS 1 and the STA point towards each other.

We discuss the procedure of establishing the beam directions

of the STA and BS 1 in detail in the next section.

Beam tracking: In the next section, we conduct the mea-

surement such that the STA and BS 1 do not perform a beam

tracking. The aim is to eliminate the variation of the received

powers due to beam tracking whose mechanisms depend on

manufacturers and thereby to focus only on the sudden varia-

tions of the received powers due to moving obstacles. In the

next section, we detail how the measurement is conducted such

that the beam tracking is not performed.

2) Measurement Setup: We set up an IEEE 802.11ad

equipped transmitter/receiver, a measurement device, and a

camera as shown in Fig. 2. The transmitter and a measure-

ment device correspond to the STA and BS 1, respectively.

The transmitter and measurement device is place at the height

of 0.70 and 0.85 m, respectively. The camera is placed at

either position (0.60, 2.65) and (1.80, 0.45) and at the heights

of 1.50 m and 1.25 m, respectively to obtain the a dataset

with two different camera angles. The angle from the for-

mer position is termed angle A while the latter is termed

angle B. The measurement device is equipped with a horn

antenna with directivity gain of 24 dBi and the half-power

beam width (HPBW) of 11 degree while the transmitter is

equipped with an array antenna with size of 16, directivity

gain of approximately 8 dBi, and HPBW of approximately

15 degree [44].

The beam directions of the measurement device and trans-

mitter are established from the following procedure to con-

figure the beams of the measurement device and transmitter

such that the beams point towards each other. First, the trans-

mitter and receiver in Fig. 2 performed, in a LOS condition,

an iterative beam search wherein the beam pair was searched

with a two-stage beam scanning [41] such that the receiver

can benefit from the maximum received power. Through the

procedure, the beam of the transmitter is configured such that

the beam points towards the receiver. Subsequently, we placed

the measurement device behind the receiver such that the
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TABLE III
EXPERIMENTAL EQUIPMENT AND PARAMETERS

horn antenna attached with the measurement device faced for

the transmitter. Since the beam of the transmitter also points

towards the measurement device, the beams of the transmitter

and measurement device point towards each other.

We conduct the measurements as in [22] and obtain the

received powers and camera images. The mmWave transmit-

ter transmits signals at the carrier frequency of 60.48 GHz

to the receiver, and subsequently, the measurement device

behind the receiver measures the power of a part of the signals

[22]. The transmitted signals are considered as uplink signals

from the STA to BS 1. In this environment, two pedestrians

walk along the moving path in Fig. 2 and obstruct the path

between the transmitter and measurement device. Tables III

summarizes the experimental equipment and parameters asso-

ciated with the experiment.

We conduct the measurement such that the beam tracking

between the measurement device and transmitter is not per-

formed. This eliminates the variation of the received powers

due to beam tracking whose mechanisms depend on manufac-

turers, and we can thereby focus only on the sudden variations

of the received powers due to moving obstacles. The details

are as follows: The measurement device was located behind

the receiver, and the pedestrians traveled between the receiver

and measurement device indicated in Fig. 2. This arrangement

prevented the receiver and transmitter from performing beam

tracking because the received power at the receiver was not

altered even when the LOS path between the receiver and

measurement device was blocked. In this situation, the beam

direction of the transmitter is almost fixed. Consequently, the

beam directions in the transmitter and measurement device

were also fixed, wherein the beam tracking between them was

not performed.

It should be noted that the camera images obtained in this

experiment are not used in this evaluation but are used in the

next section. This evaluation provides the baseline that does

not utilize camera images and only uses the time series of

received powers to decide handover timings.

3) Procedure of Performing Decision Process: We divide

the received powers into two parts, and the individual parts

are used for the learning and performance evaluation, respec-

tively. Let the obtained received power values be denoted by

(p1,t )t∈T , where p1,t denotes the received power obtained at

the tth observation, and T = {1, 2, . . . ,T} denotes the set of

the time indices. We divide T into the following two subsets:

TABLE IV
PARAMETERS ASSOCIATED WITH RL

T1 = {1, 2, . . . ,T ′} and T2 = {T ′+1,T ′+2, . . . ,T}, where

1 < T ′ < T . We use (p1,t )t∈T1 to learn the optimal action-

value function and (p1,t )t∈T2 to evaluate the learned policy. In

the following discussion, we denote pt as the received power

values observed at BS 1 and at BS 2, i.e., (p1,t , p2,t ), where

p2,t is the received power value observed at BS 2 and is

constant ∀t ∈ T .

We simulate the decision process in the learning procedure

using (pt )t∈T1 . The decision epoch is set as the time step

at which a received power value is obtained. The decision

process starts at the time step at which p1,N is observed.

