
Handwritten Text Line Segmentation by Shredding Text into its Lines 
 

 

A. Nicolaou
1,2

 and B. Gatos
2
 

1
Department of Informatics, 

Technological Educational Institute of Athens, 

Agiou Spiridonos Aigaleo 12210 Athens, 

Greece 

anguelos.nicolaou@gmail.com 

2
Computational Intelligence Laboratory, 

Institute of Informatics and 

Telecommunications, 

National Research Center "Demokritos", 

153 10 Athens, Greece 
bgat@iit.demokritos.gr 

 

 

 

Abstract 
 

In this paper, we propose a novel technique to 

segment handwritten document images into text lines 

by shredding their surface with local minima tracers. 

Our approach is based on the topological assumption 

that for each text line, there exists a path from one side 

of the image to the other that traverses only one text 

line. We first blur the image and then use tracers to 

follow the white-most and black-most paths from left to 

right as well as from right to left in order to shred the 

image into text line areas. We experimentally tested the 

proposed methodology and got promising results 

comparable to state of the art text line segmentation 

techniques. 

 

1. Introduction 
 

Handwritten text line segmentation is still 

considered to be a major challenge in document image 

analysis. In a simple document analysis processing 

pipeline, it would follow image binarization and page 

segmentation, and precede word and character 

segmentation, character recognition etc. Since it is in 

the beginning of a pipeline of processing, it is very 

important to minimize errors so that next stages of 

pipeline get accurate input. 

When dealing with handwritten text, line 

segmentation has to solve some obstacles that are 

uncommon in modern printed text. Among the most 

predominant are: skewed lines, curvilinear lines, 

fluctuating lines, touching and overlapping 

components (e.g. Fig. 1b,c), usually words or letters, 

between lines and irregularity in geometrical properties 

of the line, such as line width, height, leftmost most 

position, distance in between words and lines; such 

irregularity can be seen Fig. 1a. 
 

 
(a) 

            
(b)                           (c) 

Figure 1. Line segmentation challenges. 
 

There exist several methods for text line 

segmentation which are roughly categorized as 

follows. Smearing methods [1]: short white runs are 

filled with black pixels intending to form large bodies 

of black pixels, which will be considered as text line 

areas. Smearing methods can’t deal well with touching 

and overlapping components. Horizontal projections 

[2]: a vector containing the sums of each image line is 

created. The local minima of that vector are assumed to 

be the projection of white areas in between lines, and 

the image is segmented accordingly. Horizontal 

projections can’t deal well with skewed, curved and 

fluctuating lines. Hough transform [3] considers any 

image to compose of straight lines. It creates an angle, 

offset plane in which the local maxima are assumed to 

correlate with text lines. Hough transform has trouble 

detecting curved text lines. Bottom-up approaches: 

connected components or even pixels are connected to 

their close ones based on geometrical criteria to form 

text lines [2]. Other methods have also been proposed 

such as: repulsive attractive networks, stochastic 

methods and text line structure enhancing [2][4]. Due 

to many challenges in text line segmentation, although 

many methods have been proposed, the problem still 

remains open. 
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2. Proposed methodology 
 

In this paper, we propose a new strategy for 

handwritten text line segmentation. We are motivated 

by the idea that a text image can be shred into strips 

along the white gaps in between text lines. Our 

approach is based on the topological assumption that 

for each text line, there exists a path from one side of 

the image to the other that crosses only one text line; 

this assumption applies to all images containing text in 

one column layout. A corollary of the above 

assumption is that for any pair of consecutive text 

lines, there exists a path from left to right that separates 

those two text lines. Our method tries to detect such 

paths and use them to shred the image into strips that 

contain one text line each. In many cases there is no 

line-separating path that traverses only white space 

between two consecutive lines (e.g. when components 

touch). To deal with such issues, and make our 

approach noise tolerant we blur the image before 

shredding it into text line strips. The image is shredded 

along the trajectories of many individual local minima 

tracers that traverse the blurred image from left to right 

and right to left. Once the images surface is separated 

into text line strips, we assign all connected 

components of the initial image to the appropriate text 

line. The proposed methodology consists of three main 

stages namely the preprocessing stage, the image 

shredding stage and the component assignment stage as 

can be seen in Fig. 2. 
 

