
Handy AR: Markerless Inspection of Augmented Reality Objects

Using Fingertip Tracking

Taehee Lee, Tobias Höllerer

Four Eyes Laboratory, Department of Computer Science

University of California, Santa Barbara, California 93106 USA

Abstract

We present markerless camera tracking and user interface

methodology for readily inspecting augmented reality (AR)

objects in wearable computing applications. Instead of a

marker, we use the human hand as a distinctive pattern that

almost all wearable computer users have readily available.

We present a robust real-time algorithm that recognizes fin-

gertips to reconstruct the 6DOF camera pose relative to the

user’s outstretched hand. A hand pose model is constructed

in a one-time calibration step by measuring the fingertip posi-

tions in presence of ground-truth scale information. Through

frame-by-frame reconstruction of the camera pose relative to

the hand, we can stabilize 3D graphics annotations on top

of the hand, allowing the user to inspect such virtual objects

conveniently from different viewing angles in AR. We eval-

uate our approach with regard to speed and accuracy, and

compare it to state-of-the-art marker-based AR systems. We

demonstrate the robustness and usefulness of our approach

in an example AR application for selecting and inspecting

world-stabilized virtual objects.

1. Introduction
Augmented reality (AR) is a powerful human-computer

interaction paradigm for wearable computing applications.

The world around a mobile computer user can directly serve

as the user interface, presenting a location-specific 3D inter-

action space where the user can display, examine, and ma-

nipulate information [4]. A successful standard approach for

viewing AR content and registering it with the world is via

vison-based tracking of cardboard fiducial markers [15][8],

which can be used as a hand-held tangible user interface for

inspecting and manipulating the augmentations [23].

Mobile AR research [11] has produced many useful user

interface options for wearable computing [7][25][22][30].

For direct manipulation of AR content, these applications

have so far relied on special interaction device technologies,

such as pinch gloves with fiducial markers [29] or head-to-

hand tracking equipment such as the WearTrack solution [9].

Figure 1. Inspecting a virtual bunny on top of the user’s

hand from different viewing angles.

In this paper, we present and evaluate a method to use a

user’s bare outstretched hand in the same way a cardboard AR

marker would be used, enabling spontaneous tangible user in-

terfaces in mobile settings. The human hand is a thoroughly

ubiquitous input device for all kinds of real-world applica-

tions. Our work broadens the applicability of tangible AR in-

terfaces by eliminating the need for hand-held markers. With

our method, wearable computing users can conveniently in-

spect and manipulate AR objects relative to their own body,

well within the user’s comfort zone [16]. The trend in AR

libraries points towards increased use of markerless tracking.

Our technique allows a wearable user to retain the undisputed

tangible UI benefits of cardboard markers without the incon-

venience of having to carry one around at all times.

1.1. Related Work

Hand-gesture interfaces have been widely investigated

from the perspectives of computer vision, augmented reality

and human-computer interaction. Many early hand-based UIs

rely on tracking the hand in a 2D viewing plane and use this

information as a mouse replacement [17][18]. Some systems

demonstrated fingertip tracking for interactions in a desktop

environment [20][21]. Tracking a hand in 3D space was im-

plemented using a stereoscopic camera [2]. We focus on stan-

dard wearable (miniature) cameras in our work. While there

is very promising real-time work in recognizing dynamic ges-

tures from approximated hand shapes over time using Hidden

Markov Models (e.g., [26]), none of the many proposed ap-

proaches to reconstruct an articulated 3D hand pose in de-

Proc. IEEE ISWC 2007 (11th Int'l Symposium on Wearable Computers), Boston, MA Oct. 11-13, 2007



tail (e.g., [27][28]) is currently feasible at 30 frames per sec-

ond. We focus on real-time real life AR interfaces that should

still leave a wearable computer sufficient computing power

for the execution of application logic. A variety of finger-

tip detection algorithms have been proposed [20][32][2], each

one with different benefits and limitations, especially regard-

ing wearable computing environments with widely varying

backgrounds and variable fingertip sizes and shapes. Careful

evaluation of this work led us to implement a novel hybrid al-

gorithm for robust real-time tracking of a specific hand pose.

Wearable computers are important enabling technology

for “Anywhere Augmentation” applications [12], in which

the entry cost to experiencing AR is drastically reduced by

getting around the need for instrumenting the environment

or creating complex environment models off-line. Hand in-

terfaces are another important piece of the Anywhere Aug-

mentation puzzle, as they help users establish a local coordi-

nate systems within arm’s length and enable the user to easily

jump-start augmentations and inspect AR objects of interest.

