
Appeared in Knowledge-Based Systems Journal, Elsevier Science, Vol.13, No.6, pp.375-384, November,
2000.

1

Hands-on Representations in a Two-Dimensional Space for
Early Stages of Design

Yasuhiro Yamamoto1, Kumiyo Nakakoji1,2,3, Shingo Takada4

1Graduate School of Information Science, Nara Institute of Science and Technology
8916-5, Takayama-cho, Ikoma, Nara, 630-0101, Japan

{yasuhi-y, kumiyo}@is.aist-nara.ac.jp; http://ccc.aist-nara.ac.jp/
Tel: +81 743-72-5381; Fax:+81 743-72-5383

2Software Engineering Lab., SRA Inc.
3PRESTO, JST

4Faculty of Science and Technology, Keio University
michigan@doi.cs.keio.ac.jp

ABSTRACT
In design, problem analysis is as important as solution synthesis. Strategic knowledge is required not only
for constructing a solution but also for framing a problem. While externalized representations play critical
roles in design tasks, different types of representations are necessary for different stages of a design task.
In early stages of a design task, design support tools need to provide hands-on representations with which
a designer can easily perform trial-and-error and examine the whole as well as parts of the whole,
allowing the designer to represent any levels of preciseness as he/she likes. Sketching and drawing with
paper and pencil provide an ideal representation for this process. But what about supporting design
domains, such as writing or programming, where no sketching exists? In this paper, we argue that
two-dimensional positioning of objects in a design support tool serves for the same purpose as sketching
does for architectural design. Two-dimensional positioning allows a designer to produce hands-on
representations that “talk back” to him/her without forcing the designer to formalize or verbalize what to
be externalized. Two systems, ART for writing and RemBoard for component-based programming,
illustrate the framework.

KEYWORDS: computational support for early stages of a design task, representations
for strategic knowledge, two-dimensional positioning, design theories, cognitive models

1. INTRODUCTION
In ill-structured design, a problem and a solution co-evolve [1,2]. In architectural design,
writing, or programming, for instance, what components need to be constructed
(problem analysis) and how they need to be integrated (solution synthesis) depend on
each other - parts define the whole but the roles of parts are defined by the whole; a
design process can be viewed as forming a hermeneutic circle [3].

Throughout a design process, a designer is engaged in a cycle of producing a
representation (such as sketches, mockups, notes and solution forms), and reflecting on
them [4]. The externalized representations serve as a “situation” that talks back to the
designer. During the process, the designer has a conversation with a material asking
questions such as:

• what parts are missing;
• how much the designer is “sure” about a newly created part;
• what the role of this newly created part is in terms of the whole design;

Appeared in Knowledge-Based Systems Journal, Elsevier Science, Vol.13, No.6, pp.375-384, November,
2000.

2

• what the role of this newly created part is in terms of other parts; or
• which direction the whole design is moving toward and whether the direction is in

accordance with the intention behind the design.

A type of strategic knowledge that our research focuses on is related to low-level design
decisions required to address these questions.

Such strategic knowledge is necessary in early stages of a design task when
understanding what the problem is plays a large role. The strategic knowledge is
required to explore a possible problem space by uncovering implicit requirements, by
making trade-off among conflicting goals, and by setting up constraints.

Appropriately applying the strategic knowledge to a design situation requires the “right”
kind of external representation. Most existing design-support tools focus on providing
representations in a solution domain. CAD systems, for instance, allow designers to
produce detailed pretty-printed representations, allowing them to do precise simulation
and detailed analysis of a produced artifact. On the other hand, these representations
support designers very little in answering questions listed above.

In early stages of a design task, designers produce rough sketches using paper and
pencil. Programmers record hand-written notes. Not all of those externalized
representations would constitute the final solution. Most of sketches are in fact, drawn
as a part of a trial-and-error process or produced as a result of doodling, and abandoned
later. Those representations serve for the application of the strategic knowledge in
framing a problem by triggering creative ideas.

This paper presents our approach of supporting early stages of a design task by
providing representations that are suitable for the application of the strategic knowledge.
In early stages of a design task, design support tools need to provide hands-on
representations with which a designer can easily perform trial-and-error and examine
the whole as well as parts of the whole, allowing the designer to represent any levels of
preciseness as he/she likes. Acknowledging the widespread use of sketches and drawing,
these can be considered as ideal representations for early stages of architectural design.
We argue that two-dimensional positioning of objects serves as the same purpose as
sketching does for domains where no sketches exist, such as writing or programming.
We focused on the positioning of objects in the space and what types of positioning,
including placing, moving, resizing and merging, emerge during the design process.
Such objects can be any type of representations including parts of a final product,
comments, or design rationale.

In what follows, we first argue for externalized representations for early stages of a
design task. We discuss sketches and drawing as one of ideal representations and
identify requirements for such representations. Section 3 presents two-dimensional
positioning of objects as an alternative representation for domains where no sketches
exist. Section 4 presents two prototyped systems, ART for writing and RemBoard for
component-based programming, which illustrate the framework. The following sections
discuss the two systems and conclude the paper.

