
B. De Decker and I. Schaumüller-Bichl (Eds.): CMS 2010, LNCS 6109, pp. 178–190, 2010.
© IFIP International Federation for Information Processing 2010

Handwriting Biometric Hash Attack: A Genetic
Algorithm with User Interaction for Raw Data

Reconstruction

Karl Kümmel1, Claus Vielhauer1,2, Tobias Scheidat1,2,
Dirk Franke2, and Jana Dittmann2

1 Brandenburg University of Applied Sciences, Department of Informatics and Media
Magdeburger Str. 50, 14770 Brandenburg, Germany

2 University of Magdeburg, Department of Computer Science, Advanced Multimedia and
Security Lab

Universitätsplatz 2, 39106 Magdeburg, Germany
{kuemmel,vielhauer,scheidat}@fh-brandenburg.de,

dirk.franke@st.ovgu.de, jana.dittmann@iti.cs.uni-magdeburg.de

Abstract. Biometric Hash algorithms, also called BioHash, are mainly designed
to ensure template protection to its biometric raw data. To assure reproducibility,
BioHash algorithms provide a certain level of robustness against input variability
to ensure high reproduction rates by compensating for intra-class variation of the
biometric raw data. This concept can be a potential vulnerability. In this paper,
we want to reflect such vulnerability of a specific Biometric Hash algorithm for
handwriting, which was introduced in [1], consider and discuss possible attempts
to exploit these flaws. We introduce a new reconstruction approach, which
exploits this vulnerability; to generate artificial raw data out of a reference Bio-
Hash. Motivated by work from Cappelli et al. for fingerprint modality in [6] fur-
ther studied in [3], where such an artificially generated raw data has the property
of producing false positive recognitions, although they may not necessarily be
visually similar. Our new approach for handwriting is based on genetic
algorithms combined with user interaction in using a design vulnerability of the
BioHash with an attack corresponding to cipher-text-only attack with side infor-
mation as system parameters from BioHash. To show the general validity of our
concept, in first experiments we evaluate using 60 raw data sets (5 individuals
overall) consisting of two different handwritten semantics (arbitrary Symbol and
fixed PIN). Experimental results demonstrate that reconstructed raw data pro-
duces an EERreconstr. in the range from 30% to 75%, as compared to non-
attacked inter-class EERinter-class of 5% to 10% and handwritten PIN semantic
can be better reconstructed than the Symbol semantic using this new technique.
The security flaws of the Biometric Hash algorithm are pointed out and possible
countermeasures are proposed.

Keywords: Biometric Hashing, Online Handwriting, Vulnerabilities, Repro-
ducibility, Security.

 Handwriting Biometric Hash Attack: A Genetic Algorithm with User Interaction 179

1 Introduction and Motivation

A variety of biometric identification and verification systems based on fingerprints,
iris, voice etc. were introduced during the last years. In this paper we discuss the dy-
namic biometric modality handwriting. As for all biometric identification and verifi-
cation systems, it is crucial to protect the original biometric raw data (templates) in
order to prevent all kinds of misuse of individual and personal data. Identity theft is
only one example, out of many others, that can be done with eavesdropped informa-
tion. However, due to the variability of biometric data, templates cannot easily be
protected by common cryptographic hash algorithms, like they are used in common
password authentication systems comparing two passwords in hash domains. The
variability (intra-class variability) has to be taken into account to ensure the repro-
ducibility and protection of the template. One possible method to ensure reproducibil-
ity and simple template protection is for example the Biometric Hash algorithm for
handwriting, originally introduced in [1] with further discussions in [2]. The goal of
this method is to transform intra-subject biometric data, subject to variability, into
stable and individual hash vector values; an overview is given in section 2. Although
not originally suggested as template protection method in [1], we consider the appli-
cation of the Biometric Hash scheme for template protection; due to its similar prop-
erties as cryptographic hash functions (see section 2).

Motivated by work from [3] and [6] for fingerprint modality, we investigate the
generation of raw data based on a reference BioHash, which has the property to pro-
duce identical Biometric Hash values as the reference. Our approach is to exploit
weaknesses from the intra-class-compensation process within the Biometric Hash
generation, which allows different sets of raw data to produce an identical Biometric
Hash value as the reference. First experiments on our new approach show the possi-
bility to reconstruct such valid raw data.

