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Abstract—This paper proposes a method for handwritten Chinese/Japanese text (character string) recognition based on semi-Markov

conditional random fields (semi-CRFs). The high-order semi-CRF model is defined on a lattice containing all possible segmentation-

recognition hypotheses of a string to elegantly fuse the scores of candidate character recognition and the compatibilities of geometric

and linguistic contexts by representing them in the feature functions. Based on given models of character recognition and

compatibilities, the fusion parameters are optimized by minimizing the negative log-likelihood loss with a margin term on a training

string sample set. A forward-backward lattice pruning algorithm is proposed to reduce the computation in training when trigram

language models are used, and beam search techniques are investigated to accelerate the decoding speed. We evaluate the

performance of the proposed method on unconstrained online handwritten text lines of three databases. On the test sets of databases

CASIA-OLHWDB (Chinese) and TUAT Kondate (Japanese), the character level correct rates are 95.20 and 95.44 percent, and the

accurate rates are 94.54 and 94.55 percent, respectively. On the test set (online handwritten texts) of ICDAR 2011 Chinese

handwriting recognition competition, the proposed method outperforms the best system in competition.

Index Terms—Character string recognition, semi-Markov conditional random field, lattice pruning, beam search

Ç

1 INTRODUCTION

THE problem of Chinese/Japanese handwriting recogni-
tion has received considerable attention for its potential

in many applications as well as the technical challenge.
Compared to isolated character recognition [1], the recogni-
tion of character strings (handwritten text) is more challen-
ging due to the difficulty of character segmentation. Many
works have focused on the rather constrained domains with
short strings, small vocabulary or strong lexical constraints,
such as word recognition [2], [3], [4], disease name recogni-
tion [5], legal amount recognition in bank checks [6], andmail
address recognition [7], [8], [9]. Works on Chinese hand-
writing recognition of general texts have been reported only
in recent years. The ICDAR 2011 Chinese handwriting
recognition competition reported the best results (character

level correct rates (CR)) 94.33 percent on online text lines and
77.26 percent on offline text lines [10]. A recently published
article reported CRs 91.39 and 92.72 percent on offline
Chinese handwriting databases CASIA-HWDB and HIT-
MW, respectively [11]. Some works of online handwritten
Japanese text recognition have reported comparable accura-
cies on the TUAT Kondate database [12], [13].

Handwritten Chinese/Japanese text recognition (HCTR)
is challenging due to the large character set (over
5,000 characters are frequently used), the divergence of
writing styles, the ambiguity of character segmentation,
and the weak lexical constraint in general texts [11]. For
these reasons, HCTR is generally accomplished by an
integrated segmentation and recognition approach based
on character oversegmentation [14]. Fig. 1 shows the
flowchart of this approach. The input string (text line
image for offline data or pen-tip trajectory for online data)
is oversegmented into a sequence of components accord-
ing to the overlapping between strokes (see Fig. 2a), with
the hope that each component is a character or part of a
character. Subject to constraints of character width,
consecutive components are combined to generate candi-
date character patterns, which constitute the segmentation
candidate lattice (see Figs. 2b and 2c). On assigning each
candidate pattern a number of candidate classes using a
character classifier, we construct the segmentation-recog-
nition candidate lattice (referred to as lattice for brevity).
Each path in the lattice corresponds to a segmentation-
recognition hypothesis, which is evaluated by a para-
meterized function combining the character recognition
score, geometric and linguistic contexts, and the string
recognition result is obtained by searching for the optimal
path with maximum score.
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The performance of integrated segmentation-recognition
of character strings largely relies on the evaluation of
candidate segmentation-recognition paths (hypotheses) in
the lattice. In principle, character string recognition can be
formulated as a Bayesian decision problem and solved by
classifying to the string class of maximum a posteriori
(MAP) probability. Due to the possibly infinite number of
string classes, the probability has been heuristically ap-
proximated by decomposing into the character recognition
scores and geometric and linguistic contexts [9], [11], [12],
[15], [16], [17], [18], [19]. These heuristic methods more or
less lose the optimality in fusing the contextual scores. Our
previous method used the framework of conditional
random field (CRF) for combining the scores and optimiz-
ing the weights [13], but could only combine context models
of second-order (bigram) dependence.

In this paper, we propose a new method for character
string recognition using the semi-Markov CRF (semi-CRF)
[20]. We define semi-CRF on the lattice to directly estimate
the a posteriori probability of a segmentation-recognition
hypothesis, in which the information of character recogni-
tion, geometric and linguistic contexts are defined as
feature functions. This model provides principled tools
for both parameter learning and decoding under the MAP
criterion and enables the fusing of high-order features
(long range context models, such as the trigram language
model). For alleviating the computational complexity of
training with high-order features, we propose a forward-
backward lattice pruning method to purge the implausible
edges, and investigate beam search techniques for accel-
erating the decoding (path search). For improving the
generalization performance of parameter learning in semi-
CRF, we modify the negative log-likelihood (NLL) loss by
adding a margin term, inspired by the margin-based
maximum mutual information (MMI) training criterion in
speech recognition [21], [22], [23]. In experiments on three
online handwriting databases, the proposed method has
yielded superior string recognition performance compared
to the state-of-the-art methods.

The proposed method is an extension of our previous
CRF-based method [13], which considers second-order
language model only. The extension includes the use of
trigram language models, the investigation of lattice
pruning and beam search, the incorporation of margin
term, extensive experimental results, and discussions. The

remainder of this paper is organized as follows: Section 2
reviews the related works. Section 3 details the semi-CRF
model defined on the candidate lattice. Section 4 introduces
the forward-backward lattice pruning algorithm. Section 5
presents the decoding algorithms. Section 6 describes the
feature functions employed. Section 7 presents our experi-
mental results and Section 8 draws concluding remarks.

2 RELATED WORK

Due to the large number of character classes and the infinite
sentence classes of Chinese/Japanese texts, HCTR is
preferably solved by segmentation-based approaches,
which can be roughly divided into dissection methods
and integrated segmentation-recognition methods [14].
Dissection methods [24], [25], [26], [27], [28] attempt to
segment characters solely according to geometric layout
features (character size/position and intercharacter rela-
tionship), before recognition with a character classifier.
These methods are feasible only for neatly written texts,
however. For continuous Chinese/Japanese handwriting,
characters cannot be segmented unambiguously without
character classification and linguistic context, due to
irregular character size, ambiguous within-character and
between-character gaps, as well as character touching. The
integrated segmentation-recognition approach can over-
come the ambiguity of character segmentation [29], and can
be dichotomized into implicit segmentation and explicit
segmentation methods [14].

Implicit segmentation methods [30], mostly combined
with hidden Markov model (HMM) for character recogni-
tion, simply slice the string image into frames of equal
length and label the sliced frames, which are concatenated
into characters during recognition. This method does not
exploit the character shape information sufficiently, and
thus cannot yield satisfactory recognition performance.
A two-stage approach takes implicit segmentation for
character dissection using HMM, and then uses a second
fine classifier for recognizing the segmented characters [31].

