
Handwritten Text Line Segmentation by Shredding Text into its Lines

A. Nicolaou
1,2

 and B. Gatos
2

1
Department of Informatics,

Technological Educational Institute of Athens,

Agiou Spiridonos Aigaleo 12210 Athens,

Greece

anguelos.nicolaou@gmail.com

2
Computational Intelligence Laboratory,

Institute of Informatics and

Telecommunications,

National Research Center "Demokritos",

153 10 Athens, Greece
bgat@iit.demokritos.gr

Abstract

In this paper, we propose a novel technique to

segment handwritten document images into text lines

by shredding their surface with local minima tracers.

Our approach is based on the topological assumption

that for each text line, there exists a path from one side

of the image to the other that traverses only one text

line. We first blur the image and then use tracers to

follow the white-most and black-most paths from left to

right as well as from right to left in order to shred the

image into text line areas. We experimentally tested the

proposed methodology and got promising results

comparable to state of the art text line segmentation

techniques.

1. Introduction

Handwritten text line segmentation is still

considered to be a major challenge in document image

analysis. In a simple document analysis processing

pipeline, it would follow image binarization and page

segmentation, and precede word and character

segmentation, character recognition etc. Since it is in

the beginning of a pipeline of processing, it is very

important to minimize errors so that next stages of

pipeline get accurate input.

When dealing with handwritten text, line

segmentation has to solve some obstacles that are

uncommon in modern printed text. Among the most

predominant are: skewed lines, curvilinear lines,

fluctuating lines, touching and overlapping

components (e.g. Fig. 1b,c), usually words or letters,

between lines and irregularity in geometrical properties

of the line, such as line width, height, leftmost most

position, distance in between words and lines; such

irregularity can be seen Fig. 1a.

(a)

(b) (c)

Figure 1. Line segmentation challenges.

There exist several methods for text line

segmentation which are roughly categorized as

follows. Smearing methods [1]: short white runs are

filled with black pixels intending to form large bodies

of black pixels, which will be considered as text line

areas. Smearing methods can’t deal well with touching

and overlapping components. Horizontal projections

[2]: a vector containing the sums of each image line is

created. The local minima of that vector are assumed to

be the projection of white areas in between lines, and

the image is segmented accordingly. Horizontal

projections can’t deal well with skewed, curved and

fluctuating lines. Hough transform [3] considers any

image to compose of straight lines. It creates an angle,

offset plane in which the local maxima are assumed to

correlate with text lines. Hough transform has trouble

detecting curved text lines. Bottom-up approaches:

connected components or even pixels are connected to

their close ones based on geometrical criteria to form

text lines [2]. Other methods have also been proposed

such as: repulsive attractive networks, stochastic

methods and text line structure enhancing [2][4]. Due

to many challenges in text line segmentation, although

many methods have been proposed, the problem still

remains open.

2009 10th International Conference on Document Analysis and Recognition

978-0-7695-3725-2/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDAR.2009.243

626

2. Proposed methodology

In this paper, we propose a new strategy for

handwritten text line segmentation. We are motivated

by the idea that a text image can be shred into strips

along the white gaps in between text lines. Our

approach is based on the topological assumption that

for each text line, there exists a path from one side of

the image to the other that crosses only one text line;

this assumption applies to all images containing text in

one column layout. A corollary of the above

assumption is that for any pair of consecutive text

lines, there exists a path from left to right that separates

those two text lines. Our method tries to detect such

paths and use them to shred the image into strips that

contain one text line each. In many cases there is no

line-separating path that traverses only white space

between two consecutive lines (e.g. when components

touch). To deal with such issues, and make our

approach noise tolerant we blur the image before

shredding it into text line strips. The image is shredded

along the trajectories of many individual local minima

tracers that traverse the blurred image from left to right

and right to left. Once the images surface is separated

into text line strips, we assign all connected

components of the initial image to the appropriate text

line. The proposed methodology consists of three main

stages namely the preprocessing stage, the image

shredding stage and the component assignment stage as

can be seen in Fig. 2.

