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 Abstract— Character recognition is one in all the emerging fields 

within the computer vision. The most abilities of humans are they 

will recognize any object or thing. The hand transcription can 

easily identify by humans. Different languages have different 

patterns to spot. Humans can identify the text accurately. The 

hand transcription cannot be identified by the machine. It's 

difficult to spot the text by the system. During this text 

recognition, we process the input image, extraction of features, 

and classification schema takes place, training of system to 

acknowledge the text. During this approach, the system is trained 

to seek out the similarities, and also the differences among 

various handwritten samples. This application takes the image of 

a hand transcription and converts it into a digital text. 
 

Keywords—HTR(Handwritten Text Recognition), NN(Neural 

Network),CNN(convolutional Neural Network), RNN(Recurrent 

Neural Network), CTC(Connectionist Temporal Classification), 

TF(TensorFlow) 

I.  INTRODUCTION  

Image processing could be a manipulation of images within 

the computer vision. With the event of technology, there are 

many techniques for the manipulation of the photographs. The 

text recognition includes a huge role in many areas. But it's 

difficult to try and do such a task by a machine. For 

recognition, we've to coach the system to acknowledge the 

text. The character recognition involves several steps like 

acquisition, feature extraction, classification, and recognition. 

Handwriting recognition is the ability of a machine to receive 

and interpret the handwritten input from an external source 

like image. the most aim of this project is to style a system 

that may efficiently recognize the actual character of format 

employing a neural network. Neural computing could be a 

comparatively new field, and style components are therefore 

less well-specified than those of other architecture. Neural 

computers implement data parallelism. A neural computer is 

operated in a very way that's completely different from the 

operation of a standard computer. Neural computers are 

trained and that they don't seem to be programmed. so that the 

given data is compared to the trained system and provides the 

acceptable output text to the user. A handwriting recognition 

system handles formatting, performs correct segmentation into 

characters, and finds the foremost plausible words. Off-line 

handwriting recognition involves the automated conversion of 

the text in a picture into letter codes that are usable within 

computer and text-processing applications. the info obtained 

by this manner is considered a static representation of 

handwriting. 

LITERATURE SURVEY 

 K. Gaurav, Bhatia, various pre-processing techniques 

involve within the character recognition with different 

reasonable images ranges from easy handwritten form-based 

documents and documents containing colored and complicated 

background and varying intensities. The offline character 

recognition is proposed by sing diagonal feature extraction. it's 

supported the ANN model. There are two approaches for 

make neural network system such as 54 feature and 69 

features. A. Brakensiek, J. Rottland, A. Kosmala, J. Rigoll, 

during this paper a system for off-line cursive handwriting 

recognition was described which is based on Hidden Markov 

Models (HMM) using discrete and hybrid modeling 

techniques. R. Bajaj, L. Dey, S. Chaudhari, has employed 

three different styles of features, such as, the density features, 

moment features, and, descriptive component features for 

classification of Devanagari Numerals. they obtained 89.6% 

accuracy for handwritten Devanagari numerals. M.  

Hanumadhulu and O.V. Ramanammurty have implemented 

this using a fuzzy set using the box approach and also the 

recognition is 90%. This model operates on varied information 

sources. In past researches, it's clear that this model is 

successful with diverse information sources but it lacks a 

small amount of accuracy within the case of long sentences. 

Many proposed models don't seem to be so successful 

incorrectly classifying the long text data. On the other side 

models are incorporating CNN networks and showing good 

results which are because of its capability of dealing the 

longer text data.  

 

II. PROPOSED WORK 

A. Handwritten text recognition: 

Handwritten Text Recognition (HTR) systems consist of 
handwritten text in the form of scanned images as shown in 
figure 1. we are going to build a Neural Network (NN) which 
is trained on word-images from the IAM dataset. because the 
input layer (and therefore also all the opposite layers) are often 
kept small for word-images, NN-training is possible on the 
CPU (of course, a GPU would be better). For the 
implementation of HTR, the minimum requirement is TF. 

Fig. 1: Image of word taken from IAM Dataset 
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B. Model Overview: 

We use a NN for our task. It consists of a convolutional 
neural network (CNN) layers, recurrent neural network (RNN) 
layers, and a final Connectionist Temporal Classification 
(CTC) layer. 

 

Fig. 2: Overview of HTR 

In this project, we've taken 5 CNN (feature extraction) and a 
pair of RNN layers and a CTC layer (calculate the loss). first, 
we've to preprocess the pictures in order that we are able to 
reduce the noise. 