Explicit segmentation [7], [9], [11], [12], [15], [16], [17],
[19], [32], [33], also called oversegmentation, tries to separate
the input string at character boundaries, and usually results
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Fig. 1. Flowchart of integrated segmentation-recognition.

Fig. 2. Generation of segmentation-recognition candidate lattice:
(a) component sequence; (b) candidate characters; (c) segmentation
candidate lattice, where each node denotes a candidate segmentation
point, each edge corresponds to a candidate character, and the bold
lines indicate the desired segmentation; (d) candidate classes of the
desired segmentation path.



in a component sequence with each component being a
character or part of a character. Consecutive components are
combined to generate candidate character patterns, which
are assigned candidate classes using a character classifier,
and the best segmentation-recognition result is achieved by
path search. The evaluation of candidate segmentation-
recognition paths (hypotheses) is a key issue in over-
segmentation-based string recognition. It is usually done
by combining the character classification scores, geometric
and linguistic contexts heuristically as an approximation to
the string class probability. A brief review of such methods
and a recently proposed weighted evaluation function with
maximum character accuracy training can be found in [11].
Particularly, strategies have been proposed to deal with the
variable path length (number of characters) of segmentation
hypotheses. Normalizing the accumulated path score with
respect to the length helps overcome the bias of string class
probability toward short strings [29], [34], but the resulting
search problem cannot guarantee finding the optimal
solution. Other measures include adding a path length
penalty for compensating the accumulated path score [15]
and weighting the character classification score with the
number of constituent components [12], [18] or the character
width [11]. The summation nature of accumulated path
score enables optimal path search by dynamic program-
ming. Generalizing the path score into a weighted form [11],
[12], [15], [17] and optimizing the weights by discriminative
training [11], [13] can improve the string recognition
performance.

CRFs [35] are discriminative graphical models for
labeling structured data. The traditional linear-chain CRF
[35] has been applied to handwriting recognition, such as
[36] and [37]. Semi-Markov conditional random fields
(semi-CRFs) [20] are conditionally trained semi-Markov
chains. A semi-CRF outputs a segmentation S of the
observation sequence X, together with the label sequence
Y assigned to the segments (subsequences) of X. In other
words, unlike the linear-chain CRF [35] which models
P ðY j XÞ, the semi-CRF explicitly estimates P ðS; Y j XÞ. For
HCTR, if X is the component sequence after oversegmenta-
tion, the segments will be the candidate characters. Semi-
CRFs have the advantages that they allow the use of
segment features and between-segment dependences. This
attribute is important for HCTR, since the state-of-the-art
Chinese character classifiers, such as the modified quadratic
discriminant function (MQDF) [38], usually take the holistic
character features as input. In contrast, for western hand-
writing recognition, HMM and bidirectional long short-
term memory usually manipulate frame-level (for offline
data) or point-level (for online data) features [39]. Semi-
CRFs were initially proposed for segmenting and labeling
sequential data in natural language processing [20]. For
handwriting recognition, Shetty et al. [40] used a similar
model for lexicon-driven handwritten word recognition
with the parameters learned by maximizing the pseudoli-
kelihood. A first-order semi-CRF was employed in our
former work for online handwritten Japanese character
string recognition [13].

Despite the widespread use of CRFs, the incorporation of
higher order dependence remains a significant challenge.

For exact inference (i.e., forward-backward and Viterbi
algorithms) of first-order linear-chain CRFs, the time
complexity is OðTJ2Þ, where T is the sequence length and
J is the class number [35]. To reduce the computation cost in
inference, Pal et al. [41] compressed the marginal distribu-
tion by minimizing the Kullback-Leibler divergence. Cohn
[42] proposed a tied potential algorithm which constrains
the labeling considered in each feature function. Jeong et al.
[43] unified the above two methods by decomposing the
output labels into active and inactive sets, with the
parameters of the inactive set held as a constant. Feng
et al. [37] investigated three beam search techniques to make
the inference more efficient. For exact inference of first-order
semi-CRFs, the time complexity is OðTJ2LÞ, where L is the
maximum segment length allowed [20]. To alleviate the
computation, Okanohara et al. [44] proposed two techni-
ques: the first is to filter candidate states with a naive Bayes
classifier, and the second is to pack feature-equivalent states
by using feature forests, i.e., the states that have the same
end position and previous named entity tag are packed. Few
works have investigated the inference of high-order linear-
chain CRFs [45], [46] and high-order semi-CRFs [47], in
which the features are usually assumed to be sparse.

In the community of speech recognition, many attempts
have been made on large-margin training of HMMs (see
[48] for a review) for improving the generalization ability.
Do and Artières [49] have applied this principle to hand-
writing recognition. However, compared with conventional
training criteria, such as MMI [50], minimum classification
error [51] and minimum phone/word error (MPE/MWE)
[52], margin-based training criteria usually have different
objective functions and different optimization algorithms
[21]. Heigold et al. [21], [22] demonstrated that the MMI and
MPE training criteria can be extended directly to embed the
margin term with the optimization algorithms unchanged.
Similar extensions to MMI can also be found in [23]. In [53],
a cost-sensitive loss is incorporated into the CRF learning
objective by adding a special feature function.

Compared to other works on HCTR, our work based on
semi-CRFs can flexibly incorporate various information
(including character classification score and various con-
texts) in a probabilistic manner. Fast inference techniques
are investigated in both training and decoding, and a
margin term is incorporated into the loss function to
improve the generalization ability.

3 SEMI-CRFS FOR STRING RECOGNITION

With the MAP criterion, given a stringX (text line image for
offline data or pen-tip trajectory for online data), string
recognition is to find the optimal label sequence Y � by
maximizing the posterior probability P ðY j XÞ:

Y � ¼ argmax
Y

P ðY j XÞ ¼ argmax
Y

X

S:Y

P ðS; Y j XÞ; ð1Þ

where S:Y stands for a segmentation (character sequence)
of X paired with the label sequence Y . In practice, to avoid
summing over huge number of segmentation hypotheses,
(1) is approximated by searching for the best segmentation-
recognition pair ðS�; Y �Þ:
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ðS�; Y �Þ ¼ argmax
ðS;Y Þ

P ðS; Y j XÞ; ð2Þ

where ðS; Y Þ stands for a segmentation (character sequence)
and the corresponding label sequence of X, respectively. In
character string recognition, ðS; Y Þ corresponds to a
segmentation-recognition path in the candidate lattice (cf.,
Fig. 2), and the task of string recognition is to find the
optimal path with MAP probability.