Our proposed method is similar to a ciphertext-only-attack on cryptographic
hashes, as described in the literature; see e.g. Bishop [5]. The ciphertext-only-attack
depicts a scenario where an attacker has access to a collection of hashes and tries to
determine the plaintext out of it. In our case we deal with an adaptive ciphertext-only-
attack where side information such as system parameters for the BioHash algorithm is
given. We further discuss our attack on the Biometric Hash algorithm for handwriting
introduced in [1] where the Interval Matrix (IM) represents the side information in
terms of system parameters of a BioHash algorithm.

The structure of the paper is composed as follows. Section 2 gives an overview to
the BioHash algorithm for handwriting. We discuss potential vulnerabilities of the
algorithm and consider possible attack methods based on these flaws. In section 3, the
detailed design for the reconstruction of raw data is presented. The experimental
evaluation is introduced in section 4, results and discussion are summarized. Finally,
we present a conclusion, a comparison to the achieved results for fingerprints in [3]
and our future work based on our findings.

2 Biometric Hash for Handwriting

The motivation to create a Biometric Hash algorithm is to develop a method which
fulfils a similar task like a cryptographic hash does. However, due to the variability of

180 K. Kümmel et al.

the input data a slightly different specification has to be made. The main differences
and similarities of properties of both Biometric Hash and cryptographic hash are
shown in Table 1. We denote CH as a cryptographic hash function, BH as a Biometric
Hash function, a and a’ as arbitrary digital input data (authentication information), h
as a cryptographic hash, b as a BioHash and P and P’ indicate two different persons.

Table 1. Brief overview of differences and similarities of cryptographic and biometric hashes

Property Cryptographic Hash Biometric Hash

a) Reproducibility The hashes h and h’ of a

cryptographic hash function CH are

identical, if a and a’ are identical.

The BioHashes b and b’ of a Biometric

Hash function BH are identical, if a and

a’ belong to the same person P.

CH(a)=>h, CH(a’)=>h’, h=h’, if
a=a’

BH(a)=>b, BH(a’)=>b’, b=b’, if
a and a’ belongs to P

b) Collision

Resistance

It is difficult to find hashes h and h’
of a cryptographic hash function CH
which are identical, if a and a’ are

not identical.

It is difficult to find BioHashes b and b’
of a Biometric Hash function BH which

are identical, if a and a’ belong to two

different persons P and P’ respectively.

CH(a)=>h, CH(a’)=>h’, h≠h’, if

a≠a’
BH(a)=>b, BH(a’)=>b’, b≠b’, if
P≠P’

c) Non-Reversibility It should be computably hard to

calculate or estimate the input data a
out of a hash h=>CH(a), within a

realistic time scale.

It should be computably hard to calculate

or estimate the input data a out of a

BioHash b=>BH(a), within a realistic

time scale.

d) Bit Sensitivity Minor changes within a should have

a massive effect on h=>CH(a).
Changes within a should have no effect

on b=>BH(a), if it derives from the same

person P.

The Biometric Hash generation process differs in comparison to the cryptographic
hash generation by the characteristics (a) Reproducibility, (b) Collision Resistance
and (d) Bit Sensitivity. In consideration of these characteristics the BioHash from [1]
and [2] belongs to a class of “Fuzzy commitment schemes”, where a certain scope of
variability is tolerated to get to the same result (introduced by Al-saggaf et al. in [7]).

The basic idea behind the BioHash algorithm is to extract a set of statistical feature
values from actual handwriting samples and to find a parameterized transform func-
tion for mapping of these values to a stable hash value space. A workflow on the
algorithm for handwriting is shown in Figure 1.

A human handwritten input (e.g. a handwritten signature) is acquired by a sensor
which transforms pen positions and pressure into an analogous electrical signal (in the
following we briefly summarize the main steps from [1]). This signal is converted by
an analog-digital converter into a digital signal a, i.e. the digital raw data. Such digital
raw data a is composed of time-dependent pen positions and corresponding pressure
and angle values. Within the Biometric Hash generation process a feature extraction
function determines statistical features based on the raw data a. Statistical features
define characteristics such as total-write-time, total-number-of-event-pixels or maxi-
mum-pressure for example; a complete list of all actual used features can be found in
table 2.

 Handwriting Biometric Hash Attack: A Genetic Algorithm with User Interaction 181

Fig. 1. General workflow of biometric bash generation

All determined features are collected in a feature vector of a dimension of n,
whereas n denotes the number of statistical features being used during the extraction
process. With help of an Interval Matrix (IM), these statistical features are mapped
into a n-dimensional Biometric Hash vector (BioHash). The Interval Matrix is gener-
ated during an enrollment process for each subject and consists of an Interval Length
Vector ΔI and an Interval Offset Vector Ω: IM= (ΔI, Ω). Its function is to compensate
intra-class variability of a subject by mapping a certain value range into one specific
value. Each feature possesses a related pair of Interval Length and Interval Offset,
therefore the length of Interval Matrix and feature vector are equal. The mapping for
each feature element fvi within a feature vector fv into a BioHash element bi based on
the Interval Matrix (Interval Length Vector and Offset Vector) is described in the
following Equation 1, whereas i denote the index from 1 to n.