An important problem in AR is how to determine the cam-

era pose in order to render virtual objects in correct 3D per-

spective. When seeing the world through a head-worn [11] or

magic-lens tablet display [24], the augmentations should reg-

ister seamlessly with the real scene. When a user is inspect-

ing a virtual object by “attaching it” to a reference pattern in

the real world, we need to establish the camera pose relative

to this pattern in order to render the object correctly. Cam-

era calibration can be done with initialization patterns [33]

for both intrinsic and extrinsic parameters. In order to com-

pute extrinsic parameters of camera pose on-the-fly, metric

information is required for the matching correspondences.

In AR research, marker-based camera pose estimation ap-

proaches [15][8] have shown successful registration of virtual

objects with the help of robust detection of fiducial markers.

We replace such markers with the user’s outstretched hand.

The rest of this paper is structured as follows: In Section

2, fingertip tracking and camera pose estimation are described

in detail. In Section 3, we show experimental results regard-

ing the speed and robustness of the system and present exam-

ples of AR applications employing the hand user interface.

In Section 4, we discuss benefits and limitations of our im-

plemented method. We present our conclusions and ideas for

future work in Section 5.

2. Method Description

Wearable computing users cannot be expected to carry

fiducial markers with them at all times. We developed a

vision-based user interface that can track the user’s out-

stretched hand robustly and use it as the reference pattern for

AR inspection. To this end, we present a method of tracking

the fingertip configuration of a single hand posture, and use

it for camera pose estimation. In Figure 2, the overall flow

of the system is illustrated. In a one-time off-line calibration

Figure 2. Flowchart of one-time calibration and real-time

camera pose estimation using fingertip tracking.

step, we construct a user’s hand model by measuring the rela-

tive positions of the outstretched fingertips to each other. We

segment hand regions in the captured camera image, and then

detect and track fingertips, all in real-time. As we recognize

and track an outstretched hand in any position and rotation

seen by a wearable camera, we derive a six degree of free-

dom estimate for the camera, relative to the hand.

2.1. Adaptive Hand Segmentation

Given a captured frame, every pixel is categorized to be

either a skin-color pixel or a non-skin-color pixel. An adap-

tive skin color-based method [17] is used to segment the hand

region. According to the generalized statistical skin color

model [14], each pixel is determined to be in the hand region

if the skin color likelihood is larger than a constant thresh-

old. In order to adapt the skin color model to the illumination

change, a color histogram of the hand region is learned for

each frame and accumulated with the ones from the previous

n frames (n = 5 works well in practice). Then the probabil-

ity of skin color is computed by combining the general skin

color model and the adaptively learned histogram.

The histogram is learned only when the hand is in view

and its fingertips are detected. For example, when the hand

is moved out of sight, the histogram keeps the previously

learned skin color model, so that the system can segment cor-

rectly when the hand comes back into the scene.

The segmentation result, as shown in Figure 3, is used for

tracking the main hand region. Since we are talking about

wearable computing scenarios, where a body-mounted cam-

era sees the hand, which is by necessity within arm’s reach,

we can assume that the majority portion of the skin color seg-

mented image is the hand region. In order to find the largest

blob, we retrieve the point exhibiting the maximum distance

value from the Distance Transform [5] of the segmentation

image. Among skin-colored regions as shown in Figure 3b, a

single connected component of the hand contour is extracted

using OpenCV’s implementation [13] by checking which re-

2



Figure 3. Hand segmentation procedure. Given a captured

image (a), skin color segmentation is performed (b). Then

the distance transform (c) is used to extract a single con-

nected component of the hand (d).

gion the centroid from the previous frame lies in. Since some

large skin-colored object may come into the scene while we

are tracking the hand, constraining the previous centroid of

the hand to be in the current frame’s hand region prevents the

tracking system from jumping to a different region outside of

the hand. This makes the assumption that a user’s hand mo-

tion from frame to frame is not big enough for the centroid to

leave the hand blob entirely. This is true for even very rapid

hand motions at 30 frames per seconds. The contour of the

tracked hand region, as shown in Figure 3d, is then used for

next fingertip detection step.

2.2. Accurate Fingertip Detection

Fingertips are detected from the contour of a hand using a

curvature-based algorithm similar to the one described in [2].