3.1 Semi-CRFs on Candidate Lattice

Given a string X, we should first oversegment it into a
component sequence and then construct the segmentation-
recognition candidate lattice (cf., Fig. 2) on which our semi-
CRF model is defined. The lattice reduces the number of
possible labels of each candidate character, for the state set
actually includes all the categories modeled by the character
classifier. For a hypothesized path ðS; Y Þ in the lattice of X,
like the traditional semi-CRF [20], P ðS; Y j XÞ can be
written as the normalized product of potential functions:

P ðS; Y j XÞ ¼
1

ZðXÞ

Y

c2S

�cðX;YcÞ

¼
1

ZðXÞ
expf�EðX;S; Y Þg;

ð3Þ

where �cðX;YcÞ is the potential function on maximal clique
c (consecutive characters in the lattice):

�cðX;YcÞ ¼ exp
X

K

k¼1

�kfkðXc; YcÞ

( )

: ð4Þ

fkðXc; YcÞ is the kth feature function, in which X and Y are
both confined to the clique c. We also refer to Yc as a
labeling of clique c. Theoretically, semi-CRFs can take
advantage of the whole string features, but for computa-
tional efficiency, X is usually confined to c. � ¼ f�k j k ¼
1; . . . ; Kg are the weighting parameters to be learned.
EðX;S; Y Þ is the energy function:

EðX;S; Y Þ ¼ �
X

c2S

X

K

k¼1

�kfkðXc; YcÞ: ð5Þ

ZðXÞ is the partition function defined as the summation
over all the paths in the lattice:

ZðXÞ ¼
X

ðS0;Y 0Þ

Y

c2S0

�cðX;Y 0
c Þ: ð6Þ

A maximal clique is usually a sequence of m consecutive
characters in the lattice, where m is called the maximal
clique size, and is determined by the maximum order of
features. For example, m is 2 if considering only the context
of character pairs (e.g., bigram language model), and m is 3
for triple-character context (e.g., trigram language model).
We also refer to a semi-CRF with maximal clique size m as
ðm� 1Þth order semi-CRF. Fig. 3a shows a full segmenta-
tion path and its subpath in the lattice illustrated in Fig. 2c,
and Fig. 3b lists all the maximal cliques for m ¼ 3. The
cliques are formed by combining candidate characters
with their preceding neighbors. This is to conform to the

time-synchronous search which looks backward the char-
acter combinations [14]. Note that at the beginning of the
path, some maximal cliques have sizes smaller than m due
to the backward combination. Hereafter, if not stated
otherwise, all cliques are maximal cliques.

3.2 Parameter Learning

In this section, we consider how to estimate the parameters
� given N training samples: fðXi; Si; Y iÞ j i ¼ 1; . . . ; Ng
(strings with segmentation points and character classes
labeled). Following the standard MAP estimation, one
minimizes the NLL loss with L2-norm regularization:

LNLLð�Þ ¼ �
X

N

i¼1

logP ðSi; Y i j XiÞ þ
C

2
k�k2

¼
X

N

i¼1

EðXi; Si; Y iÞ þ logZðXiÞ
� �

þ
C

2
k�k2;

ð7Þ

where C is a positive constant balancing the loss term
against the regularization term. Note that P ðSi; Y i j XiÞ,
EðXi; Si; Y iÞ and ZðXiÞ involve parameters �. LNLLð�Þ is a
convex function and can be optimized via gradient descent.
The partial derivatives with respect to the weighting
parameters are computed by

@EðXi; Si; Y iÞ

@�k

¼ �
X

c2Si

fkðX
i
c; Y

i
c Þ; ð8Þ

@ logZðXiÞ

@�k

¼
X

c;Yc

fkðX
i
c; YcÞP ðc; Yc j X

iÞ; ð9Þ

where the summation in (9) is calculated over all the cliques
and labeling in the lattice. P ðc; Yc j X

iÞ denotes the marginal
probability that c is on the segmentation path and labeled as
Yc, that is, by fixing ðc; YcÞ, the paths through ðc; YcÞ are
arbitrary. Here, Yc denotes a labeling of c. Similar to the
linear-chain CRF [35], P ðc; Yc j X

iÞ can be calculated
by the forward and backward algorithms which will be
detailed in Section 3.4.

We optimize the loss function by stochastic gradient
descent, where the parameters are updated iteratively on
each training sample. For m ¼ 3, to reduce the computation
cost, the lattice is first purged by a forward-backward lattice
pruning step (cf., Section 4) using a pretrained first-order
semi-CRF.
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Fig. 3. (a) A full segmentation path and its subpath in the lattice of
Fig. 2c, where each number denotes the index of a candidate
segmentation point, and each pair of neighboring numbers denotes a
candidate character; (b) Maximal cliques (m ¼ 3) on the full path and
the subpath in (a).



3.3 Incorporation of Margin Term

Inspired by the work of Heigold et al. [22], to introduce the
margin concept into the NLL loss function, we define the
margin-posterior:

PmðS
i; Y i j XiÞ

¼
exp �EðXi; Si; Y iÞ � �A ðSi; Y iÞ; ðSi; Y iÞð Þf g

P

ðS;Y Þ exp �EðXi; S; Y Þ � �A ðS; Y Þ; ðSi; Y iÞð Þf g
:

ð10Þ

Compared with the posterior formulated in (3), the margin-
posterior includes a margin term expð��AððS; Y Þ; ðSi; Y iÞÞÞ,
in which AððS; Y Þ; ðSi; Y iÞÞ is the accuracy function measur-
ing the gains of classifying the genuine path ðSi; Y iÞ as a rival
path ðS; Y Þ, and � > 0 is a predefined scaling factor. By
replacing P ðSi; Y i j XiÞ with PmðS

i; Y i j XiÞ in (7), we
achieve the modified NLL loss. According to [53], para-
meters learned by the modified criterion not only try to
classify the training data correctly, but also manage to
enforce the margin between ðSi; Y iÞ and ðS; Y Þ (here it is
EðXi; S; Y Þ �EðXi; Si; Y iÞ) to be larger than the cost of
classifying ðSi; Y iÞ as ðS; Y Þ (here it is the scaled accuracy
difference: �ðAððSi; Y iÞ; ðSi; Y iÞÞ �AððS; Y Þ; ðSi; Y iÞÞÞ). Thus
it is reasonable to assign a smaller cost to a path with more
correct characters, and a larger cost to the one with less
correct characters. So, like the work of Heigold et al. [22] and
Povey et al. [23], we adopt the accuracy function proposed in
[52] to evaluate the matching between ðS; Y Þ and ðSi; Y iÞ:

AððS; Y Þ; ðSi; Y iÞÞ ¼
X

q2S

~Aððq; YqÞ; ðS
i; Y iÞÞ; ð11Þ

where ðq; YqÞ is an edge (character-label pair) on path ðS; Y Þ,
and the raw accuracy ~Aððq; YqÞ; ðS

i; Y iÞÞ is defined as

~Aððq; YqÞ; ðS
i; Y iÞÞ ¼ max

q02Si

�1þ 2eðq; q0Þ; if Yq ¼ Y i
q0

�1þ eðq; q0Þ; otherwise:

�

ð12Þ

Here ðq0; Y i
q0Þ is an edge on genuine path ðSi; Y iÞ, and eðq; q0Þ

is defined as the common component number between q

and q0, divided by the component number of q0.
Benefiting from the summation form ofAððS; Y Þ; ðSi; Y iÞÞ,

themargin term can be decomposed onto each potential term
(cf., (4)) by introducing an additional feature function:

fKþ1ðXc; YcÞ ¼ �� ~Aððq; YqÞ; ðS
i; Y iÞÞ; ð13Þ

where ðc; YcÞ 2 ðS; Y Þ is a clique-labeling pair, and ðc; YcÞ
ends with ðq; YqÞ (cf., Section 6). By adding this feature
function to the potential of (4), we replace P ðSi; Y i j XiÞwith
PmðS

i; Y i j XiÞ in the NLL loss (cf. (7)). The margin-based
training criterion can take advantage of the same optimiza-
tion algorithms as the conventional NLL-based training, if
we keep the weighting parameter of the additional feature
function, namely �Kþ1 (cf., (4)), fixed to 1. Note that the
margin term is used only in training, i.e., the inference in
decoding and lattice pruning remains unchanged.

