

Handwriting Segmentation of Unconstrained Oriya Text

 N. Tripathy and U. Pal
 Computer Vision and Pattern Recognition Unit
 Indian Statistical Institute, 203 B.T Road, Kolkata-108, India
 E-mail: umapada@isical.ac.in

Abstract

Segmentation of handwritten text into lines, words and
characters is one of the important steps in the handwritten
recognition system. For the segmentation of unconstrained
Oriya handwritten text into individual characters, a water-
reservoir-concept based scheme is proposed in this paper.
Here, at first, the text image is segmented into lines, and
then lines are segmented into individual words, and words
are segmented into individual characters. For line
segmentation the document is divided into vertical stripes.
Analyzing the heights of the water reservoirs obtained from
different components of the document, the width of a stripe
is calculated. Stripe-wise horizontal histograms are then
computed and the relationship of the peak-valley points of
the histograms is used for line segment. Based on vertical
projection profile and structural features of Oriya
characters, text lines are segmented into words. For
character segmentation, at first, isolated and connected
(touching) characters in a word are detected. Using
structural, topological and water-reservoir-concept based
features touching characters of the word are then
segmented.

1. Introduction

 Segmentation of handwritten text into lines, words and
characters is one of the important steps in the handwritten
recognition system. The task of individual text line
segmentation from unconstrained handwritten documents is
complex because the characters of two consecutive text-
lines may be touched or overlapped. These overlapping or
touching characters complicate the line segmentation task
greatly. Many techniques (for example, global and partial
projection analysis, techniques based on statistical
modeling, etc. [1,6,11]) are used for text line segmentation
from non-Indian scripts, but there is no significant work on
the segmentation of unconstrained hand-written text of
Indian script [9]. In this paper we propose a scheme to
segment unconstrained Oriya handwritten text into lines,
words and characters. Oriya is a popular language and
script in Indian sub-continent.
 Although word segmentation from lines is relatively
easy, character segmentation from words is difficult

because (i) two consecutive characters of a word may
touch, or (ii) two side-by-side non-touching characters are
seldom vertically separable. Although there are many
techniques [1-5,7] on non-Indian touching string
segmentation, but there is no work on Oriya touching
character segmentation. For line segmentation we divide
the text into vertical stripes and determine horizontal
histogram projections of these stripes. The relationship of
the peak-valley points of the histograms is used to segment
text lines. Based on vertical projection profile and
structural features of Oriya characters, lines are segmented
into words. Segmentation of characters from handwritten
word is difficult as the characters are mostly connected
and/or overlapped in a word. For character segmentation
we first detect isolated and touching characters in a word.
Touching characters of the word are then segmented using
structural, topological and water-reservoir-concept based
features [8].

2. Properties of Oriya script

 The alphabet of the modern Oriya script consists of 11
vowels and 41 consonants. These characters are called
basic characters. The basic characters of Oriya script are
shown in Fig.1. Writing style in the script is from left to
right. The concept of upper/lower case is absent in Oriya
script.

Fig.1. Basic characters of Oriya alphabet.

(First 11 are vowels and rests are consonants)

 In Oriya script a vowel following a consonant takes a
modified shape, which, depending on the vowel, is placed
at the left, right (or both) or bottom of the consonant. These
are called modified characters. A consonant or vowel
following a consonant sometimes takes a compound
orthographic shape, which we call as compound character.
Compound characters can be combinations of consonant
and consonant, as well as consonant and vowel.
 In Oriya script, a text line may be partitioned into three
zones. The upper-zone denotes the portion above the mean-
line, the middle zone covers the portion of basic (and

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

compound) characters below mean-line and the lower-zone
is the portion below base-line. An imaginary line, where
most of the uppermost (lowermost) points of characters of
a text line lie, is referred as mean-line (base-line).
Examples of zoning are shown in Fig.2. In this case, the
mean-line along with base-line partition the text line into
three zones.
 From Fig.1 it can be noted that out of 52 characters, 37
characters have a convex shape at the upper part. When
two or more characters sit side by side to form a word,
these convex parts touch and generate touching
components in most of the cases. From a statistical analysis
on 4000 touching components we note that 72% of the
touching components touch near mean-line portion, 11% of
the touching components touch in lower zone and 17%
touch mainly in lower half of middle zone. Based on this
statistical analysis we have designed the segmentation
scheme.