 

Figure 2. Proposed method flowchart 

 

 

2.1 Stage 1: preprocessing 

 

We assume the binary image I(x,y) which contains 

single column text information: 
 

I (x, y) =
1  if foreground pixel

0 if background pixel

⎧ 
⎨ 
⎩ 

                    (1) 

 

where x ∈ [1,Iwidth ] and y ∈ [1, Iheight ]. First we 

proceed to connected component labeling of I(x,y) and 

store the result in LIN(x,y): 
 

LIN (x, y) =
0 if I (x, y) = 0

label if I (x, y) ≠ 0

⎧ 
⎨ 
⎩ 

                     (2) 

 

where x ∈ [1,Iwidth ], y ∈ [1, Iheight ], 

label ∈ 1,2,3,...,N{ } and N is the number of 

connected components on the I(x,y). Then we calculate 

the estimated letter height LH based on the histogram 

of the connected components height. We then blur 

I(x,y) as follows: 
 

B (x , y ) =   I (x + i , y + k )

k = − BH / 2

k = BH / 2

∑
i= − BW / 2

i= BW / 2

∑          (3) 

 

where B(x,y) is the blurred image, BW=LH*8 is the 

bluring window width and BH=LH*0.8 is the bluring 

window height. We set BW with the intent to blur-out 

white spaces in between consecutive words in a line 

and BH with the intention to blur-out letters in a line 

preserving white gaps between two consecutive 

lines[5]. In Fig. 3 we can see B(x,y). 
 

 

Figure 3. Part of an indicative B(x,y) with I(x,y) 
superimposed as green. 
 

2.2 Stage 2: Image shredding 

 
In this stage we shred the images surface into strips 

corresponding to text lines. 

 
2.2.1 Tracing line areas: For each pixel in the left-

most column of B(x,y), there exists a path along the 

whitest pixels that leads to the right-most column of 

B(x,y) without crossing any text lines. To calculate 

such paths, we recursively define the functions 

Trk,B (n)  which will be referred to as tracers: 
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We store all possible tracers on B(x,y) in a binary 

image LA(x,y) as 0s. 
 

LA(x, y) =
0 if ∃ k : Trk,B (x) = y

1 in all other cases

⎧ 
⎨ 
⎩ 

                            (5) 

 

LA(x,y) will contain the strips of text line areas as 1s 

and their separation points as 0s. We then apply the 

same process tracing white paths from right to left and 

draw the trajectories on LA(x,y) as well, in order to 

reduce the occurrence of missed lines. Since each tracer 

depends only on B(x,y) and its previous value, once 

two co-directional tracers pass from the same point, 

their trajectories will be identical as can be observed in 

Fig. 4. As it can be easily concluded from (4), the 

greatest ascend or descend angle of a tracer is  45o and 

it is expected that all tracers will reach the end of the 

image in the same number of steps.   
 

 

Figure 4. Part of an indicative LA(x,y) with I(x,y) 
superimposed as green. 
 

2.2.2 Labeling line areas: Once we have drawn white 

path tracers on LA(x,y) we calculate 4neighbor 

connected components and store them LLA(x,y)  
 

⎩
⎨
⎧

≠
=

=
0if 

0if0

 LA(x,y)label

 LA(x,y) 
LLA(x,y)            (6) 

 

where x ∈ [1,Iwidth ] ,y ∈ [1, Iheight ] , 

{ }Nlabel ,...,3,2,1∈  and N is the number of 

connected components in I(x,y). As we can see in Fig. 

5, there are components representing text line areas 

(colored areas in figure) and very small components 

(the black areas in figure) which created as the tracers 

converged to the local minima. Since all components in 

LLA(x,y) are supposed to represent different text lines, 

we filter out the components that have less pixels than 

LH 2(there can be no line smaller than a letter). 
 

2.2.3 Tracing line centers: In this step we run tracers 

on the inverted blurred image –B(x,y) and draw their 

trajectories on LC(x,y) as follows. 
 

