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Haptic Enhanced Virtual Reality

Abstract

This paper focuses on the development and evaluation of a haptic enhanced virtual

reality system which allows a human user to make physical handshakes with a virtual

partner through a haptic interface. Multimodal feedback signals are designed to gen-

erate the illusion that a handshake with a robotic arm is a handshake with another

human. Advanced controllers of the haptic interface are developed to respond to

user behaviors online. Techniques to achieve online behavior generation are pre-

sented, such as a hidden-Markov-model approach to human interaction strategy

estimation. Human-robot handshake experiments were carried out to evaluate the

performance of the system. Two different approaches to haptic rendering were com-

pared in experiments: a controller in basic mode with an embedded curve in the

robot that disregards the human partner, and an interactive robot controller for

online behavior generation. The two approaches were compared with the ground

truth of another human driving the robot via teleoperation instead of the controller

implementing a virtual partner. In the evaluation results, the human approach is rated

to be most human-like, with the interactive controller following closely behind, fol-

lowed by the controller in basic mode. This paper mainly concentrates on discussing

the development of the haptic rendering algorithm for the handshaking system, its

integration with visual and haptic cues, and reports about the results of subjective

evaluation experiments that were carried out.

1 Introduction

An important goal of haptic research in the context of immersive virtual

environments is to introduce physicality into the virtual reality experience.

The physicality of haptic interaction, among other factors, is a critical issue to

be considered in rendering realistic interaction. For instance, the participant

should be able to feel the weight and elasticity of virtual objects as well as to

touch and interact with a virtual human partner in a real-life manner.

This paper presents a haptic rendering algorithm that aims at achieving a

realistic handshake with a virtual human partner. The human participant grasps

a haptic interface, representing the arm of a virtual human partner, and uses
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this to perform a handshake with a virtual agent.

Advanced controllers for the haptic interface have been

developed that implement a partner who adapts online

to the human and gives him or her the illusion of taking

part in a real human-human handshake.

Handshaking is a common daily activity. In order to

simulate this activity through human-robot interaction

(HRI), problems such as signal measurement, interac-

tion control, and evaluation must be tackled and solved.

Pollard and Zordan (2005) generated handshake ani-

mations from a vision system. Kunii and Hashimoto

(1995) created the first telehandshake using a simple

1-DOF device, while the recent work of Haans and

IJsselsteijn (2006), Bailenson, Yee, Brave, Merget, and

Koslow (2007), Gunn, Hutchins, and Adcock (2005),

and Tachi, Kawakami, Nii, Watanabe, and Minamizawa

(2008) also followed the telepresence route. Haans and

IJsselsteijn and Bailenson et al. viewed a telehandshake

as a way to express and communicate social and emo-

tional information, while Gunn et al. and Tachi et al.

focused on more specific issues of telehandshaking such

as time delay, system design, and integration. In Tachi

et al., two humans conduct a handshake via a robotic

system. In contrast, autonomous robotic handshak-

ing has not been as closely studied until very recent

work such as Sato, Hashimoto, and Tsukahara (2007),

where the authors take the oscillation synchroniza-

tion approach to realize human-robot handshaking;

and in Y. Yamato, Jindai, and Watanabe (2008), where

the authors focused on the approaching and shaking

motions of a handshake robot; and in Karniel, Nisky,

Avraham, Peles, and Levy-Tzedek (2010), where the

authors evaluated different handshake models realized

by means of a weighted sum of human and artificial

systems. Apart from these very few investigations, the

study of autonomous robotic handshake partners in

a force/motion interaction context is lacking in the

existing literature to the authors’ knowledge.

New challenges arise when rendering interactions with

a virtual interaction partner compared to interactions

with passive environments: (i) the mechanical impedance

of a human arm can vary over time, therefore we can no

longer assume the mechanical properties of the environ-

ment to be constant and independent of the actual state

of interaction; (ii) interaction forces between the single

participants are measured by a single force/torque sen-

sor mounted at the end-effector of the robot; this allows

only the measurement of interaction forces; (iii) the

human interaction strategy of how to carry on the inter-

action is not directly measurable, since the information is

part of the internal mental processing of the participant.

Bearing in mind these various challenges, two different

approaches to design the robot controller can be con-

sidered: (a) design a basic controller that carries out the

handshake as predefined, ignoring the bilateral nature

of human-human interaction and forgetting about the

human-related information that is difficult to acquire;

or (b) design a complex controller that estimates the

necessary human information and uses it to simulate a

more interactive virtual partner. Both approaches were

adopted for comparison.

In Section 2, two types of haptic rendering algo-

rithms for human-human handshakes are introduced.

Section 2.1 presents the basic handshake controller and

Section 2.2 discusses the design of the more interac-

tive controller and considers techniques for estimating

human interaction strategies. Section 3 focuses on

the subjective evaluation of the overall handshake sce-

nario. Finally, Section 4 summarizes the main results and

formulates future research directions.

2 Haptic Rendering

2.1 Basic Handshaking Controller

A basic approach to rendering handshakes is to

replay prior recorded human-human handshake trajec-

tories on a robot. The robot, controlled by a position

controller, uses the recorded trajectory as a reference

and follows it faithfully. However, due to the charac-

teristics of the position controller, the robot will try to

achieve the desired position at all costs, ignoring the

bilateral nature and mutual influence of the single part-

ners that is characteristic for a human-human handshake.

This basic handshaking controller resembles an extreme

case of a dominant person who does not compromise to

his or her partner at all.
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In order to increase naturalness of interaction, we

introduced compliance by means of a second order

impedance model as shown in Equation 1, where M ,

B, and K are the impedance parameters mass, damping,

and stiffness representing the robot arm, f and x denote

force and position, and x0 is the equilibrium position of

the virtual partner arm (Wang, Yuan, & Buss, 2008):

f (t ) = M ẍ(t ) + Bẋ(t ) + K (x(t ) − x0). (1)

Constant values were chosen for the mass and damp-

ing parameters for the arm; but human arm stiffness was

adapted by a changeable stiffness parameter to imitate

human arm stiffness. In practice, the contraction of the

muscle groups is increased when the human is exert-

ing higher forces. The stiffness of the arm is therefore

increased. Inspired by this fact, a time-varying virtual

stiffness K consisting of a constant term K0 in addi-

tion to a term proportional to the difference between

the actual position x(t ) and the equilibrium position x0,

defined as the neutral position of the robot end-effector,

was implemented:

K = K0 + η(x(t ) − x0). (2)

The intuitive explanation of this selection is that the

more a participant wants to drive the partner away from

the equilibrium, the stiffer the participant’s arm should

be in order to succeed. In other words, a robot with

such a controller is compliant closer to the equilibrium

and stiffer when further from the equilibrium. In the

evaluation experiments, the robot controlled by this

basic controller is used as one of the comparative con-

ditions in haptics. In order to simulate a machine-like

handshake, the desired trajectory was chosen to be a

repetitive sinusoidal curve instead of one of the recorded

trajectories.