Fig.2. Different zones of an Oriya text line

3. Water reservoir principle

 The water reservoir principle is as follows. If water is
poured from top (bottom) of a component, the cavity
regions of the component where water will be stored are
considered as top (bottom) reservoirs [8]. For an
illustration see Fig.3. Here, two Oriya characters touch and
create a large space which represents the bottom reservoir.
This large space is very useful for touching character
detection and segmentation. Because of structural shape of
Oriya characters a small top reservoir is also generated due
to touching (see Fig. 3). This small top reservoir also helps
in touching character detection and segmentation. For
details about reservoir related features see[10].

 Fig.3. Examples of top and bottom reservoirs of a

two-character touching component.

 All reservoirs are not considered for future processing.
The reservoirs having heights greater than a threshold T1
are selected for future use. For a component the value of T1
is chosen as 1/9 times the component height. (The
threshold is determined from experiment).
 In each selected reservoir we compute its base-line and
base-area-points. A line passing through the deepest point
of a reservoir and parallel to water flow level of the

reservoir is called as reservoir base-line (see Fig.4). By
base area points of a reservoir we mean those boarder
points of the reservoir which have height less than 2* LR
from the base-line of the reservoir. Base area points for a
component is shown in the zoomed version of Fig.4. Here

LR is the length of most frequently occurring black run of
a component.

Fig.4. Illustration of different features obtained from
water reservoir principle. ‘H’ denotes the height of
bottom reservoir. Gray area of the zoomed portion
represent reservoir base area.

4. Line and word segmentation

 To take care of unconstrained handwritten documents
here we use a piece-wise projection method. In this method
we divide the text into vertical stripes of width W (here we
assume that a document page is in portrait mode). Width of
the last stripe may differ from W. If the text width is Z and
the number of stripe is N then the width of the last stripe is
[Z-W*(N-1)]. Computation of W is discussed latter. Next
we compute Piece-wise Separating Lines (PSL) from each
of these stripes. We compute row-wise sum of all black
pixels of a stripe. The row where this sum is zero is a PSL.
We may get few consecutive rows where sum of all black
pixels is zero. Then the first row of such consecutive rows
is the PSL. The PSLs of different stripes of a text are
shown in Fig5(a) by horizontal lines. All these PSLs may
not be useful for line segmentation. We choose some
potential PSLs as follows. We compute the normal
distances between two consecutive PSLs in a stripe. So if
there are n PSLs in a stripe we get n-1 distances. This is
done for all stripes. We compute the statistical mode
(MPSL) of such distances. If the distance between any two
consecutive PSLs of a stripe is less than MPSL we remove
the upper PSL of these two PSLs. PSLs obtained after this
removal are the potential PSLs. The potential PSLs
obtained from the PSLs of Fig.5(a) are shown in Fig.5(b).
We note the left and right co-ordinates of each potential
PSL for future use. By joining of these potential PSLs we
get boundaries of individual text lines. For details about
PSL joining see our paper [9].
 Sometimes because of Oriya modified characters we
may get some wrongly segmented lines. To take care of
such situation we used a post-processing technique. Let L

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

be candidate length of a text line. By candidate length of a
line we mean the distance between the leftmost column of
the leftmost component and the rightmost column of the
rightmost component of the line. To check a valid line, we
scan each column of this candidate length. If more than
50% of this column we get black pixels then we say that
the line from which candidate is computed is not a valid
line and we delete the lower boundary of this line to merge
this line with its lower line. Line segmentation result is
shown in Fig. 5(c).