 

 

Fig. 3: Green indicates the operations of NN and Pink indicate the 
dataflow through NN. 

We can also view the NN in an exceedingly more formal 
way as a function (see Eq. 1) which maps a picture (or matrix) 
M of size W×H to a personality sequence (c1, c2, …) with a 
length between 0 and L. As you'll see, the text is recognized on 
character-level, therefore words or texts not contained within 
the training data is recognized too (as long because the 
individual characters get correctly classified). 

NN:   M  (C1, C2, ………, Cn) 

W x H      0 ≤ n ≤ L 

Eq. 1: The Neural Network was written as a mathematical function that maps 
an image M to a character sequence (c1, c2, …). 

C. Operations: 

CNN: The input image is given to the CNN layers. These 
layers are trained to take out relevant features from the image. 
Each layer consists of three operations. First, the convolution 
operation, 5×5 filter is used in the first two layers and 3×3 filter 
used in the last three layers to the input. Then, the non-linear 
RELU function is applied. At last, a pooling layer summarizes 
image regions and outputs a downsized(smaller) version of the 
input. While the height of image size is reduced by 2 in each 
layer, feature channels are added, so that the output feature 
sequence has a size of 32×256. 

 RNN: The feature sequence consists of 256 features per 
time-step, the RNN propagates relevant information through 
this sequence. The favored Long Short-Term Memory (LSTM) 
implementation of RNNs is employed because it is in a 
position to propagate information through longer distances and 
provides more robust training-characteristics than vanilla RNN. 
The RNN output sequence is mapped to a matrix of 32×80. 
The IAM dataset contains 79 different characters, further one 
additional character is required for the CTC operation (CTC 
blank label), so that there are 80 entries for every of the 32 
time-steps. 

CTC: while training the NN, the CTC is given the RNN 
output matrix and also the ground truth text and it computes the 
loss value. While inferring, the CTC is just given the matrix 
and it decodes it into the ultimate text. Both the bottom truth 
text and also the recognized text are often at the most 32 
characters long. 

Data: 

Input: It is a gray-value image of size 128×32. Usually, the 
pictures from the dataset don't have exactly this size, therefore 
we resize it (without distortion) until it either contains a width 
of 128 or a height of 32. Then, we place the image in a (white) 
target image of size 128×32. This process is shown in Fig. 3. 
Finally, we will normalize the gray-values of the image so that 
it could simplify the task for the NN. Data augmentation can 
easily be integrated by copying the image to random positions 
rather than aligning it to the left or by randomly resizing the 
image. 

 

 

Fig. 4: Left: a picture from the dataset with an arbitrary size. it's scaled to 
suit the target image of size 128×32, the empty a part of the target image is 

crammed with white color. 
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CNN output: Figure. 5 displays the output of the CNN 
layers which may be a sequence of length 32. Each layer entry 
contains 256 features. All these features are further process has 
been done by the RNN layers, however, some features already 
showed high correlation with certain high-level properties of 
the input image: there are some features which have a high 
correlation with characters for example "e", or with duplicate 
characters for example "ll", otherwise properties of character 
like loops as already present in handwritten “l”s or “e”s. 

Fig. 5: Top: 256 features per time-step is computed by the CNN layers. 

Middle: input image. Bottom: plot of the 32nd feature, which incorporates a 
high correlation with the occurrence of the character “e” within the image. 

RNN output: Fig. 6 shows a visualization of the RNN 
output matrix for a picture containing the text “little”. The 
matrix shown within the top-most graph consists of the scores 
for the characters included in the Connectionist Temporal 
Classification blank label as its last entry. the opposite matrix-
entries, from top to bottom, correspond to the subsequent 
characters: “ !”#&’()*+,-
./ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnop
qrstuvwxyz0123456789:;?”. Only the last character “e” isn't 
aligned. But this can be OK because the CTC operation is 
segmentation-free and doesn't care about absolute positions. 
From the bottom-most graph showing the scores for the 
characters “l”, “i”, “t”, “e” and also the CTC blank label, the 
text can easily be decoded: we just take the foremost probable 
character from each time-step, this forms the so-called best 
path, then we throw away repeated characters and at last all 
blanks: “l---ii--t-t--l-…-e” → “l---i--t-t--l-…-e” → “little”. 