3.4 Inference on Candidate Lattice

The inference of the proposed model is different from
that of the high-order semi-CRF in [47], which considers
only sparse features depending on a constrained set of
consecutive segment labels. For HCTR, the features of

consecutive characters and labels are both important, and
the label combinations could be arbitrary. Our algorithm
has the advantage of being able to handle high-order
features having arbitrary label and segment combinations.

Let m � 2 be the maximal clique size. Assume that the
candidate segmentation points are indexed from 0 to T in
the lattice (cf., Fig. 2c). We denote a subsegmentation path
(character sequence) by ta:b, with ta; taþ1; . . . ; tb being b�
aþ 1 ordered candidate segmentation points (e.g., for the
two-character subpath t0:2 ¼ ð1; 2; 4Þ in Fig. 2c, t0 ¼ 1, t1 ¼ 2

and t2 ¼ 4), and the labeling of ta:b is denoted by yaþ1:b, with
yaþ1; yaþ2; . . . ; yb being b� a labels for each character of ta:b.
Let ðStb

ta
; Y tb

ta
Þ be an arbitrary subpath (character sequence

and labeling) from candidate segmentation point ta to tb.
The forward variables f�t1:nðy2:nÞg are calculated on each
ðt1:n;y2:nÞ in the lattice, where tn ¼ 1; . . . ; T . When t1 ¼ 0,
2 � n � m, otherwise n ¼ m, that is, the size (character
number) of t1:n can be smaller than m� 1 when it starts
from the first segmentation point. �t1:nðy2:nÞ is a summation
of potential products over all the partial paths (character
sequence and labeling) starting from segmentation point 0
and ending at ðt1:n;y2:nÞ (cf., Fig. 4). The forward variables
and the partition function ZðXÞ can be calculated by the
forward algorithm (sumproduct):

1. Initialization

�t1:nðy2:nÞ ¼
X

n

j¼2

�t1:jðX;y2:jÞ;

for t1 ¼ 0; 2 � n � m:

ð14Þ

2. Recursion

�t1:nðy2:nÞ ¼
X

ðS
tn
0

;Y
tn
0

Þ:

ðt1:n;y2:nÞ2ðS
tn
0

;Y
tn
0

Þ

Y

c2Stn
0

�cðX;YcÞ

¼
X

t0;y1

�t0:nðX;y1:nÞ�t0:n�1
ðy1:n�1Þ;

for t1 6¼ 0; n ¼ m:

ð15Þ

3. Termination

ZðXÞ ¼
X

t1:n;y2:n

�t1:nðy2:nÞ; for tn ¼ T: ð16Þ

In the above algorithm, �t0:nðX;y1:nÞ denotes the potential
on maximal clique-labeling pair ðt0:n;y1:nÞ. f�t1:nðy2:nÞg are
calculated in a time-synchronous manner [14] sequentially
from tn ¼ 1 to tn ¼ T .

ZHOU ET AL.: HANDWRITTEN CHINESE/JAPANESE TEXT RECOGNITION USING SEMI-MARKOV CONDITIONAL RANDOM FIELDS 2417

Fig. 4. Illustration of the calculation of forward and backward variables,
where t0:n is a maximal clique with size m.



Similarly, we can deduce the backward variables

f�t0:n�1
ðy1:n�1Þg defined on each ðt0:n�1;y1:n�1Þ in the lattice,

where t0 ¼ 0; . . . ; T � 1. When tn�1 ¼ T , 2 � n � m, other-

wise n ¼ m. �t0:n�1
ðy1:n�1Þ is a summation of potential

products over all the partial paths starting from

ðt0:n�1;y1:n�1Þ (cf., Fig. 4) and ending at segmentation point

T . Also, ZðXÞ can be calculated from the backward

variables:

1. Initialization

�t0:n�1
ðy1:n�1Þ ¼ 1; for tn�1 ¼ T; 2 � n � m: ð17Þ

2. Recursion

�t0:n�1
ðy1:n�1Þ ¼

X

ðST
t0

;Y T
t0

Þ:

ðt0:n�1 ;y1:n�1Þ2ðS
T
t0

;Y T
t0

Þ

Y

c2ST
tn�1

�cðX;YcÞ

¼
X

tn;yn

�t0:nðX;y1:nÞ�t1:nðy2:nÞ;

for tn�1 6¼ T; n ¼ m:

ð18Þ

3. Termination

ZðXÞ ¼
X

t0:n�1 ;
y1:n�1

�t0:n�1
ðy1:n�1Þ

Y

c2t0:n�1

�cðX;YcÞ;

for t0 ¼ 0:

ð19Þ

In (19), c2t0:n�1 denotes all the maximal cliques of t0:n�1

(cf., Fig. 3), and Yc is a labeling of c determined by y1:n�1.

f�t0:n�1
ðy1:n�1Þg is calculated in reverse order from t0 ¼

T � 1 to t0 ¼ 0.
From the forward and backward variables, we can

calculate the marginal probability on a subpath ðt0:k;y1:kÞ:

P ðt0:k;y1:k j XÞ ¼
X

ðS;Y Þ:ðt0:k;y1:kÞ2ðS;Y Þ

P ðS; Y j XÞ

¼
1

ZðXÞ

X

t2�m:1 ;
y3�m:1

X

tk�1:kþm�2 ;
yk:kþm�2

�t2�m:1
ðy3�m:1Þ

� �tk�1:kþm�2
ðyk:kþm�2Þ

Y

c2t1:kþm�2

�cðX;YcÞ;

for m � 2;

ð20Þ

where f�t2�m:1
ðy3�m:1Þg denotes all the forward variables

ending at ðt0:1; y1Þ (the first character and label of

ðt0:k;y1:kÞ), and f�tk�1:kþm�2
ðyk:kþm�2Þg denotes all the back-

ward variables starting from ðtk�1:k; ykÞ (the last character

and label of ðt0:k;y1:kÞ). c 2 t1:kþm�2 denotes all the maximal

cliques of t1:kþm�2 with t1:kþm�2 2 t2�m:kþm�2 (cf., Fig. 3),

and Yc is a labeling of c determined by y3�m:kþm�2. Note

that t2�m:�1, y3�m:0, tkþ1:kþm�2 and ykþ1:kþm�2 are variables.