Fig.5. (a) N-stripes, and PSL lines in each stripe are
shown for an Oriya handwritten text. (b) Potential PSLs
of Fig.5 (a). (c) Line segmented result of the Oriya text.

 To get size independent measure, computation of W is
done as follows. We compute the statistical mode)(dm of

the widths of the bottom reservoirs obtained from the text.
This mode is generally equal to character width. Since
average character in an Oriya word is four, the value of W
is assumed as 4* dm . We computed the value of W from
7500 Oriya words.
 The proposed line segmented method does not depend
on size and style of the handwritten. If the handwritten
lines are overlapped, touching or curved shape then also the
proposed scheme will work.

(a) (b)

(c)
Fig.6. Example of word segmentation. Segmentation is
shown by dotted line. (a) Two words having enough
space between them. (b) Two words without enough
space between them. (c) Two touching words.

 For word segmentation from a line, we compute
vertical histogram of the line. In general the distance
between two consecutive words of a line is bigger than the
distance between two consecutive characters in a word.
Taking the vertical histogram of the line and using above
distance criteria we segment words from lines. For example
see Fig.6(a). Because of the characteristics of some Oriya
characters in some of the handwritings we may not get
enough white space between two consecutive words. For
example see Fig.6(b). For the segmentation of such words
we use a modified technique described as follows. We
scan each column of a text line staring from the top row of
the line. For each column we note the position of topmost
black pixel. Similarly, each column is scanned from
bottom and the position of it bottommost pixel is noted.
If for a column the distance between the top and
bottommost points is less than 2* LR then we mark that
column as zero (white). Else, it is marked as one (black).
So after completion of column scanning we get a row of
ones and zeros. If the length of a run of zero is greater than
W (value of W is computed earlier) then we assume that
this run corresponds as a separator of two words and the
midpoint of this run is noted. If the column corresponding
to midpoint of the image is white then we consider that
column as word boundary. If there is any black pixel of a
component in the column corresponding to midpoint,
starting from the topmost black pixel the boarder of
component is traced clockwise and the path obtained by
this tracing is considered as the separator of the two words.
For example see Fig.6(b). Here, the segmentation path is
marked by dots. Sometimes because of handwriting styles

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

two consecutive words may touch. For example, see
Fig.6(c). For such cases, from the topmost black pixels of
the segmented line we clockwise trace the boarder of the
component to find an obstacle point for segmentation.
During tracing, the length of vertical black run is computed
at each tracing point. The boundary point where this run
length is greater than 1.5* LR is considered as obstacle
point. We disconnect the touching by replacing black
pixels of the vertical run where obstacle point lies. The
path obtained by tracing along with the disconnected
portion is considered as the separator of the two words.

5. Character segmentation from word
 To segment character from a word we first detect
isolated and connected (touching) characters within the
word. Next connected components are segmented into
individual characters.

Isolated or connected (touching) component
detection: In principle, when two or more characters in
Oriya get connected one of the four following situations
happens in most of the cases: (a) two consecutive
characters create a large bottom reservoir (for example see
Fig.3); (b) the number of reservoirs and loops in a
connected component will be greater than that of an
isolated component; (c) two consecutive characters create a
small top reservoir near mean line (d) the shape of the
touching character will be more complex than isolated
characters. Computing different features obtained by the
above observations we identify isolated and touching
characters.

Segmentation of touching characters into isolated
characters: If a component is detected as touching by the
above algorithm then we segment the connected pattern to
get its individual characters. For the segmentation of a
touching pattern at first, the touching position is found.
Next, based on the touching position, reservoir base-area
points, topological and structural features the component is
segmented.
 From a statistical analysis we note that Oriya characters
may touch in three positions. (a) top (b) middle and (c)
lower part. All touching occur between mean-line and
upper half of middle zone are considered as top touching.
From a statistical analysis we note that 72% of the touching
are top touching. If the touching occurs in the lower half of
middle zone and above the base-line we mark that touching
as middle touching. About 17% Oriya touching
components are middle touching. Touching bellow base-
line is the lower touching and 11% of the touching
components touch in lower zone.