The STA is initially associated with BS 1 and the time at

which the process starts is not within a service disruption

time, i.e., j1 = 1 and c1 = 0. Thus, the state sN is set as

(pN , pN−1, . . . , p1, 1, 0). The action aN is selected according

to a heuristic ǫ-greedy policy [27]; the next state sN+1 is then

set such that it includes the images (pN+1, pN , . . . , p2), jN+1,

and cN+1, where jN+1 and cN+1 are determined based on

aN as shown in (7) and (8). The procedure is iterated, and it

then ends when the state includes the received power values

pT ′−1.

The performance metric Rj ,t+1 for j ∈ J in (6) is set as

the achievable data rate provided by BS j, which is associated

with the STA and is calculated as follows. The metric Rj ,t+1 is

calculated by the Shannon capacity formula with the received

power value pj ,t+1 as follows:

Rj ,t+1 = W log2

(

1 +
pj ,t+1

σ2W

)

,

where σ2 denotes the noise power spectral density. It should

be noted that the metric at R2,t+1 is set as a constant value

based on the assumption that the received power at BS 2 is

a constant over time. It also should be noted that the reward

is re-scaled by multiplying 10−8 to range from 0 to 10 in

performing deep RL.

We evaluate the performance of the learned policy in the fol-

lowing step termed as performance test. In the performance

test, we simulate a decision process using the same proce-

dure as the learning procedure with the exception that we use

(pt )t∈T2 , and the action is selected according to a greedy pol-

icy [39]. We calculate the time average of the reward as a

performance metric of the learned policy. We then iterate the

learning and evaluation using the same data set. We evaluate
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Fig. 4. Comparison between time series of achievable data rate provided by
BS 1 and that of learned action values. The action value, i.e., the estimation
of the cumulative sum of the future data rates, decreases after the data rate
decreases, which indicates that the degradation in the data rate provided by
BS 1 cannot be predicted in a proactive manner.

the policy that achieves the highest average reward throughout

the iterations.

It should be noted that the handover policy is learned via

deep RL [27] with a neural network (NN) that is different

from that shown in Fig. 6 (discussed later). We simplify the

NN architecture because the input of the NN in this scenario

comprises several elements—the four elements in the evalua-

tion. We replace the combination of the convolutional neural

network (CNN) and long short-term memory (LSTM) in Fig. 6

with a fully connected multi-layer with eight hidden units and

32 output units, where the two layers are activated using rec-

tified linear units [45]. The weights of the NN are optimized

by Adam optimizer with the learning rate of 1.0× 10−3 and

the decaying rate parameters β1 = 0.9 and β2 = 0.999. The

parameters associated with the deep RL are summarized in

Table IV.

4) Results: In this experiment, it was shown that the

obstacle-caused degradation in the data rates could not be

predicted in a proactive manner by analyzing the learned

action-value function in Fig. 4. Fig. 4 shows the time series

of the achievable data rate provided by BS 1 and the cor-

responding learned action values. The data rate provided by

BS 1 is degraded from approximately 13.25 s to 13.70 s

because a pedestrian walks between the measurement device

and transmitter. First, we observe in Fig. 4 (a) that the data

rate oscillates within approximately 90 ms before the degrada-

tion occurs, and thus, the time-variation in the received powers

is successfully observed before the degradation, as confirmed

in other propagation experiments [8], [21]–[23]. However, the

action value decreases sharply after the degradation in the data

rate provided by BS 1. As the action value is defined as the

expected sum of the future performance, we can conclude that

the obstacle-caused degradation of data rates in a mmWave

link cannot necessarily be predicted proactively based only on

the variation in the received powers.

Fig. 5. Example of handover timing when Tdis = 0.09 s. Handovers are
performed after the variation in the data rate provided by BS 1.

Owing to the characteristics of the action-value functions,

handovers are performed after the variation in the data rate

provided by BS 1. Fig. 5 shows an example of the time-varying

data rate provided by our image-based handover framework

when the service disruption time Tdis = 0.09 s. It can be

observed that a handover is performed after the variation in the

data rate, the degradation is experienced within approximately

60 ms. If the handover is performed earlier, we can prevent

the occurrence of the degradation in the data rate provided by

BS 1 and enhance the time-average of the data rates.

It should be noted that, if we observe the received pow-

ers to have a short time-resolution, e.g., one millisecond,

we could predict the degradation in the data rate provided

by BS 1 from based on the time-variation in the received

powers that occurred before the degradation. However, as

the time-variation occurred within approximately 90 ms, the

degradation cannot be predicted from several hundreds of mil-

liseconds before the degradation. This example motivated us to

develop a framework using other state information that exhibits

more informative features for predicting even such degradation

in the data rates in a proactive manner.