We then fit the curvature points to ellipses in order to increase

the accuracy. The curvature of a contour point is measured on

multiple scale levels in order to detect fingertips with various

sizes as follows: The points with higher curvature values than

a threshold (on any scale level) are selected as candidates for

fingertips by computing a dot product of
−−−−→
PiPi−l and

−−−−→
PiPi+l

as in

Kl(Pi) =

−−−−→
PiPi−l ·

−−−−→
PiPi+l

‖
−−−−→
PiPi−l‖‖

−−−−→
PiPi+l‖

(1)

where Pi is the ith point in the contour, and Pi−l and Pi+l

are preceding and successing points, with displacement index

l on the contour representing the scale. In practice, a range

for l that includes every integer between 5 and 25 works well.

In addition to the high curvature value, the direction of the

curve is considered to determine that the point is a fingertip

and not a valley between fingertips. Directions are indicated

by the cross product of the two vectors.

From the candidate fingertip points as shown in Figure 4a,

Figure 4. Fingertip detection procedure: (a) Ellipses are

fitted to contour based on candidate points. (b) Fingertips

are ordered based on detected thumb

an accurate fingertip point is computed by fitting an ellipse to

the contour around the fingertip using least-squares fitting as

provided by OpenCV [13]. We then compute the intersection

points of the ellipse’s major axis with its edge and pick the

one closer to the fingertip estimated from curvature (depicted

as blue circles in Figure 4a). Experimental results show that

this ellipse fitting method increases the camera pose estima-

tion accuracy (see Table 2 and discussion in Section 4) com-

pared to the point of largest curvature.

Since the detection algorithm may produce false positives

of fingertips for initial detection, we choose the most fre-

quently detected points above the center of the hand for a

certain number of consecutive frames as our final fingertips.

Thus, for initial detection, the hand has to be held fingers

up, which is the most convenient and by far the most com-

mon pose anyway. After fingertips have been detected, we

eliminate false positives by tracking a successful configura-

tion over time. In our experiments, 10 frames are used for

this initial fingertip detection period, which is far less than

a second for a real-time application. The fingertips are then

ordered based on the index of the thumb, which can be deter-

mined as the farthest fingertip from the mean position of all

fingertips as shown in Figure 4b. The order of fingertips is

later used for tracking the fingertips and estimating the cam-

era pose.

2.3. Fingertip Tracking

Once fingertips are detected, we track them based on

matching the newly detected fingertips to the previously

tracked fingertips. Similar to [21], we track the fingertip tra-

jectory by a matching algorithm that minimizes the displace-

ment of pairs of fingertips over two frames. In addition, we

use our knowledge about the centroid of the hand blob to ef-

fectively handle large movements of the hand as follows: The

matching cost is minimized as

fi+1 = arg min

N−1
∑

j=0

‖(fi,j − Ci) − (fi+1,j − Ci+1)‖ (2)

where fi and fi+1 are the sets of N fingertips at the ith and

i + 1th frames respectively, fi,j represents the fingertip of

3



Figure 5. A hand model is constructed by (a) putting the

hand next to the checkerboard pattern, (b) computing the

fingertip positions. Then (c) the coordinates are trans-

lated, yielding (d) the hand coordinate system.

the jth index in fi, and Ci and Ci+1 are the centroids of the

corresponding frames.

While matching the fingertips in two frames, the order

of fingertips on the contour is used to constrain the possi-

ble cases of combinations, determining the ordering (front or

back) by the position of the thumb.

2.4. Hand Model Construction

In order to estimate the camera pose from the tracked fin-

gertips, we measure the size of the hand by calculating the

position of the fingertips in a one-time initialization process.

This measurement can be performed together with calibrat-

ing the intrinsic parameters of a camera [33], putting a hand

with a wide spread posture next to an initialization pattern,

as shown in Figure 5a. While the camera is moving around,

we keep both the hand and the checkerboard pattern in view.

Given the camera pose estimated from the checkerboard pat-

tern, we unproject the fingertips in the captured image to the

parallel plane at finger height:





x

y

1



 = P3×4









X

Y

Z

1









(3)

where (x y 1)T and (X Y Z 1)T are homogeneous represen-

tations of the fingertip coordinates in the image plane and the

world coordinate system respectively, and P3×4 is the pro-

jection matrix of the camera. By setting the Z coordinate as

the average thickness of a finger, we can derive an equation

to compute the X and Y positions of the fingertips given the

(x, y) image points that are tracked as described in the pre-

vious section. In Figure 5b, the locations of fingertips are

Figure 6. Estimating the camera pose from several angles

to the hand. The similarity of the right hand (a), (b), (c) and

the left hand (d), (e), (f) enables the user to use both hands

for inspecting.

plotted with the XY plane, with Z coordinates assumed as

5mm above the initial pattern’s plane.