Top touching segmentation: For the top touching
patterns we noted that most of the cases a small top

reservoir is created near mean line in the touching patterns
(see Fig.3). The bottom most point of the top reservoir is
considered as one of extreme points of the cutting path for
segmentation. Let this extreme point be U1. In order to get
other extreme point (U2) of the cutting path we consider all
the bottom reservoirs, which are adjacent to the small top
reservoir. If there is any bottom reservoir which is just
bellow the top reservoir, we consider the base point of this
bottom reservoir as the extreme point U2. Joining these two
extreme points U1 and U2, we segment the touching. For
example see Fig.7(a). Segmentation results of the touching
component shown in left side of Fig.7(a) is shown in right
side of Fig.7(a).
 If no bottom reservoir is found bellow the small top
reservoir, we choose the bottom reservoir which is adjacent
and situated at the left side of the top reservoir. From the
base point of the chosen bottom reservoir we clockwise
trace the boarder pixels of the reservoir. While tracing a
boarder pixel if we can reach bottommost point of the top
reservoir from the tracing pixel without crossing any white
pixel then that boarder pixel is marked as the extreme point
U2 for segmentation. If there exists many such boarder
pixels then the boarder pixel from which the distance of the
base point of the top reservoir is minimum is considered as
the extreme point U2. See Fig.7(b), where an example of
such segmentation is shown. Sometimes, this method may
produce a wrong segmentation. For example, see Fig.7(c).
Here, some part of the left component is wrongly
associated with the right component. Wrongly associated
part is marked by gray shade in the middle component of
Fig.7(c). To identify this wrong segmentation we check
the following validity condition. The position of the
leftmost point (L) of the right component with respect to
the segmentation point is noted. Let the segmentation point
is S. Segmentation point S and the leftmost point L are
shown in the right component of Fig.7(c). If the point L
situated in the left side of S and if the column difference of
L and S is more than 2*RL then we assume there is a
mistake in the segmentation and we ignore this
segmentation. For illustration, see the rightmost image of
Fig.7(c). Column difference between L and the segmented
point S is shown by arrow in this figure. Since this column
difference is more than 2*RL we ignore this segmentation
and we choose the bottom reservoir which is adjacent and
situated at the right side of the top reservoir. From the base
point of the chosen bottom reservoir we anti-clockwise
trace the boarder pixels of the reservoir. While tracing if
from any boarder pixel of the chosen bottom reservoir we
can reach to the bottommost point of the top reservoir
without hitting any white pixel then that boarder pixel is
marked as another extreme point U2 for segmentation. We
also check the validity condition of this segmentation point,
as discussed above. If the validity condition satisfies, we
segment it accordingly. See Fig.7(d) where an example of
such segmentation is demonstrated. If a component is not

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

segmented by the above procedure we assume that there is
an overlapping portion between the two components of the
touching pattern. Overlapping part is marked by dotted
rectangle in the fourth figure of Fig.7(e). Second and third
figures of 7(e) show the wrong segmentation results
obtained by top and left reservoirs, and top and right
reservoirs, respectively. Miss-segmented parts are marked
by gray shade in these two figures. Height of the
overlapping area is detected as follows. In most of the
cases, overlapped touching strings have a top reservoir and
a bottom reservoir. The height of the overlapping area is
the distance between the base points of the top and bottom
reservoirs. For segmentation of an overlapping touching
string we associate common portion to each of the
segmented part and is done as follows. To separate left
(right) component from the touching string, starting from
the leftmost (rightmost) black pixel of the top row of the
overlapped zone we trace the contour of the tracing pattern
clock-wise (anti-clock-wise) and tracing is done up to
bottom row of the overlapped zone. From each traced
contour point a connected black run of length upto LR is
marked and assigned this run to the left (right) component
to get it segmented. An example of overlapped touching
segmentation results of the first component of Fig.7(e) is
shown in fifth component of Fig. 7(e).