LC(x, y) =
1 if ∃ k : Trk,-B (x) = y

0 in all other cases

⎧ 
⎨ 
⎩ 

                             (7) 

 

Figure 5. Part of an indicative LLA(x,y) with I(x,y) 
superimposed as bright green. White pixels have the 
null label, black pixels were filtered out and colored 
pixels represent different line areas. 
 

LC(x,y) contains the black-most paths from left to 

right, this information will allow a more refined 

treatment of overlapping components and will help us 

identify very accurately touching components. Tracers 

in LC(x,y) also tend to correlate with the center of the 

strip between the base and the median lines in most 

documents. Since LC(x,y) will be used for optimization 

and is not as crucial as in LA(x,y), we omit right to left 

tracing and trace only from left to right. In Fig. 6 we 

can see that all letters intersect with one and only one 

line. 
 

 

Figure 6. Part of an indicative LC(x,y) with I(x,y) 
superimposed as red. 
 

2.2.4 Labeling line centers: In this step we create a 

labeled image that will share the same labels as 

LLA(x,y) and name it LLC(x,y). LLC(x,y) will contain 

the line centers as where calculated LC(x,y) but labeled 

according to the text line area they traverse from 

LLA(x,y) . LLC(x,y) can be obtained as: 
 

LLC (x , y) = LLA (x , y ) * LC (x , y)                    (8)  
 

2.3 Assigning labeled components 
 

In these steps, we use components of LIN(x,y) 

which was created in the preprocessing stage, as 

elementary entities to be assigned to an identified line. 

We create a labeled image RES(x,y)=0 to which we 

will move step by step all components from LIN(x,y). 
 

2.3.1 Assigning to line centers: In this step we select 

all components from LIN(x,y) that intersect with only 

one labeled line center from LLC(x,y) and move them 

from LIN(x,y) to RES(x,y) labeled as the line they 

intersected with in LLC(x,y). Once this step is 

completed, RES(x,y) contains almost all letters, leaving 

in LIN(x,y) components that belong to two or more 

lines and smaller components such as accents, 

punctuation marks and noise. In Fig. 7 we can see 
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components assigned at this stage as purple and 

LLC(x,y) colored as olive. 
 

2.3.2 Assigning to line areas: In this step we apply 

exactly the same procedure as described in Section 

2.3.1, using LLA(x,y) instead of LLC(x,y). Once this 

step is completed, RES(x,y) contains all components 

that are related to only one line, leaving in LIN(x,y) 

only components that are outside all line areas, or 

touching components. In Fig. 7 we can see components 

assigned at this stage as red and LLC(x,y) colored as 

cyan. 
 

2.3.3 Assigning remaining pixels: In this final step, 

we treat all components in LIN(x,y) as individual pixels 

and draw them on RES(x,y) as the equivalent value in 

LLA(x,y). In detail: 
 

⎩
⎨
⎧

⎭
⎬
⎫

=∧≠
≠∨=

=
0),(0),(     if ),(

0),(0),(    if ),(
),('

yxRESyxLINyxLLA

yxRESyxLINyxRES
yxRES

   (9) 

 

where RES’(x,y) contains the final result and RES(x,y) 

is the result from Section 2.3.2. In this step, we deal 

with components that belonged to many lines, 

separating them where white path tracers passed from, 

and erased all pixels that where outside line areas. In 

Fig. 7 we can see components assigned at this stage as 

blue and in Fig. 8 we can see the resulting final 

RES(x,y).  
 

 

Figure 7. Component assignment: LLA(x,y) is shown 
as cyan and LLC(x,y) is shown as olive. In the 
foreground: components marked as purple where 
assigned in step 1, red components (in circles) in step 2 
and blue components (in rectangles) in stage 3.  
 
 

 

Figure 8. Part of an indicative RES(x,y). White pixels 
are labeled as 0 (background), colored pixels are 
labeled according to the line they belong to. 

