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Abstract: In this paper, we propose and demonstrate a haptic device with liquid-pouch motors that
can simulate a handshake. Because handshakes involve contact of the palms or soft skin, handshake
simulation requires the haptic device to provide pressure onto specific areas of the palm with soft
contact. This can be achieved with thermally driven liquid-pouch motors, which inflate and deflate
when a low-boiling-point liquid, here Novec™ 7000, evaporates and condenses, respectively. Due to
the simplicity of the soft actuator system, this haptic glove is lightweight and conformable. To design
the haptic glove, we experimentally investigated the contact region and strength in handshakes,
which led to an optimal number, size and position for the liquid-pouch motors. Sensory experiments
with human subjects verified that the designed haptic glove successfully simulated handshakes.

Keywords: soft actuator; handshake; haptic glove; pouch actuator; social touch

1. Introduction

The skin is our largest organ and covers our whole body, and we particularly rely on
tactile information obtained from the hands [1]. As shown in the cortical homunculus, a
large area of the brain is used to process information from the hands [2]. Such information
is used in the characterization and manipulation of touched objects and to interact and
communicate with others.

Social touching, such as handshakes, stroking and hugs, is known to have positive
effects on us in many aspects, such as physical and emotional, attachment, attitude and
behavior and emotional transference [3]. In addition, social touch increases intimacy in in-
terpersonal relationships because it can leave the impression that the other person is “more
familiar” or “happy to see you” [4]. Devices that reproduce stroking or hugging motions
have been demonstrated [5,6]. In this study, we focused on handshakes. Because tactile
communication takes place only at the hands in a handshake, we considered replication of
handshakes with a rather simple system, specifically, haptic gloves.

Haptic gloves have been developed as wearable devices to present tactile sensations
to users’ hands [7], which can enrich the user experience in extended-reality technology
and human–computer interactions [8,9]. Haptic gloves stimulate skin or tactile receptors
inside the skin either physically or electrically. For physical-type haptic gloves, they need
to be compact and light enough to be worn by the users, while generating a sufficiently
large force and displacement with the actuators of the gloves. Soft actuators are considered
to contribute to such glove applications. A haptic glove using soft doughnut-shaped
actuators was proposed to provide tactile feedback to the fingers [10]. A soft actuator
that is composed of an anisotropically fiber-reinforced material and an elastomer matrix
is attached to the back of the finger to provide force sensation to the user [11]. The haptic
glove with this actuator can generate large feedback without interfering with the user’s
motion on the palm side. Pulse width modulation (PWM) of a small soft actuator embedded
inside the glove was reported to efficiently provide tactile feedback [12]. Soft actuators can
easily work with other actuators due to their lightweight. A pneumatic balloon actuator is
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used for force sensation in addition to an electromagnetic actuator that generates vibration
to provide a greater sense of touch [13]. Thus, glove-type devices that present tactile
sensations are expected. However, because the actuators are close to human skin, high
voltage and temperature must be avoided and, in addition, soft or compliant actuators are
preferable.

As soft and compliant actuators, pneumatic actuators have been studied. Pneu-
matic actuators are promising soft actuators [14,15]. Air is the working fluid, and it has
lightweight and large compliance. The drawbacks of pneumatic actuators are that the air
needs to be supplied externally using tubes and valves, which are typically bulky, from a
control system.

Gas–liquid phase change actuators have been studied as compact soft actuators [16–22].
A low-boiling-point liquid, such as Novec ™ 7000 with a boiling point of 34 ◦C, is encap-
sulated inside a deformable pouch. When the pouch is heated, the encapsulated liquid
vaporizes, and the pouch volume drastically increases. Centimeter-sized pouch motors
were reported to produce a force of 50 N [21]. The pouch can be miniaturized down to the
millimeter scale [23]. These liquid-pouch motors require only a heat source in order to be
actuated. An external heat source, such as a hair dryer, does not require any additional
components to control the pouch. Direct heating of the pouch by designing a resistive
heater on or in the vicinity of the pouch is favored due to its high efficiency and ease of
control [24]. When metal particles are included in the encapsulated liquid, it can be heated
by irradiation using an infrared laser, which can control the pouch motor externally with
high efficiency [25–27].