 

 

 

 

 

 

Fig. 6: Top: output matrix of the RNN layers. Middle: input image. 
Bottom: Probabilities for the characters “l”, “i”, “t”, “e” and therefore the CTC 

blank label. 

D. Implementation using TF: 

The implementation consists of 4 modules: 

1. SamplePreprocessor.py: prepares the pictures from 
the IAM dataset for the NN 

2. DataLoader.py: reads samples, put them into batches 
and provides an iterator-interface to travel through the info 

3. Model.py: creates the model as described above, loads 
and saves models, manages the TF sessions and provides an 
interface for training and inference 

4. main.py: puts all previously mentioned modules 
together 

We only have a look at Model.py, because the other source 
files are concerned with basic file IO (DataLoader.py) and 
image processing (SamplePreprocessor.py). 

CNN: 

For each CNN layer, create a kernel of size k×k to be 
utilized in the convolution operation. 

Then, RELU operation again to the pooling layer with size 
px×py and step-size sx×sy with results of the convolution. 

These steps are repeated for all layers during a for-loop. 

RNN: 

Create and stack the two RNN layers consisting of 256 
units each. 

Then, create a bidirectional RNN from it, such the input 
sequence is traversed from front to back and therefore the other 
way round. As a result, we get two output sequences forward 
and backward of size 32×256, which we later concatenate 
along the feature-axis to create a sequence of size 32×512. 
Finally, it's mapped to the output sequence (or matrix) of size 
32×80 which is fed into the CTC layer. 
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CTC: 

For loss calculation, we feed both the bottom truth text and 
therefore the matrix to the operation. the bottom truth text is 
encoded as a sparse tensor. The length of the input sequences 
must be given to both CTC operations. 

We now have all the input files to make the loss operation 
and therefore the decoding operation. 

Training: 

The mean of the loss values of the batch elements is 
employed to coach the NN: it's fed into an optimizer like 
RMSProp. 

E. Improving the model: 

In case you want to feed complete text-lines as shown in 
Fig. 6 instead of word-images, you have to increase the input 
size of the NN. 

 

Fig. 7: A complete text-line can be fed into the NN if its input size is 
increased (image is taken from IAM). 

If you want to improve the recognition accuracy, you can 
follow one of these hints: 

• Data augmentation: increase dataset-size by applying 
further (random) transformations to the input images 

• Remove cursive writing style in the input images 

• Increase input size (if an input of NN is large enough, 
complete text-lines can be used) 

F. Spell checker 

Checking of spelling may be a basic requirement in any text 

processing or analysis. The python package pyspellchecker 

provides us this feature to search out the words that will are 

misspelled and also suggest the possible corrections.  

First, we'd like to put in the specified package using the 

subsequent command in our python environment. 

 

 pip install pyspellchecker  

III. THE ARCHITECTURE OF THE PROPOSED 

NETWORK 

The proposed network has different layers which are as 
shown in the figure below: 

 

 

 

 

 

 

 

 

 

Fig. 8: Architecture of proposed network 

A. CNN layers 

 
Fig. 9: CNN layer 

CNN is meant to imitate human visual processing, and it's 
highly optimized structures to process 2D images. Further, it 
can effectively learn the extraction and abstraction of 2D 
features. In detail, the max-pooling layer of CNN is extremely 
effective in absorbing shape variations. Moreover, a sparse 
reference to tied weights makes CNN involve with fewer 
parameters than a totally connected network with similar size. 
most significantly, CNN is trainable with the gradient-based 
learning algorithm and suffers less from the diminishing 
gradient problem. providing the gradient-based algorithm trains 
the entire network to attenuate a blunder criterion directly, 
CNN can produce highly optimized weights and good 
generalization performance. 
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B. RNN layer 

RNN have a “memory” which remembers all information 

about what has been calculated. It uses the same parameters 

for each input as it performs the same task on all the inputs or 

hidden layers to produce the output. This reduces the 

complexity of parameters, unlike other neural networks. 

• RNN converts the independent activations into 
dependent activations by providing the same weights 
and biases to all the layers, thus reducing the 
complexity of increasing parameters and memorizing 
each previous output by giving each output as input to 
the next hidden layer. 

• Hence these three layers can be joined together such 
that the weights and bias of all the hidden layers are the 
same, into a single recurrent layer. 