In (20), at the beginning of the component sequence, t2�m:1

should start from the segmentation point 0, and at the end

of the component sequence, tk�1:kþm�2 should end at T .

Fig. 5 illustrates the calculation of marginal probabilities.

From (20), we can calculate the marginal probabilities on

maximal cliques and further calculate the derivatives
formulated in (9).

Replacing the summation by maximization in (15) will
yield the Viterbi-like (max-product) recursion, with which
we can find the most probable segmentation-recognition
path defined in (2), together with another type of forward
variables f�̂t1:nðy2:nÞ j tn ¼ 1; . . . ; Tg:

1. Initialization

�̂t1:nðy2:nÞ ¼
X

n

j¼2

�t1:jðX;y2:jÞ;

for t1 ¼ 0; 2 � n � m:

ð21Þ

2. Recursion

�̂t1:nðy2:nÞ ¼ max
t0;y1

�t0:nðX;y1:nÞ�̂t0:n�1
ðy1:n�1Þ;

�t1:nðy2:nÞ ¼ argmax
t0;y1

�t0:nðX;y1:nÞ�̂t0:n�1
ðy1:n�1Þ;

for t1 6¼ 0; n ¼ m:

ð22Þ

3. Termination

t�1:n;y
�
2:n

� �

¼ argmax
t1:n;y2:n

�̂t1:nðy2:nÞ; for tn ¼ T: ð23Þ

4. Backtracking

ðt�0; y
�
1Þ ¼ �t�

1:n
ðy�

2:nÞ; for t�0 � 0; t�n � T: ð24Þ

Once the recursion reaches the end segmentation point
T , the best path can be obtained by traversing ��t1:nðy

�
2:nÞ

backwards until t�0 ¼ 0.
Also, by replacing the summation in (18) with max-

imization, we can calculate another type of backward
variables f�̂t0:n�1

ðy1:n�1Þ j t0 ¼ 0; . . . ; T � 1g:

1. Initialization

�̂t0:n�1
ðy1:n�1Þ ¼ 1; for tn�1 ¼ T; 2 � n � m: ð25Þ

2. Recursion

�̂t0:n�1
ðy1:n�1Þ ¼ max

tn;yn
�t0:nðX;y1:nÞ�̂t1:nðy2:nÞ;

for tn�1 6¼ T; n ¼ m:
ð26Þ

With the modified forward and backward variables, we
can calculate the posterior probability of the best path
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Fig. 5. Illustration of the calculation of marginal probability P ðt0:k;y1:kÞ.



traversing a subpath by replacing the summation with
maximization in (20). Here, we consider only the best path
through an edge ðt0:1; y1Þ for m ¼ 2:

P ðS�; Y �; t0:1 2 S�; y1 2 Y � j XÞ

¼ max
ðS;Y Þ:

ðt0:1 ;y1Þ2ðS;Y Þ

P ðS; Y j XÞ ¼
1

ZðXÞ
�̂t0:1ðy1Þ�̂t0:1ðy1Þ:

ð27Þ

In (27), ZðXÞ is a constant with trained parameters. The
value �̂t0:1ðy1Þ�̂t0:1ðy1Þ will be used as a score of ðt0:1; y1Þ for
pruning the lattice in parameter learning.

For exact inference (i.e., forward-backward and Viterbi-
like algorithms) on a dense lattice (before pruning) of the
above ðm� 1Þth order semi-CRFs, the time complexity is
OðTLmJmÞ, where L is the maximum component number
allowed to form a candidate character, and J is the
candidate class number for each character. We can see that
the computation cost increases exponentially with the
maximal clique size m. For fast inference, we consider
lattice pruning in training and use beam search in decoding.

4 LATTICE PRUNING

For semi-CRFs, the use of high-order features (m > 2) can
potentially lead to an exponential blowup in the computation
cost of inference. In our experiments, when m ¼ 3 (for
trigram language model), the training becomes computa-
tionally intractable on long string samples with a dense
lattice. A practical way to solve this problem is to reduce
the lattice complexity by removing implausible edges.
The difficulty of lattice pruning lies in that the edges are
not independent, i.e., to remove an edge will break the paths
through it.

Inspired by the work of Sixtus and Ortmanns [54], we
propose a forward-backward lattice pruning algorithm. By
(27), each edge ðt0:1; y1Þ in the lattice can be assigned a score
�̂t0:1ðy1Þ�̂t0:1ðy1Þ, which is also the score of the best path
traversing it. Considering that a high-score path is unlikely
to go through a low-score edge, to remove a low-score edge
will unlikely break a high-score path. Denote the best path
score by Qmax, an edge is reserved if the following condition
is held:

logQmax � logð�̂t0:1ðy1Þ�̂t0:1ðy1ÞÞ � �p; ð28Þ

where �p > 0 is the pruning threshold. With this method,
the paths with higher scores are retained, while those with
lower scores are discarded. Note that in training, the
ground-truthed path is reserved without pruning. In our
implementation, we first prune the lattice using a pre-
trained first-order semi-CRF, then perform parameter
learning with trigram language model on the pruned lattice.

5 DECODING

According to (2), decoding is to search for the best
segmentation-recognition path in the lattice. In the Viterbi-
like decoding (cf., Section 3.4), the forward variables are
calculated in a time-synchronous manner from tn ¼ 1 to
tn ¼ T . To make the search more efficient, we use beam
search to purge fðt1:n;y2:nÞ j tn ¼ �g at each candidate
segmentation point � by comparing the forward variables

f�̂t1:nðy2:nÞ j tn ¼ �g. Only the survived partial paths are
extended in the following time step, and the number of
reserved partial paths is called the beam width at � .
Although beam search does not guarantee finding the
optimal solution, in practice, the pruning error is
negligible when the beam width is properly selected
[37]. We investigate three beam search techniques based
on N-best, ratio threshold and K-L divergence, that were
initially utilized on the inference of first-order linear-chain
CRFs [37].

At each candidate segmentation point � , we first sort the
forward variables f�̂t1:nðy2:nÞ j tn ¼ �g in descending order.
The N-best based beam search reserves at most top �b
elements of fðt1:n;y2:nÞ j tn ¼ �g according to the sorted
forward variables, and the others are eliminated.

Ratio threshold-based beam search compares each ele-
ment of f�̂t1:nðy2:nÞ j tn ¼ �g with the largest one Amaxð�Þ,
and ðt1:n;y2:nÞ is reserved if the following condition is held:

logAmaxð�Þ � log �̂t1:nðy2:nÞ � �r; for tn ¼ �; ð29Þ

where �r is a empirically selected positive threshold.
The basic idea of K-L divergence-based beam search is

to approximate a distribution with a mixture of Kronecker
delta functions by minimizing the K-L divergence
between the two distributions [41]. The distribution of
f�̂t1:nðy2:nÞ j tn ¼ �g is calculated by

P �̂t1:nðy2:nÞ j tn ¼ �ð Þ ¼
�̂t1:nðy2:nÞ

P

ðt0
1:n

;y0
2:n

Þ:t0n¼� �̂t0
1:n
ðy0

2:nÞ
: ð30Þ

After sorting fP ð�̂t1:nðy2:nÞÞ j tn ¼ �g in descending order,
we select ðt1:n;y2:nÞ from the top until the summation of the
probabilities defined in (30) satisfies

� log
X

ðt1:n;y2:nÞ:tn¼�

P �̂t1:nðy2:nÞ j tn ¼ �ð Þ � �k; ð31Þ

where �k is a predefined positive threshold. To avoid
breaking all the paths especially when �k is a small value,
ðt1:n;y2:nÞ with the largest probability at each candidate
segmentation point will be definitely reserved.