2. EXTERNAL REPRESENTATIONS FOR EARLY STAGES OF DESIGN

Appeared in Knowledge-Based Systems Journal, Elsevier Science, Vol.13, No.6, pp.375-384, November,
2000.

3

The design process requires both generating parts and structuring them (solution
synthesis) while exploring what to design (problem analysis) [1]. One cannot
understand a problem without having started solving it. A partially constructed solution
helps uncover problems. In design, problems and solutions co-evolve.

While they are inseparable, types of cognitive activities that designers are engaged in
would typically change as stages in a design task proceed. During the early stages of a
design task, designers focus more on understanding and identifying problems. As the
design proceeds, the designer’s focus shifts toward synthesizing solutions. Types of
strategic knowledge that the designer applies thereby change as the design stage
proceeds.

Different types of representations are required for different types of strategic knowledge.
This paper focuses on what external representations that computational tools need to
support for the application of strategic knowledge in early stages of a design task.

In this section, we first discuss the importance of external representations in design, and
describe a spectrum of different types of external representations used during a design
process. Section 2.2 describes representations necessary for early stages of design, and
Section 2.3 argues that sketching and drawing are ideal for such representations.

2.1. Different Roles of External Representations in Design
The power of externalization cannot be overemphasized. Bruner [5] comments that
externalization “produces a record of our mental efforts, one that is ‘outside us’ rather
than vaguely ‘in memory’ ... It relieves us in some measure from the always difficult
task of ‘thinking about our own thoughts’ while often accomplishing the same end. It
embodies our thoughts and intentions in a form more accessible to reflective efforts” [5;
p.23].

Even with this recognition of the importance of externalization, not many design
support tools take into account what representations and interactions are appropriate in
what design stages. Simply supporting external representations for a solution form will
not be enough, especially in early stages of design. We need to carefully examine what
representations a designer uses to most efficiently apply the strategic knowledge, and
what types of interactions are appropriate for the designer not to disturb their thought
processes.

Designers produce various types of representations for different purposes throughout a
design process. There is a spectrum of types of representations serving for different
purposes. At one end of the spectrum, representations serve for solutions, while
representations at the other end serve for problems. Representations that serve for
problems are produced mainly in early stages of a design task. Those that serve for
solutions are produced as the design proceeds to late stages.

Representations that serve for solutions are produced more toward late stages of a
design process. The designer produces such representations with the intent to evolve
them into a final product. The purpose of this type of representations is to share and
communicate ideas underlying the design. Therefore, such representations need to be

Appeared in Knowledge-Based Systems Journal, Elsevier Science, Vol.13, No.6, pp.375-384, November,
2000.

4

communicable and sustainable among design stakeholders being understood in the same
(or similar) manner as the original designer intended.

Most existing design support tools are oriented toward supporting representations that
serve only for solutions. CAD systems and most word processing and presentation tools
(such as Microsoft Word and PowerPoint) are typical examples. They display how an
artifact would look when it is finished as a WYSIWYG interface. However, those
representations do not support a user deciding what to write through a trial-and-error
process. Another example of the lack of appropriate representation for early stages of a
design task is bookmark facilities of major Web browsers. A typical Web search task
can be viewed as an ill-defined design task; understanding what to look for depends on
what intermediate search results the user obtains. A bookmark facility, which organizes
a list of URLs in a hierarchical structure, relieves a user of remembering important and
relevant URLs. Appropriately organized URLs are useful for a revisit to those sites
when necessary. However, they are not useful when a user is exploring a number of
Web sites opening many windows looking for certain information. The user’s goal is
not to neatly organize those temporary encountered Web sites; a way to represent the
user’s understanding about each of those Web sites (e.g., how important it is, how
relevant it is, or how it is related to one of the previously found ones) is eagerly needed
during such a search task.

2.2. Representations for Early Stages of Design
In early stages of a design task, in contrast, designers produce representations that are
not necessarily used in a final design artifact. They use such representations not as a
direct contribution to a solution but as a means to apply the strategic knowledge, which
is necessary to understand problems.

Such representations may take the form of drawings, textual annotations, notes, coloring,
sizing or positioning of objects. Designers heavily use visual cues to reflect in the
current situation [6]. One small aspect of a representation, such as the straightness or the
thickness of a line, may play an important role in helping them understand the problem.

The “meanings” of these representations may be vague and fluctuate. Designers may
use such representations simply as a reminder. It is impossible for a system or for other
designers to objectively identify the underlying meaning behind the representation, as it
is not created for the purpose. Such representations are the results of externalizing
informal, non-linguistic, and non-symbolic application of strategic knowledge. The
representations are processed by a designer perceptually rather than cognitively,
exploiting human perceptual abilities [7]. Even the designer who produced a
representation may not be able to understand why he/she made the representation.