IV. IMAGE-BASED HANDOVER FRAMEWORK

This section details a proactive framework wherein the han-

dover timings are decided while the future degradation in the

data rates is predicted in a proactive manner. First, to enable

the proactive prediction, we expand the state information such

that the state includes time-consecutive camera images. Using

the time-consecutive camera images, we can capture the spa-

tiotemporal dynamics of obstacles that are informative for

predicting the degradation. We then demonstrate that with the

expansion of the state space, the degradation can be predicted

from several hundreds of milliseconds in advance and confirm

that a performance gain is realized owing to the proactive

prediction.

A. State Space Expansion for Proactive Prediction

For the network controller to leverage camera images for

making handover decisions, we expand the state space in the

previous section such that the state includes consecutive cam-

era images. Let the number of time-consecutive camera images
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used in making handover decisions be denoted by N. We set

the state space as follows:

Simg := Srp × X × · · · × X
︸ ︷︷ ︸

N

, (9)

where X denotes the set of all possible images. It should be

noted that we consider the same actions, rewards, and state

transition rules as (5)–(8), respectively, to obtain a fair com-

parison of the performances achieved with the state space Srp

and Simg, respectively.

The state design enables an RL to predict the future data rate

degradations in mmWave links caused by moving obstacles

and facilitates the maximization of the expected cumulative

sum of the future data rates as in (1). This is because the state

involving time-consecutive camera images reflects the spa-

tiotemporal dynamics of the moving obstacles—for example,

the dynamics of the obstacles approaching a LOS path—thus,

reflecting the behavior of the data rates provided by deployed

BSs at the future decision epochs t +1, t +2, . . ., which may

comprise the decision epochs, in which one of the BSs is

blocked. We demonstrate that the novel state design allows us

to predict the degradation in the data rates caused by moving

obstacles from several hundreds of milliseconds before the

degradation occurs in the following section.

In the evaluation, we do not use the time-series of the

received power values in the state information because the

information of the received power values may be redundant

in the case of the existence of consecutive camera images.

This is because the camera images xt , xt−1, . . . , xt−N+1,

reflect the spatial features at the decision epochs t , t −
1, . . . , t − N + 1, which may also be informative for captur-

ing the received power values pt , pt−1, . . . , pt−N+1 because

the received power values are heavily dependent on the spa-

tial features, such as the distance between a transmitter and

receiver and the positions and shapes of obstacles that obstruct

the path between the receiver and transmitter [21]. Thus, in

this evaluation, we consider the state space as follows:

Ŝimg := X × · · · × X
︸ ︷︷ ︸

N

×J × C.

That is, we omit the sets of received power values P from the

state space Simg.

B. Experimental Evaluation

We evaluate the image-based handover framework discussed

above. The objective of this evaluation is to verify the feasi-

bility of the proactive prediction on data rate variation caused

by moving obstacles if a camera is available for performing

the prediction. Hence, further issues incurred by introducing

cameras, such as costs for camera installments, were left aside,

and we perform the evaluation focusing on the objective. In

the next section, we detail the evaluated scenario, and we pro-

vide realistic scenarios where the results from this feasibility

study can be applied possibly without any additional costs for

camera installments.

1) Evaluated Scenario: We consider the scenario as dis-

cussed in Section III-C1 with regard to the deployment of the

Fig. 6. NN architecture for approximating optimal action-value function
Q⋆(s, a) defined in (2) for C = {0, 1, 2, 3} and J = {1, 2}. With the
exception of the output layer, the architecture herein is identical to that used
in [37]. The architecture is a combination of a CNN, which deals with images,
and an LSTM, which deals with sequential inputs [45].

BSs and STA, channel, initial access procedure, and the cov-

erage area of the BSs. In the scenario, a camera monitors the

two pedestrians that walk between BS 1 and the STA. As we

have assumed that BS 2 is free of blockages, we do not per-

form the proactive prediction in the performance of the link

between BS 2 and the STA.

This experiment is performed by fixing measurement device

and transmitter positions and changing camera angles moti-

vated by the objective of this evaluation. The objective of

this experiment is to validate the feasibility of the proactive

prediction achieved by introducing cameras in the two basic

angles. Hence, it is beyond the scope of this study to perform

experiments in various configurations such as in terms of the

parameters irrelevant to cameras.

There are some realistic scenarios to which the results from

this feasibility study can be applied. In this feasibility study,

it is examined that we can at least perform the proactive

prediction with camera images if an STA and BSs are static,

and the order of the distances from the STA and BSs are sev-

eral meters. Hence, we can expect that the results are also

applied to, for example, a video streaming to static wireless

monitors in an office, where the STA and BSs are also static

and the order of the distances from an STA to BSs are several

meters.