6 FEATURE FUNCTIONS

In the proposed model, the feature functions evaluate the
scores of candidate character classification and the compat-
ibilities of geometric and linguistic contexts, thus there are
three types of feature functions. In (4), for each potential
function on clique-labeling pair ðc; YcÞ ¼ ðt0:m;y1:mÞ, the
feature functions are defined on the suffixes of ðc; YcÞ:
fðtj:m;yjþ1:mÞ j j ¼ 0; . . . ;m� 1g. If a suffix is shared by
multiple clique-labeling pairs, the feature functions on it
will be duplicated.

6.1 Character Classification

The feature functions for candidate character classification
can be categorized into class-specific and class-unspecific
ones. The class-unspecific one is defined as

fcuðXc; YcÞ ¼ ðtm � tm�1Þ log gðtm�1:m; ymÞ; ð32Þ

where gðtm�1:m; ymÞ is the transformed classifier output
(confidence) for character tm�1:m on class ym. From each
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candidate character, we extract 512D features of local
direction histogram, with the trajectory normalized by the
moment normalization method in original direction [55].
The feature dimensionality is further reduced to 160, and on
the reduced vector, we select 200 candidate classes
according to the euclidean distance to class means. On the
candidate classes, the character classifier, such as MQDF, is
computed to give the recognition score [55]. Based on the
work of Liu et al. [56] and [11], the classifier output is
converted to a confidence according to the Dempster-Shafer
theory of evidence. After taking logarithm, the value is
further scaled with the component number ðtm � tm�1Þ of
the character to balance the effect of path length [11].

Inspired by the features used in natural language tasks
[57], we define class-specific features as

fcs
i ðXc; YcÞ ¼ 	ðym; !iÞf

cuðXc; YcÞ;

for i ¼ 1; . . . ; j�j; !i 2 �;
ð33Þ

where � ¼ f!i j i ¼ 1; . . . ; j�jg denotes the classes modeled
by the character classifier, and ym is the last class of Yc as in
(32). Compared with the 1D class-unspecific feature func-
tion fcu, whose weighting parameter in (4) is shared by all
the character classes, each fcsi ; i ¼ 1; . . . ; j�j, is weighted
independently. We hope to improve the discrimination
ability of the proposed model by learning class-specific
weights in the energy function. Note that in (33), although
the dimensionality of ffcsi g is j�j, only the one with ym ¼ !i

is nonzero given the input ðXc; YcÞ, that is why they are
referred to as class-specific.

6.2 Geometric Context

We use four geometric feature functions, which are the
logarithm of transformed classifier outputs via sigmoidal
confidence transformation [56], and are categorized as class-
dependent if depending on character class (or class pair) or
class-independent otherwise [13].

Considering that alphanumeric characters, punctuation
marks, and Chinese characters usually exhibit distinct
outline features (e.g., size, position, aspect ratio, and
within-character gap), we design two class-dependent
geometric feature functions, with one defined on single
characters (unary), and another defined on character pairs
(binary), respectively [13]. Since the category number of
Chinese/Japanese characters is very large and many
different characters have similar geometric features, we
cluster the character classes into six superclasses as in [11]
and [17]. Then two quadratic discriminant functions (QDFs)
for 6 and 36 superclasses are trained to give the scores for
unary geometry and binary geometry, respectively.

In addition, two class-independent geometric feature
functions are designed to indicate whether a candidate
pattern is a valid character (unary), and whether a gap is a
between-character gap (binary) or not, respectively [13].
Both are two-class problem, so we use two linear SVMs to
give the scores. The details of the unary and binary
geometric feature extraction can be found in [13].

6.3 Linguistic Context

In handwriting recognition, the statistical language model
(SLM) provides a prior probability P ðy1:NÞ for a label
sequence y1:N , which attempts to reflect how frequently

y1:N occurs as a sentence [58]. Generally, SLM is trained on
a large text corpus. To make the estimation practicable,
proper approximation is required. An m-gram language
model is based on the assumption that a label sequence
follows an ðm� 1Þth order Markov process:

P ðy1:NÞ ¼
Y

N

n¼1

pðyn j y1:n�1Þ �
Y

N

n¼1

pðyn j yn�mþ1:n�1Þ: ð34Þ

The character bigram (m ¼ 2) and trigram (m ¼ 3) are
considered in our experiments. Here, m is identical to the
maximal clique size. We use the SRI language model
toolkit [59] to give the parameters of m-gram models. By
the toolkit, the default smoothing technique (Katz smooth-
ing) and the entropy-based pruning are used. The thresh-
olds of the pruning for character bigram and character
trigram are empirically set as 5� 10�8 and 10�7, respec-
tively [18]. The logarithm of the m-gram probability
log pðyn j yn�mþ1:n�1Þ is used as a feature function for each
clique with labeling yn�mþ1:n.

7 EXPERIMENTS

We evaluated the proposed method on unconstrained
online handwritten text lines of a Chinese handwriting
database CASIA-OLHWDB [60] and a Japanese hand-
writing database TUAT Kondate [12]. For character
classification, unless otherwise stated, the default classifier
is MQDF and the feature dimensionality is reduced to 160D
by Fisher linear discriminant analysis (FDA) [55].

7.1 Databases and Experimental Setting

The CASIA-OLHWDB database contains both isolated
characters and unconstrained handwritten texts, with 816
writers’ data for training and 204 writers’ data for testing.
The training set contains 3,129,496 isolated character
samples of 7,356 classes (7,185 Chinese characters, 10 digits,
52 English letters and 109 frequently used symbols) and
4,072 pages of handwritten texts (41,710 text lines, including
1,082,220 characters of 2,650 classes). Four out of five of the
merged training samples (isolated characters and those
segmented from the texts falling in the 7,356 classes) were
used for training the character classifier, and the remaining
1/5 were used for confidence parameter estimation. The
test string set contains 10,510 text lines from 1,020 text
pages, including 269,674 characters of 2,631 classes.

For Japanese, the horizontal text lines extracted from the
TUAT Kondate database [12] were used in our experiments.
The training set contains 10,174 text lines, including
104,093 characters of 1,106 classes. And the test set contains
3,511 text lines, including 35,766 characters of 791 classes
(some labeling errors of the test set are corrected in our work,
so the statistics are slightly different from those of [12]). The
character classifier was trained on the TUAT Nakayosi
database (1,695,689 isolated characters of 4,438 classes) [61]
together with the isolated characters extracted from the
Kondate training set falling in the 4,438 classes.