In this paper, we propose and demonstrate a haptic device with liquid-pouch motors
containing Novec ™ 7000 to simulate a handshake. Figure 1 shows the concept figure of
the haptic glove that simulates a handshake. Because handshakes involve contact of the
palms or soft skin, the simulation of a handshake requires the haptic device to provide
pressure onto specific areas of the palm with soft contact. This can be achieved with liquid-
pouch motors. In addition, warm liquid-pouch motors, which are slightly warmer than
the boiling point of Novec ™ 7000, may contribute by simulating the warmness of another
person’s hand. External heating with a hair dryer was used to actuate the liquid-pouch
motors. We experimentally investigated the contact region and strength during handshakes,
which were used to determine the number, size and position of the liquid-pouch motors.
A questionnaire-based survey was conducted to validate the concept. This work was
approved by the Research Ethics Committee of the Faculty of Science and Technology, Keio
University (2021-89).
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Figure 1. The haptic glove that simulates a handshake. The pouch actuators provide pressure onto 
the palm and the back of the hand to replicate the tactile perception in a handshake. 

2. Design of Pouch Gloves 
2.1. Pouch Actuator 

The pouch actuator consists of a hydrofluoroether fluid (Novec ™ 7000, 3M Com-
pany, St. Paul, MN, USA) with a boiling point of 34 °C enclosed in a 75 µm-thick nylon 
polyethylene sheet (Nylon Poly New L Type, Fukusuke Kogyo, Niihama, Japan). To fab-
ricate the product, we first cut two polyethylene sheets with scissors and heat-sealed three 
sides using a heat sealer (Ishizaki Electric Works, Tokyo, Japan). The width of the seal was 
2.5 mm. We then injected a fixed amount of Novec ™ 7000 with a micro syringe and heat-
sealed the remaining side to form a pouch. Because polyethylene does not expand or con-
tract, the area to which force is applied can be controlled by the area of the pouch when 
enough Novec ™ 7000 is sealed within it. 

The pouch actuator is used as a bistable thermal actuator; when heated to a temper-
ature above the boiling point of Novec ™ 7000, the actuator expands due to the gas–liquid 
phase change of Novec ™ 7000. The pouch actuator is positioned on the palm of the user’s 
hand with a haptic glove and when the actuator is heated, it expands and provides pres-
sure on the palm. The temperature of the pouch actuator during expansion is slightly 
higher than 34 °C. Because the average surface temperature of the human body is about 
33 °C, the inflated pouch roughly replicates the warmth of another person’s hand. The 
response time of the pouch is 3~5 s after heating, and there is no problem with handshake 
feedback. 

The size of the pouch actuator needs to be determined. To avoid disturbing the open-
ing and closing of the wearer’s hand, the length of the horizontal side of the pouch was 
set to be 20.0 mm. The length of the vertical side was from 20.0 to 50.0 mm. Based on the 
results of our preliminary experiments, when the amount of Novec ™ 7000 sealed in the 
pouch was 0.30 mL, the liquid phase of Novec ™ 7000 remained in the pouch even when 
the pouch was maximally inflated. 

  

Figure 1. The haptic glove that simulates a handshake. The pouch actuators provide pressure onto
the palm and the back of the hand to replicate the tactile perception in a handshake.
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2. Design of Pouch Gloves
2.1. Pouch Actuator

The pouch actuator consists of a hydrofluoroether fluid (Novec ™ 7000, 3M Company,
St. Paul, MN, USA) with a boiling point of 34 ◦C enclosed in a 75 µm-thick nylon polyethy-
lene sheet (Nylon Poly New L Type, Fukusuke Kogyo, Niihama, Japan). To fabricate the
product, we first cut two polyethylene sheets with scissors and heat-sealed three sides using
a heat sealer (Ishizaki Electric Works, Tokyo, Japan). The width of the seal was 2.5 mm.
We then injected a fixed amount of Novec ™ 7000 with a micro syringe and heat-sealed
the remaining side to form a pouch. Because polyethylene does not expand or contract,
the area to which force is applied can be controlled by the area of the pouch when enough
Novec ™ 7000 is sealed within it.