The fundamental limitation for the realization of

full interactive handshakes makes the basic controller

approach clearly different from human-human hand-

shaking, where the arms can provide compliance during

interaction, while the participant can select different

strategies with respect to adaptation to their partner’s

form of handshake. Therefore, an interactive hand-

shaking controller has been developed that adapts the

robot behavior online to the current selected interaction

strategy of the human partner.

2.2 Interactive

Hidden-Markov-Model-based

Handshaking Controller

The interactive handshake controller, first pre-

sented in Wang, Peer, and Buss (2009b), is based on the

assumption that humans select between two different

strategies when performing handshakes with a partner:

either they act passively by following and adapting their

behavior as best as possible to the lead of the interac-

tion partner; or they act actively by commanding the

handshake trajectory without taking into account the

behavior of their partner. Unfortunately, it is not fea-

sible to directly measure human interaction strategies,

but they can be estimated from measured behavioral

(force and motion) data. Once the currently selected

human interaction strategy is estimated, the interactive

handshaking controller can be designed: In our spe-

cific case the respective opposite role is assigned to the

robot. Depending on the personal style of handshaking,

humans switch between the two aforementioned strate-

gies while performing a handshake. This again means

that the robot needs to continuously estimate the cur-

rently selected human interaction strategy to achieve

realistic human-robot handshakes.

To implement this interactive handshaking controller

on a robotic system, a robot controller consisting of a

control, planning, and adaptation module was realized

(see Figure 1). These three modules were proposed in

Groten (2011) for modeling a partner in a collaborating

human-human dyad. While the planning unit decides

on the desired trajectory, the control unit implements

compliant behavior. Finally, the adaptation unit uses

information about the actual estimated human inter-

action strategy to decide on different adaptation laws

that alter the reference trajectory as well as the provided

compliance of the robot. Thus, a new double-layered

control scheme is proposed consisting of a low-level

controller (LLC) that combines a planning unit and a

control unit; and a high-level controller (HLC), which is

represented by the adaptation unit.
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Figure 1. Implementation of human-human handshakes using an advanced, interactive

handshaking controller consisting of a low-level controller (LLC) that combines planning and control

unit and a high-level controller (HLC) represented by the adaptation unit.

2.2.1 Human Behavior Model. In order to

adapt to human behavior online, information about the

currently selected interaction strategy must be available.

Unfortunately, interaction strategies are not directly

measurable and thus need to be measured by indirect

means. In order to obtain a valid estimation, the selec-

tion of input data is crucial. In haptic human-robot

interaction, force and position data directly result from

the interaction. Hence, any phenomenon observed in

either signal can be the consequence of either the robot

or the human. For this reason, motion or force sig-

nals alone cannot be adopted to estimate the currently

selected human interaction strategy, but instead need

to be further processed to remove the influence of the

robot. In order to overcome this problem, we introduce

a human behavior model and estimate parameters of this

model from the observable haptic interaction data. The

estimated parameters are finally used as input for the

human intention estimator described below.

For the basic handshaking controller, the human

was assumed to be passively following the robot,

which means that the human was modeled by a passive

impedance represented by mass, damping, and stiffness

of the human arm without further excitation signals to

the system. However, for an active human, the desired

human trajectory becomes an additional input to the

coupled human/robot system. Consequently, the

old human model no longer applies and thus a new

human behavior model that implements the three units

proposed in Groten (2011) is assumed:

1. The human is modeled by a position-controlled

arm with a trajectory planner and an adaptation

module that adjusts the compliance of the arm

as well as the reference trajectory according to

the actual estimated interaction strategy and the

currently observed haptic data.

2. The human behaves as a collaborative partner.

In other words, the human planner adapts the ref-

erence trajectory based on the actual interaction

status. It does not matter whether the decision of

the human is to follow or to change the current

trajectory; the decision is made based on actual

measurements.
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Figure 2. Human behavior model. xdh is the desired trajectory generated by the human, x is the

actual human/robot position, and f is the actual interaction force. The parameters of human arm

stiffness and damping represented by the position controller are variable in time.

An illustration of the human behavior model is given

in Figure 2. This model allows the human to change the

arm impedance represented by the position controller as

well as the desired trajectory with respect to time. The

assumption that the human will behave reasonably is a

natural approach, since it is expected that a human plans

the behavior of the next step based on the information

gathered about the current step. Further information

needed to generate the trajectory is integrated inside

the planner block. This makes the current position and

force signals the only inputs to the human model, hence

the input and output signals of the human block are all

known to the robot.

The model in Figure 2 is expected to be time-varying

and nonlinear. However, in practice the robot needs

an easily identifiable model to estimate the currently

selected interaction strategy. Hence, the following

approach is taken to linearize the human behavior

model:

1. A linear differential equation was used to represent

the relationship between position input and force

output signals.

2. The differential equations were limited to the sec-

ond order, as shown in Equation 3, where f and x

are the position input and force output signals, h2,

h1, and h0 are the three parameters of the differen-

tial equation, each denoted as a human behavior

parameter (HBP), representing the current human

behavior that determines the force output based

on the current position input. Since the adapta-

tion unit is part of the human behavior model, the

HBPs are time-varying.

f = h2(t )ẍ + h1(t )ẋ + h0(t )x . (3)

The HBP set (h2, h1, h0) is similar to the impedance

parameter set of a passive human in the sense that

they are both relationships between force and posi-

tion signals. However, HBPs also take into account the

influence of the human planning and adaptation unit,

and thus are not necessarily equivalent to impedance

parameters. In the remainder of this paper, impedance

parameters denote the parameters in the admittance

filter of the robot controller, while HBPs denote the

estimated behavior parameters of the human.
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Figure 3. Estimation of human interaction strategies using

HMM-based estimator: HMM δ1 stays for the active and HMM δ2 for

the passive state.

A fast-converging forgetting factor Least Squares Esti-

mation (ffLSE) algorithm is employed to estimate HBPs

from measured force and motion data. In Wang, Peer,

and Buss (2009a), this algorithm was used to estimate

mechanical impedance parameters. Although HBPs are

newly proposed in this paper, their estimation can be

carried out in a manner similar to impedance parameters.