⎥
⎦

⎥
⎢
⎣

⎢
Δ

Ω−
=

i

ii
i I

fv
b (1)

The result of a Biometric Hash generation process is an n-dimensional Biometric
Hash vector b (BioHash). In verification mode this BioHash b is compared to a refer-
ence BioHash bref. The matching can be done, for example, by calculating the Ham-
ming distance (amount of equal vector elements) between b and bref. Reference
BioHash bref and Interval Matrix (IM) is stored for each user in a database.

A more detailed description on the BioHash algorithm is given in [1] and a further
discussion in [2]. The BioHash cannot only be generated out of personal handwriting
such as signatures, it is also possible or even advised to use pass phrases, pseudonyms,
symbols or Personal Identification Numbers (PIN). These alternative handwriting
samples are called semantics. It has been observed in [1] that these kinds of semantics
produce similar recognition accuracy as compared to handwriting signatures, without
disclosing the true identity of the writer. General comment: In the original design of
the BioHash neither of the aspects of irreversibility nor attack scenarios has been con-
sidered. Therefore we address these aspect in this paper.

2.1 Potential Design Vulnerabilities of the BioHash for Handwriting

Our idea is to consider the Biometric Hash scheme as a method for template protection
and to analyze the vulnerabilities for the reconstruction of raw data. We do so based on
the assumption that an attacker has compromised a biometric based verification

182 K. Kümmel et al.

Table 2. List of all features used during the BioHash generation process. Note: our attack clas-
sifies features into cb – calculated basic feature, ib – interactive basic feature and gc – geneti-
cally calculated features which are explained in the following sections.

fvi: i= Parameter Description fvi: i= Parameter Description
1 (cb) Total writing time in ms 53(gc) Numeric Integration of Y values for 3rd one-fifth time period

2 (cb) Total number of event pixels 54 (gc) Numeric Integration of Y values for 4th one-fifth time period

3 (gc) Image Width * 1000 DIV Height 55 (gc) Numeric Integration of Y values for 4th one-fifth time period

4 (cb) Average velocity in x direction in 1000 * pixels / ms 56 (gc) Average Pen Down Pressure normalized to 1 * 1000

5 (cb) Average velocity in y direction in 1000 * pixels / ms 57 (gc) Average PenUp Pressure normalized to 1 * 1000

6 (ib) Number of consecutive pen-down segments 58 (gc) Baseline Angle of the Sample

7 (gc) Minimum absolute x-velocity during sample 59 (gc) Histogram of Y for Zone 1 in % * 100

8 (gc) Maximum absolute x-velocity during sample 60 (gc) Histogram of Y for Zone 2 in % * 100

9 (gc) Minimum absolute y-velocity during sample 61 (gc) Histogram of Y for Zone 3 in % * 100

10 (gc) Maximum absolute y-velocity during sample 62 (gc) Area(ConvexHull) vs. Area(BoundingBox) * 1000

11 (gc) Centroid of horizontal pen position in bounding box 63 (gc) Area(ConvexHull(Segments)) vs. Area(ConvexHull(Sample)) *

12 (gc) Centroid of vertical pen position in bounding box 64 (gc) Area(ConvexHull(Segments)) vs. Area(BoundingBox) * 1000

13 (gc) Distance of Centroid from origin 65 (gc) PathLength(ConvexHull) vs. PathLength(BoundingBox) * 1000

14 (ib) Maximum absolute pressure occurred during writing 66 (gc) PathLength(ConvexHull(Seg.)) vs.

15 (gc) Centroid of horizontal pen position 67 (gc) PathLength(ConvexHull(Seg.)) vs. PathLength(BoundingBox)

16 (gc) Centroid of vertical pen position 68 (gc) Histogram of X for left in % * 100

17 (gc) Distance of Centroid from origin 69 (gc) Histogram of X for right in % * 100

18 (gc) Horizontal azimuth of centroid from origin 70 (gc) Amount of maxima in X direction

19 (ib) Maximum absolute altitude of pen occurred 71 (gc) Amount of minima in X direction

20 (ib) Minimum absolute altitude of pen occurred 72 (gc) Amount of maxima in Y direction

21 (ib) Maximum absolute azimuth of pen occurred 73 (gc) Amount of minima in Y direction