Moreover, in such realistic scenarios, additional costs are

not necessarily incurred when we can utilize pre-installed cam-

eras. In concrete, given the aforementioned scenarios transmit-

ting streaming data, we can utilize pre-installed surveillance

cameras monitoring the entire office. In this case, the results

from this feasibility study can be applied possibly without any

additional costs for camera installments.

Concerning a real implementation, we evaluate the image-

based handover framework in the two totally different camera

angles shown in Fig. 2 (left). The camera angles affect how

the obtained images represent the movement of pedestrians,

and thus, they may also affect the feasibility of the proactive

prediction more strongly compared to other parameters irrel-

evant of cameras such as the distance of the STA and BS or

their heights. Hence, concerning the camera angles may be

important for a real implementation, and we perform the eval-

uation in the two basic camera angles that are orthogonal to

each other.
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Fig. 7. Time series of the achievable data rates under the condition of the service disruption time of Tdis = 0 s and the corresponding camera images.

2) Procedure of Performing Decision Process: We perform

the decision process in the image-based handover framework

using a procedure similar to that used in the previous eval-

uation with the exception that the state includes consecutive

camera images obtained in the experiment. Let xt denote the

camera image (that contains 40 × 40 pixel values in the exper-

iment and obtained with the frame rate of 30 frame per second)

obtained at the same time when the received power value p1,t
is obtained. From the state definition in (10), we replace the

received power values pt , pt−1, . . . , pt−N+1 in the state st
in the previous evaluation with the time consecutive images

xt , xt−1, . . . , xt−N+1. We learn the optimal policy using deep

RL with an NN that is specifically used for handling the time

consecutive camera images as discussed in the following sec-

tion. The parameter associated with the deep RL is set as

shown in Table IV.

3) Neural Network Architecture: In the deep RL, an NN

is trained such that the NN is a good approximation of the

optimal action-value function Q∗(s , a) in (2) [27]. We focus

on the NN architecture designed to perform deep RL in the

decision process discussed in the previous subsection.3

We design the NN architecture such that the NN has sepa-

rate outputs for each possible combination of j ∈ J , c ∈ C,

and a ∈ A , as shown in Fig. 6. The design allows us to divide

the parameters into two parts: the parameters associated with

the camera images and those associated with the other low-

dimensional observations j, c, and a. Let Q(s , a; θ) be the

NN, where s ∈ Ŝimg, (x1, . . . , xN ) ∈ XN , and θ denote the

parameters of the NN. In the architecture, the NN is expressed

3The NN is trained using the method discussed in [27]. For details of the
training, [27] may be referred to.

as follows:

Q((x1, . . . , xN , j , c), a; θ) =

512∑

k=1

θj ,c,a,khk , (10)

where h1, . . . , h512 denote the output values of the layer

prior to the output layer and θj ,c,a,1, . . . , θj ,c,a,512 denote the

parameters in the output layer corresponding to the combina-

tion of j, c, and a. The parameters used to obtain the output

values h1, . . . , h512 are associated with the camera images, and

the parameters in the output layer, θj ,c,a,1, . . . , θj ,c,a,512 are

associated with the low-dimensional observations j, c, and a.

The motivation for the architecture is that it is necessary

to use the observations j and c for handover control. In

our problem setting, the state s consists of N consecutive

images (x1, . . . , xN ) with thousands of elements and (j, c)

with only two elements. If we let the input of the NN be

(x1, . . . , xN , j , c), and thereby, process the camera images

(x1, . . . , xN ) and (j, c) using the same parameters, the vari-

ation in (j, c) does not significantly impact the NN output

values. This is because NNs generally estimate the feature

representations of overall inputs; thus, they do not propagate

the variation in one or two elements in the inputs to the out-

put [45]. Hence, the controller can ignore the variation in (j, c)

while making a handover decision.

It should be noted that we employ the NN architecture used

in [37] with the exception of the output layer. The architec-

ture is reported to facilitate the prediction of a future data

rate in an mmWave link based on camera images. Hence, it

is expected that the architecture also facilitates the learning

of the optimal action-value function, which is the cumu-

lative sum of the performance data rates in our problem

setting.
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Fig. 8. Comparison between time series of the data rate provided by BS 1 and that of the learned action-value function. The action value in the proposed
image-based framework decreases several milliseconds before the performance degradation at BS 1, which indicates that the proposed framework successfully
predicts the future performance degradation in advance (the action value is defined as the expected cumulative discounted sum of the future performance).

Fig. 9. Example of handover timing. The proposed image-based framework performed handovers before the variation in the channel at BS 1 and STA with
either camera angle A or angle B.