Detailed discussion and validation experiments related to

the ffLSE algorithm can be found in Wang et al.

2.2.2 Human Intention Estimation. As human

intention is not directly measurable, a special estima-

tor is needed, which is part of the HLC. In our case,

we adopt pattern recognition algorithms which process

the aforementioned HBPs and determine probabilities

for the active or passive interaction strategy. A detailed

scheme of the implemented human intention esti-

mator, the interaction strategy estimator, is shown in

Figure 3. Using measured force and motion data, an

online parameter estimator identifies human behavior

parameters, abstracts them into symbols, and feeds them

into a discrete Hidden-Markov-Model (HMM)-based

intention recognition module which outputs an estimate

of the current human intention, that is, interaction strat-

egy. Two HMMs are defined for the estimator, reflecting

the two opposite roles of active and passive. Active indi-

cates that the human is trying to lead the handshake,

while passive means the human is trying to follow the

lead of the robot.

An HMM has an underlying Markovian stochastic

process that is not observable directly, but only through

another stochastic process with respect to a certain prob-

ability of observation. This manages the relationship

of hidden human interaction strategies and observable

actions. While each human interaction strategy is mod-

eled by an HMM, the hidden states; of the respective

HMM encode the hidden mechanism that describes

how the human generates the observed action. There-

fore, for the estimation of n human mental states, there

are n different HMMs, each having σn hidden states;

and the values of σn are determined by the training

of the specific HMM. The estimation algorithm then

decides which HMM is currently the best fit for the

given sensory information.

This type of HMM estimator has been used for

speech, handwriting, and other types of pattern recog-

nition since the 1980s (see Rabiner & Juang, 1986).

Applications have been reported in human motion

recognition by using image sequences, as in J. Yamato,

Ohya, and Ishii (1992) and haptic signals, as in Takeda,

Kosuge, and Hirata (2005). The application in Takeda

et al. is to estimate human dancing steps using force sig-

nals measured by a force sensor mounted on the robot.

In Avizzano (2007), HMMs are used to classify human

behaviors based on haptic measurements when drawing

on a 2D plan. In Calinon, Evrard, Gribovskaya, Billard,

and Kheddar (2009), HMMs with continuous force

and velocity inputs are employed in recognizing human

interaction strategies in a joint object carrying task.

The method employed in this work is extended from

the method described in Yang, Xu, and Chen (1997).

The input data is changed from gesture paths to hap-

tic data, in this case the HBPs. The number of hidden

states in each HMM is set to four. The method can be

formulated as follows:

Given S = {Sn}, n = 1, 2, . . . , N , state Sn being the

nth hidden state, and O = O1, O2, . . . , ON the observed

symbol sequence, choose the best matching HMM from

δi , i = 1, 2, . . . , C ; that is, calculate P (O|δi) for each

HMM δi and select δc∗ , where

c∗ = arg max(P (O|δi)). (4)

Given the observation sequence O = O1, O2, . . . , ON

and the HMM δi , the problem is how to evaluate

P (O|δi), the probability that the observation sequence

was generated by HMM δi . This probability can be cal-

culated by using the forward-backward algorithm, as

shown in Rabiner and Juang (1986). The HMM with

the highest likelihood is selected as the recognition

result.
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Table 1. Generated HMM Observable Symbols

h2 h1 h0 Symbol

Low Low Low 1

Low Low High 2

Low High Low 3

Low High High 4

High Low Low 5

High Low High 6

High High Low 7

High High High 8

HBPs are preferred to the interaction force signal

as input to the HMM estimator, for the reason that

the interaction force contains the influences of both

the robot and the human. For instance, a high mea-

sured interaction force can result from a strong robot

acting against human arm inertia in the case of a pas-

sive human, or from an active human who is trying to

change the current style of shaking by either stiffen-

ing his or her arm or imposing a certain trajectory. In

other words, high force measurements do not neces-

sarily mean that it was the human who was overactive.

Therefore, it is not sufficient to estimate human inter-

action strategies from the force measurement alone.

The HBPs, however, consider the interaction trajec-

tory and force signals at the same time. In case of high

interaction forces resulting from a strong robot shak-

ing the hand of a passive human, both position and

force values would be high, resulting in moderate HBP

estimations for h0 and h1; if the force results from an

active human, the arm impedance or the imposed force

would be high, while the position deviation would be

small, which will be reflected in the HBP estimations as

well. Hence HBPs are the better choice in representing

human interaction strategies.

For a given HBP sequence, eight symbols are used

in the abstraction as shown in Table 1. The thresh-

olds for low and high are set by heuristics: 1 for the h2

coefficient, 50 for h1, and 500 for h0.

Performance validation tests were carried out for

the HMM estimator. Detailed discussions are given in

Section 2.3.

Table 2. Averaged Duration and Amplitude of Human-Human

Handshakes

Position Min Max Mean

Duration (s) 0.712 1.816 1.01

Amplitude (m) — 0.161 0.098

2.2.3 Trajectory and Impedance Parameter

Adaptation. The trajectory and impedance parameter

adaptation modules are the last modules in the HLC.

The following information is available to generate the

reference trajectory: force and motion (position, veloc-

ity, and acceleration) measurements, identified HBPs,

and the estimated human interaction strategy. In addi-

tion, history information of the above data can be stored

if necessary. The task of the trajectory generator is to

generate a path on the basis of certain criteria which are

to be defined in this section.

There are many possible solutions for the selection of

criteria, since handshaking contains a large amount of

intercultural, intersubjective, and even intertrial vari-

ations. Therefore, instead of defining one standard

handshake, here the approach is taken to find bound-

aries for recreating a handshake trajectory that feels

human-like to the user. In our case study of handshak-

ing (see Wang et al., 2008), 1800 recordings were made

on human-human handshaking. The averaged duration

and amplitude of the position trajectories are shown in

Table 2. The average handshake lasts about 1 s, with a

peak amplitude of about 0.1 m.

The following strategy is used to implement active

and passive robot behavior. When the human is in a pas-

sive state, the robot tries to take the lead. Impedance

parameters in the admittance filter are set to high values,

and no modification is made to the current reference

trajectory; subsequently, the robot goes on as planned.