2.3. Sketches and Drawings for Early Stages of Design
One of the most widely-used representations that serve for problems is sketches and
drawings using paper and pencil [8]. Sketching “mediates and facilitates thoughts, and
design ideas emerge as a result of this interaction” [8, p.128]. The designer can
externalize his/her thoughts using a pen, which requires minimum cognitive load on a

Appeared in Knowledge-Based Systems Journal, Elsevier Science, Vol.13, No.6, pp.375-384, November,
2000.

5

sheet of paper, which is two-dimensional space. The designer can reflect in while
drawing, and reflect on what has been represented [4].

While drawing, a designer keeps making hypotheses and verifying them, gradually
uncovering design ideas through a trial-and-error process. For instance, when designing
a floor plan, an architectural designer keeps asking questions to him/herself “what if I
put a refrigerator here;” “what happens with the door;” or “how the sunlight comes in”
while repeatedly draw lines and circles on his/her sketches.

Lawson [9, p.242] suggests that there are two important characteristics for sketching
and drawing to be useful in early stages of design:

• It should not show or suggest answers to questions which are not being asked at the
time; and

• It should suggest only a level of precision which corresponds to the level of
certainty in the designer’s mind at the time.

Sketching with paper and pencil works best as a representation for early stages of
design because a designer has full control over producing a representation. It does not
require a designer to make unnecessary commitment in externalizing a representation.

Lawson also suggests that sketching on a sheet of paper imposes a natural constraint on
a designer that helps him/her understand what has been drawn:

• It should not draw at a size larger than A4 or A3 to keep everything in mind at once.

Sketches drawn on a large sheet of paper cannot be viewed without head or eye
movement. It seems really critical for a designer to be able to see everything at once.

The critical aspects discussed above make sketching as a useful representation that
serves for design problems. We call representations that have these aspects hands-on
representations. Sketching and drawing with paper and pencil best serve as a
representation for early design because they provide hands-on representations for a
designer.

We can support early stages of architectural design by supporting sketching and
drawing. But how can we support other design domains where no sketches exist?

This paper argues that two-dimensional positioning of objects serves as a representation
for early stages of a design task for design domains such as writing and
component-based programming in the same way as sketching does for architectural
design. The following section discusses how two-dimensional positioning help writers
and programmers as hands-on representations.

3. TWO-DIMENSIONAL POSITIONING AS A REPRESENTATION FOR
EARLY DESIGN

In some design domains, such as writing or component-based programming, sketching
does not exist because elements necessary to represent ideas either already exist or are
electronically constructed in computer systems. For instance, let us think of a situation

Appeared in Knowledge-Based Systems Journal, Elsevier Science, Vol.13, No.6, pp.375-384, November,
2000.

6

where a user wants to write a grant proposal based on previously conducted email
discussions. Writing a proposal is a design task, and while deciding what the main
theme would be in early stages of the writing process, the user needs to reorganize
pieces of text contained in the email messages through trial-and-error processes.

We use two-dimensional spatial positioning for those domains that do not have sketches.
This section first discusses how to support representations for early design on a
computer system, followed by a discussion on how two-dimensional spatial positioning
works as a hands-on representation for strategic knowledge in early stages of design.

3.1. Computer Support for Hands-on Representations
Based on the important aspects of sketching with paper and pencil as a hands-on
representation (as discussed in 2.3), we have identified a list of requirements for
computational tools that support representations for early stages of design:

• to allow multiple interpretations;
• to make it easy to assign a meaning to a representation;
• to make it easy to grasp a meaning from a representation;
• to look at the whole at a glance;
• to remember what has been done; and
• to identify what was being looked at.

These requirements are tightly related to the issue of cognitive overload [10] in
human-computer interaction. Cognitive overload happens when a user is forced to
remember, decide and perform things that are not the goal of the user in order to achieve
the goal. Application of strategic knowledge is a cognition-intensive task and cognitive
overload hinders the effective application of the knowledge.

A typical example of cognitive overload in a design support tool is when the designer is
forced to select a menu item and to choose a pen-width before starting to draw. When a
designer is dealing with representations for early stages of a design task, the designer’s
consciousness and thought need to be focused on what to externalize, and not on how to
implement the externalizations. The designer generates a representation to uncover what
the intention is; it is not that the designer has an explicit intention a priori and then
externalize the intention to reflect on it [4].

Our goal is to design and build a computational environment that provides designers a
medium to which designers apply strategic knowledge in early stages of a design task.
Such representations would then allow them to listen to the back-talk of the situation.

We have studied a concept called Representational Talkback [11] for the goal.
Representational talkback, based on Schoen’s design theory [4], is defined as:
“perceptual feedback to the human designer from the externalized design artifact.”
Representational talkback is an intermediate situation that emerges during a design task.
We focus on visual, perceptual representation rather than textual representation because
the type of strategic knowledge we are interested in supporting is typically
non-symbolic, non-quantifiable, and non-verbalizable. Perceptual external
representations “provide information that can be directly perceived and used without

Appeared in Knowledge-Based Systems Journal, Elsevier Science, Vol.13, No.6, pp.375-384, November,
2000.