From the measured fingertip positions relative to the ori-

gin corner point of the initialization pattern, we translate the

coordinate system to the center of the hand. As shown in Fig-

ure 5c, the center point is defined with the X coordinate of

the middle finger and the Y coordinate of the thumb. This

results in the hand’s coordinate system’s y axis being aligned

with the middle finger and the x axis going through the thumb

tip as in Figure 5d. This coordinate system, centered to the

hand, is then used for rendering virtual objects on top of the

hand, providing direct control of the view onto the target.

2.5. Pose Estimation from Fingertips

Using the hand model and the extrinsic camera parame-

ter estimation from [33], a camera pose with 6DOF can be

estimated. As long as the five fingertips of the fixed hand

posture are tracked successfully, the pose estimation method

has enough point correspondences, as four correspondences

are the minimum for the algorithm. In order to inspect an

AR object on top of the hand from different viewing angles,

the user may rotate or move the hand arbitrarily as illustrated

in Figure 6. Based on the symmetry of one’s left and right

hands, the hand model that is built from the left hand can

be used for the right hand as well. In practice, one would

likely measure the non-dominant hand palm-down next to the

checkerboard pattern and use the dominant hand palm-up for

inspecting objects.

Given that there are errors in tracking fingertips, it is ad-

vantageous to smooth the estimated camera pose using a

Kalman filter [31] modeling the position and orientation of

the camera [3]. In our implementation, we define the state x

of the Kalman filter as in [21]:

x =









t

r

vt

vr









(4)

4



Table 1. Processing time for different resolutions

Resolution 320×240 640×480

Processing Time (msec) (msec)

Hand Segmentation 13.24 39.43

Fingertip Detection 4.13 14.80

Fingertip Tracking 0.01 0.01

Pose Estimation 1.54 0.87

Kalman Filtering 0.05 0.04

Total 22.27 69.83

where t is a 3-vector for translation of the camera, r is a

quaternion for rotation, and vt and vr are velocities for them.

The state transition matrix A14×14 is then defined as

A =

(

I7×7 D(∆t)7×7

0 I7×7

)

(5)

where I is an identity matrix and D(∆t) is a diagonal matrix

with diagonal elements ∆t, the time period between captured

frames. The measurement y is directly modeled as

y =

(

t

r

)

(6)

where t and r are the same as in (4). The observation matrix

H and the driving matrix G are defined as

H =
(

I7×7 0
)

7×14
(7)

G =

(

0
I7×7

)

14×7

(8)

directly mapping the state vector to the measurement vector.

By using the Kalman filter as defined above, the estimated

camera pose is smoothed and predicted to be robust against

abrupt errors.

3. Results
We experimented with various configurations considering

the robustness and the speed of the system. The results show

that our method is applicable for real-time applications with

sufficient accuracy to be a user interface alternative to fiducial

marker tracking.

The experiments were performed on a small laptop com-

puter with a 1.8GHz CPU, using a USB 2.0 camera with

640 × 480 resolution. These specs are in line with currently

available ultra mobile PC and high-end wearable computing

platforms. Intrinsic camera parameters were measured by

the calibration method from [33] using the implementation

of OpenCV [13] with a 6 × 8 checkerboard pattern. We used

ARTag [8] to compare marker-based camera pose estimation

with our fingertip tracking approach.

3.1. Speed and Accuracy

The goal for our system was to achieve real-time perfor-

mance of at least 15 frames per second (a conservative min-

imum for interactive systems), and to strive for 30fps, which

Table 2. Reprojection errors for different resolutions and

fingertip detection methods.

Fingertip Detection Resolution RMS error (pixel)

Curvature only 320×240 8.97

640×480 7.96

Ellipse fitting 320×240 5.86

640×480 5.76

is considered real-time. Table 1 lists the speed of the finger-

tip tracking and the camera pose estimation procedures. Our

first experiment shows that the system runs at around 15fps

for 640 × 480 resolution, which meets the interactive sys-

tem constraint. In order to increase the speed, we have tested

it with 320 × 240 resolution for the hand segmentation and

fingertip detection steps, while keeping the capturing and dis-

play resolution at 640 × 480. As a result, the system satisfies

the real-time constraint, running over 30fps.