When the human is active, the robot tries to follow the

human’s lead. The impedance parameters are set to

low values, and the commanded trajectory is modified

such that the robot synchronizes to the human motions,

which requires a continuous adaptation of the reference

trajectory.
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A first trajectory adaptation algorithm was proposed

and implemented in Wang et al. (2009b). In the cur-

rent work, a refined trajectory adaptation strategy is

proposed and implemented. The main issue of the tra-

jectory adaptation algorithm in Wang et al. is dividing

each handshake cycle into four segments and updating

the planned trajectory only at the beginning of each

segment. Therefore, no matter how much effort the

human applied to change the current trajectory dur-

ing the segment, the effect only appeared when the next

segment started. This delay of a quarter of a cycle left

an irresponsive impression on the participants in the

experiment.

To fix this latency issue, updating the trajectory at

each time instance is desired. The strategy of trajec-

tory adaptation is not unique; selected strategies clearly

reflect different personalities of a robotic partner during

handshaking. Here a general frame of online trajec-

tory adaptation is proposed, with more possible tunable

parameters for future customization.

1. A handshake cycle is still divided into segments.

Each starts at peak/valley points (A) and ends at

equilibrium points (E), or starts at E and ends at

A, as shown in Figure 4. However, this segmen-

tation is no longer used for trajectory updating,

but to keep a sinusoidal form of the overall shaking

trajectory.

2. As suggested by the human-human handshaking

results in Table 2, a typical handshake lasts for 1 s.

Therefore, each segment is initialized to be of time

length D1 = 250 ms. A count t is introduced to

note how much time passed since the beginning of

the current segment, 0 < t ≤ Dn .

3. At each time instance t , Dn is updated according to

the interaction force and current position. The cur-

rent segment can be immediately terminated once

a significant force opposite to the current direction

of motion is detected, which suggests the human

wants to lead. The current t is set to Dn+1.

4. At each time instance, the destination amplitude

An+1 or En+1 of the current segment is updated

by Equations 5 and 6 depending on the actual

segment:

Figure 4. Refined segmentation of the shaking trajectory.

En+1 = −dir · β1(β2 + ft ) sin

(

π

2

(

t

Dn
+ 3

))

+ xt .

(5)

An+1 = dir · β1(β2 + ft )

(

1 − sin
πt

2Dn

)

+ xt . (6)

In both cases dir is the current direction of

motion, dir = 1 for ascending, dir = −1 for

descending. ft and xt are the current measured

force and position, respectively. β1 and β2 are

tunable parameters determining the amount of

adaptation to the interaction force. The sine func-

tion is introduced to take into consideration the

feasible amount of change applied to the desired

amplitude: the closer the current t is to the end

of a segment, the less the allowed modification

term will be, in order to avoid exceeding the speed

limitations of the robot.

5. With the updated Dn , An+1, and En+1, together

with the measured current position, velocity, and

acceleration, a fifth order polynomial can be calcu-

lated connecting the current and desired position

smoothly (with continuous position and velocity).

The refined trajectory adaptation algorithm shares

identical input and output signals with the original

algorithm. The performance of the refined trajectory

adaptation algorithm is superior to the one proposed
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in Wang et al. (2009b), providing improved response

speed and a wider range of adaptability. The result of the

interactive controller in Section 2.3 was achieved with

the refined trajectory adaptation algorithm. The results

of the interactive controller using the original trajectory

adaptation algorithm can be found in one of our earlier

publications (see Wang et al.).

2.2.4 Extended Degrees of Operation. In early

implementations, the arm motion for handshaking was

modeled only along the vertical direction. Hence, when

implemented in the robot, the other directions were

fixed, with the human user only able to move the robot

along the vertical translational DOF.

A human-human handshake is not subject to such a

1-DOF constraint. To remove it, and hence improve

natural interaction, the system needs to be extended

from 1-DOF to multiple 1 DOF.

The force/torque sensor mounted on the robot end-

effector is capable of measuring 6 DOF information,

namely three translational forces and three rotational

torques. All calculations are made in Cartesian space.

A virtual impedance model is introduced in each of

the 5 DOF, namely two other translational DOF and

three rotational DOF. The impedance models enable the

user to move the robot end-effector along that direc-

tion while maintaining stability. The robot is passive

along the other 5 DOF, with the reference trajectory

generated by the virtual engine only applied to the ver-

tical direction. Distinctive impedance parameters are set

empirically for each DOF.

2.3 Objective Performance Evaluation

and Results

Validation tests with a small number of participants

were carried out prior to the subjective evaluation exper-

iments to assess the performance of each module of the

system.

2.3.1 HMM Estimator. It is not straightforward

to define a controlled environment to collect training

data for the HMMs, since the actual interaction strat-

egy is practically hidden. In order to obtain training

Figure 5. HMM training results comparison for different symbol

sequence lengths. A symbol sequence of length 100, corresponding to

100 ms in time, provides an accuracy rate of more than 90% for 50

groups of training data.

data where the human was either always active or always

passive, the participants were instructed to act either

uniformly actively or passively throughout a trial. Train-

ing data were obtained from four participants. They

were instructed to either always take the lead or always

follow the lead of the robot. One hundred groups of

training data were recorded for each participant, that

is, 50 for active and 50 for passive. The results of train-

ing using different data sets are shown in Figure 5. For

50 groups of training data (taken from the same partici-

pant), a sequence length of 100 ms achieved an accuracy

rate of more than 90%. Further increasing the length of

the symbol sequence would further delay the response of

the system to human behavior changes, while the benefit

of increasing estimation accuracy is marginal. There-

fore, the combination of 50 groups of training data and

a symbol sequence length of 100 ms is implemented in

the robot controller.

The two trained HMMs for passive and active are

implemented into the HLC which executes in real

time (1 kHz). The input sequence length of 100 ms is

employed.

Instructing participants about their handshake behav-

ior is a necessary compromise, given that information

about the actual interaction strategy is not available

to the robot. However, naturally this will degrade the
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confidence level of the training results, since accurate

validation is not possible. Fortunately, the lack of infor-

mation about the current human interaction strategy

can be compensated for by employing a large amount

of training data. First of all, each of the four participants

was trained for a long session before the actual training

data for HMMs was recorded. Second, in Figure 5 the

accuracy results are defined as the percentage of time

that the output of the interaction strategy estimator is

correct. Training with 50 groups of data from the same

participant provided the best result; where using the

evaluation recordings made with the other three par-

ticipants, for more than 90% of the time, the estimator

gave correct interaction strategy estimations.

2.3.2 Overall System Performance. After test-

ing the individual modules, the HLC was integrated.