Figure 2. Proposed method flowchart

2.1 Stage 1: preprocessing

We assume the binary image I(x,y) which contains

single column text information:

I (x, y) =
1 if foreground pixel

0 if background pixel

⎧
⎨
⎩

 (1)

where x ∈ [1,Iwidth] and y ∈ [1, Iheight]. First we

proceed to connected component labeling of I(x,y) and

store the result in LIN(x,y):

LIN (x, y) =
0 if I (x, y) = 0

label if I (x, y) ≠ 0

⎧
⎨
⎩

 (2)

where x ∈ [1,Iwidth], y ∈ [1, Iheight],

label ∈ 1,2,3,...,N{ } and N is the number of

connected components on the I(x,y). Then we calculate

the estimated letter height LH based on the histogram

of the connected components height. We then blur

I(x,y) as follows:

B (x , y) = I (x + i , y + k)

k = − BH / 2

k = BH / 2

∑
i= − BW / 2

i= BW / 2

∑ (3)

where B(x,y) is the blurred image, BW=LH*8 is the

bluring window width and BH=LH*0.8 is the bluring

window height. We set BW with the intent to blur-out

white spaces in between consecutive words in a line

and BH with the intention to blur-out letters in a line

preserving white gaps between two consecutive

lines[5]. In Fig. 3 we can see B(x,y).

Figure 3. Part of an indicative B(x,y) with I(x,y)
superimposed as green.

2.2 Stage 2: Image shredding

In this stage we shred the images surface into strips

corresponding to text lines.

2.2.1 Tracing line areas: For each pixel in the left-

most column of B(x,y), there exists a path along the

whitest pixels that leads to the right-most column of

B(x,y) without crossing any text lines. To calculate

such paths, we recursively define the functions

Trk,B (n) which will be referred to as tracers:

627

⎪
⎩

⎪
⎨

⎧

−<++

−=+

−>+−

=+

=

)2/)(,()2/)(,(if 1)(

)2/)(,()2/)(,(if)(

)2/)(,()2/)(,(if 1)(

)1(

)1(

,,,

,,,

,,,

,

,

BHnTrnBBHnTrnBnTr

BHnTrnBBHnTrnBnTr

BHnTrnBBHnTrnBnTr

nTr

kTr

BkBkBk

BkBkBk

BkBkBk

Bk

Bk

 (4)

We store all possible tracers on B(x,y) in a binary

image LA(x,y) as 0s.

LA(x, y) =
0 if ∃ k : Trk,B (x) = y

1 in all other cases

⎧
⎨
⎩

 (5)

LA(x,y) will contain the strips of text line areas as 1s

and their separation points as 0s. We then apply the

same process tracing white paths from right to left and

draw the trajectories on LA(x,y) as well, in order to

reduce the occurrence of missed lines. Since each tracer

depends only on B(x,y) and its previous value, once

two co-directional tracers pass from the same point,

their trajectories will be identical as can be observed in

Fig. 4. As it can be easily concluded from (4), the

greatest ascend or descend angle of a tracer is 45o and

it is expected that all tracers will reach the end of the

image in the same number of steps.

Figure 4. Part of an indicative LA(x,y) with I(x,y)
superimposed as green.

2.2.2 Labeling line areas: Once we have drawn white

path tracers on LA(x,y) we calculate 4neighbor

connected components and store them LLA(x,y)

⎩
⎨
⎧

≠
=

=
0if

0if0

 LA(x,y)label

 LA(x,y)
LLA(x,y) (6)

where x ∈ [1,Iwidth] ,y ∈ [1, Iheight] ,

{ }Nlabel ,...,3,2,1∈ and N is the number of

connected components in I(x,y). As we can see in Fig.

5, there are components representing text line areas

(colored areas in figure) and very small components

(the black areas in figure) which created as the tracers

converged to the local minima. Since all components in

LLA(x,y) are supposed to represent different text lines,

we filter out the components that have less pixels than

LH 2(there can be no line smaller than a letter).

2.2.3 Tracing line centers: In this step we run tracers

on the inverted blurred image –B(x,y) and draw their

trajectories on LC(x,y) as follows.

LC(x, y) =
1 if ∃ k : Trk,-B (x) = y

0 in all other cases

⎧
⎨
⎩

 (7)

Figure 5. Part of an indicative LLA(x,y) with I(x,y)
superimposed as bright green. White pixels have the
null label, black pixels were filtered out and colored
pixels represent different line areas.

LC(x,y) contains the black-most paths from left to

right, this information will allow a more refined

treatment of overlapping components and will help us

identify very accurately touching components. Tracers

in LC(x,y) also tend to correlate with the center of the

strip between the base and the median lines in most

documents. Since LC(x,y) will be used for optimization

and is not as crucial as in LA(x,y), we omit right to left

tracing and trace only from left to right. In Fig. 6 we

can see that all letters intersect with one and only one

line.