22 (ib) Minimum absolute azimuth of pen occurred 74 (gc) Ratio of maxima in X direction vs. maxima in Y directions

23 (ib) Average Writing Pressure relative to MaxPressure 75 (gc) Ratio of minima X direction vs. minima directions

24 (ib) Average Azimuth of pen projected on writing plane 76 (gc) Amount of crossing points (intersections)

25 (ib) Average Altitude of pen above the writing plane 77 (gc) Amount of intersections with line at 1st quarter of X

26 (gc) Normalized Average velocity in x direction in pixels 78 (gc) Amount of intersections with line at 2nd quarter of X

27 (gc) Normalized Average velocity in y direction in pixels 79 (gc) Amount of intersections with line at 3rd quarter of X

28 (ib) Absolute cumulated Pen-up time in ms 80 (gc) Amount of intersections with line at 4th quarter of X

29 (gc) Ratio of Pen-ups by total write time * 1000 81 (gc) Amount of intersections with line at 1st quarter of Y

30 (gc) Total Number of Sample Values 82 (gc) Amount of intersections with line at 2nd quarter of Y

31 (gc) Total absolute Path Length in Pixels 83 (gc) Amount of intersections with line at 3rd quarter of Y

32 (gc) Number of pixels in first row, first column 84 (gc) Amount of intersections with diagonal line (up. left to bottom right)

33 (gc) Number of pixels in first row, second column 85 (gc) Amount of intersections with diagonal line (up. right to bottom left)

34 (gc) Number of pixels in first row, third column 86 (gc) Ratio of distance start/end to path length

35 (gc) Number of pixels in first row, fourth column 87 (gc) Ratio of distance min(X)/max(X) to path length * 1000

36 (gc) Number of pixels in second row, first column 88 (gc) Ratio of distance min(Y)/max(Y) to path length * 1000

37 (gc) Number of pixels in second row, second column 89 (gc) Ratio of distance start-centroid to end-centroid * 1000

38 (gc) Number of pixels in second row, third column 90 (gc) Mapping of maxima/minima in X to a value

39 (gc) Number of pixels in second row, fourth column 91 (gc) Mapping of maxima/minima in Y to a value

40 (gc) Number of pixels in third row, first column 92 (gc) Mapping of maxima/minima in P to a value

41 (gc) Number of pixels in third row, second column 93 (gc) Mapping of maxima/minima in A to a value

42 (gc) Number of pixels in third row, third column 94 (gc) Range of all stroke points

43 (gc) Number of pixels in third row, fourth column 95 (gc) Pixels inside radius 1/3*Boundingbox to point with least

44 (gc) Numeric Integration of normalized X values 96 (gc) Pixels inside radius 1/3*Boundingbox to point with most neighbour

45 (gc) Numeric Integration of normalized Y values 97 (gc) Pixels inside radius 1/3*Boundingbox to point with average

46 (gc) Numeric Integration of X values for 1st one-fifth tp. 98 (gc) Average angle of all cross-point-angles between 0-30°

47 (gc) Numeric Integration of X values for 2nd one-fifth tp. 99 (gc) Average angle of all cross-point-angles between 31-60°

48 (gc) Numeric Integration of X values for 3rd one-fifth tp. 100 (gc) Average angle of all cross-point-angles between 61-90°

49 (gc) Numeric Integration of X values for 4th one-fifth tp. 101 (gc) Angle count of all cross-point-angles between 0-30°

50 (gc) Numeric Integration of X values for 4th one-fifth tp. 102 (gc) Angle count of all cross-point-angles between 31-60°

51 (gc) Numeric Integration of Y values for 1st one-fifth tp. 103 (gc) Angle count of all cross-point-angles between 61-90°

52 (gc) Numeric Integration of Y values for 2nd one-fifth tp.

system and has access and knowledge to username, reference BioHash bRef, and Inter-
val Matrix (IM) for each registered individual. The operating principle of the BioHash
algorithm is published and is accessible for everyone who is interested in (Kerkhoff
principles).

The first thing that attracts our attention is the Interval Matrix and the mapping
function, which maps the feature vector into a BioHash. When BioHash bRef and cor-
responding Interval Matrix IM are given, we can perform a reverse mapping to create
a feature vector fvcalc. If we convert Equation 1 according to fvi, we calculate the lower
limit of a value range which can be mapped to bi. By adding the half of ΔIi to it, we

 Handwriting Biometric Hash Attack: A Genetic Algorithm with User Interaction 183

compute the middle of the value range (see Figure 2) in feature space. Equation 2
formulates this approach, whereby fvi is replaced with fvcalc,i because they are not
necessarily equal, related to the rounding in equation 1.

