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Abstract—Handwritten Chinese characters can be recognized by first extracting
the basic shapes (radicals) of which they are composed. Radicals are described by
nonlinear active shape models and optimal parameters found using the chamfer
distance transform and a dynamic tunneling algorithm. The radical recognition rate
is 96.5 percent correct (writer-independent) on 280,000 characters containing
98 radical classes.

Index Terms—Handwritten Chinese character recognition, active shape model,
kernel principal component analysis, chamfer distance transform, dynamic
tunneling algorithm.
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1 INTRODUCTION

OFFLINE handwritten Chinese character recognition is an important,
but very difficult pattern recognition problem because it involves
complex structures, serious interconnection among the components,
numerous pattern variations, absence of dynamic (pen movement)
information, and a large number of characters. Traditionally, the
problem has been approached through stroke extraction, but each
character typically has a large number of strokes in a complex spatial
relationship with one another. Fortunately, the many thousands of
Chinese characters can be composed from a relatively small number
of basic shapes, or radicals [1], in a specific spatial relationship. In this
paper, we consider the use of nonlinear active shape models (ASMs)
to decompose handwritten Chinese characters into their (position-
dependent) radicals so as to simplify the problem of character
recognition. After decomposition, recognition can be achieved by
optimizing the combination of the component radicals. Fig. 1a
illustrates an example character which can be decomposed into two
radicals. The upper radical (which looks like a 2� 2 grid), Fig. 1b,
means land; the lower radical (which looks like a bending person
working), Fig. 1c, means labor. This exposes how our ancestors
described a man: as land labor!

Recently, Chung and Ip [2] applied snakes [3] to partition
handwritten Chinese characters into radicals. The external energy in
their work consists of two different functionals: displacement and
intersection. The displacement functional avoids the snake deviat-
ing too much from the original template; the intersection functional
avoids the intersection of strokes with the template. However,
snakes are forced to partition the images by smoothness and some
salient features. They did not discuss how to deal with the important
problems of false salient features resulting from broken strokes and
thinning algorithms.

Radical recognition can be treated as model-based shape
extraction from a given image, avoiding the complexities of
stroke extraction. However, deformable modeling is required to
capture handwriting variability. Jain and Zongker [4] investi-

gated the application of deformable templates to handwritten
digit recognition. Their system represents a binary image in
terms of its contour and, then, iteratively computes parameters of
a continuous displacement function to map the contour template
as closely as possible onto the edges of the target image. They
reported a 99.25 percent recognition rate on a 2,000 character
subset of NIST Special Database 1.

Cootes et al. [5] proposed active shape models to capture shape
variations in an iterative search procedure, capable of locating the
modeled structures in noisy, cluttered images—even if partially
occluded. ASMs have similarities to snakes, in which a contour is
fitted to the image evidence by minimizing an energy functional.
However, a snake only has generic prior knowledge, such as
smoothness. A much greater amount of prior information can be
recovered from training sets and encoded within an ASM.

Active shape modeling extracts the eigenvectors, U, of the
training examples by principal component analysis (PCA). There-
after, deformable models can be generated by adjusting shape
parameters, b, corresponding to the principal modes of variation:

ÿ ¼ 	þUb; ð1Þ

where 	 is the mean vector of the training examples.
From (1), it is seen that the original ASMs are only suitable for

representing linear variations. However, nonlinear shape varia-
tions are common in handwriting, such as different writing styles
from person-to-person and time-varying distortion. To generalize
ASMs to the nonlinear case, Sozou et al. [6] introduced polynomial
regression. The basis for their method is to further reduce the
residuals once a linear mode has been extracted by fitting a
polynomial along the direction of the principal components. This
requires, however, that the second eigenvector can be modeled as a
function of the first; otherwise, implausible shapes may be
generated. To solve this problem, they also applied a multilayer
perceptron (MLP) [7] to find the nonlinear functionals among the
shape parameters, b. The many well-known disadvantages of the
MLP method include the possibilities of over or underfitting the
training data and the sensitivity to the choice of perceptron
architecture and to the initial start point(s) for training.