Figure 6. Part of an indicative LC(x,y) with I(x,y)
superimposed as red.

2.2.4 Labeling line centers: In this step we create a

labeled image that will share the same labels as

LLA(x,y) and name it LLC(x,y). LLC(x,y) will contain

the line centers as where calculated LC(x,y) but labeled

according to the text line area they traverse from

LLA(x,y) . LLC(x,y) can be obtained as:

LLC (x , y) = LLA (x , y) * LC (x , y) (8)

2.3 Assigning labeled components

In these steps, we use components of LIN(x,y)

which was created in the preprocessing stage, as

elementary entities to be assigned to an identified line.

We create a labeled image RES(x,y)=0 to which we

will move step by step all components from LIN(x,y).

2.3.1 Assigning to line centers: In this step we select

all components from LIN(x,y) that intersect with only

one labeled line center from LLC(x,y) and move them

from LIN(x,y) to RES(x,y) labeled as the line they

intersected with in LLC(x,y). Once this step is

completed, RES(x,y) contains almost all letters, leaving

in LIN(x,y) components that belong to two or more

lines and smaller components such as accents,

punctuation marks and noise. In Fig. 7 we can see

628

components assigned at this stage as purple and

LLC(x,y) colored as olive.

2.3.2 Assigning to line areas: In this step we apply

exactly the same procedure as described in Section

2.3.1, using LLA(x,y) instead of LLC(x,y). Once this

step is completed, RES(x,y) contains all components

that are related to only one line, leaving in LIN(x,y)

only components that are outside all line areas, or

touching components. In Fig. 7 we can see components

assigned at this stage as red and LLC(x,y) colored as

cyan.

2.3.3 Assigning remaining pixels: In this final step,

we treat all components in LIN(x,y) as individual pixels

and draw them on RES(x,y) as the equivalent value in

LLA(x,y). In detail:

⎩
⎨
⎧

⎭
⎬
⎫

=∧≠
≠∨=

=
0),(0),(if),(

0),(0),(if),(
),('

yxRESyxLINyxLLA

yxRESyxLINyxRES
yxRES

 (9)

where RES’(x,y) contains the final result and RES(x,y)

is the result from Section 2.3.2. In this step, we deal

with components that belonged to many lines,

separating them where white path tracers passed from,

and erased all pixels that where outside line areas. In

Fig. 7 we can see components assigned at this stage as

blue and in Fig. 8 we can see the resulting final

RES(x,y).

Figure 7. Component assignment: LLA(x,y) is shown
as cyan and LLC(x,y) is shown as olive. In the
foreground: components marked as purple where
assigned in step 1, red components (in circles) in step 2
and blue components (in rectangles) in stage 3.

Figure 8. Part of an indicative RES(x,y). White pixels
are labeled as 0 (background), colored pixels are
labeled according to the line they belong to.

4. Experimental results

In order to estimate the efficiency of our method,

we conducted experiments using the dataset from

ICDAR2007 Handwriting Segmentation Contest [6], as

well as a set from historical printed documents.

The dataset of ICDAR2007 Handwriting

Segmentation Contest, is separated in train and test

sets. The train set has 20 images containing 476

groundtruthed lines and the test set has 80 images

containing 1771 groundtruthed lines. The database

consists of handwritten texts, historical and

contemporary, in four languages: English, French,

German and Greek. The images were groundtruthed by

hand. Pages contain text in one column (all lines can be

extended to the images left and right borders of the

image without intersecting with other lines), but text

alignment varies greatly even in the same page. Images

contained from 10 to more than 30 text lines. In

general the database could be considered to be

representative of the results of successful page

segmentation in handwritten texts. We used a very

simple statistical analysis of the train set to tune the

coefficients of BW and BH and the minimum

acceptable strip area as mentioned in Section 2.2.2. Out

of 1771 groundtruthed lines in a total of 80 pages, we

had 1750 one-to-one matches; 98.8 of the

groundtrouthed lines. We used the same software and

the same settings that were used in the competition.

The performance metric is based on pixel correlation

between each groundtruthed line and each identified

line. We were able to compare the accuracy of our

algorithm with some state-of-the-art implementations.