4) Results: We confirm that the deep RL successfully max-

imizes the time-average of the achievable data rate in the

mmWave links in the state design in (10). Fig. 7 shows an

example of a time series of the data rate in the case wherein

Tdis = 0 s. The pedestrians walk in front of the mmWave

transmitter at approximately 41.5 s and 43.9 s. At the same

time, the data rate provided by BS 1 is degraded from approx-

imately 200 Mbit/s to 30 Mbit/s. Our framework successfully

selects the BS that provides a higher data rate than the counter-

part at each decision epoch and thereby maximizes the overall

data rate.

It should be noted that in Fig. 7, the intervals between

the two successive handovers, i.e., the handover from BS 1

to BS 2 and that from BS 2 to BS 1 are according to

the durations wherein the blockage effects sustained. This

results can be interpreted that our image-based handover

framework can form a handover strategy while predicting

such durations wherein the blockage effects sustain in

an end-to-end manner. In this regard, we’ve achieved the

prediction of such durations implicitly in learning the handover

policy.

We show that the proposed framework predicts a future data

rate degradation from several hundreds milliseconds before

the degradation occurs by analyzing the learned action-value

function shown in Fig. 8. Fig. 8 shows the learned action value

at each decision epoch before and after the blockage effect in

Fig. 5. We can see that the action value begins to decrease

from approximately 500 ms (in camera angle A) or 200 ms

(in camera angle B) before the actual degradation in the data

rate provided by BS 1. As the action value is defined as the

expected sum of the future data rates, we can consider that

our image-based framework successfully predicts the future

performance degradation several hundred milliseconds before

the blockage effects occur.
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Fig. 10. Performance comparison between proposed image-based framework
and received power-based framework under various service disruption times
Tdis when the camera in angle A.

Owing to the proactive prediction, our image-based han-

dover framework triggers a handover in a proactive manner.

Fig. 9 (a) shows an example of a time-varying data rate pro-

vided by our image-based handover framework with camera

angle A. The plotted duration corresponds to that in Fig. 5.

Our proposed framework is different from the received-power-

based prediction presented in the previous section in Fig. 5 and

successfully triggers handovers prior to the variation in the

data rate provided by BS 1. Fig. 9(b) shows an example of a

time-varying data rate provided by the proposed image-based

handover framework with the camera angle B. Similarly, with

a different angle, the image-based framework triggers han-

dovers prior to the degradation of the data rate provided by

BS 1.

It should be noted that results show the feasibility of the

proactive prediction even with the image time-series with

40 × 40 pixels and a frame rate of 30 frames per second.

Hence, to accomplish the proactive prediction, it is suffi-

cient to leverage such qualities of image videos, which cannot

be obtained only with sophisticated cameras exampled by

Kinect sensors but also with commercial products of smart

phones [46] or surveillance cameras [47].

We compare the proposed image-based handover framework

with a handover framework that does not leverage images, i.e.,

the received power-based handover framework. Fig. 10 shows

the average data rate achieved by the two handover policies

over the duration of specific events 200 ms before and after

a blockage.4 As blockage event, the one depicted in Figs. 5

and 9(a) has been chosen since handover policies with and

without camera images exhibit different behavior according to

the aforementioned figures. The choice of 200 ms is attributed

to the fact that the two handover policies exhibited different

a behavior from at most 200 ms before and after the block-

age event. From Fig. 10, we can see that the handover policy

learned with images achieves a higher or equal data rate as

compared to the policy learned without images.

4In detail, the blockage event is defined as the event where the received
power is 3 dB below from the one observed in a LOS condition, which is
according to [48].

Fig. 11. Comparison of cumulative received bits between our image-based
framework and the received-power-based framework.

A realistic scenario where we can benefit from the gain

is exemplified by combining Agile-Link [41] as the beam

search method and make-before-break [49] as the handover

procedure. In such a scenario, the service interruption sub-

jected by a beam alignment is under 1 ms with a 128 size

array, and by the other handover procedure would be tens of

milliseconds. This leads to an overall service interruption time

Tdis of several tens milliseconds. Recalling that there is a gain

from the proactive handover when Tdis is in the order of tens

milliseconds in Fig. 10, the system benefits from the gain in

such a scenario.

To illustrate how the proactive handover led to the

performance gain provided in Fig. 10, we show the cumulative

received bits in the proposed image-based handover frame-

work and in the received power-based framework. Fig. 11

shows the amount of cumulative received bits from the time

200 ms before the blockage event. The horizontal axis corre-

sponds to that either in Figs. 5 and 9(a). After a handover to

BS 2 is performed in the image-based handover framework, the

amount of cumulative data bits is temporarily lower than that

in the received power-based handover framework. Meanwhile,

the amount of cumulative received bits in the image-based

handover framework is larger than that in the power-based

framework by 1.7 Mbit from instant 13.4 s. These results con-

firm the benefits of proactive handover in the long run, and

the increase of the received bits can be interpreted as the gain

from proactively performing a handover to BS 2. Similarly,

the amount of cumulative bits in the image-based handover

framework is larger than that in received power-based frame-

work by 3.6 Mbit from instant 13.8 s. This can be attributed

to the fact the image-based framework benefits earlier from

a recovering data rate in BS 1 while the STA remains to be

associated with BS 2 in the received power-based framework.