Heap and Hogg [8] described applications where the training
examples form a highly nonlinear space, which can be successfully
represented by piecewise linear submodels. They adopted a two-
level hierarchical approach: An initial global PCA is carried out to
produce a lower dimensional space and, then, the linear subregions
are constructed in this new lower space. They used the simplest way
to constrain the valid shape region, i.e., Euclidean-distance-based
clustering, which, however, cannot properly address the probabil-
istic nature of the problem.

Cootes and Taylor [9] represented shape variations with a
probability density function which can be used to determine if a
generated shape is plausible. They introduced a kernel-based
density estimation technique, constructed from a large number of
kernels. To reduce computational cost, they used a mixture of a
small number of Gaussians, which can be fitted to the kernel
estimate using a modification of the expectation-maximization
algorithm. One problem is how to determine the optimal number of
mixture components.

Romdhani et al. [10] were the first to apply kernel PCA to active
shape models. Original input shapes are mapped to a feature space
through kernel functions and, then, active shape modeling in feature
space is employed as in the linear case. The expected ASMs are pre-
images of the generated ASMs in feature space. By this means, they
modeled nonlinear 2D shapes of nonrigid 3D objects, simulta-
neously recovering object pose at multiple views and across the view
sphere. To address the problem of determination of valid shape
regions (by an upper bound on the modulus in feature space),
Twining and Taylor [11] designed a “proximity to data” functional
and demonstrated its performance on both artificial and real-world
nonlinear examples. However, such a function may not be
continuous, which calls for special treatment in searching shape
parameters.

The remainder of this paper is structured as follows: Section 2
describes how ASMs are improved by kernel PCA to capture
nonlinear handwriting variations. Section 3 details the use of
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nonlinear ASMs in handwritten character recognition. The chamfer
distance transform is applied to get a satisfactory basin of attraction
and the dynamic tunneling algorithm is employed to overcome
problems of local minima when searching for the optimal shape
parameters. In Section 4, we describe some experiments to
determine the performance of these techniques on handwritten
Chinese radical recognition, before concluding in Section 5.

2 SHAPE REPRESENTATION BY KERNEL PCA

Principal component analysis is a technique for extracting
structure from possibly high-dimensional datasets. It is readily
performed by solving an eigenvalue problem or by using iterative
algorithms. PCA is useful when the original pattern space can be
accurately described by a subspace spanned by the first several
principal eigenvectors. Often, the data lie in a subspace and, if this
is linear, then a small number of principal components is sufficient
to account for most of the variation.

Kernel PCA [12] extends linear PCA to nonlinear subspaces.
Here, linear PCA is performed in a high-dimensional feature spaceF
related to the input space by a nonlinear map � : IR2N ! IRM .
The number of nonlinear components obtained by kernel PCA can be
greater than the original input dimension; the dimensionality of the
feature space equals the number of training examples. However, the
method confers no advantage if the data lie in a linear subspace. The
main challenge is to choose an appropriate nonlinear transformation.

We start with a training set of examples for each radical

fe1; e2; . . . ; eMg, represented by N landmark points with 10 points

used for each stroke. A line is drawn between the (manually

determined) start and termination points of a stroke, and

intervening points are automatically determined. Hence: ek ¼
ðxk0; yk0; . . . ; xkðNÿ1Þ; ykðNÿ1ÞÞT . The mean vector of the set is then

defined by 	 ¼ 1
M

PM
k¼1 ek: In the original active shape models, 	

is calculated after the training examples are aligned and, then,

each training example is rotated and scaled into the tangent space

so as to minimize the distance between them. This process iterates

until convergence [5], [9]. However, such an alignment strategy

does not work well with handwritten Chinese radicals. One of the

reasons is that the local rotation may lead to different radicals. So:

1. Characters are deskewed based on the document layout
analysis;

2. Each segmented character is normalized to a (64� 64) dot
matrix;

3. In recognition, the unknown normalized character image is
rotated to a few positions and all the radical classes are
matched with the rotated images.