2
i

iirefcalc

I
Ibfv

ii

Δ+Ω+Δ⋅= (2)

Figure 2 gives a visual point of view on the reverse mapping done in Equation 2. Using
this method, it is possible to calculate a complete feature vector fvcalc. Due to the fact
that fvcalc is determined from bRef and corresponding IM, it can be mapped with help of
IM to bRef again and therefore be used to reconstruct raw data, based on it.

Fig. 2. Example of backward calculation (reverse mapping) of a feature vector element fvcalc,i
based on the corresponding reference BioHash bref,i, Interval Length ΔI and Interval Offset Ωi

If an attacker takes advantage of this vulnerability (reverse mapping) he can reduce
his work on reconstructing raw data based on that calculated feature vector fvcalc, i.e.
in feature space rather than on the BioHash. The next section shows a possible
method to achieve this.

2.2 Attack Considerations

By analyzing the feature vector and it’s consisting statistical feature it turns out that
some features can be used to build a basic structure to reconstruct raw data. For that
reason it is necessary to calculate or determine some fundamental data. The idea is
now to find fundamental data that helps to form the basic structure by looking into
total-write-time, total-number-of-event-pixels, maximum-value-in-x-direction and
maximum-value-in-y-direction. The first two values can easily be determined by read-
ing the corresponding values out of the feature vector fvcalc. Maximum value in x and
y direction can be calculated out of the features total-write-time and average-velocity-
in-x-direction respectively average-velocity-in-y-direction. These four mentioned
features, which we refer to as calculated basic features, form the basic raw data struc-
ture (see Table 2 marked with cb).

Based on this basic structure it is now possible to manually implement other fea-
tures as well. This can be done as follows: an experienced user chooses a specific
feature fvi he wants to implement from fvcalc, he changes the basic raw data structure
corresponding to that feature fvi then he determines a temporary feature vector fvtemp

184 K. Kümmel et al.

for this new set of raw data and compares feature fvi from fvtemp with feature fvi of
feature vector fvcalc. If they are not the same, he changes the basic raw data structure
again, until they match. This procedure is time-consuming and needs a lot of experi-
ence in interpreting and manipulating raw data in a way to fulfill a certain feature.
However, by determining these features manually, we expect that it leads to more
natural results within the artificial raw data. To perform a first test to determine the
success tendency of this approach under controlled conditions, we introduce a time
limit for this interactive process in our experiments as described in section 4.1.

Initial considerations about which features can be set manually revealed that pres-
sure and angle based features are our first choices. That is because they are independ-
ent from horizontal and vertical (x/y coordinates) based features, which make up more
than 80% of all features used and described in [1]. Once the pressure and angle based
features are implemented inside the raw data they can be locked, so that they cannot
be changed anymore in the further reconstruction process. We call these pressure
based, angle based and all other features that can be implemented manually within a
raw data structure interactive basic features (see Table 2 marked with ib). All calcu-
lated and interactive basic features are additional summarized in Table 3.

Table 3. Classification of features based on the feature list in Table 2

Feature class Description Dedicated features
Calculated Basic
Features (fvcb)

Features that form the basis for a raw data
structure by calculating and determine
fundamental data

fvcb = {fv1, fv2, fv4, fv5}

Interactive Basic
Features (fvib)

Features that are implemented into the basic
raw data structure manually

fvib = {fv6, fv14, fv19, fv20, fv21,
fv22, fv23, fv24, fv25, fv28}

Genetically Calculated
Features (fvgc)

All features that are implemented into raw
data by a genetic algorithm.

fvgc = fvall \ fvcb \ fvib

Overall features (fvall) All features used during the BioHash
determination process

fvall = {fv1, …, fv103}

Obviously, if calculated and interactive basic features are implemented into a set

of raw data then all the remaining features have to be implemented as well to generate
a feature vector that matches fvcalc. This can be done in many different ways (e.g.
brute-force attack). Our first idea is to implement the remaining features into the raw
data by using a genetic algorithm, first presented by Holland in 1975 [4]. We define
features which are calculated this way as genetically calculated features (see also
marked in Table 2 and listed in Table 3).

In the next subsection we focus on the description of our reconstruction approach
based on the mentioned attack consideration by involving genetic algorithms.

3 Design Approach for Reconstruction

In this section we give a detailed description on our first design approach for recon-
structing raw data out of a given BioHash and corresponding Interval Matrix, based
on the vulnerability and feature classification, discussed in section 2.