The increase in received bits can also be interpreted as a gain

from proactively performing handover to BS 1.

We analyze the computation time required for making a han-

dover decision in the context of an example. Fig. 12 shows
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Fig. 12. Computation time for making handover decisions.

an example of the computation time for making a handover

decision. The computation time is defined as the time for

calculating the action-value from an input of images and is

measured with a GeForce GTX 1080 Ti GPU. The received

power-based handover achieved the smaller computation time

because of the lower dimensionality of the input. Meanwhile,

in the proposed image-based handover framework, the com-

putation time was still in the order of several milliseconds.

The computation time is sufficiently shorter than the required

handover interval, i.e., an interval between the two succes-

sive handovers, and is reported as 750 ms in mmWave 5G

systems [50]. Thus, a shorter computation time relative to the

required handover interval is possible. To this regard, the com-

putation time incurred by the large-dimensionality of images

can be overcome.

We investigate the convergence property of the training pro-

cedure in Fig. 13. Fig. 13 shows the learning curve, i.e.,

the average data rate in the performance test corresponding

to each training step. We obtained the following trends as

the training steps are iterated: the performance enhancement,

achievement of the maximum performance, and convergence

to the degraded performance These results shows that the train-

ing procedure does not converge to maximum performance.

This is attributed to the fact that the training process is not sta-

ble, which is commonly reported in deep RL [27], [39] when a

non-linear approximator for the action-value function is used.

These results motivate us to design an improved algorithm that

converges to a maximum performance; however, seeking for

the better convergence property is beyond the scope of this

study.

Nevertheless, a practical solution can be employed to benefit

from the results in this study. The solution named, “off-policy

evaluation framework” [51], keeps track of the best performing

policy. As we are evaluating the policy that achieves maximum

average data rates among the learned policies, we can benefit

from the results in this study by designing the algorithm such

that the off-policy evaluation framework is performed.

V. CONCLUSION

We presented a new paradigm for leveraging time-

consecutive camera images in handover decision problems for

realizing the proactive prediction of future long-term perfor-

mances. We first experimentally noted that the obstacle-caused

Fig. 13. Average data rate in each performance test corresponding to a
training iteration.

data rate degradation in mmWave links cannot necessarily

be predicted in a proactive manner based only on the time-

variation of the received powers before the degradation. To

solve this problem, we proposed the expansion of the state

space in order for the state information to comprise consecu-

tive camera images, which comprise informative features for

proactively predicting long-term data rates in mmWave links.

To overcome the difficulty of the higher dimensionality of

the expanded state space, we use deep RL for predicting the

cumulative sum of the future data rates and deciding handover

timings based on the predicted values. By performing deep RL

using the state information of experimentally obtained cam-

era images, we confirmed that the state expansion allows the

prediction of future obstacle-caused data rate degradation from

approximately 500 ms before the degradation occurs. We also

evaluated the time-average of the data rates over approximately

two minutes and revealed that the proposed expansion of the

state space resulted in a performance gain.
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[24] O. Kaltiokallio, H. Yiğitler, and R. Jäntti, “A three-state received signal
strength model for device-free localization,” IEEE Trans. Veh. Technol.,
vol. 66, no. 10, pp. 9226–9240, Oct. 2017.

[25] C.-R. Lin, Y.-J. Chen, and L.-C. Wang, “Handoff delay analysis in SDN-
enabled mobile networks: A network calculus approach,” in Proc. IEEE

VTC-Fall, Toronto, ON, Canada, Sep. 2017, pp. 1–5.
[26] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a

single image using a multi-scale deep network,” in Proc. NIPS, Montreal,
QC, Canada, Dec. 2014, pp. 1–9.

[27] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 529, pp. 529–533, Feb. 2015.

[28] Y. Koda, K. Yamamoto, T. Nishio, and M. Morikura, “Cooperative sens-
ing in deep RL-based image-to-decision proactive handover for mmWave
networks,” in Proc. IEEE CCNC, Las Vegas, NV, USA, Jun. 2019, pp.
1–6.

[29] N. W. Sung, N.-T. Pham, T. Huynh, and W.-J. Hwang, “Predictive asso-
ciation control for frequent handover avoidance in femtocell networks,”
IEEE Commun. Lett., vol. 17, no. 5, pp. 924–927, May 2013.