The details of kernel PCA applied to ASMs are given in [10]. The
projections of a data point e onto the eigenvectors Vk in the feature
space F are defined as:

�kðeÞ ¼ VkT e��ðeÞ ¼XM 0
i¼1

�ki
e��ðeiÞT e��ðeÞ ¼XM 0

i¼1

�ki
eKKðei; eÞ;

where M 0 is the number of principal components (modes). Any
example in the training set can be approximated using the mean
vector and a weighted sum of these deviations obtained from the first
M 0 modes. Here, e��ðeiÞ is the centralized point in the feature spaceF

corresponding to the vector 	. However, we have no centralized
data inF , so we cannot compute eKKij ¼ e��ðeiÞ � e��ðejÞdirectly, but we
can do so relying on the noncentered counterpart K. Defining the
notations 1ij ¼ 1 for all i; j, and ð1MÞij ¼ 1=M, we compute [13]:eKKij ¼ ðKÿ 1MKÿK1M þ 1MK1MÞij.

Our purpose is to build up models for each class, which
requires approximate representations of the data in input space
rather than in feature space. To this end, by introducing shape
parameters we can also generate ASMs on the basis of kernel PCA
with the following two steps:

1. Generate active shape models in feature space with the
mean vectors 	. We define an operator PM 0 ;b by:

PM 0 ;b e��ð	Þ ¼XM 0
k¼1

�kð	ÞbkVk:

2. Find the active model ÿ which is a pre-image in the feature
space so as to minimize:

�ðÿÞ ¼ jjPM 0 ;b e��ð	Þ ÿ e��ðÿÞjj2
¼ eKKðÿ;ÿÞ ÿ2

XM 0
k¼1

bk�kð	Þ
XM
i¼1

�ki
eKKðei;ÿÞþ eKKð	;	Þ:

ð2Þ

Points in the input space will be mapped to a hyperplane in the
feature space (Fig. 2). A point in the feature space will move away
from this hyperplane under linear operations (e.g., component
truncation and shape parameter). Hence, its pre-image will be
approximated by that corresponding to its nearest hyperplane point
in the feature space.

3 RADICAL RECOGNITION WITH NONLINEAR ASMs

With models generated by adjusting shape parameters via (2),
radicals can be matched to the observed character by minimizing
the distance between the radical model and the character skeleton.

3.1 Chamfer Distance Transform

When adjusting shape parameters, a satisfactory basin of attraction
is needed to find the optimal shape parameters efficiently: We use
the chamfer distance transform [14] for this. An important property
of the transform is its ability to handle noisy and distorted data as
the edge points of one image undergo a set of parametric
transformations which describe how the images can be geometri-
cally distorted in relation to one another. We have previously
applied the chamfer distance transform to character recognition
with some success [15], but only for the linear PCA case.

A shape model, denoted ÿðbÞ, can be generated by changing
parameters b. In the matching phase, the shape models for all the
classes are superimposed upon the target image. Treating the
target image as a functional of shape models, i.e., IðjðbÞÞ, the
energy of a shape model is given by:

EðÿðbÞÞ ¼
XN
j¼1

DchamferðIðjðbÞÞÞ; ð3Þ

where jð Þ is the jth point of ÿð Þ located in two-dimensional
position ðxj; yjÞ and Dchamferð Þ denotes the chamfer distance
transform. Hence, searching for the optimal shape is equivalent
to minimizing the energy Eð Þ.