The pouch actuator is used as a bistable thermal actuator; when heated to a tempera-
ture above the boiling point of Novec ™ 7000, the actuator expands due to the gas–liquid
phase change of Novec ™ 7000. The pouch actuator is positioned on the palm of the user’s
hand with a haptic glove and when the actuator is heated, it expands and provides pressure
on the palm. The temperature of the pouch actuator during expansion is slightly higher
than 34 ◦C. Because the average surface temperature of the human body is about 33 ◦C, the
inflated pouch roughly replicates the warmth of another person’s hand. The response time
of the pouch is 3~5 s after heating, and there is no problem with handshake feedback.

The size of the pouch actuator needs to be determined. To avoid disturbing the
opening and closing of the wearer’s hand, the length of the horizontal side of the pouch
was set to be 20.0 mm. The length of the vertical side was from 20.0 to 50.0 mm. Based
on the results of our preliminary experiments, when the amount of Novec ™ 7000 sealed
in the pouch was 0.30 mL, the liquid phase of Novec ™ 7000 remained in the pouch even
when the pouch was maximally inflated.

2.2. Overall Design of Haptic Glove

Figure 2 shows a photograph of the proposed device. As shown in Figure 3, the device
is composed of a pouch actuator, a support base, and an adjustment screw. The pouch
expands upon heating to provide a tactile pressure sensation to the palm.
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Figure 3. Mechanism of applying pressure onto palm with pouch actuators: (a) before heating and
(b) after heating.

The support base has two plates with pockets inside for placing the pouch actuators, as
shown in Figure 4. We designed the gap between the plates to be controlled with screws. We
fabricated the plates with gray resin (UV-curable acrylic resin) using a 3D printer (Form3,
Formlabs, Medford, OR, USA). The tensile strength and Young’s modulus of the gray resin
are 65 MPa and 2.8 GPa, respectively. The weight of this material is approximately 15 g,
which is sufficiently light to avoid interference with hand movement. The resin does not
deform when the pouch actuator expands and can hold the actuator in place. A video of
the haptic glove can be found in Supplementary Materials.
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Figure 4. Support base manufactured using 3D printing.

2.3. Detailed Design of Haptic Glove: Areas That Apply Pressure

To replicate a handshake, a suitable pressure needs to be applied to appropriate areas
with the right timing. These design parameters were deduced from experiments. First,
we examined the contact points and strength distribution in a handshake and selected the
position and shape of the pouch on the palm and the back of the hand, as described in
Section 2.2. In this experiment, we visualized the contact points between the palm and the



Actuators 2023, 12, 51 5 of 15

back of the hand during a handshake to determine the positions of the pouch actuators.
We applied green ink to the palm and fingers of the participants’ right hand (Figure 5a).
Each participant was asked to shake hands with the other participants. As shown in
Figure 5b, after the ink dried, we scanned the palm with a scanner (MFC-L9570CDW,
Brother Industries, Nagoya, Japan). We drew the silhouette of the hand on a transparent
plastic sheet and placed the hand on it for consistency in the analyses. Five participants,
including three males and two females aged 20–25 years, performed two trials each with
different partners, which resulted in a total of twenty trials. The images were processed to
quantify the contact area.
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Figure 5. Contact areas during the handshake, as deduced experimentally: (a) green ink that was
applied to the palm and fingers of each participant’s right hand; (b,c) green ink was transferred to
another participant’s hand during a handshake.

In the analysis, the hands were normalized as follows (Figure 6). First, point P1 was
defined as the interdigital space between the little finger and ring finger, point P2 as the
interdigital space between the ring finger and middle finger, and point P3 as the interdigital
space between the middle finger and index finger. A straight-line connecting point P1 and
point P3 was defined as line m. The hand angle was adjusted so that line m was horizontal.
A line perpendicular to line m was drawn from point P2 and this line was defined as line n.
The intersection of line n and the contour of the lower bottom of the hand was defined as
point P4. To match the aspect ratio to the reference hand, we affine-transformed the entire
hand so that line m was 500 mm and line n was 1150 mm in length.