In the experiments we measured a full implementation

of our method (Table 1 row named as SHREDING),

which had a performance of 98.6%. We also measured

an implementation of our method up to the step of

Section 2.2.2 using the intermediary image LLA(x,y) as

the result which. In Table 1, we can observe that our

method, outperformed all participant methods.

Table 1: Shredding results in handwritten text,
compared with participants of ICDAR 2007 text line
segmentation competition.

629

In order to test the proposed methodology on

historical printed documents, we made experiments

with a dataset of images taken from a historical book

from Eckartshausen, which was published on 1788 and

is owned by the Bavarian State Library [7]. The

indicative dataset consists of 38 pages from the book,

1090 lines, which where groundtruthed by hand. We

used the same parameters that we extracted from the

handwritten training set. In Table 2 we can see in detail

the performance of our method. In order to have a

point of reference we also evaluated a simple smearing

method. As we can see in the results, RES(x,y) doesn’t

provide any significant improvement over LLA(x,y)

since the occurrence of overlapping and touching

components is a lot rarer. In Fig. 9, we can see an

example of LA(x,y) on indicative printed text.

Figure 9. An indicative LA(X,Y) superimposed on the
original printed text.

Table 2. Performance of our method of historical
documents (SHREDING), compared to an intermediate
state of our method (LLA) and to a simple smearing
method (RLSA).

We consider the results in segmentation of

handwritten texts and historical printed documents

satisfactory and encouraging.

5. Conclusions.

In the proposed methodology, we blur the image

with the intention to enhance text line areas and then

segment the images surface along several white paths

in the blurred image. Finally we assign connected

components of the original image to the appropriate

line segment.

As we experimented with our method, we came to

several conclusions based on the results as well as the

observation of intermediary images. As can be seen in

Table 1 and Table 2, LLA(x,y) described in Section

2.2.3 is the foundation of the results our method

produces; stage 3 could be regarded as an optimization

which in the case of handwritten text, gave significant

improvements but in the case of printed text was totally

insignificant. Our method could be expanded towards

several directions among which: We could start tracers

randomly in the page to deal directly with more

complex layouts. We could use LLC(x,y) and

components assigned only in the Section 2.3.1 as input

for word segmentation. By observing the errors our

method produced, we noticed that most of them

occurred when we had great variations in letter size;

we could try and define locally the blurring window

depending on a more local estimation of the average

letter height. Although we consider our method can

deal adequately with historical printed texts, its

principal goal is to deal with handwritten texts.

Overall, we consider the results very encouraging and

believe there is space for further research.

Acknowledgement

The research leading to these results has received funding

from the European Community's Seventh Framework

Programme under grant agreement n° 215064 (project

IMPACT).

References

[1] F.M. Wahl, K.Y. Wong, R.G. Casey, "Block

Segmentation and Text Extraction in Mixed Text/Image

Documents", Computer Graphics and Image Processing,

Vol. 20, 1982, pp. 375-390.

[2] L. Likforman-Sulem, A. Zahour, and B. Taconet, “Text

Line Segmentation of Historical Documents: a Survey”,

IJDAR vol 9, Springer, April 2009, pp. 123 – 138.

[3] L. Likforman-Sulem, A. Hanimyan, C. Faure, “A Hough

Based Algorithm for Extracting Text Lines in Handwritten

Documents”, Proceedings of the Third International

Conference on Document Analysis and Recognition,

Montreal, Canada, 1995, pp. 774-777.

[4] Y. Li, Y. Zheng, D. Doermann, and S. Jaeger,“A New

Algorithm for Detecting Text Line in Handwritten

Documents”, Proceedings of the Tenth International

Workshop on Frontiers in Handwriting Recognition, La

Baule, Oct 2006, pp. 35 - 40.

[5] Du, X. and Pan, W. and Bui, T., “Text line segmentation

in handwritten documents using Mumford-Shah model”,

Pattern Recognition, 2009, doi:10.1016/j.patcog.2008.12.021

[6] B. Gatos, A. Antonacopoulos and N. Stamatopoulos,

"ICDAR2007 Handwriting Segmentation Contest",

Proceedings of the 9th International Conference on

Document Analysis and Recognition (ICDAR'07), Curitiba,

Brazil, September 2007, pp. 1284-1288

[7] Carl von Eckartshausen, “Aufschlüsse zur Magie aus

geprüften Erfahrungen über verborgene philosophische

Wissenschaften und verdeckte Geheimnisse der Natur”,

Bavarian State Library, 1778.

630