3.2 Gradient Descent with Dynamic Tunneling Algorithm

One way to minimize the energy Eð Þ in (3) is to use gradient
descent. Assuming initial shape parameters b, an initial model ÿð Þ
is obtained. Given a test character image, it is matched against each
model and the corresponding minimum energy and the test image
classified into the class with the overall minimum energy.
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Fig. 1. Illustration of a Chinese character decomposed into its radicals. (a) The
Chinese character for man is composed of (b) the upper radical for land and (c) the
lower radical for labor.



To overcome problems with local minima, we use a dynamic

tunneling algorithm [16] based on a physical analogy to the

quantum-mechanical tunneling of a particle through a potential

barrier. The degree of tunneling allowed is a function of time, t,

increasing during iterative search. The search procedure can jump to

another basin of attraction where the new, initial search point is even

lower in energy. From this new starting point, gradient descent can

again be used to find a lower minimum. RoyChodhury et al. [17]

show that a sensible step size is 2t
3�ð Þ3=2 ; where � is the strength of

repeller/attractor. To prevent implausible deformations, the shape

parameters are only allowed to vary by �3
ffiffiffiffiffi
�k
p

, where �k is the

eigenvalue of the kth principal component. The algorithm for

searching for the kth shape parameter, bk, is given by [15] as:

Step 1 b�k ¼ 0, bþk ¼ 0.
Step 2 Search for local optimum with gradient descent from point

b�k to obtain new current global minimum b�k.
Step 3 Dynamic tunneling phase begins, setting the tunneling time

to t ¼ 0.
Step 4 Update: t ¼ tþ 1.
Step 5 In the case of positive direction, select the point

bk ¼ b�k þ
ffiffiffiffiffiffiffiffiffiffiffiffi

2t
3�

� �3
r

;

In the case of negative direction, select

the point bk ¼ b�k ÿ bþk þ
ffiffiffiffiffiffiffiffiffiffiffiffi

2t
3�

� �3
r !

, i.e., treating bþk as an

offset. (� ¼ 7; 000 in our current experiments.)
Step 6 In the case of positive direction, if bk > 3

ffiffiffiffiffi
�k
p

, then bþk ¼ b�k,
and go to Step 3;
In the case of negative direction, if
bk < ÿ3

ffiffiffiffiffi
�k
p

, go to Step 10.
Step 7 Calculate the energy function Eÿ in bk.
Step 8 If EÿðbkÞ > Eÿðb�kÞ go to Step 3 to continue dynamic

tunneling phase.
Step 9 Otherwise, go to Step 2 to start a gradient descent phase.
Step 10 End.

4 EXPERIMENTS AND RESULTS

Radical recognition experiments have used a subset of the database

collected by Harbin Institute of Technology and Hong Kong

Polytechnic University, which comprises a total of 751,000 loosely

constrained handwritten Chinese characters. There are 3,755 cate-

gories written by 200 different writers [15]. Experiments were carried

out with Gaussian kernels, kðx;x0Þ ¼ exp ÿkxÿx0k2

2�2

� �
; which gave

better results than polynomial or spline kernels. Fig. 3a shows an

example character skeleton and its chamfer transform, while Fig. 3b

shows a typical mean model for characters from one of the classes.

Fig. 3c shows the ASMs generated as the number of principal

components varies from 1 to 5, whereupon the chamfer distance

between the models and the input skeleton is 198, 104, 43, 32, and 26,

respectively. Since our purpose is not accurate reconstruction of the

image but pattern classification, the number of principal components
can be truncated such thatPM 0

i¼1 �iPM
j¼1 �j

> 90 percent:

We now compare our proposed nonlinear ASM method
(Method 1 below) with some representative other works on radical
recognition.

Method 1. Using the nonlinear PCA approach described above,
experiments were conducted on 98 radicals covering 1,400 loosely
constrained Chinese character categories written by 200 different
writers, i.e., 280,000 characters. The total number of radicals is
approximately 590,0000. There are 60 randomly selected char-
acter examples with semiautomatic landmark labeling for
training each radical model. Although 60� 98 ¼ 5; 880 radicals
have been seen in training, this is small relative to the total of
590,000 (less than 1 percent) so that we consider all examples are
unseen. This also prevents us to having to exclude from the test set
a large number of complete characters for which only one (out of
up to four) of its radicals has been seen in training.