Next, we converted the image from 24-bit RGB to 8-bit grayscale using the NTSC-
weighted average method and applied the green filter in Adobe Photoshop CC 2020.
Black-and-white binarization was performed using a gray value of 120 as the threshold. A
mesh (approximately 6.25 mm × 6.25 mm, 300 dpi) was set up for each hand, and if more
than 50% of each mesh was black, the area corresponding to the mesh was considered to
be in contact during the handshake and was labeled as 1. The results of all 20 trials were
averaged. This trial was performed for the back of the hand as well.
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Figure 6. Normalization of palm: (a) Points P1–P4 and lines m and n defined on palm of hand. The
angle was adjusted so that line m was horizontal. (b) Normalization was conducted such that the
lengths of lines m and n were 500 mm and 1500 mm, respectively.

Figure 7 shows the regions where the computed average value was greater than
0.5 among the 20 trials. On the palm of the hand, the three areas of contact during the
handshake were referred to as positions I, II and III. On the back of the hand, we found
two contact areas, positions IV and V. The liquid-pouch motors, which are positioned in
the pocket of the support base, need to cover these areas. The pockets were designed to
have a size of 5.0 × 2.0 cm for position I, 4.0 × 2.0 cm for position II and 4.0 × 2.0 cm for
position III. On the back of the hand, position IV was 6.0 cm × 2.0 cm and position V was
4.0 cm × 2.0 cm.
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2.4. Detailed Design of Haptic Glove: Distribution of Contact Strength

Next, we experimentally obtained the distribution of the pressure applied to the
palm during a handshake, which was needed to determine the requirements of the pouch
actuator.

A pressure-sensitive sheet (Prescale, Fujifilm, Tokyo, Japan) was used to obtain the
pressure distribution during handshakes. The pressure-sensitive sheet consists of two
sheets with a chromophore layer and a developer layer. When sufficient pressure is applied,
the microcapsules containing dye in the chromophore layer disintegrate and the dye that
leaks from the microcapsules is absorbed by the developer layer and turns red. The range of
measurable pressure depends on the size and strength of the microcapsules. The intensity
of the color in a particular region represents the pressure.

The following experiment was performed twice on 5 participants (3 males and 2
females between the ages of 20 and 25) for a total of 20 trials. The pressure-sensitive sheets
were set in positions I, II and III of each participant’s hand and he/she shook hands with
another participant. After the handshake, the sheets were collected and scanned (MFC-
L9570CDW scanner, Brother Industries, Nagoya, Japan). The color distribution of the sheets
was converted to a grayscale image using the green filter correction in Adobe Photoshop
CC 2020. Positions I, II and III were divided into grids of 3 × 8, 3 × 6 and 3 × 6 squares,
respectively (each measuring approximately 6.25 mm × 6.25 mm, 300 dpi). As shown in
Figure 8, the average gray value for each grid cell was obtained.
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Figure 8. Pressure-sensitive sheets used to deduce the pressure distribution during a handshake. The
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Based on these results, the size and position of the pouch actuator were determined
to match the pressure distribution for the actuator as close as possible to that for the
handshake. The pouch actuators were set on the support base at positions I, II and III. The
pressure-sensitive sheets were attached on top of the pouch actuator or the pocket of the
haptic glove. The actuators were then heated with an air-dryer to expand and then apply
pressure onto the sheets. The pressure-sensitive sheets were scanned as before. Image
processing and evaluation were the same as those described above. This method was
performed five times for each actuator, and the average gray value for each grid cell was
obtained for each actuator.

The pressure applied by the participants and that by the pouch actuators were com-
pared with respect to the magnitude and distribution. The difference was evaluated based
on the least-squares error with respect to the position. Figure 9 shows the least-squares
error for each actuator at positions I, II and III. Based on the results, the pouch actuators
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were selected for each position as shown in Table 1. In positions IV and V on the back of
the hand, the actuator was often in contact with the tips of the fingers of the other person’s
hand and the amount of force applied to that position could not be uniquely determined
due to individual differences in grip force. Therefore, we decided to install an actuator
equivalent to position I for position IV and position III for position V.
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2.5. Detailed Design of the Haptic Glove: Number of Pouch Actuators

The experimental results suggested that three positions (I, II and III) need to be pressed
by the appropriately designed pouch actuators to replicate a handshake. However, we
surmised that applying pressure to either one or two of these three areas may be sufficient
to replicate a handshake. For this preliminary study, a support base measuring 7 cm × 7
cm and covering the entire palm was fabricated. Using this support base, the arrangement
of the pouch actuators was experimentally evaluated.