Note that for general-purpose recognition, the classifiers
for both Chinese and Japanese model large numbers of
classes (7,356 and 4,438, respectively), though the test text
lines have much less classes of characters.
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For both the CASIA-OLHWDB database and the TUAT
Kondate database, the QDFs and the SVMs for geometric
feature functions were trained on the features extracted
from the respective training text lines. Again, 4/5 of data
were used for training classifiers and the remaining 1/5
were used for confidence parameter estimation. The Chinese
language models were trained on a text corpus from the
CLDC (Chinese Linguistic Data Consortium), containing
about 50 million characters [18]. The Japanese language
models were estimated from the text corpus of the Japanese
Mainichi Newspaper [17]. For each database, the semi-CRF
parameters were learned on the training text lines.

The text lines of both databases have been annotated
with segmentation points and character labels. Table 1 lists
the character numbers for the characters segmented from
the test strings, where “Chinese” denotes Chinese char-
acters or Japanese Kanji, “Symbol” includes both symbol
characters and kana characters for Japanese. In addition, the
test text lines in CASIA-OLHWDB have 422 characters that
are out of the classes modeled by the character classifier and
thus cannot be correctly recognized.

7.2 Performance Metrics

Following [30] and [11], the string recognition performance
is evaluated by character level CR and accurate rate (AR).
We also use the term character error rate (CER), which
equals 1�AR, i.e., the total number of errors divided by the
total number of characters in the transcript. And we denote
the error rates of the three error types (substitution, deletion
and insertion) by SUB, DEL, and INS, respectively.

To evaluate the quality of the segmentation-recognition
candidate lattice, we consider lattice edge density (LED)
and lattice error rate (LER). LED is used to measure the
complexity of the lattice, which is defined as the total
number of edges divided by the total number of characters
in the transcript. LER is used to measure the errors caused
by lattice construction, which provides a lower bound of
CER. LER is defined as the total number of lattice errors
divided by the total number of characters in the transcript,
where the lattice errors are defined as the minimum edit-
distance between the transcript and any label sequence in
the lattice. Similar measures for the evaluation of word
graph quality in speech recognition can be found in [62].

7.3 Experimental Results

We first evaluate the effects of feature functions and the
margin term, then show the performance of lattice pruning
in semi-CRF training, and evaluate the three beam search
techniques in decoding. At last, we compare the perfor-
mance using different character classification methods.

We implemented the methods in MS Visual C++ 2008
and tested on a PC with Intel Quad Core 2.83-GHz CPU and
4-GB RAM. In training, the string samples were processed
iteratively for five cycles in stochastic gradient decent. The

candidate class number J was set as 12 in training, and 10 in
testing, which are large enough for HCTR problem [11]. The
scaling factor � (cf. (13)) in the margin term was set as 2. In
parameter learning with trigram language model (m ¼ 3),
the lattice was first pruned with a pretrained first-order
semi-CRF (m ¼ 2) with bigram language model, and the
pruning threshold �p (cf. (28)) was set as 12. In decoding,
the default beam search technique is ratio threshold based,
and �r was set as 10. (In Section 7.3.4, we will see that with
comparable recognition accuracies, this method runs faster
than the other two). �, �p, and �r were separately tuned on
the training set by cross-validation. Since the regularization
constant C and the margin scale � are not completely
independent of each other [22], we fixed C to 0.01 and
tuned �. If not stated otherwise, the following experiments
adopt these default settings.

7.3.1 Effects of Feature Functions

To evaluate the feature functions, the margin term was
dropped in training. The effects of different combinations of
feature functions are shown in Table 2, where “cu” and “cs”
denote class-unspecific and class-specific, respectively, both
are for character recognition (cf., Section 6.1). “g” denotes
geometric feature functions, “cbi” denotes character bigram,
and “cti” denotes character trigram. We can see that when
using the class-unspecific feature function (“cu”) only, the
performance is remarkably improved by combining geo-
metric models (“cuþ g”). The incorporation of language
model (LM) (“cuþ cti”) is much more effective than the
geometric model. Better results are given by combining
“cu” with both geometric and language models, and the
best result is given by further combining class-specific
feature functions (“cs”). As expected, when combining with
the same feature functions “cuþ csþ g”, the trigram LM
(“cti”) outperforms the bigram LM (“cbi”) by capturing
long-range dependences. Nevertheless, when the trigram
LM is used without “cs,” its performance is comparable or
inferior to that of bigram combined with “cs.” This again
justifies the benefit of class-specific feature functions.

7.3.2 Effects of Margin Term

To evaluate the effects of the margin term in training, we
first set the margin scale � to the default value and compared
the recognition results with and without the margin term,
where m ¼ 3 and all the feature functions are used. Table 3
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TABLE 1
Statistics of Character Types

on Segmented Characters of Test Strings

Upper: CASIA-OLHWDB; lower: TUAT Kondate.

TABLE 2
Effects of Feature Functions (Percent)

The right columns show the CRs for different character types. Upper:
CASIA-OLHWDB; lower: TUAT Kondate.



shows that margin-based training can yield improvement of
the recognition performance, especially for the TUAT
Kondate database, which has less training samples. For the
CASIA-OLHWDB with larger training set, the gain of
margin-based training is limited. This result is in agreement
with the conclusion drawn in [22], that for large vocabulary
tasks, the margin term is less important if overfitting is not
so severe. Fig. 6a shows that the accuracies are insensitive to
the margin scale provided � is not too small.

7.3.3 Effects of Lattice Pruning in Training

As mentioned in Section 3.4, the time complexity of
inference increases exponentially with m. When m ¼ 3,
the training is computationally intensive on long string
samples, such as those in the CASIA-OLHWDB database
with more than 20 characters per string. To accelerate
training, we resorted to the forward-backward lattice
pruning method, which reduces the lattice complexity
while reserving the most rival paths using a pretrained
first-order semi-CRF.

Fig. 6b shows the effects of different pruning threshold
�p on test string sets, where m ¼ 3 and the initial LED on
training set is 83.49 for CASIA-OLHWDB. We can see that
the default value �p ¼ 12 performs sufficiently well in
respect of the recognition accuracies. Increasing �p, though
incorporates more rival paths, does not improve the
performance. For CASIA-OLHWDB, with the default �p,
the corresponding LED on training set is 3.06 and the
training time is 2.35 s/str (averaged over the training string
number times the iteration number), while the time cost
without lattice pruning is over 175.69 s/str (calculated on
1,000 samples). This justifies the great benefit of lattice
pruning by reducing the LED.

7.3.4 Comparison of Decoding Methods

The parameters (�b, �r, and �k) of three beam search
techniques are used to control the beam width. With
increased beam width, beam search approximates the
Viterbi-like decoding asymptotically. Fig. 6c plots the
decoding time versus the CR on the CASIA-OLHWDB test
strings by varying the three parameters, where m ¼ 3. We
can see that with comparable accuracies, ratio threshold-
based beam search runs faster than the other two
techniques. Fig. 6d shows the accuracies over �r on test
strings. It can be seen that the default value �r ¼ 10

performs sufficiently well with respect to the recognition
accuracies (the corresponding decoding time is 1.43 s/string
for CASIA-OLHWDB and 1.06 s/string for TUAT Kondate,
respectively). Increasing �r, though improves the coverage
of correct path, does not improve the performance.