7

being interpreted and formulated explicitly” [7], and external pictures can give people
access to knowledge and skills that are unavailable from internal representations [12].

A computational medium can support a designer in the early phase of his/her design
task by amplifying the representational talkback. The amplification of representational
talkback is concerned with two issues: how to make it easier for designers to externalize
what they want to express, and how to make it easier for designers to understand what
has been represented.

Our approach toward this problem is the use of two-dimensional spatial positioning of
objects. The following section describes the rationale for this approach.

3.2. The Use of Two-Dimensional Space Positioning
This paper presents our approach of using two-dimensional spatial positioning of
objects as a representation that serves for design problems. By two-dimensional
positioning, we refer to a two-dimensional space, a process of placing and moving
objects on the space, interaction with objects on the space, and interaction with the
space itself.

Instead of paper and pencil, we argue that we can use computer tools to provide such
two-dimensional positioning for writers and programmers. With the two-dimensional
space on a computer, there are things that are easy in a real world but difficult in the
system. For instance, in reality, it is easy not to place one object on top of another
physically, while in a computer, special implementation is necessary to impose such
constraints. On the other hand, there are things that are impossible in the real world but
possible and easy on a computer. For instance, it is easy to duplicate an object on a
system, move an object, or “undo” moves. A system can also handle media that are not
possible on a sheet of paper, for instance, displaying a video clip on a two dimensional
space.

With the direct manipulation style, it is easy to grasp and move objects to produce
different visual properties. Simply looking at the space will help people identify a vast
amount of visual properties from the space. Thus, the use of positioning as a
representation addresses the concerns mentioned to amplify representational talkback.

A two-dimensional positioning can have a variety of visual properties. Such properties

include unitary properties, local-relational properties, and global-relational properties.
Unitary properties illustrate inherent visual properties of the object, while

Table 1: Examples of Properties in Positioning
Unitary
properties

size of the object, color of the
object, form of the object, …

Local-relational
properties

above, below, on top of, next to,
close-to, far-from, …

Global-relationa
l properties

in the top-left corner of , far
away from others, …

Appeared in Knowledge-Based Systems Journal, Elsevier Science, Vol.13, No.6, pp.375-384, November,
2000.

8

local-relational properties refer to those that are identified in terms of other objects.
Global-relational properties refer to those that are identified in terms of the whole space.
Table 1 illustrates examples of such properties.

We use positioning of objects that are representations for solutions. In the domain of
writing, for example, we provide a way to position a set of text “chunks” that can be
freely mapped on a two-dimensional space (see Section 4.1). While positioning,
designers can use those properties to externalize a variety of situations. For instance, if a
designer (in this case, a writer) thinks that a paragraph-A is better than paragraph-B,
then the writer can place paragraph-A to the left of paragraph-B to represent that
paragraph-A is favorable to paragraph-B. The designer can use the distance between the
two objects to reflect the degree of “better-ness.” If paragraph-A is located very far
from paragraph-B, then the representation would remind the writer afterward that
paragraph-A was much better than paragraph-B.

Thus, the use of two-dimensional spatial positioning provides designers with hands-on
representations allowing them to represent the current state of mind without verbalizing
or formalizing the state. The exact same representation (positioning) may mean very
different things to different designers or in different situations.

4. TWO EXAMPLES
This section illustrates how our approach can be implemented in two types of design
domains: writing and component-based programming.

4.1. ART
The ART system [13] (Figure 1) supports document construction as a design task
allowing users to position segmented text as “elements” in a two-dimensional space. An
element is any unit that writers choose to think of as one, such as a phrase, a sentence, a
paragraph, or a longer piece of text.

• System Overview
The ART system consists of the following three components: ElementsMap,
ElementEditor, and DocumentViewer.

ElementsMap (Figure 1 top right) is a two-dimensional space that graphically displays
elements that comprise the document. Each element is represented as an icon. An icon
does not show the entire content of the element, but only the first ten percent of the
element's text; therefore, the size of the element box corresponds to the size of the
actual element (unless the user resizes the box). A user can freely change the position of
elements by pointing and dragging icons on ElementsMap.

Elements can be created and edited with ElementsMap and ElementEditor (Figure 1
bottom). The ElementEditor component is a text editor for the contents of an element
providing editing functions such as cut, copy, paste, and “spin off,” which divides one
element into two. Selection of an element in ElementsMap allows a user to modify the
content of the element in the ElementEditor. When nothing is selected in ElementsMap,
a user can edit text in ElementEditor and create a new element by positioning the newly

Appeared in Knowledge-Based Systems Journal, Elsevier Science, Vol.13, No.6, pp.375-384, November,
2000.

9

created icon in ElementsMap. Two or more elements can be merged by selecting
multiple elements on ElementsMap.