Human-robot experiments were carried out using both

the basic controller and the interactive controller. The

participants were different from those in the train-

ing group, and the results are shown in Figure 6 and

Figure 7. For the basic controller, compliance was only

provided by the virtual impedance model of the robot,

while for the interactive controller the robot could syn-

chronize to the human. Another observation can be

made from the force signals, that for the basic controller,

the human needs a relatively large force to drive the

robot along the measured trajectory; while for the inter-

active controller, much lower forces are needed since

the robot can detect the human trying to lead and hence

adapts its reference trajectory to follow.

It is worth mentioning that the trajectories in Figure 6

and Figure 7 are significantly longer than the general

human-human handshake length of around 1 s. They

were recorded with naı̈ve subjects handshaking with

the robot. Note that a handshake with a robotic partner

generally takes longer than with a real human partner. In

Figure 7, the participant released the hand at around 5 s,

while the trajectory generator was set to stop after 2 s of

the last nonzero force measurement. Therefore, with the

estimated human interaction strategy being passive in

the last 2 s, the robot took over the lead and followed a

rather standard trajectory as predefined in the trajectory

generator, until it stopped at around 7 s.

Figure 6. Experimental results of human-robot handshaking using

the basic controller. Upper: position; lower: force. The reference

trajectory is not changed according to human input. The human keeps

applying large forces to drive the robot.

The 2 s waiting period before stopping a handshake

is a practical measure, since the robot does not know

when the human releases the hand. This issue can be

easily solved by adding a sensorized robotic hand onto

the robotic arm, which measures human grip force and

hence obtains the information of when the human hand

has been released. Practically, however, after releasing

the hand, the participant will not feel any of the robot

motion, hence this issue does not affect the experimental

results.
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Figure 7. Experimental results of human-robot handshaking using

the interactive controller. Upper to lower: position, force, symbols,

estimated human interaction strategy. Reference trajectory is modified

according to the human input. Force decreases as the robot

synchronizes with the human.

Figure 8 shows the estimated results during the same

handshake as in Figure 7. The first observation from

Figure 8 is the occasionally negative HBP estimates. The

stability of the system is not affected by the negative esti-

mations, as they are not directly involved in the position

control loop. The separation of large and small values,

Figure 8. Estimated HBPs of human-robot handshaking using the

interactive controller.

however, should take into account the possible negative

values and use absolute values of each parameter. The

thresholds are shown in Figure 8 as dashed lines.

The results shown in Figure 7 and Figure 8 support

the notion that HBPs are more suitable for human

interaction strategy estimation than the measured force

signal, since force measurements contain information

exerted by both the human and the robot. Between 1.6–

1.9 s in Figure 7, for example, the measured force spike

is applied by the robot driving the human, while the

human arm is actually loose and acting only as additional

inertia as can be observed in Figure 8. Therefore, despite

the high force measurement, the estimated interaction

strategy is passive.

On the other hand, the estimation results are also

affected by the threshold values in HBPs. If in the afore-

mentioned example the threshold of h1 were set to 20

instead of 50, the resulting symbol between 1.6 and

1.9 s would have been 3 instead of 0, and the resulting

human interaction strategy would have been different.

Varying the threshold in HBPs can be interpreted to

some extent as changing the personality of the virtual
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robot partner, where higher thresholds suggest a more

dominant role, while lower values result in the robot

seeming more gentle and adaptive.

3 Subjective Evaluation with Human

Participants

In order to evaluate the overall handshake sys-

tem, a subjective evaluation experiment was designed

where the ground truth approach was employed. This

approach compared the actions of a person within a mul-

tisensory virtual environment to the actual behavior of

people in a similar situation in physical reality. In order

to achieve that, an experiment was designed where sub-

jects performed handshakes with the robotic system, as

well as with a human, and their evaluation scores for the

handshakes performed provided the basis for the evalu-

ation of this robotic system. This follows the strategy for

the measurement of presence in virtual environments

suggested in Sanchez-Vives and Slater (2005), which

views presence as the extent to which responses in a vir-

tual environment are similar to what would be observed

or expected in a similar real environment. In the present

experiment we directly compare the responses of peo-

ple to the robot handshake with their responses to the

human handshake.

3.1 Experimental Design

3.1.1 Scenario. In order to simulate a scenario

where several handshakes would be performed, we chose

a cocktail party, as in Giannopoulos, Wang, Peer, Buss,

and Slater (2010). Here we additionally introduced a

visual representation of the cocktail party along with

virtual characters. The participant was immersed in this

cocktail party as a virtual character standing behind a

bar and interacting with the other virtual characters. To

make the environment and the scenario more realistic, a

real table was placed in the laboratory in a 1:1 mapping

with the virtual bar seen on the virtual environment, so

that whenever the subject touched the virtual bar, which

he or she would be standing behind, there would be a

corresponding haptic feedback from the real table. The

sound recordings used were made from a real cocktail

party. The virtual environment, with the visual realism of

lighting and textures, the realistic sound, as well as the

haptic consistency of the virtual bar, created an immer-

sive experience to the participant from the onset of the

experiment.

Once the participant became immersed within the vir-

tual environment, a virtual character entered the room

and walked toward the participant. The virtual charac-

ter stopped in front of the participant and greeted him

or her with a simple sentence and reached out his or her

hand to receive a handshake, which was expected in the

greeting context. When the participant reached out for

the virtual hand, he or she found the robot hand in the

real world which was mapped 1:1 to the location of the

virtual character’s hand in the virtual environment. Fur-

thermore, the participant’s hand was tracked by the data

glove and he or she could fully control the position of

his or her own virtual hand. After completing a hand-

shake, the virtual character turned around and left the

room. This procedure was repeated with 18 distinct vir-

tual characters, which once completed, concluded the

experiment.

There were two experimental factors. The first was the

main experimental condition of interest, which we call

robot type, whereas the second factor was the gender of

the avatar that shook hands with the subject. There were

three robot types: basic robot, interactive robot, and

human driven. In the basic robot condition, the robot

was controlled by a position controller with a fixed sinu-

soidal reference trajectory, as described in Section 2.1.

In the interactive robot condition, the controller with

the updated trajectory generator was employed, as

introduced in Section 2.2; while in the human-driven

condition, the second robotic arm was employed by

an experimenter to deliver a handshake to the partici-

pant via teleoperation. No comparative conditions were

intentionally introduced in vision and sound during the

actual experiment.

3.2 Response Variables

3.2.1 Questionnaires. Prior to the experiment,

the subjects completed a preexperiment questionnaire
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providing demographic information about sex, age,

prior experience on virtual reality, level of knowledge

of computing, and whether they had experienced any

similar experiments before (as the participants were

students from Technische Universität München, there

was a possibility that they had participated in previous

studies involving the robot performing the handshakes).