Method 2. Active shape models with linear PCA [15]. The
experiments were conducted on the same test set as for Method 1.

Method 3. The stroke-based approach of Wang and Fan [18]. Their
experiments for radical extraction were conducted on just
32 radical classes in 1,856 test characters from six writers.

Method 4. The snake-partitioning approach of Chung and Ip [2].
Their experiments were conducted on 100 character categories
written by 10 people (i.e., 1,000 test examples only). They
considered and reported results on the six most common
radical combination schemes (vertical, left-down, surrounding,
horizontal, up-left, and cover) only.

For ASM-based Methods 1 and 2, a correct recognition is
defined as the correct radical identified at the correct position in
the image. Table 1 shows that these two methods are easily the best
among the existing radical approaches. They deal with the largest
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Fig. 2. Illustration of pre-image in input space.

Fig. 3. Active model generation by adjusting shape parameters. (a) An example
character skeleton and its chamfer transformed image. (b) Mean model of lower
radical. (c) Active models generated for the lower radical with the number of
principal components varying from 1 to 5.



number of radicals on a test set which is significantly larger than
other workers have used, yet still achieve better matching rates.
(The range of values for Method 4 relates to Chung and Ip’s report
of separate figures for each of their six radical combination
schemes.) If we assume a binomial distribution of errors with error
rate p, then the standard deviation of the error distribution in our
experiments is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1ÿ p

p
with n ¼ 590; 000. Thus, the 99 percent

confidence interval (corresponding to plus or minus three standard
deviations) is 96.4 to 96.6 percent and 94.1 to 94.3 percent for
Methods 1 and 2, respectively. It follows that Method 1 gives
significantly better results than Method 2, indicating the impor-
tance of modeling nonlinear handwriting variations.

The advantage of our proposed ASM approach is the capability
to handle nonlinear writer variations with only a small number of
shape parameters. Our models also avoid stroke extraction, which is
a source of considerable difficulty in handwriting recognition.
Although the method requires relatively long matching times
(0.4 seconds per character on a Pentium III PC, 455 MHz, 128 MB
RAM) caused by working at the pixel level and shape-parameter
searching, given the pace of development of high-performance
computing, this is unlikely to remain a problem in the future. We
also require landmark labels, which at present are obtained semi-
automatically.

5 CONCLUSIONS AND FUTURE WORK

The paper has introduced a novel method of handwritten Chinese
radical recognition based on nonlinear active shape models. Kernel
principal component analysis is employed to capture the main
nonlinear variation of the training examples around the mean vector.
In matching, the dynamic tunneling algorithm is incorporated with
gradient descent to search for the optimal shape parameters in terms
of chamfer distance minimization. The experimental results show
that our method achieves superior performance compared with
existing similar representative works.

We have concentrated on radical recognition as the first stage of
two-stage Chinese character recognition. The second stage requires
us to find the optimal radical combination, which can be done with
standard methods based on a precompiled lexicon and dynamic
programming (Viterbi decoding). Errors in radical recognition are
unlikely to propagate to a large degree since the prior structural
knowledge embodied in the lexicon allows only legal (semantically
meaningful) combinations.

Our future work also includes (fully) automatic landmark point
labeling. One possible approach is stroke extraction associated
with labeled reference radicals. A reference radical is created for
each class, in which all the strokes involved are labeled. An
alternative is to solve reparameterization, alignment, and cluster-
ing problems simultaneously [19], although further investigation is
required to deal with touching/broken strokes in our case of
Chinese character recognition.
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TABLE 1
Performance of Different Approaches to Chinese Radical Recognition