 
 
 

4. Experimental results 
 

In order to estimate the efficiency of our method, 

we conducted experiments using the dataset from 

ICDAR2007 Handwriting Segmentation Contest [6], as 

well as a set from historical printed documents.  

The dataset of ICDAR2007 Handwriting 

Segmentation Contest, is separated in train and test 

sets. The train set has 20 images containing 476 

groundtruthed lines and the test set has 80 images 

containing 1771 groundtruthed lines. The database 

consists of handwritten texts, historical and 

contemporary, in four languages: English, French, 

German and Greek. The images were groundtruthed by 

hand. Pages contain text in one column (all lines can be 

extended to the images left and right borders of the 

image without intersecting with other lines), but text 

alignment varies greatly even in the same page. Images 

contained from 10 to more than 30 text lines. In 

general the database could be considered to be 

representative of the results of successful page 

segmentation in handwritten texts. We used a very 

simple statistical analysis of the train set to tune the 

coefficients of BW and BH and the minimum 

acceptable strip area as mentioned in Section 2.2.2. Out 

of 1771 groundtruthed lines in a total of 80 pages, we 

had 1750 one-to-one matches; 98.8 of the 

groundtrouthed lines. We used the same software and 

the same settings that were used in the competition. 

The performance metric is based on pixel correlation 

between each groundtruthed line and each identified 

line. We were able to compare the accuracy of our 

algorithm with some state-of-the-art implementations. 

In the experiments we measured a full implementation 

of our method (Table 1 row named as SHREDING), 

which had a performance of 98.6%. We also measured 

an implementation of our method up to the step of 

Section 2.2.2 using the intermediary image LLA(x,y) as 

the result which. In Table 1, we can observe that our 

method, outperformed all participant methods. 

 
Table 1: Shredding results in handwritten text, 
compared with participants of ICDAR 2007 text line 
segmentation competition. 
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In order to test the proposed methodology on 

historical printed documents, we made experiments 

with a dataset of images taken from a historical book 

from Eckartshausen, which was published on 1788 and 

is owned by the Bavarian State Library [7]. The 

indicative dataset consists of 38 pages from the book, 

1090 lines, which where groundtruthed by hand. We 

used the same parameters that we extracted from the 

handwritten training set. In Table 2 we can see in detail 

the performance of our method. In order to have a 

point of reference we also evaluated a simple smearing 

method. As we can see in the results, RES(x,y) doesn’t 

provide any significant improvement over LLA(x,y) 

since the occurrence of overlapping and touching 

components is a lot rarer. In Fig. 9, we can see an 

example of LA(x,y) on indicative printed text.  

 

 

Figure 9. An indicative LA(X,Y) superimposed on the 
original printed text. 

Table 2. Performance of our method of historical 
documents (SHREDING), compared to an intermediate 
state of our method (LLA) and to a simple smearing 
method (RLSA). 

 
 
We consider the results in segmentation of 

handwritten texts and historical printed documents 

satisfactory and encouraging.  
 

5. Conclusions. 
 

In the proposed methodology, we blur the image 

with the intention to enhance text line areas and then 

segment the images surface along several white paths 

in the blurred image. Finally we assign connected 

components of the original image to the appropriate 

line segment. 

As we experimented with our method, we came to 

several conclusions based on the results as well as the 

observation of intermediary images. As can be seen in 

Table 1 and Table 2, LLA(x,y) described in Section 

2.2.3 is the foundation of the results our method 

produces; stage 3 could be regarded as an optimization 

which in the case of handwritten text, gave significant 

improvements but in the case of printed text was totally 

insignificant. Our method could be expanded towards 

several directions among which: We could start tracers 

randomly in the page to deal directly with more 

complex layouts. We could use LLC(x,y) and 

components assigned only in the Section 2.3.1 as input 

for word segmentation. By observing the errors our 

method produced, we noticed that most of them 

occurred when we had great variations in letter size; 

we could try and define locally the blurring window 

depending on a more local estimation of the average 

letter height. Although we consider our method can 

deal adequately with historical printed texts, its 

principal goal is to deal with handwritten texts. 

Overall, we consider the results very encouraging and 

believe there is space for further research. 
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