At the end of the experimental session, the subjects

were required to complete a postexperiment question-

naire that assessed various aspects of presence. The

complete set of questions is given in the Appendix.

3.2.2 Handshake Score (HS). The main

response variable studied for the evaluation was provided

by the subjects throughout the experiment. Namely,

immediately after performing each handshake, the sub-

jects were required to call out a score between 1 and

10 representing the degree of belief that the handshake

had been exchanged with a human. A value of 1 meant

that it had definitely not been with a human, and 10

definitely with a human.

3.2.3 Number of Correct Classifications

(NCC). In order to examine the impact of factors such

as age, gender of the subjects, and their relationship with

the presence scores, a new response variable was con-

structed: the number of correct classifications (NCC)

out of the 18 choices made by the participants. This clas-

sification was defined as follows: for a given response by

the participant, a variable x was classified as true if:

• The response was between 1 and 3 for the basic

robot.
• The response was between 4 and 7 for the

interactive robot.
• The response was between 8 and 10 for the human-

driven robot.

The total number of true xs for every participant

defined the NCC of that participant.

3.2.4 Hypotheses. Our hypothesis was that

on average, HS would be greater for the interactive

robot than for the basic robot. A very good result

would be that on the average, HS would not be

Figure 9. Experimental setup.

significantly different between the interactive robot and

the human-driven condition. The overall hypothesis was

therefore

Mean(HS(human-driven))

= Mean(HS(interactive robot))>Mean(HS(basic robot)).

Regarding the effect of gender of the avatar, this was

an exploratory issue to examine whether there was any

impact of avatar gender on the response, as well as any

possible interaction between gender and robot type.

3.3 Materials and Methods

3.3.1 Equipment. For the purposes of this exper-

iment, two ViSHaRD10 robotic arms were used: one

robotic arm was used as a handshaking device, while the

other was used as the haptic interface in order to enable

the participants to shake hands remotely with another

human. Two identical 6-DOF force/torque sensors

integrated within each of the robotic arms were used

to measure the interaction forces exerted between the

users. Similar to the objective performance evaluation

experiments, the robotic arm used by the participant

was mounted on a platform and a dummy hand made of

rubber was mounted on this robotic arm (see Figure 9).

The participants wore an nVISOR SX 60 stereo head-

mounted display (HMD; NVIS, 2011) for the display of

the visual scenario, and a pair of sound-isolating head-

phones for the sound inside the virtual world, which was
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also used for the purpose of isolating the motor noise of

the robot.

In order to map the body and head motions into the

virtual system, Intersense IS 900 motion trackers (Inter-

sense, 2011) were placed on the head, back, and wrist of

the participant. An Immersion data glove (CyberGlove

Systems, 2011) was used to measure the participant’s

hand movement in order for it to be reflected by his or

her avatar.

In order to validate the performance of the developed

robot control algorithms, a human handshake partner

was used as a comparative condition during the evalua-

tion experiment. Although it is possible to use a specially

designed end-effector that two humans can hold, as

shown in Wang, Lu, Peer, and Buss (2010), here a dif-

ferent approach was used: teleoperation. When using the

two-sided end-effector as formerly proposed in Wang

et al., each handshake partner held on to one end of

the end-effector, but only one force sensor was used,

providing only one combined force measurement for

both sides. As a consequence, it was not possible to dis-

tinguish between the forces applied by each side. To

achieve separate force measurements, in this work, the

two humans were separated by using a teleoperation

setup. This setup consisted of two robotic arms, each

equipped with one force sensor mounted at the end-

effector, such that the force applied by either side could

be accurately measured. In addition, a universal virtual

impedance was employed to govern the force/position

relationship at both sides. Force measurements were

exchanged bilaterally to calculate the correspond-

ing desired position for each robot (see Peer & Buss,

2008).

3.3.2 Visual Rendering. In order to provide mul-

timodal feedback during handshaking, a virtual cocktail

party scenario was created (see Figure 10), which shows

the view of the participant into the virtual world. An

extended visual scene was developed based on the pro-

totype reported in Wang et al. (2010). In comparison

with recently reported similar systems (Giachritsis, Bar-

rio, Ferre, Wing, & Ortego, 2009; Spanlang, Fröhlich,

Fernandez, Antley, & Slater, 2007), the new visual sce-

nario generates full body human animations online with

Figure 10. Participant view of the virtual system in the experiment.

Figure 11. Comparison of virtual character decorations: (a) before

decoration, (b) after decoration.

the input data from the haptic subsystem as well as from

the motion trackers placed on the human participant.

At the same time, high-fidelity facial details are main-

tained to provide realistic interaction experiences for the

participants.

Building on the visual rendering algorithm developed

in Wang et al. (2010), facial details of the virtual charac-

ters were significantly improved by importing external

textures to the face model to restore lost information

due to importing the character from development soft-

ware to real-time rendering software. Figure 11 shows a

comparison between the initial virtual character and the

one after decoration. Significant improvements can be

observed for the eye, eyebrow, lips, hair, and so on.

A high fidelity virtual hand model of 24 DOF (see

Cobos, Ferre, Ortego, & Sanchez-Uran, 2008) was used

to represent the hands of virtual characters. The hand

model is capable of real-time hand animation with the
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Figure 12. The first virtual environment used in training sessions.

input data measured from a data glove worn by the par-

ticipant. The location and orientation of the hand in the

virtual world was registered with the location and ori-

entation of the robot end-effector in the real world. An

unactuated rubber hand was mounted on the robot arm,

such that after fine calibration, the participant could

reach out and grab this hand at the same location of the

virtual hand as in the virtual world.

Eighteen virtual characters were created with differ-

ent clothing and facial details. They were all used in the

evaluation experiment as virtual handshake partners. An

additional virtual character was created as the avatar or

virtual representation of the human participant. Since

the avatar’s head was always behind the virtual cam-

era, it never appeared in the view. In order to minimize

computational load, the avatar’s head was not designed.

Two virtual environments were designed, one sim-

plified for use during training sessions, the other for the

main experiment. The first environment was kept sim-

ple, consisting of an empty space with a floor with black

and white mosaic bricks, with one fixed virtual character

together with the virtual representation of the partici-

pant. A single spotlight was used to light the virtual

world, as shown in Figure 12. This environment was

used during training sessions. The aim was to familiarize

Figure 13. The rendered result of the second virtual environment.

the participant with the virtual reality without experi-

encing the main experimental environment. Therefore,

an empty space was provided instead of the barroom

scenario, with a fully functional virtual character as

the handshake partner who happened to be in a fixed

location.