Fig.7. Illustrations of touching character segmentation.
Here components of the leftmost box of each
rectangular region are the original string to be
segmented.

 In some touching components we may not get small top
reservoir near mean-line position. This situation is shown
in the Fig.8(a). In order to segment this component we find
the biggest bottom reservoir. If such reservoir exists we
consider that reservoir for segmentation. From the base
point of this reservoir we trace the reservoir boarder points
in clockwise direction to find an obstacle point. If there is
any obstacle point we segment that component at that
obstacle point. The detection of obstacle point is done as
follows. During tracing a point we calculate horizontal run-
length of black pixels connected to the tracing point. If for
a tracing point the length of the black run exceeds 2* LR
then we assume that an obstacle point occurs at the tracing
point. The touching component is segmented at that point.
A segmentation result of the component shown in left side
of Fig.8(a) is shown in the right side of Fig.8(a).

Fig.8. Examples of touching component segmentation
using (a) biggest bottom reservoir (b) biggest top
reservoir. Here reservoirs are marked by gray shades.

Middle touching segmentation: For segmentation of
middle touching patterns we follow similar techniques of
top touching patterns.

Bottom touching segmentation: For bottom touching
pattern we find the biggest top reservoir whose base-line
lies in the lower zone. Staring from the base point of this
reservoir we trace anti-clockwise its boundary to find an
obstacle point and segmentation is done at that obstacle
point. Obstacle point detection procedure is similar to the
method discussed above. Instead of horizontal run length
here we compute vertical run length of the tracing point.
Example of a bottom touching component and its
segmented result is shown in Fig.8(b).
 We reject other touching patterns appeared during the
experiment which are not discussed above.
 After segmentation, two segmented parts are passed to
the isolated and connected component detection module to
check whether any of these segmented parts is connected.
If any part is detected as connected it is then sent to
segmentation module for further segmentation. This
procedure is repeated until both the segmented parts of a
component are detected as isolated by the isolated and
connected component detection module. This iterative
procedure is done to segment connected characters created
by multiple touching, or by touching of 3 or more
characters.

6. Results and Discussion

Results on line segmentation: For experiments of line
segmentation algorithm, 1627 text lines were considered
from individuals of different professions like students and
teachers, bank and post office employees, businessmen etc.
We noted that the data sets contain varieties of writing
styles. For the experiment we considered only single
column document pages.
 To check whether a text line is segmented correctly or
not we draw boundary line between two consecutive text
lines (as shown in Fig.5(c)). By viewing the results on the
computer’s display we calculate line segmentation
accuracy manually. Accuracy of line extraction module is
measured according to the following rule. If out of N
components of a line M components are extracted in favor
of that line by our scheme then the accuracy for that line is

%)100(NM × . So if all components of a text line are

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

extracted correctly by the proposed algorithm we say
accuracy for the line is 100%. From the experiment we
noted that out of 1627 lines 984 lines are segmented
correctly. In other words all components of these 984 lines
are grouped in their individual lines correctly. In 1274 lines
at least 97% characters are grouped correctly in their
respective lines.

Results on word segmentation: Our word
segmentation module is tested on 3700 words and we
noticed that the word segmentation module has 98.2%
accuracy. From the experiment we noticed that most of the
errors come when (1) two consecutive words touch (b)
distance between two consecutive words is very small.

Results on isolated and connected character
identification: To evaluate performance of the isolated
and connected character identification scheme, a data set of
3200 (2150 isolated + 1050 connected) components were
collected from Oriya handwritten text and the results are
checked manually. The proposed method has an average
accuracy of 96.7%. From the experiment we noticed that
isolated characters fall into isolated group in most of the
cases (98.6%). Most of the errors come from connected
characters which are identified as isolated characters.