[30] S. Zang et al., “Mobility handover optimization in millimeter wave het-
erogeneous networks,” in Proc. IEEE ISCIT, Cairns, QLD, Australia,
Sep. 2017, pp. 1–6.

[31] S. Zang, W. Bao, P. L. Yeoh, B. Vucetic, and Y. Li, “Managing vertical
handovers in millimeter wave heterogeneous networks,” IEEE Trans.

Commun., vol. 67, no. 2, pp. 1629–1644, Feb. 2019.
[32] Y. Koda, K. Yamamoto, T. Nishio, and M. Morikura, “Reinforcement

learning based predictive handover for pedestrian-aware mmWave
networks,” in Proc. IEEE INFOCOM Workshops, Honolulu, HI, USA,
Apr. 2018, pp. 1–6.

[33] Y. Oguma, R. Arai, T. Nishio, K. Yamamoto, and M. Morikura,
“Proactive base station selection based on human blockage prediction
using RGB-D cameras for mmWave communications,” in Proc. IEEE

GLOBECOM, San Diego, CA, USA, Dec. 2015, pp. 1–6.
[34] Y. Oguma, T. Nishio, K. Yamamoto, and M. Morikura, “Proactive han-

dover based on human blockage prediction using RGB-D cameras for
mmWave communications,” IEICE Trans. Commun., vol. E99-B, no. 8,
pp. 1734–1744, Oct. 2016.

[35] T. Nishio, R. Arai, K. Yamamoto, and M. Morikura, “Proactive traffic
control based on human blockage prediction using RGB-D cameras for
millimeter-wave communications,” in Proc. IEEE CCNC, Las Vegas,
NV, USA, Jan. 2015, pp. 152–153.

[36] H. Okamoto, T. Nishio, M. Morikura, and K. Yamamoto, “Machine-
learning-based throughput estimation using images for mmWave com-
munications,” in Proc. IEEE VTC-Spring, Sydney, NSW, Australia,
Jun. 2017, pp. 1–6.

[37] T. Nishio et al., “Proactive received power prediction using machine
learning and depth images for mmWave networks,” IEEE J. Sel. Areas

Commun., vol. 37, no. 11, pp. 2413–2427, Nov. 2019.
[38] X. Tan, X. Luan, Y. Cheng, A. Liu, and J. Wu, “Cell selection in two-

tier femtocell networks using Q-learning algorithm,” in Proc. ICACT,
Pyeongchang, South Korea, Feb. 2014, pp. 1036–1040.

[39] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[40] W. Jiao, P. Jiang, and Y. Ma, “Fast handover scheme for real-time
applications in mobile WiMAX,” in Proc. IEEE ICC, Glasgow, U.K.,
Jun. 2017, pp. 6038–6042.

[41] H. Hassanieh, O. Abari, M. Rodriguez, M. A. Abdelghany, D. Katabi,
and P. Indyk, “Fast millimeter wave beam alignment,” in Proc. ACM

SIGCOMM, Budapest, Hungary, Aug. 2018, pp. 432–445.
[42] B. Peng, S. Rey, D. M. Rose, S. Hahn, and T. Kuerner, “Statistical

characteristics study of human blockage effect in future indoor millime-
ter and sub-millimeter wave wireless communications,” in Proc. IEEE

VTC-Spring, Porto, Portugal, Jun. 2018, pp. 1–5.
[43] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

Specification, IEEE Standard 802.11ad-2012, 2012.
[44] T. Nische, G. Bielsa, A. Loch, and J. Widmer, “Boon and bane of

60 GHz networks: Practical insights into beamforming, interference, and
frame level operation,” in Proc. ACM CoNEXT, Heidelberg, Germany,
Dec. 2015, pp. 1–6.

[45] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[46] P. Ji, H.-M. Tsai, C. Wang, and F. Liu, “Vehicular visible light commu-
nications with LED taillight and rolling shutter camera,” in Proc. IEEE

VTC-Spring, Seoul, South Korea, May 2014, pp. 1–6.
[47] R. Hill, C. S. Madden, A. van den Hengel, H. Detmold, and A. R. Dick,

“Measuring latency for video surveillance systems,” in Proc. IEEE

DICTA, Melbourne, VIC, Australia, Dec. 2009, pp. 89–95.
[48] T. Choi et al., “Measurement based directional modeling of dynamic

human body shadowing at 28 GHz,” in Proc. IEEE GLOBECOM,
Abu Dhabi, UAE, Dec. 2018, pp. 1–6.

[49] L. C. Gimenez, P.-H. Michaelsen, K. I. Pedersen, T. E. Kolding, and
H. C. Nguyen, “Towards zero data interruption time with enhanced
synchronous handover,” in Proc. IEEE VTC-Spring, Sydney, NSW,
Australia, May 2017, pp. 1–6.