The increase in performance comes at a slight cost of

tracking accuracy. In Table 2, we list the accuracy according

to the two choices of resolutions. The accuracy is measured

by computing the mean reprojection error at the 48 internal

corner points of the initializing checkerboard pattern. The

checkerboard is detected by OpenCV’s implementation [13],

which is considered to be the ground truth for our experiment

(cf. Table 3). After building the hand model and determining

the coordinates of the fingertips relative to the checkerboard,

we reproject the checkerboard’s corners from the estimated

camera pose and then compute the RMS error of the repro-

jected points (i.e. per-corner pixel distances on the 640×480
viewing plane). The result, as shown in Table 2, shows that

the accuracy at 320× 240 is only marginally smaller than for

640 × 480.

We also assessed the accuracy improvement that we are

getting by employing ellipsoid fitting to our fingertip detec-

tion, as described in section 2.2. As shown in Table 2, the el-

lipse fitting method helps to reduce the error of camera pose

estimation considerably.

3.2. Comparison with Markers

In this experiment, we compared camera pose estimation

accuracy based on markers and fingertips. As shown in Fig-

ure 7a, the user’s hand and an ARTag marker of similar size

are placed next to the ground-truth checkerboard pattern. The

camera pose is then computed separately based solely on the

marker, the hand, and the checkerboard pattern, respectively.

We compare the reprojection errors at the checkerboard pat-

tern’s corners. As part of the experiment, we move the camera

around while keeping the hand, the marker, and the checker-

board pattern all in the same view in order to fairly compare

the estimation accuracy.

The results are plotted over time, as shown in Figure 8.

The y axis represents the reprojection error of the marker

and the fingertip pose estimations, while the x axis shows the

5



Figure 7. (a) A checkerboard, an ARTag marker, and a hand

are seen in the same view. (b) The internal corners of the

checkerboard are reprojected based on marker and hand

tracking, respectively.

Figure 8. The reprojection errors of the camera pose esti-

mation by Fingertips and ARTag

elapsed camera frames. The average and variance of the re-

projection error is shown in Table 3, together with the ground-

truth checkerboard’s reprojection error. The peaks in the re-

projection error from the fingertip pose estimation can be ex-

plained by abrupt inaccurate locations of fingertips. Since

the five point correspondences from the fingertips are close

to the minimum number for the camera pose estimation algo-

rithm, small deviations can cause error spikes in the results.

In order to make the system more robust, occasional jitters

are filtered out by applying our Kalman filter with fine-tuned

noise covariance matrices and thresholds for the camera mo-

tion. In summary, this experiment demonstrates that the pro-

posed fingertip tracking method can be used for camera pose

estimation without losing significant accuracy compared to a

state-of-the-art fiducial marker system.

3.3. Applications
We have implemented an augmented reality proof-of-

concept application, in which a user can select a world-

stabilized object and inspect it using their hand. In order to

make an AR environment, we used ARTag markers [8] for

stabilizing virtual objects in the environment as shown in Fig-

Table 3. Average and variance of reprojection errors

Method Average RMS error (pixel) Variance

ARTag marker 4.79 4.40

Fingertips 5.86 14.77

Checkerboard 0.26 0.002

ure 9a: teapots with red, green, and blue colors, from left to

right. The user can select a teapot by putting his or her hand

close to the desired one as determined by pixel distance on

the image plane. As the fingertips are detected and tracked

successfully, the selected teapot is moved from its original

position to the hand. While the world coordinate system is

defined by the markers’ transformation matrix, the local co-

ordinate system of the camera pose estimated via fingertips is

used for inspecting the virtual object on top of the hand.

In order to seamlessly transfer the object from the world

coordinate to the local coordinate, a linear combination of

the transform matrices based on the marker and the hand is

calculated with a weight coefficient function over time. As

shown in Figure 9, the virtual object is brought to the hand

to allow the user to inspect it, and is released to its original

position when the inspection ends.

4. Discussion
Our tests and experiments indicate that the hand segmen-

tation is somewhat sensitive to changes in illumination, even

though our adaptively learned color model helps robustness a

great deal. In outdoor scenes, as in Figure 10, hand color can

change quite drastically over short periods of time and even

spatially within one frame due to more pronounced surface

normal shading and shadowing. Also the hand color can get

saturated to white, which does not distinguish well from other

bright objects. Most of these effects can be diminished by us-

ing a high quality camera featuring rapid auto-gain control.