 Handwriting Biometric Hash Attack: A Genetic Algorithm with User Interaction 185

Our approach can be divided into four major steps. The first step is to calculate the
feature vector fvcalc as described in section 2.1. During the next step, we build a basic
raw data structure based on the calculated basic features as introduced in section 2.2.
The third step implies the implementation of interactive basic features into the basic
raw data structure as presented in section 2.2. Finally, our last and fourth step is to
determine all remaining features based on the raw data structure, by using a genetic
algorithm, which is detailed later on in this section. These four steps build our new
design approach for reconstructing raw data and are depicted in Figure 3.

Fig. 3. Illustration of our new approach to reconstruct raw data out of BioHash bref and corre-
sponding Interval Matrix (IM)

Step 1: With help of given BioHash and corresponding Interval Matrix (IM) we calcu-
late the feature vector fvcalc based on equation 2. As already mentioned in section 2.1,
fvcalc is not necessarily, or even likely to be equal to the original feature vector, but
leads to the same BioHash bref, when mapped with the corresponding Interval Matrix.
The feature vector fvcalc forms the basis for our reconstruction process described in
steps 2 to 4.

Step 2: Based on fvcalc we build a basic raw data structure using the calculated basic
features. This helps to implement additional features since a basic raw data structure
is now given and has only to be modified.

Step 3: A user tries to implement all interactive basic features into the basic raw data
structure, in a defined limited period of time to have a first evaluation with controlled
time constrains. Depending on the experience of a user and constellation of fvcalc it is
possible that not all interactive basic features can be implemented due to this time
constant.

Step 4: All remaining features fvgc are transcribed into the raw data structure by a
genetic algorithm (GA), which is described as follows. A start population is com-
posed of individuals, which are randomly generated. In order to generate individuals
that represent a realistic signature, they have to be build of continuous horizontal and
vertical signal components. Motivated by Galbally et al. in [8], where synthetic signa-
tures are generated based on spectral analysis; we created an algorithm which gener-
ates different, almost realistic signatures. Due to the fact that we already generated
pressure and angle values (implemented with the calculated and interactive basic
features), only horizontal and vertical raw data values needs to be added. All indi-
viduals now possess an implementation of the same basic features and randomly gen-
erated continuous horizontal and vertical signals. The fitness function for each
individual is based on the method “survival of the fittest”. To determine the fittest

186 K. Kümmel et al.

individuals, a BioHash is calculated for each individual (based on given Interval Ma-
trix) and compared, using the normalized Hamming distance, to the reference
BioHash bref. Obviously, in our case, the normalized Hamming distance between any
2 BioHash vectors is defined by the number of non-equal vector components divided
by the vector’s dimension. Individuals which achieve the highest scores are defined as
the fittest. Only the fittest are taken into the next round combined with a defined sur-
vival rate. We utilize the BioHash Hamming distance as fitness function, since this is
calculated based on the original feature vector values, whereas fvcalc is just estimation.
We use the genetic operators’ mutation and crossover to create new generations and
modify raw data in such a way that the before mentioned calculated and interactive
basic features are preserved. Mutations are not always applied to individuals during
the generation creation; it is randomly controlled using a mutation rate. The mutation
operator changes only a part of an individual when it occurs. We only use a one-
point-crossover genetic operator during a creation of a new generation. It swaps sub-
sections of two individuals, whereby these sub-sections are at the same position
within the two individuals. The genetic algorithm terminates if one of the following
conditions is reached: (1) returned BioHash and reference BioHash are equal (or a
specific threshold is reached), (2) individuals do not change any more in a positive
way (higher matching scores) after multiple generation cycles or (3) a specific defined
amount of generation cycles has been passed (e.g. x=100 iterations). An overview on
the GA workflow is shown in Figure 4.

Fig. 4. Basic workflow of the used genetic algorithm during raw data reconstruction

After all four steps are performed; one or more raw data sets were reconstructed,
depending on the GA result (two or more individuals achieve the highest fitness
score). In order to evaluate our new design approach, we perform experiments, as
described in the next section.

4 Experimental Evaluation

In this chapter we summarize our first experiments to evaluate the proposed recon-
struction attack. Our goal is to see how successfully we can generate artificial biomet-
ric handwriting raw data on given Interval Matrix and corresponding BioHash by
measuring the archived FARreconstr. with the reconstructed raw data. First we define the
experimental settings. Secondly we introduce our methodology to provide a compara-
tive study of the achieved results to the general verification performance. Thirdly,
results are presented and discussed.