7.3.5 Comparison of Character Classifiers

In the proposed model, character classification is used in
both candidate class selection and feature functions. Before
character classification, the feature dimensionality was first
reduced to 160D (cf., Section 6.1). To achieve higher string
recognition performance, we consider different dimension-
ality reduction and classification methods: discriminative
feature extraction (DFE) [63] and discriminative learning
QDF (DLQDF) [64] in addition to the baseline FDA and
MQDF. DFE optimizes the feature subspace (initialized by
FDA) under a discriminative learning objective, and
DLQDF is a discriminatively updated version of MQDF
[64]. The training set for DFE and DLQDF is the same as
that for FDA and MQDF.

Table 4 shows the recognition results on test string sets
using different combinations of dimensionality reduction
(FDA, DFE) and classification (MQDF, DLQDF), where
trigram language models (m ¼ 3) and margin-based train-
ing are employed. For segmented character recognition,
the “Top1” row gives the CRs, and “Top10” gives the
cumulative accuracies of top 10 ranks (the default
candidate class number J in decoding is 10). From Table 4
we can see that DFE and DLQDF generally achieves higher
CRs (“Top1”) than FDA and MQDF due to discriminative
learning. However, the string recognition performance (AR
and CR) owes much to the cumulative accuracy (“Top10”)
rather than the top-1 accuracy, which is the reason that on
CASIA-OLHWDB, superior string recognition rates are
obtained by DFEþDLQDF, while on TUAT Kondate,
DFEþMQDF performs better.

7.4 Error Analysis

We analyze recognition errors under the default setting that
uses FDAþMQDF for character classification. Table 5 lists
the error rates on the test string sets when m ¼ 3. Note that
LER is a lower bound of CER. To investigate the effects of
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TABLE 3
Results (Percent) with and without (w/o)

the Margin Term in Training

Upper: CASIA-OLHWDB; lower: TUAT Kondate.

Fig. 6. (a) Effects of the margin scale. (b) Effects of lattice pruning in
training. (c) Decoding time versus CRs for three beam search
techniques. (d) Effects of pruning threshold for ratio threshold-based
beam search.

TABLE 4
Effects of Different Character Classification Methods (Percent)

Upper: CASIA-OLHWDB; lower: TUAT Kondate.



lattice errors, we also gave the results by decoding on the
perfect lattices, i.e., the correct path was inserted when
constructing the lattice such that LER ¼ 0, and all the errors
were caused by the path evaluation criterion (the energy
defined in (5) can be taken as a path evaluation function).
From Table 5, we can see that the CER is reduced just
slightly on perfect lattices. Among the three types of
character errors (substitution, deletion and insertion), the
substitution errors are dominating. Lattice errors owe much
to the performance of the character classifier (the true class
label is not included in the candidate classes output by the
character recognizer). Except for the lattice errors, another
part of character errors are caused by the imperfection of
the path evaluation function.

7.5 Comparison with Previous Methods

The negative energy in (5) can be taken as a scoring function
for candidate segmentation-recognition paths. For Chinese
handwritten text recognition, we first compare with two
path evaluation functions proposed in [11], which are the
linear combinations of weighted character recognition
scores, geometric and linguistic contexts on each path. In
the first function, the transformed classification confidence
score of each character is weighted with the constituent
component number (WSN), and in the second function, the
classification score is weighted with the normalized
character width (WCW). The results are listed in Table 6,
where the trigram language model was used. For fair
comparison, the parameters of WSN and WCN were
learned by minimizing the NLL loss incorporating the
margin term, and the ratio threshold based beam search
was used for decoding. From the results, we can see that the
proposed method performs better than the best path
evaluation functions in [11]. The improvement owes much
to the class-specific feature functions, without which the
negative energy defined in (5) is similar to the first path
evaluation function (WSN).

To compare with the method of Zhu et al. [12] on
Japanese character string recognition, which uses the same
TUAT Kondate database as in our experiments, we calculate
the segmentation measure F and the character recognition
rate crr defined in [16] (the percentage of characters which
are both segmented and recognized correctly). The results

are listed in Table 7, where trigram language models
(m ¼ 3) were used. It can be seen that though the proposed
method has lower segmentation accuracy than the method
of Zhu et al., it gives much higher character recognition rate.
The improvement owes much to the class-specific features
and the margin-based training.

Finally, we compare with the best results achieved by
Vision Objects Ltd. (VO) in ICDAR 2011 Chinese hand-
writing recognition competition [10] on the same test data
of online handwritten texts. The test data of 60 writers
(3,432 text lines, including 91,576 characters of 1,375 classes)
is provided by the same group as the CASIA-OLHWDB
database [60]. Three semi-CRF-based string recognition
models using different character classification methods (cf.,
Section 7.3.5) are compared with the system of VO, which
adopts multilayer perceptron (MLP) as the character
classifier. As recommended by the competition, all the
three models are trained with the samples of the whole
CASIA-OLHWDB database. From Table 8, we can see that
even with DFEþMQDF and a relatively weaker linguistic
model (LM), the achieved AR is already higher than that of
VO. With DFEþDLQDF, the proposed method achieved
higher string recognition performance in respect of both AR
and CR.

8 CONCLUSION

We proposed a semi-CRF-based HCTR method, which
evaluates the candidate segmentation-recognition paths by
fusing the scores of character recognition, linguistic and
geometric contexts in a principled MAP framework. Experi-
mental results on the unconstrained Chinese handwriting
database CASIA-OLHWDB and the Japanese TUAT Kon-
date database justify the effectiveness of each feature
function, especially the class-specific feature function.
Incorporating a margin term in training was shown to
benefit the recognition performance, and the proposed
forward-backward lattice pruning algorithm significantly
speeds up training. To reduce the decoding time, we tested
three beam search techniques and the ratio threshold-based
technique was shown to be the most effective. Our string
recognition results on three test sets are superior to those of
other state-of-the-art methods. The error analysis reveals
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TABLE 5
LERs and CERs (Percent) on Test Strings

LER ¼ 0 means decoding on the perfect lattice.
Upper: CASIA-OLHWDB; lower: TUAT Kondate.

TABLE 6
Comparison with the Methods of Wang et al. [11]

on CASIA-OLHWDB Database (Percent)

TABLE 7
Comparison with the Method of Zhu et al. [12]

on TUAT Kondate Database

TABLE 8
Comparison with the Best Results of ICDAR 2011 Chinese

Handwriting Competition (Online Handwritten Texts)



that there remains a room for further improvement by
upgrading the character classification accuracy and the path
evaluation function. CRF is a principled framework for
integrating multi-source contextual information in path
evaluation. Higher order feature functions, such as high-
order language models, can be exploited in the future work.
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