The experiments with one pouch, two pouches and three pouches are referred to here
as experiments A, B and C, respectively. The arrangement of pouches for each experiment
is shown in Figure 10. In experiment A, a 7 cm × 7 cm pouch with 0.30 mL of Novec ™
7000 was used (see Figure 10a). Two pouches measuring 5 cm × 2 cm with 0.30 mL of
Novec ™ 7000 and measuring 4 cm × 2 cm with 0.30 mL of Novec ™ 7000 were arranged
as shown in Figure 10b for experiment B. A maximum of 0.30 mL was encapsulated inside
each pouch. We chose the arrangement to cause the largest areas to be covered by the two
pouches. For experiment C, three pouches were set to cover positions I, II and III.
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First, the pouch actuators were set onto the support base with a pressure-sensitive
sheet measuring 7 cm × 7 cm attached to the top. The haptic glove was then set on
the hand of a participant and was subsequently heated with a hair dryer. We scanned
the pressure-sensitive sheet, normalized the image, binarized it to black and white and
rendered it as described in Section 2.4. We conducted this procedure five times for each
experiment and deduced the average values for each grid cell. Grid cells with values above
0.5 were considered as the contact points. The results were compared to the results of the
handshakes obtained as described in Section 2.4. When a grid cell had the same results,
its value was given as 1, otherwise as 0. The sum of these numbers divided by the total
number of grid cells was used as the coverage rate to assess the replicability.

Figure 11 shows the results. It was found that experiment C with three actuators
exhibited the highest coverage with the lowest standard deviation, though no significant
differences were found. We decided to use the haptic glove with three actuators for
subsequent experiments to investigate the number of actuators driven out of the three
results in the perception of a handshake. Figure 2 shows a photograph of a haptic glove
with three liquid-pouch motors.
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3. Experiments with Proposed Haptic Glove
3.1. Experimental Protocol

The developed haptic glove (see Figure 2) can vary the positions of the three sets of
pouch actuator supports independently. This design allowed the device to apply pressure
at contact points almost identical to those in a handshake. Seven types of devices were
prepared, as shown in Table 2 and Figure 12. The areas where no actuators were present
had only a support base, and the pocket was empty. The positions of the actuators on the
back of the hand were the same for the seven devices.

Table 2. The seven experimental patterns.

Pattern Actuators Number of Actuators

A Position I 1
B Position II 1
C Position III 1
D Positions I and II 2
E Positions I and III 2
F Positions II and III 2
G All positions 3

A total of 8 participants, 5 males and 3 females aged 20–25 years, participated in the
experiment. Figure 13 shows the experiment. The experimental procedure was as follows:

(1) The gloves were heated with a hair dryer (1200 W, Panasonic, Osaka, Japan) for 30 s
to ensure that the bag actuators would properly inflate. The temperature of the pouch
at that time was appropriate at a translation of 33 ◦C.

(2) The participant sat on a chair and wore the haptic glove on their right hand.
(3) The participant placed their hand with the device at a predetermined position. A

fence prevented participants from seeing their hand.
(4) The gloved hand was heated with a hair dryer from a position about 20 cm away. The

actuators were heated over the haptic glove; each actuator was heated for 3 s, and
they were actuated sequentially in a clockwise direction for a total of 30 s. Under this
condition, none of the 10 participants perceived excessive heat from the dryer. The
participants were asked to keep their eyes closed.

(5) The participants were asked to move their hands for 5 s to simulate a handshake.
Subsequently, the participants answered survey questions for 30 s. The questions are
summarized in Table 3. In addition to the question concerning whether they felt the
sensation of a handshake, three additional questions were prepared in this study. The
first was whether they felt the force from the actuator. The second was whether they
felt warmth from the heated actuator. The third was whether they felt the sensation of
being grasped. The participants were asked to respond using a 7-point scale (from 1:
Could not feel at all to 7: Feeling was strong). Because the surface temperature of the
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palm of the hand was about 33 ◦C, the pouch actuator did not shrink for about 30 s
after the heating stopped.

(6) Steps (1)–(5) were repeated for all glove patterns. Before the next pattern, the tactile
glove was removed from the hand and the actuator was allowed to cool down for 1
min. The pouch actuators returned to their original state before the next experiment.
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Table 3. Questions for the sensory evaluation.