An interesting aspect of the ART system is that the system has a partial understanding
of the “meaning” of the positioning of elements in ElementsMap. An element’s vertical
position in the ElementsMap are interpreted as corresponding to its position in the
document sequence, and the DocumentViewer (Figure 1 top left) component displays
the actual content of the document by sequentially scanning the elements displayed in
the ElementsMap from top to bottom. Thus, a user can freely change the order of
elements in the whole document by changing the vertical relationship of elements in
ElementsMap. Positioning changes and content changes made in ElementsMap and
ElementEditor are automatically reflected in all of the three components.

• Representations in ART
The ART system provides “views” to look at both parts and the whole of the document
simultaneously. ElementsMap provides an overview of the whole in terms of the
structure of parts, while ElementEditor provides details of a part. DocumentViewer
displays the context of the part with details of neighborhood elements. The three views
are integrated and changes made in one component are dynamically reflected on the
other components.

The essential part of the system is the use of ElementsMap. In user studies of ART, we
found that subjects used a variety of visual properties of two-dimensional positioning as
a representation. Some put elements that need further attention in the bottom right
corner of the ElementsMap. Some subjects made a set of completed elements as the
same size and carefully aligned them. One user had two elements overlapping each
other with a verbal protocol saying that she felt that they should be related to each other
but could not describe how they were related (therefore they were overlapped and not
aligned). Another user made some elements particularly larger than others so that it
would “call for attention” later in the task.

Figure 1: The ART System

Appeared in Knowledge-Based Systems Journal, Elsevier Science, Vol.13, No.6, pp.375-384, November,
2000.

10

Interestingly, no subjects complained about the constraint ART imposes on the vertical
relationships of elements in ElementsMap; the contents of the elements are always
concatenated in the order from top to bottom. Subjects used different distances between
two vertically positioned elements to represent different types of relations of the two
elements. Some subjects placed two elements that were almost completely horizontally
aligned but with a slight height difference so that they “looked” horizontally aligned but
are not from the system’s point of view.

4.2. RemBoard
RemBoard [14] (Figure 2 (a)) is a tool for remembering classes, methods, notes, or
other things which may become necessary while programming in Smalltalk.
Component-based programming allows programmers to reuse classes and methods from
a large class library. In Smalltalk programming, for instance, programmers can exploit a
library of more than 900 reusable classes, increasing program quality and productivity.

Finding “necessary” reusable classes from the large library, however, is challenging,
making Smalltalk programming hard to learn for novice programmers. It is not easy to
understand the whole class hierarchy, and having a hierarchy browser and keyword
matching retrieval mechanisms is not enough for novices because it is difficult for them
to understand what retrieved classes and methods “really mean” [15]. There is a need
for a mechanism that allows Smalltalk programmers to remember intermediate search
results - as one cannot decide which classes and objects to use unless one fully
understands their detailed behavior. RemBoard provides a representational medium for
such programmers to remember what has been retrieved.

• System Overview
RemBoard is a system component that is added on top of the VisualWorks (Smalltalk)
environment. RemBoard is a free two-dimensional space where programmers can place
“objects.” Operations can be performed directly on objects displayed in RemBoard.

Users can put classes on RemBoard by using a window to directly input the class name
(Figure 2 (d)) or by copying from a Smalltalk tool, such as an editor or a tool showing
search results. Recorded classes are shown as icons on the two-dimensional space with
the class name as its label. Users can also place their own annotations on the
two-dimensional space. Users can move, delete, or duplicate displayed objects on
RemBoard.

The system also allows users to directly perform operations on iconized classes that are
necessary for a programming task: for example, to open an editor (Figure 2 (e)) on a
class, or to show attached comments by the original programmer (Figure 2 (f)).

• Representations in RemBoard
RemBoard uses a two-dimensional space in addition to conventional textual annotations
to allow programmers to express relationships among the recorded objects. It is up to
the user to associate meanings to a particular type of spatial positioning, and how to
view the positioning.

Appeared in Knowledge-Based Systems Journal, Elsevier Science, Vol.13, No.6, pp.375-384, November,
2000.

11

In the user studies, we have found that subjects used positioning of objects on
RemBoard to remember things such as:

(1) classes that were being made or modified;
(2) classes that were found potentially useful for the task;
(3) classes that were thought “related” to the above two types of classes; and
(4) relationships (inheritance, association, being reused, etc) among the above

classes.

We have observed that subjects used the positioning in both local and global ways. For

example, one class was positioned below another class to show inheritance (the
relationship between ImageReader and BMPImageReader in Figure 2 (a)). This is
a local relationship between just two classes. In another example, a class was placed far
from other classes to show that it was not directly related to the other classes but was
deemed important to remember (OpaqueImage in Figure 2 (a)). This is a global way
of representing the relationship of the object in terms of the whole. Interestingly, these
two viewpoints were taking place simultaneously within a single two-dimensional space
without causing any confusion for the subject. The “meaning” of the positioning
depends on what part of the space the programmer is looking at.

5. DISCUSSION

Figure2: RemBoard and Its Associated Tools

Appeared in Knowledge-Based Systems Journal, Elsevier Science, Vol.13, No.6, pp.375-384, November,
2000.