• The formula for calculating current state: 

 

• The formula for applying Activation function(tanh): 

 

• Formula for calculating output: 

 

C. CTC layer 

CTC may be a loss function that is employed to coach neural 

networks. there's no must align data because that may assign a 

probability for any label. CTC may be a align free.it works on 

the summing over the probability of all possible alignments 

between the input and also the label. 

Here we have an input of size 9 and also the correct 

transmission of its iPhone. we force our system to assign an 

output character to every input step and so we collapse the 

repeats, which ends within the input.  

 

 
Blank token: 

There is how around that called the Blank token. It does mean 

anything and simply it gets removed before the final word 

output is produced. Now, the algorithm can assign a 

personality or blank token to each input step. 

1. CTC network assigns the character with the simplest 

probability of every input sequence. 

2. Repeats not having a blank token in between get 

merged. 

3. Lastly, the blank token gets removed. 

The CTC network can then give the probability label to the 

input. By summing all the probabilities of the characters of 

each time step. 

The CTC algorithm is alignment-free — it doesn’t require 

alignment between the input and thus the output. However, to 

induce the probability of output given an input, CTC works by 

summing over the probability of all possible alignments 

between the two. we'd wish to know what these alignments are 

so on know the way the loss function is ultimately calculated. 

To motivate the precise sort of the CTC alignments, first 

consider a naive approach. Let’s use an example. Assume that 

the given input has length six and Y =Y= [c, a, t]. a way to 

align XX and YY is to assign an output character to each input 

step and collapsed repeats. Experiment results 
After the text edit has been completed, the paper is ready 

for the template. Duplicate the template file by using the Save 
As command, and use the naming convention prescribed by 
your conference for the name of your paper. In this newly 
created file, highlight all of the contents and import your 
prepared text file. You are now ready to style your paper; use 
the scroll down window on the left of the MS Word Formatting 
toolbar. 

D. Summary of  Dataset 

The IAM Handwriting Database contains forms of 

handwritten English text which can be used to train and 

test handwritten text recognizers and to perform writer 

identification and verification experiments. 

Characteristics of IAM Dataset  

• 657 writers contributed samples of their writings. 

• 1532 pages of scanned text. 

• 5685 isolated and labeled sentences. 
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• 13353 isolated and labeled text lines. 

• 115320 isolated and labeled words. 

  

Set name Number of text lines Number of writers 

Train 6161 283 

Validation 1 900 46 

Validation 2 940 43 

Test 1861 128 

Total 9862 500 

The above tables provide the information about one Training, 

one Testing, Two validation sets. 

In the data set it contain many images of same types with a 

particular dimension and this data set also contain a label file 

with a text extension. It contains the image and its text. At 

first, it contains the image and followed by the particular text 

present in it. 

The Labels.txt is a file which consists of data as follows: 

IAM dataset line information 

format: a01-000u-00 ok 154 19 408 746 1663 91 

A|MOVE|to|stop|Mr.|Gaitskell|from 

a01-000u-00 -> line id for form a01-000u 

ok        -> result of word segmentation 

ok:             line is correctly segmented 

err:              every part of a line has more than one error 

notice:   if the line cannot be properly segmented the 

transcription and extraction of the complete                   

the line should not be affected negatively 

 

154             ->gray level to binarize line 

19              -> number of components for this line 

 408 746 1663 91 -> bounding box through this line in x,y,w,h 

format 

A|MOVE|to|stop|Mr.|Gaitskell|from -> transcription for this 

line. word tokens are separated by the character ‘|’  

 

IV. RESULTS 

 

In this project we have given image as an input then it predicts 

the output by loading the model which is already previously 

created and saved.  

 

The above image is the input given to the neural network to 

predict the solution. 

This is image which shows the output to the above input 

image. 

V. CONCLUSION AND FUTURE SCOPE 

In this project classification of characters takes place. 

The project is achieved through the conventional neural 

network. The accuracy we obtained in this is above 90.3%. 

This algorithm will provide both the efficiency and effective 

result for the recognition. The project gives best accuracy for 

the text which has less noise. The accuracy completely 

depending on the dataset if we increase the data, we can get 

more accuracy. If we try to avoid cursive writing then also its 

best results. 
Future Work: 

In future we are planning to extend this study to a 

larger extent where different embedding models can be 

considered on large variety of the datasets. The future is 

completely based on technology no one will use the paper and 

pen for writing. In that scenario they used write on touch pads 

so the inbuilt software which can automatically detects text 

which they writing and convert into digital text so that the 

searching and understanding very much simplified. 
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