 Handwriting Biometric Hash Attack: A Genetic Algorithm with User Interaction 187

4.1 Overall Settings

The biometric database of our initial tests consists of 5 subjects, which each have
donated 6 handwriting samples for two different semantics (PIN and Symbol). The
given PIN is a sequence of the five digits 77993. Using this semantic, the individual
kind of writing plays a more important role than the content to recognize a person as
its self or distinguish him/her from other users. The freely chosen Symbol is based on
individual creative characteristics and provides a knowledge based component in
form of the sketched object (e.g. order of single strokes to create the symbol). In order
to create the reference data, an Interval Matrix and a reference BioHash are calculated
for each person using the first five handwriting samples. The remaining sixth sample
is applied for verification.

In the next paragraphs we provide details about the settings for our experiments
during the reconstruction process for step 3 and 4. In step 1 and 2 no parameter needs
to be set. The dimension of Interval Matrix is 2x103 and thus the size of the BioHash
vector 103; therefore 103 features are used during the BioHash determination and raw
data reconstruction in our tests.

During the third step (setting interactive feature) in the reconstruction process, in
our first test one human attacker and forger tries to implement the interactive basic
features into a basic raw data structure, for this procedure we define a maximum
processing time of 10 minutes.

Within step four of the reconstruction process, the settings for the genetic algo-
rithm is as follows: start population of 100 individuals, 90% survival rate, the recom-
bination rate and mutation rate is 10% (10% of all individuals are recombined or
mutated). The genetic algorithm terminates if a 100% matching rate is accomplished
or the matching score does not change any more in a positive way after two full cy-
cles (all features). The matching to determine the fittest individual is accomplished by
calculating the Hamming distance as described in section 3. The fittest individual
represents the reconstructed raw data and is used during verification together with
genuine raw data. In Table 4 are all settings summarized.

Table 4. Overview of all overall settings

General Settings Step 3: Interactive feature generation
Number of bref
per user:

10 (5 per semantic
class PIN/Symbol)

Forger: One computer science student (age: 26)
as interactive attacker

SizeOf bref: 103 Forgery time: ≤ 10 min
SizeOf fvcb: 4 features Step 4: Genetic Algorithm
SizeOf fvib: 10 Start population 100 individuals
SizeOf fvge: 89 Survival rate 90%
SizeOf fvall: 103 Recombination rate 10%
 Mutation rate 10%

 Termination criteria

100% match or no improvement of
fitness function after 2 generations

4.2 Evaluation Methodology and Measurements

In order to compare the performance of a verification using the reconstructed raw data
with the verification using genuine raw data, biometric error rates FRR/FAR and EER
are calculated.

188 K. Kümmel et al.

The FRR (false rejection rate) describes the ratio between the number of false re-
jections of authentic persons and the total number of tests. Generally, the FAR (false
acceptance rate) is the ratio between number of false acceptances of non-authentic
persons and the entire number of authentication attempts. In our evaluation, we per-
form two kinds of false acceptance tests: firstly, interclass FAR (FARinter-class) errors
are calculated by comparing BioHash values of all subjects against each other and
analyzing false acceptances against normalized Hamming distance thresholds. Sec-
ondly, we determined false acceptances generated by the reconstructed raw data
against the same threshold, in the following denoted as FARreconstr..

For a comparative analysis of verification performance, the EER (equal error rate)
is a common measurement in biometrics. EER denotes the point in error characteris-
tics, where FRR and FAR yield identical value. In the further discussion of our ex-
perimental results, we analyze error rate diagrams, which consists of error rates
graphs for FARinter-class, FARreconstr., and FRR for each writing semantics to illustrate
EERinter-class respectively EERreconstr..

4.3 Results and Discussion

The results of our test with different semantic classes are displayed in Figure 4. In
average the reconstructed raw data produces an EERreconstr. of 75% for the semantic
PIN, whereas the original user based raw data leads to an EERinter-class of only 10%
(Figure 5) for inter-class verification. This means, that random forgeries (interclass
tests) cause lower false acceptance than our achieved reconstructed raw data.

Fig. 5. FRR, FARinter-class and FARreconstr. for PIN (left) and Symbol (right)

For semantic class symbol the reconstructed raw data leads to an EERreconstr. of 30%
and an interclass EERinter-class of approximately 5% (see Figure 4 right). It shows that
the semantic class Symbol is more resistant to our attack based on reconstructed raw
data then the semantic class PIN. The results reflect the first attempt to generate bio-
metric raw data corresponding to a given Interval Matrix and corresponding reference
BioHash. Please note that this is only a first attempt of producing reconstructed raw
data and can just point into a direction because of the relatively limited amount of
semantics and users during the test. However, these results show that in our case the
reconstructed raw data creates a significantly higher FAR then the original user based
raw data, which allows attackers to reproduce BioHash values in 75% of all trails.