12

We use positioning of solution-related objects in a two-dimensional space as a
representation that serves for problems. The approach has been applied to two design
domains: in writing and in component-based programming. Although ART and
RemBoard both use a two-dimensional space for designers in externalizing the design
situation, we have identified important considerations for the approach due to the
difference between the two design domains. This section first compares ART and
RemBoard, briefly mentions three-dimensional positioning, and presents design
principles of our approach.

5.1. Comparison of the Two Systems

• Positioning and What It Represents
We have stressed the role of positioning of design objects in a two-dimensional space as
a representation that serves for problems. Designers should be able to use positioning as
a representation of their state of mind in ways they like: including close-to, away-from,
overlapping, or very large.

However, we may need to consider other purposes that the space may be able to serve.
In fact, the usage of space can be considered on a spectrum between two options. One
option is to not impose any other meanings at all and use the space as a simple “means”;
the other option is to overload some pre-determined semantics on positioning and to use
what is being represented with the space as a (partial) representation for the final
product.

Because we designed ART so that the top-to-bottom order of elements in ElementsMap
represents the flow of text in the final document, the two-dimensional space of
ElementsMap serves not only for problems but also for the final product (document).
Positioning of elements in ART can be viewed as direct manipulation of design artifacts.
On the other hand, we have not assigned any semantics to positioning in RemBoard
thereby the positioning of classes in RemBoard may or may not be related to how the
final program will be designed.

This difference comes from the existence of “natural mapping” in each domain. A
mapping is natural when “the properties of the representation match the properties of
things being represented” [10, p.72]. In writing, a document flows from top to bottom
on a computer display. There is a natural mapping between the order of sentences and
the top-to-bottom positioning on a display. In component-based programming, no such
natural mapping has been identified between programming constructs and the use of
RemBoard in terms of two-dimensional positioning.

• Automatic Generation of a Representation that Talks Back to Designers
In Nakakoji et al. [11], we used a scroll-bar representation in Windows as a good
example of representational talkback. The length of a scroll-bar-handle represents a
portion of the amount of what is visible to the entire size of the information space. Thus,
one can quickly “perceive” how large a displayed document is in terms of the visible
space. This works because again there is a natural mapping between the size of the
document and the length of the handle; the larger the document, the shorter the handle.

Appeared in Knowledge-Based Systems Journal, Elsevier Science, Vol.13, No.6, pp.375-384, November,
2000.

13

In supporting designers in early phases of a design task, it is critical to identify the
“right” balance between what should be automatically done by the system and what
should not be done but left with users. We present two examples to illustrate this point.

First, the ART system automatically creates an icon for an element in ElementsMap
where the size of the element represents ten percent of the element’s text. Thus, the size
of the icon roughly shows the size of the content of the element. Subjects of the user
studies found this functionality useful by saying that “the large icon in the right corner
is the element that I have not worked on yet.” However, the same subject often changed
the size of other elements using the size as a representation – well refined elements were
ordered in ElementsMap with the same size.

Let us take the labeling of elements as another example. In ART, the system
automatically creates an icon by using the initial ten percent of the text content of the
element. In RemBoard, the system uses names of classes as labels for the elements. The
automatic labeling provided in both systems were welcomed by the subjects in the user
studies. If a user is asked to name an element whenever the user creates a new one in
ElementsMap in ART, it would have disturbed the user’s cognitive process. On the
other hand, some subjects of the ART study inserted a line or two at the beginning of
some of the elements so that those lines appear in ElementsMap serving as labels.

What we have found from these episodes is that users appreciate the system’s automatic
generation of representation as long as the mapping can be considered to be “natural.”
At the same time, even natural mappings should be modifiable by designers if they want
to.

5.2. Three-Dimensional Positioning
So far, we have argued that two-dimensional spatial positioning is a powerful hands-on
representation for designers in early stages of a design task. Would it be even more
powerful if we use a three-dimensional space?

With the increase of CPU power and memory space, more and more tools provide
three-dimensional modeling spaces for a designer. However, interactivity with the space
is not necessarily superior to the two-dimensional space. Three-dimensional space is
suitable for visualization: for instance, a complex information space with a time axes, or
display realistic objects on a computer display. On the other hand, there has not yet been
suitable interfaces for a user to interact with objects in the three-dimensional space; it
imposes a lot of cognitive load on a user manipulating objects in a three-dimensional
space affecting smooth thought processes. For instance, this issue is in some sense
reflected in the fact that typical three-dimensional modeling tools offer not only
three-dimensional spatial representation but also mechanisms to simultaneously look at
an object from three orthogonal viewpoints.

Two-dimensional positioning is suitable for selecting, positioning, moving objects as
well as easily identifying how objects are positioned and interacting with the objects.
While three-dimensional space is a powerful mechanism to view complex information
spaces, it is currently not as easy to interact with as the two-dimensional space.

Interactivity with a three-dimensional space has the following issues:

Appeared in Knowledge-Based Systems Journal, Elsevier Science, Vol.13, No.6, pp.375-384, November,
2000.