No. Question

1 Did you feel the force?
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4 Did you feel as if you were shaking hands?
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3.2. Experimental Results

Figure 14 reports the means and standard errors of all the evaluated values for each
experiment, as well as the significant differences (* 0.01 < p < 0.05, ** p < 0.01).
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As shown in Figure 14a, glove patterns D, E, F and G with multiple pouch actuators
were evaluated higher than patterns A, B and C with a single pouch actuator. Therefore,
multiple pouch actuators produced more force than one actuator. Pattern G with three
actuators showed a significant difference from A, B, C and F. No significant difference was
found among patterns D, E and G. This implies that the actuator in position I plays a crucial
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role in transferring the force onto the palm. It has been reported that there are many Merkel
plates in this position and that they sense delicate skin deformation and are involved in the
perception of edges and textures [28]. The other positions, II and III, are known to be less
sensitive to force and skin deformation because they have thicker skin and superior deep
sensation compared to position I.

Figure 14b shows how the participants perceived the warmth from the actuators. The
evaluation value was about 3 for patterns A, B and C with one actuator; 4 for D, E and F
with two actuators; and 5 for G with three actuators. We consider that this may originate
from the contact areas of the actuators and the palm, which increases with the number of
actuators. It is known that there are about 15 cold points and 4 warm points/cm2 on the
palm of the hand, and both cold and warm points are sensitive to temperatures in the range
of 15 to 40 ◦C. The temperature of the actuators is slightly higher than that of the human
body and the warm points perceive the warmth.

Figure 14c,d show whether the participants perceived hand holding and handshaking,
respectively. The trend was found to be similar: the pattern with a low evaluation for
Q3 also had a low evaluation score for Q4. In particular, patterns A, B and C with one
actuator had low ratings, and a significant difference from pattern G was obtained. This
indicates that sensation from multiple areas is necessary for the participants to perceive
the “holding” feeling. The similarity between the results for Q3 and Q4 suggests that the
feeling of holding a hand is necessary to feel a handshake. A significant difference was
found between patterns D and G in both Q3 and Q4, while patterns E and F did not exhibit
a significant difference from G, which implies that the pressure in position III is crucial
for perceiving the holding feeling. Position III, the base of the thumb, is in contact with
the base of the index finger of the other hand in a handshake. In the experiments with the
pressure-sensitive test (see Figure 8), a relatively large force was applied to position III
during the handshake.

Based on these results, we consider that the haptic glove with three actuators in
positions I, II and III is the best. Handshakes were successfully replicated with a score
greater than 5.

3.3. Discussion

Although the proposed haptic glove successfully simulated handshakes with a rating
greater than 5, the slow response time of the pouch actuators may make the glove unusable
for some applications. For example, in the reproduction of the sense of reality using a
combination of vision and touch in a virtual reality environment, tactile reproduction must
be timed to the timing of the image and the time delay between tactile and visual stimuli
should be less than 1 s [29,30]. The proposed tactile glove uses the heat from a hair dryer to
drive the liquid-pouch motors, which takes about 3 s. Some solutions have been already
reported, such as direct heating of the pouch with a resistive heater on or in the vicinity of
the pouch [24] and infrared-laser irradiation of the pouch actuators with metal particles in
the encapsulated liquid [25–27].

In this work, we did not investigate the design of the rigid parts, which are used to
efficiently transfer the force from the pouch actuators to the hand. The rigid parts with
bone shapes may lead to better replication of a handshake. The rigid parts that are made
from soft but harder than the soft actuators can make the whole glove soft and compliant.

4. Conclusions

In this study, we fabricated a prototype haptic glove with gas–liquid phase-change
actuators or liquid-pouch motors and successfully demonstrated simulated handshakes.
The liquid-pouch motors are light and soft and do not require external devices, such
as pneumatic valves or batteries, which improves the convenience of their use. The
design requirements for the glove, namely, the position, number and force output of
the pouch actuators, were experimentally determined. Perception experiments validated
the effectiveness of the proposed haptic glove in simulating a handshake, which was scored
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by the participants as more than five out of seven points. This prototype has revealed that
it provides the feedback of a handshake sensation. It is expected that further effects can be
expected in the future by improving the heating method and the material of the support.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/act12020051/s1, Video S1: Simulated handshake.
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