 Handwriting Biometric Hash Attack: A Genetic Algorithm with User Interaction 189

5 Conclusion and Future work

In this paper we have suggested a method for reconstructing biometric raw data from
given BioHash values, by using features derived from user interaction and genetic
algorithm for approximation. Our work reveals some vulnerabilities of the Biometric
Hash algorithm for handwriting, introduced in [1]. Based on these vulnerabilities and
motivated by earlier work e.g. for generating artificial forgeries [6], it is possible to
design and implement an attack to generate raw data based on calculated and interac-
tive basic feature determination, with an additional genetic algorithm. Our first ex-
periment shows that such generated forgeries produce an EERreconstr. in the range of
30% to 75% as compared to non-attack inter-class EERinter-class of 5% to 10%. If we
compare our results with the one made in [3] by Galbally et al., where a fake fingertip
was created from an image reconstructed from a minutiae template, we recognize
similarities. The test set is in comparison to 5 Symbols and 5 PINs limited to 10 dif-
ferent fingerprints. They are using an attack rate to present the evaluation results,
instead of an EER, because the FAR for all 5 considered thresholds are 0%. By using
the same measurement methodology we achieve similar results. The success-attack-
rate in [3] is higher (30%-100%) compared to our attack rates (0%-70%) as we ex-
pected, due to the fact that fingerprint based recognition systems are more accurate in
distinguishing different fingerprint samples.

In order to eliminate the vulnerability to the BioHash algorithm we suggest to not
use calculated basic features during the BioHash generation process. It is more diffi-
cult to reconstruct raw data using our new approach if calculated basic features are
nonexistent or derive to complex additional features.

In our future work we will run tests with more semantic classes and users to extend
our first results. We also plan to examine all features being used during the BioHash
generation to find more that can be used as calculated basic features or interactive
basic features. The development of a more advanced genetic algorithm is also
planned in the future. Another consideration is the development of an automatic ap-
proach, which makes an interactive interference needless.

Acknowledgements

This work is supported by the German Federal Ministry of Education and Research
(BMBF), project “OptiBioHashEmbedded”) under grant number 17N3109). The
content of this document is under the sole responsibility of the authors.

References

1. Vielhauer, C.: Biometric User Authentication for IT Security: From Fundamentals to Hand-
writing, Springer, New York (2006)

2. Vielhauer, C. and Steinmetz, R. and Mayerhoefer, A.: Biometric Hash based on Statistical
Features of Online Signatures: In: Proceedings of the IEEE International Conference on Pat-
tern Recognition (ICPR), vol.1, pp.123-126, (2002)

190 K. Kümmel et al.

3. J. Galbally, R. Cappelli, A. Lumini, D. Maltoni and J. Fierrez: Fake Fingertip Generation
from a Minutiae Template, in Proc. Intl. Conf. on Pattern Recognition, ICPR, Tampa, USA,
(2008)

4. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology. Control and Artificial Intelligence: MIT Press, 1995, First
Published by University of Michigan Press (1975)

5. Bishop, M.: Computer Security, Addison-Wesley, Boston, U.S.A, ISBN 0-201-44099-7,
(2003)

6. R. Cappelli, A. Erol, D. Maio and D. Maltoni: Synthetic Fingerprint-image Generation, in
proceedings 15th International Conference on Pattern Recognition (ICPR2000), Barcelona,
vol.3, pp.475-478, (2000)

7. Alawi A. Al-saggaf, Acharya H. S.: A Fuzzy Commitment Scheme, In: Proc. IEEE Interna-
tional Conference on Advances in Computer Vision and Information Technology, India
(2007)

8. Galbally, J., Fierrez, J., Martinez-Diaz M. and Ortega-Garcia, J.: Synthetic Generation of
Handwritten Signatures Based on Spectral Analysis, in Defense and Security Symposium,
Biometric Technologies for Human Identification, BTHI, Proc. SPIE, Orlando, USA (2009)

	Handwriting Biometric Hash Attack: A Genetic Algorithm with User Interaction for Raw Data Reconstruction
	Introduction and Motivation
	Biometric Hash for Handwriting
	Potential Design Vulnerabilities of the BioHash for Handwriting
	Attack Considerations

	Design Approach for Reconstruction
	Experimental Evaluation
	Overall Settings
	Evaluation Methodology and Measurements
	Results and Discussion

	Conclusion and Future work
	References