14

• It is not intuitive for a user to understand the whole three-dimensional space where
objects are positioned.

• It is not easy to select an object if the object is behind another object; the user needs
either to change the viewpoint, to rotate the objects, or to move the overlapping
object to select the object of interest.

• It is not intuitive to move, reposition, or resize an object using a mouse and
keyboard in a three-dimensional space.

• It is not intuitive for a user to place an object in the three-dimensional space; we
cannot place objects in the air unless we go to the outer space where there is no
gravity. People get used to putting objects on top of other objects in terms of a
two-dimensional space because everything they interact within this real world is
being affected by gravity.

5.3. Design Principles for Creating Tools for Early Phases of Design
Our goal is to support designers in early phases of a design task by allowing them to
externalize their strategic knowledge so that the representations would talk back to the
designers helping them understand what the problem is. We argue for designing a
computational environment that amplifies representational talkback as a way to support
the aspect of design.

We use positioning of design objects in a two-dimensional space as a representation for
strategic knowledge. In doing so, we have identified the following design principles:

• to be able to easily create objects in a two dimensional space at any level of
granularity as designers like. The presentations (or labels) of objects must be
automatically done by the system but designers should be able to overwrite them;

• to be able to easily identify objects in the two-dimensional space;
• to be able to search for objects in terms of the whole design and in terms of other

objects;
• to be able to examine details of an object of interest;
• to be able to operate on objects displayed in the two dimensional space in a direct

manipulation style;
• to use a mapping between domain constructs and physical properties of

two-dimensional space to automatically process displayed objects if and only if the
mapping is “natural,” for example, first is at the top and last is at the bottom.
Designers must be allowed to overwrite these mappings when necessary.

6. RELATED WORK
This section discusses related work from two perspectives: research that focuses on
representations serving for problems rather than solutions, and research that uses
two-dimensional positioning as a representational medium.

6.1. Representations for Strategic Knowledge

Appeared in Knowledge-Based Systems Journal, Elsevier Science, Vol.13, No.6, pp.375-384, November,
2000.

15

A line of research in design rationale [16] has focused on representation for strategic
knowledge. Design rationale is typically a textual description of what alternatives
should be taken and arguments that support or negate each alternative. Although such
design rationale mechanisms provide powerful cognitive representations for designers
to understand the history of design evolution and how to proceed with the design task,
they aim at a larger scale in terms of time. Most design rationale system allows users to
record (externalize) rationale after the design session finishes. It is also limited to
textual representation.

Our focus is more on on-time help for reflection. We use perceptual representations that
help designers. We view our approach to be complementary to the design rationale
research rather than as a replacement.

Tools that allow free-hand drawing, such as the CocktailNapkin system [17], share the
same goal with our approach. While our approach uses two-dimensional positioning as
a representation for a “designer’s state-of-mind,” such tools use free-hand drawing as a
representation. A sketch-based interface can be viewed as amplifying representational
talkback. Users can externalize various situations without having to verbalize or
formulate sentences to express such situations. The meaning associated with the
representation is “obvious” to the user who made the sketches - the representation talks
back to the user.

6.2. The Use of Two-Dimensional Space
Various research on using space for representation has been done. Shipman et al. [18]
found that people use the visual and spatial characteristics of graphical layouts to
express relationships between icons and other visual symbols. Fentem et al. [19] argues
that spatial positioning serves as a shared language among a group of people working
together. Other work has focused on inferring the user’s underlying intent of a
positioning based on methods such as statistical analysis [20] and genetic algorithms
[21].

We focus on the use of a representation produced by a user using space. The
representation can be considered as an intermediate status of some task. The
representation helps the user in their task, while using it does not disturb their cognitive
processes, i.e. it does not detract from what they want to do.

Some research offers a two-dimensional space to represent a user’s intention but the
meaning of axes are pre-assigned by the system. The SearchSpace system [22], for
instance, uses a two-dimensional space to represent a query for document search. The
vertical axis of the space is used to represent the degree of importance of positioned
keywords and the horizontal axis is used to represent the degree of spelling ambiguity
of positioned keywords. A user can position multiple keywords in the space with
positioning as the representation of the properties of the keywords.

7. CONCLUSION
This paper presented our approach to support early phases of a design task by providing
hands-on representations that better allow designers to externalize his/her thoughts and

Appeared in Knowledge-Based Systems Journal, Elsevier Science, Vol.13, No.6, pp.375-384, November,
2000.

16

ideas without forcing him/her to verbalize or formalize them; therefore interaction with
the medium does not interfere with the designer’s cognitive processes. Our focus is not
on representations that serve for final artifacts but on ones that serve for problems. We
use two-dimensional spatial positioning of design objects as a perceptual representation
that allows designers to express their state of mind.

While passive materials and artifacts cannot speak for themselves, computational
materials can. Although this fundamental difference provides great leverage in
improving the way designers work and learn, it can also be a pitfall by imposing
representations that may not necessarily be “right” for the task. What is important is to
give designers representational media that allow them to externalize what they want to
express in ways they like. Our approach is a step forward to let designers deal with
implicit/tacit knowledge on a computer system. Meanings can be extracted from a
representation only by the designer; the system remains as a medium – but a useful one.