The second virtual environment was much more com-

plex than the training environment; in this case, the

virtual world represented a cocktail bar. A number of

virtual characters were programmed to approach the

human participant in order to shake hands, while the

actual robot location was fixed in the physical world,

meaning the participant was required to stand in the

same place the virtual characters came over to greet

him or her and then leave again. Figure 13 shows the

design of the virtual bar environment, consisting of the

following elements:

1. There was a virtual room equal to the physical

room in which the virtual reality was embedded,

and which was designed to be a bar.

2. Two doors were placed on each side of the room,

so that characters could enter and leave the room.

3. In the real world, the participant stood on a 1 × 1 m

platform. A table was placed in front of the par-

ticipant such that the participant could reach the

robot over the table while preventing an accidental

walking away from the platform.

4. In accordance with the table in the real world, a

virtual table of the same height was placed in the

virtual world. The participant, similar to a bar-

tender, was hence constrained by this table, being
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able to see and shake the hand, but not to actually

walk into the virtual world.

5. To address the ambient noise of the bar, a number

of additional virtual characters were placed around

the room. However, to minimize processing time,

these characters did not move.

6. The lighting condition in the room was set to be

dim, with rotating lights of time-varying colors.

3.3.3 Sound Rendering. In order to display plau-

sible sounds that are typical for a cocktail bar, a sound

rendering algorithm was developed, which was able

to replay background sound as well as the real-time

conversations of virtual characters.

For sound rendering, one background sound clip was

prerecorded with a number of virtual character dialogue

clips as add-ons to it, which were mixed in online and

were triggered by events. During the experiment, the

background noise started to play first. When the robot

was ready, the experimenter controlling the events hit

one key that triggered the playback of an animation that

moves the character’s mouth and the playback of a cor-

responding dialogue at the same time. In order to fit

mouth motion with the dialogue, synchronization of

auditory and visual cues was required.

In order to achieve mouth synchronization in the

virtual characters, Voice-O-Matic (2011) was used to

generate mouth motion information out of voice clips.

Once this information was available, it was mapped to

key frames in visual rendering, while keeping the timing

information. For each dialogue clip, such a sequence was

created off-line. An audio library FMOD (2011) then

read in this information and switched key frames to gen-

erate the talking animation that was synchronized with

the voice.

3.4 Experimental Procedure

Twenty-one participants were recruited (10 male,

11 female). They were full-time students from Tech-

nische Universität München. Each of them signed an

informed consent for their participation to the experi-

ment. Each participant took around 30 min to finish the

experiment, and was given €5 as compensation.

The experiment consisted of three parts: preex-

periment briefing, the training session, and the main

experiment. The participants were not allowed to see

the robot throughout the experiment, avoiding the

appearance of the robot which could interfere with the

immersion into the VR environment. A trained exper-

imenter guided the participants through the entire

procedure.

1. Preexperiment Briefing. Once the participant

arrived at the site, the trained experimenter intro-

duced the experiment and handed all the necessary

documentation to be filled out (consent form, pre-

experiment questionnaire) outside the experiment

room, thus preventing the participant from viewing

the robot prior to the conclusion of the experi-

ment. Upon completion of the documentation,

the participant was blindfolded and guided into the

experiment room again to prevent visual contact

with the robot. The participant was then requested

to put on the necessary devices (HMD along with

backpack and data glove) and run a set of required

calibrations.

2. The Training Session. The participant per-

formed six handshakes of the basic condition.

At this stage, the participant saw a female virtual

character in front of him or her with her hand pro-

truding as if awaiting a handshake. The participant

was then asked to reach for the hand of the virtual

character and perform a handshake. At this point,

the experimenter explained to the participant about

the rating procedure, that after each handshake a

score from 1 to 10 needed to be provided verbally

by the participant, about how close the handshake

felt to shaking hands with a real person, where a

score of 1 meant that the handshake was definitely

not performed by a human, while a score of 10

that the handshake definitely was performed by a

human. The participant then continued with the

training session for another six handshakes, this

time giving a score after each one. Throughout

this training session, the handshakes were with the

basic robot and the interactive robot, presented in a

random order.
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3. The Main Experiment. This session consisted of

18 handshakes, matching the number of different

avatars that had been created. There was an arbi-

trarily determined sequence of male and female

avatars, but it was the same sequence used for all

subjects. Specifically it was:

M-F-M-F-F-M-F-F-M-F-M-M-F-F-M-M-F-M

At this stage, the third condition was introduced,

namely the human-driven condition, where the

handshake was performed between the partici-

pant and an experimenter in a remote location via

teleoperation of the robotic arm. Each of the three

conditions in comparison were repeated six times

in random order. The visual environment presented

to the participant at this stage was the cocktail bar-

room, which had been unknown to the participant

up to that moment. Therefore, initially the partic-

ipant was given some time to look around and get

accustomed to the environment as well as his or her

virtual representation and get familiar with mov-

ing his or her virtual hand. A prerecorded cocktail

party background sound, with people chatting and

background music, was played back. At intervals of

15 s a virtual character entered the room, walked

toward the participant, performed a handshake,

and then left the room. After each handshake, the

participant was supposed to rate the handshake

performed (as practiced throughout the training

session), according to their experience. No further

interaction between the expert and the participant

was expected, as the participant was fully instructed

by the virtual events occurring in the virtual world.

4. Postexperiment. After the experiment, the par-

ticipant was led out of the experiment room to fill

out the postexperiment questionnaire and provide

further comments.

3.5 Statistical Analysis

This was a two-factor within-groups design. In

order to account for the within-group effect, this was

analyzed as a 3-way ANOVA (Robot Type, Gender, and

Subject) with interactions.

Table 3. Mean and Standard Errors of Handshake Scores for

Each Robot Type

Robot type Mean SE

Basic robot 3.0 0.17

Interactive robot 5.3 0.17

Human-driven 6.8 0.21

Figure 14. Mean and standard errors of the handshake scores by

robot type.

NCC can be considered as a binomial random variable

with n = 18, and hence logistic regression can be carried

out on the explanatory variables such as gender, age,

game playing, and so on.

Additionally we can consider Classification as Human

(CH), which is a score of how often they felt they were

shaking hands with a real human. This is defined as the

number of times out of 18 they gave a score of ≥8. Cor-

relations of CH with the presence-related scores from

the questionnaires could be used as a consistency check,

since we should expect, for example, that the more often

the participants had felt that they were shaking hands

with a real person, the greater should be the CH.