[50] A. Talukdar, M. Cudak, and A. Ghosh, “Handoff rates for millimeter-
wave 5G systems,” in Proc. IEEE VTC-Spring, Seoul, South Korea,
May 2014, pp. 1–5.

[51] G. Theocharous, P. S. Thomas, and M. Ghavamzadeh, “Personalized ad
recommendation systems for life-time value optimization with guaran-
tees,” in Proc. IJCAI, Buenos Aires, Republica Argentina, Jul. 2015,
pp. 1806–1812.

Yusuke Koda (Student Member, IEEE) received the
B.E. degree in electrical and electronic engineer-
ing from Kyoto University in 2016, and the M.E.
degree from the Graduate School of Informatics,
Kyoto University in 2018, where he is currently
pursuing the Ph.D. degree. In 2019, he visited the
Centre for Wireless Communications, University of
Oulu, Finland, to conduct collaborative research.
He received the VTS Japan Young Researcher’s
Encouragement Award in 2017. He was a Recipient
of the Nokia Foundation Centennial Scholarship in

2019. He is a member of ACM and IEICE.



816 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 2, JUNE 2020

Kota Nakashima (Student Member, IEEE) received
the B.E. degree in electrical and electronic engineer-
ing from Kyoto University in 2018, where he is cur-
rently pursuing the M.E. degree with the Graduate
School of Informatics. He received the VTS Japan
Young Researcher’s Encouragement Award in 2018.

Koji Yamamoto (Member, IEEE) received the B.E.
degree in electrical and electronic engineering and
the master’s and Ph.D. degrees in informatics from
Kyoto University in 2002, 2004, and 2005, respec-
tively. From 2004 to 2005, he was a Research Fellow
of the Japan Society for the Promotion of Science.
Since 2005, he has been with the Graduate School of
Informatics, Kyoto University, where he is currently
an Associate Professor. From 2008 to 2009, he was
a Visiting Researcher with Wireless@KTH, Royal
Institute of Technology, Sweden. He was a Tutorial

Lecturer in ICC 2019. His research interests include radio resource manage-
ment, game theory, and machine learning. He received the PIMRC 2004 Best
Student Paper Award in 2004, the Ericsson Young Scientist Award in 2006, the
Young Researcher’s Award, the Paper Award, SUEMATSU-Yasuharu Award
from the IEICE of Japan in 2008, 2011, and 2016, respectively, and IEEE
Kansai Section GOLD Award in 2012. He serves as an Editor for IEEE
WIRELESS COMMUNICATIONS LETTERS and the Journal of Communications

and Information Networks, the Track Co-Chair of APCC 2017, CCNC 2018,
APCC 2018, and CCNC 2019, and the Vice Co-Chair of IEEE ComSoc APB
CCC. He is a Senior Member of IEICE and the Operations Research Society
of Japan.

Takayuki Nishio (Member, IEEE) received the B.E.
degree in electrical and electronic engineering from
Kyoto University in 2010, and the M.I. and Ph.D.
degrees in communications and computer engineer-
ing from the Graduate School of Informatics, Kyoto
University, Kyoto, Japan, in 2012 and 2013, respec-
tively. From 2012 to 2013, he was a Research
Fellow (DC1) of the Japan Society for the Promotion
of Science. Since 2013, he has been an Assistant
Professor in communications and computer engi-
neering with the Graduate School of Informatics,

Kyoto University. From 2016 to 2017, he was a Visiting Researcher with
Wireless Information Network Laboratory, Rutgers University, USA. His
current research interests include mmWave networks, wireless local area
networks, application of machine learning, and sensor fusion in wireless com-
munications. He received the IEEE Kansai Section Student Award in 2011,
the Young Researcher’s Award from the IEICE of Japan in 2016, and the
Funai Information Technology Award for Young Researchers in 2016. He is
a member of ACM and IEICE.

Masahiro Morikura (Member, IEEE) received the
B.E., M.E., and Ph.D. degrees in electronics engi-
neering from Kyoto University, Kyoto, Japan, in
1979, 1981, and 1991, respectively. He joined NTT
in 1981, where he was engaged in the research
and development of TDMA equipment for satel-
lite communications. From 1988 to 1989, he was a
Guest Scientist with the Communications Research
Centre, Canada. From 1997 to 2002, he was active
in the standardization of the IEEE 802.11a-based
wireless LAN. He is currently a Professor with

the Graduate School of Informatics, Kyoto University. His current research
interests include WLANs and M2M wireless systems. He received the Paper
Award, the Achievement Award from IEICE in 2000 and 2006, respectively,
the Education, Culture, Sports, Science, and Technology Minister Award in
2007, the Maejima Award in 2008, and the Medal of Honor with Purple
Ribbon from Japan’s Cabinet Office in 2015.