ACKNOWLEDGEMENTS
We would like to thank Linda Candy for valuable suggestions on the previous version
of this paper. We thank Mark Gross, Brent Reeves, and Atsushi Aoki for their
comments on the framework of our approach. This research is partially supported by
NEDO (New Energy and Industrial Technology Development Organization), MITI,
Japan.

REFERENCES
[1] Simon, H A, The Sciences of the Artificial (Third ed.) (The MIT Press, Cambridge,
MA. 1996).

[2] Rittel, H, and Webber, M M, Planning Problems are Wicked Problems, in: N. Cross,
ed., Developments in Design Methodology (John Wiley & Sons, NY, 1984) 135-144.

[3] Snodgrass, A and Coyne, R, Is Designing Hermeneutical? (Dept of Architectural
and Design Science, University of Sydney, 1990).

[4] Schoen, D A, The Reflective Practitioner: How Professionals Think in Action (Basic
Books, NY, 1983).

[5] Bruner, J, The Culture of Education (Harvard University Press, Cambridge, MA,
1996).

[6] Arnheim, R, Visual Thinking (University of California Press, CA, 1969).

[7] Zhang, J, The Nature of External Representations in Problem Solving, in: Cognitive
Science, 21(2), (1997) 179-217.

[8] Lawson, B, Design in Mind (Architectural Press, MA, 1994).

[9] Lawson, B, Designing with Drawings, in: How Designers Think: The Design
Process Demystified (Architectural Press, MA, Chapter 14, 1997) 241-259.

[10] Norman, D A, Things That Make Us Smart (Addison-Wesley Pub. Co., MA 1993).

Appeared in Knowledge-Based Systems Journal, Elsevier Science, Vol.13, No.6, pp.375-384, November,
2000.

17

[11] Nakakoji, K, Yamamoto, Y, Suzuki, T, Takada, S, and Gross, M, Beyond
Critiquing: Using Representational Talkback to Elicit Design Intention, in:
Knowledge-Based Systems Journal, 11(7-8), (1998) 457-468.

[12] Reisberg, D, External Representations and the Advantages of Externalizing One's
Thoughts, in: Proc. of the 9th Annual Conf. of the Cognitive Science Society,
(Cognitive Science Society, 1987).

[13] Yamamoto, Y, Takada, S, and Nakakoji, K, Representational Talkback: An
Approach to Support Writing as Design, in: Proc. of 3rd Asia Pacific Computer Human
Interaction Conf. (Kanagawa, Japan, IEEE Computer Society, 1998) 125-131.

[14] Takada, S, Nakakoji, K, and Torii, K, Using 2D Space for Understanding What
Search Options We Have Taken in Exploring a Class Library, Technical Report
ccc-98-9. (Cognitive Science Lab, NAIST, 1998).

[15] Takada, S, Otsuka, Y, Nakakoji, K, and Torii, K, Strategies for Seeking Reusable
Components in Smalltalk, in: Proc. of the 5th International Conf. on Software Reuse
(ICSR5) (Victoria, CA, IEEE Computer Society, 1998) 66-74.

[16] Moran, T P, and Carroll, J M, eds., Design Rationale: Concepts, Techniques, and
Use (Lawrence Erlbaum Associates, Inc, NJ, 1996).

[17] Do, E Y-L, and Gross, M D, Inferring Design Intentions from Sketches: An
Investigation of Freehand Drawing Conventions in Design, in: Proc. of the 2nd Conf. on
Computer Aided Architectural Design Research in Asia (CAADRIA’97) (Taipei,
Taiwan. Hu’s Publishing, 1997) 217-227.

[18] Shipman, F M, Marshall, C C, and Moran, T P, Finding and Using Implicit
Structure in Human-Organized Spatial Layouts of Information, Human Factors in
Computing Systems (CHI ’95) (Denver, CO, 1995) 346-353.

[19] Fentem, A, Dumas, C, and McDonnell, J, Evolving Spatial Representations to
Support Innovation and the Communication of Strategic Knowledge, in:
Knowledge-Based Systems Journal, 11(7-8) (1998) 417-428.

[20] Sugimoto, M, Hori, K, and Ohsuga, S, A System for Visualizing Viewpoints and
its Application to Intelligent Activity Support, IEEE Trans. on Systems, Man, and
Cybernetics, 28C(1) (1998) 124-136.

[21] Igarashi, T, Matsuoka, S, and Masui, T, Adaptive Recognition of Implicit
Structures in Human-Organized Layouts, in: Proc. of the 11th IEEE Symp. on Visual
Languages (1995) 258-266.

[22] Tsutsumi, F, and Shinohara, Y, Search Space: Document Retrieval by 2-D
Positioning Keyword Query, Computer Software, 15(4) (1998) 2-15 (in Japanese).