3.6 Results

3.6.1 Handshake Scores. The means and stan-

dard errors of the 126 observations for each robot

type are shown in Table 3 and Figure 14. The 3-way

ANOVA showed a highly significant difference between

the means of Robot Type (p = .0000), but not for
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Gender (p = .68). Moreover there was no signifi-

cant interaction between Robot Type and Gender

(p = .54) and the 3-way interaction term was also

not significant (p = .09). However, the Jarque-Bera

test rejected the assumption of normally distributed

errors (p = .004). Investigation of the residual errors

showed that there was one outlier, and when this was

removed the ANOVA satisfied the assumption of nor-

mality with Jarque-Bera (p = .16). Qualitatively, the

results do not change with this outlier removed. The dif-

ference between the main effects of Robot Type remain

highly significant (p = .0000), there is no difference

between the Gender types (p = .97), no interaction

effect (p = .32) and the full 3-way interaction is not

significant (p = .13).

A multiple comparisons test of the differences

between the main effects shows that

Mean(RT(basic robot)) < Mean(RT(interactive robot))

< Mean(RT(human-driven)),

even at an overall level of significance P < 1.0 × 10−15.

Hence, although the evidence is extremely strong that

the interactive robot was considered more like a real

handshake than the basic robot, it is equally strong that

it could be reliably distinguished from the real human

handshake.

Table 4 shows the handshake score frequency distri-

butions across the three types of interface. It is clear that

although on the whole each of the three types of inter-

face were correctly recognized, there were classification

errors. For example, the human operator was scored as a

robot (handshake score ≤ 2) 11 out of 126 times, and

there was even one classification of the basic robot as

human (a score of 9).

Figure 15 provides a view of the distribution that

is easier to understand, where the scores have been

grouped into successive pairs. The basic robot distri-

bution is approximately a reverse J-shaped distribution

with the mode at scores (1,2), and the human is almost

J-shaped with the mode at (7,8) which has a frequency

just slightly higher than that for (9,10). However, the

interactive robot distribution is more symmetrical about

the modal scores of (5,6), with some skew toward the

Table 4. Frequency Table of Handshake Score by Type of

Robot

Handshake Basic Interactive Human-

score robot robot driven Total

1 39 3 4 46

2 23 12 7 42

3 14 11 4 29

4 20 12 6 38

5 17 30 14 61

6 6 19 12 37

7 3 21 22 46

8 3 13 19 35

9 1 5 28 34

10 0 0 10 10

Total 126 126 126 378

Figure 15. Frequency distribution of the handshake scores grouped in

successive pairs.

higher scores of (7,8). Using Kolmogorov-Smirnov

tests, the three distributions are highly significantly

different with the basic different from the interactive

(p < 2.05 × 10−12) and the interactive different from

the human (p < 4.0 × 10−6).

3.6.2 Individual Differences. Next, we con-

sider whether the results could have been influenced

by the characteristics of the participant—their age,

gender, previous experience with computers, with vir-

tual reality in general, their computer game playing,
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Figure 16. Scatter diagrams for CH on three presence-related questions.

and whether they had either taken part in any previ-

ous experiment, or seen the robot before. For this we

use the constructed variable NCC. The mean of NCC is

10.2 with SD 3.3. Logistic regression of NCC on these

possible explanatory variables derived from the preex-

periment questionnaire found no significant associations

at all.

3.6.3 Consistency Checks. Finally for con-

sistency checks we use the variable CH and examine

how well this correlated with various presence-related

questions in the postexperiment questionnaire, in par-

ticular how much they felt to be in a place (place), how

much they felt that they were socializing with real peo-

ple (social), and how much they felt they were shaking

hands with a real person (real person).

Figure 16 shows the scatter diagrams and gives the

corresponding Pearson correlation coefficients for CH

on the scores for these three questions. It is clear that

generally people gave handshake scores that were con-

sistent with their later subjective evaluations in the sense

that the more they classified the handshake as human

the greater the likelihood that they would later say

that they felt that they had been in a place that was a

social situation where they were interacting with real

people.

3.7 Discussion

The experiment demonstrates a fundamental

advantage of the interactive robot over the basic robot,

in that participants were more likely to rate it higher on

the scale toward being like a human handshake. How-

ever, it is also the case that there was a great discrepancy

between the interactive robot and the actual human

handshake on this same score.

A possible cause can be found from the comments

given by participants after the experiment, where many

mentioned that the robot controller at times failed

to stop a handshake at the right time. Currently, due

the fact that there is no hand with movements that

are directly robot controlled, the robot controller can

only decide when to stop a handshake by the measured

arm interaction force, as discussed in Section 2.3.2. In

other words, for the current setup, the interactive robot

could only stop handshaking after the human partici-
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pant stopped first. This sometimes resulted in lingering

handshakes and hence lower presence scores for the

interactive robot.

4 Conclusions and Future Work

We have described an interactive controller

designed to adapt the reference trajectory of the low-

level controller for human-robot handshaking according

to the actual interaction. HMMs with haptic inputs were

employed for human interaction strategy estimation.

A fast online parameter identification method was used

to provide estimations of human behavior parameters.

An HMM-based estimator then estimated the current

human interaction strategy according to the identified

human behavior parameters.

Multimodal virtual scenarios were created and inte-

grated with haptics. Human-robot experiments were

carried out to evaluate the performance of the overall

system. Finally, the robot operating in interactive mode

was scored much more human-like than the robot in

basic mode.

The interactive controller can be improved and gen-

eralized in several ways. The system can be extended to

generate a variety of other types of handshakes, since

active and passive do not necessarily cover all human

interaction strategies. The interactive controller was

designed with a high potential for generalization, and

the number of HMMs and the number of states within

each HMM can both be modified to meet the need of

specific tasks; continuous HMMs could be studied when

considering HBPs as HMM inputs. HMMs could also

be considered for motion generation. Currently, the par-

ticipant grips an unactuated rubber hand, which could

be replaced by an actuated robotic hand in the future,

which would provide the participant with improved

overall experience. The fields of application could be

generalized, for instance to rehabilitation, where robotic

assistance can be provided with the functionality of

adapting to human interaction strategies, as well as sen-

sorimotor skill training, where robotic experts can guide

human trainees.
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Appendix: Preexperiment and

Postexperiment Questionnaires

Figure 17. Preexperiment questionnaire.

Figure 18. Postexperiment questionnaire.