Results on touching component segmentation: The
evaluation of the segmentation scheme was done on 1840
images of Oriya touching string. Out of these 1840
touching components, 1458 components are two-character
touching, 311 are three-character touching components and
the rest are generated by four or more components. Some
of the two-character touching components were multi-
touching components. The segmentation results are verified
manually. Some segmentation results of the proposed
touching component segmentation module are shown in
Fig.9 and some miss-segmented results are shown in
Fig.10. From the experiment it can be noticed that 96.7%
accuracy is obtained from two-character touching
components. Accuracy of the proposed scheme on three
character touching components was 95.1%. If the number
of characters in a touching string increases, the shape
complexity of the touching pattern increases and the
segmentation accuracy reduces in the string. From the
experiment, we noticed that most of the cases the miss-
segmentation occurs due to undesired position of the
reservoir. Also, some error occurs when the touching area
of a touching string is large. Some errors are also generated
from multi-touching components. Rejection rate of the
proposed method is 4.7% and most of the rejection cases
are from multi-touching patterns.
 One of the significant advantages of the proposed
method is its flexibility. The proposed scheme is size
independent and there is no need any normalization of the
component. Also, the proposed method can handle

 touching string of any number of characters.
 There is no work on Oriya unconstrained handwritten
segmentation. So, we cannot compare our results.

Fig.9. Example of touching character segmentation.
Touching characters are shown in the left side of the
rectangle and the segmented result is shown in the
right side of the same rectangle.

Fig.10. Examples of some miss-segmented results. (a)
Original images (b) Actual segmentation point are
shown on the components (c) Segmentation results
obtained by the proposed method.

References

[1] R. G. Casey and E. Lecolinet, “A survey of methods and
strategies in character segmentation” IEEE Trans. on
PAMI, vol.18, pp. 690 - 706,1996.
[2] G. Dimauro, S. Impedovo, G. Pirlo and A. salzo, Automatic
bankcheck processing: A new engineered system” Automatic
Bank Check Processing, editors, S. Impedovo, P.S.P. Wang and
H. Bunke, World Scientific, pp.5-42, 1997.
[3] Yi-Kai Chen and Jhing-Fa Wang, “Segmentation of Single-
or Multiple-Touching Handwritten Numeral String Using
Background and Foreground Analysis”, IEEE PAMI vol.22,
1304-1317, 2000.
[4] K. K. Kim, J. H. Kim and C. Y. Suen, “Recognition of
Unconstrained Handwritten Numeral Strings by Composite
Segmentation method”, In Proc. 15th ICPR, pp. 594-597, 2000.
[5] H. Fujisawa, Y.Nakano and K.Kurino, “Segmentation
methods for character recognition from segmentation to document
structure analysis”, Proceeding of the IEEE, vol.80, pp.1079-
1092. 1992.
[6] J. Liang, I. Philips and R. M. Haralick, “A statistically based
highly accurate text-line segmentation method”, Proc. 5th ICDAR,
pp.551-554, 1999.
[7] L. S. Oliveira, E. Lethelier, F. Bortolozzi and R.
Sabourin, “A new approach to segment handwritten digits”. Proc.
of 7th IWFHR, pp. 577-582, 2000.
[8] U. Pal, A. Belaïd and Ch. Choisy “Touching numeral
segmentation using water reservoir concept” Pattern
Recognition Letters, vol.24, pp. 261-272, 2003.
[9] U. Pal and S. Datta, “Segmentation of Bangla
Unconstrained Handwritten Text”, Proc.7th ICDAR, pp.1128-
1132, 2003.
[10] U. Pal and P. P. Roy, “Multi-oriented and curved text lines
extraction from Indian documents”, IEEE Trans. On Systems,
Man and Cybernetics- Part B, vol.34, pp.1676-1684, 2004
[11] A. Zahour, B. Taconet, P. Mercy and S. Ramdane,
“Arabic hand-written text-line extraction”, Proc. 6th ICDAR, pp.
281-285, 2001.

Proceedings of the 9th Int’l Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004)
0-7695-2187-8/04 $20.00 © 2004 IEEE