Because the hand region becomes an input to the finger-

tip detection, the first step of detecting and tracking the hand

is very important. The assumption for our hand blob track-

ing, classifying the largest skin color area as a hand, works

effectively for the area within a user’s reach. However, it may

fail when a larger region with skin color comes into the scene

and overlaps with the hand. For example, our implementation

will not successfully track a hand when the view shows two

hands of similar area, overlapping with each other. Tracking

multiple skin-colored objects can be performed by a more so-

phisticated algorithm [1].

Regarding accurate fingertip detection, we have tested

other approaches than the proposed curvature-based detec-

tion and ellipse fitting algorithm. A template-based approach

could apply shape filters [21][20][32] to detect a skin-colored

area with fingertip model constraints, for example, having a

circle attached to a cylinder. Such a method has the benefit

of detecting the fingertip without the assumption of the hand

being a single connected component. However, the compu-

tational cost is much higher than for the contour-based al-

6



Figure 9. Selecting and inspecting augmented objects. (a) ARTag is used for stabilizing teapots in the world. (b) Selecting the

green teapot in the middle, and then (c) inspecting it from (d) several angles. (e) As breaking fingertip tracking, the user releases

the object.

Figure 10. Illumination changes causing different hand

skin color (a) and (b) for outdoor scenes.

Figure 11. Flipping the hand from (a) to (d). (b) Fingertips

are not detected because of self-occlusion. Then (c) fin-

gertips are detected again when they are visible, (d) and

rendering the object.

gorithm when detecting fingertips at multiple scales ranging

from “very close” to “at arm’s length” as is normal in wear-

able computer applications. Additionally, shape filters tend

to produce more false negatives than the contour-based ap-

proach, which makes it hard to track the fingertip continu-

ously with a moving camera. Another potential benefit of

template-based detection is that it locates the detected finger-

tip point at the center of the finger, while the contour-based

approach locates it on the outer edge, which may be inaccu-

rate for some unfavorable viewing angles. In order to cope

with that issue, we introduced the ellipse fitting algorithm to

accurately locate the fingertip independently of the viewing

direction. The experimental results in section 3.1 show that

the ellipse fitting effectively and efficiently locates the finger-

tip for establishing the hand coordinate system.

Since we are using only fingertips as point correspon-

dences for camera pose estimation, we have limitations due

to possible self occlusions, as shown in Figure 11. When fin-

gertips are not visible, our system determines that it has lost

tracking the fingertips as in Figure 11b, and tries to detect fin-

gertips again as in Figure 11c. While this recovery happens

promptly enough to not be overly disruptive in wearable ap-

plications, we have started to investigate use of more features

on the hand and silhouette-based approaches such as active

shape models [6] or smart snakes [10] in order to deal with

more articulated hand poses and self occlusions.

5. Conclusions and Future Work
We introduced a real-time six-degree-of-freedom camera

pose estimation method using fingertip tracking. We segment

and track the hand region based on adaptively learned color

distributions. Accurate fingertip positions are then located on

the contour of the hand by fitting ellipses around the segments

of highest curvature. Our results show that camera pose es-

timation from the fingertip locations can be effectively used

instead of marker-based tracking to implement a tangible UI

for wearable computing and AR applications.

For future work, we want to investigate how to improve

accuracy by including more feature points on the hand, and,

especially for the outdoor case, we want to improve the hand

segmentation algorithm. In addition to a single hand pose, we

would like to experiment with different poses, triggering dif-

ferent actions, and combining our method with other gesture-

based interfaces. We also want to investigate how to best han-

dle the occlusion between virtual objects and the hand, as [19]

has started to do. Moreover, we are currently extending our

method to initialize a global AR coordinate system to be used

with markerless natural feature tracking for larger 3D spaces,

such as a tabletop AR environment. Finally, we are planning

to distribute Handy AR as an Open Source Library in the near

future.

6. Acknowledgements
This research was supported in part by the Korea Science

and Engineering Foundation Grant (#2005-215-D00316), a

research contract with the Korea Institute of Science and

Technology (KIST) through the Tangible Space Initiative

project, by NSF grant #IIS-0635492, and by the NSF IGERT

in Interactive Digital Multimedia grant #DGE-0221713.

References
[1] A. A. Argyros and M. I. A. Lourakis. Real-time tracking of

multiple skin-colored objects with a possibly moving camera.

7



In European Conference on Computer Vision, pages Vol III:

368–379, 2004.

[2] A. A. Argyros and M. I. A. Lourakis. Vision-based interpreta-

tion of hand gestures for remote control of a computer mouse.

In Computer Vision in Human-Computer Interaction, pages

40–51, 2006.

[3] R. T. Azuma. Predictive tracking for augmented reality. Tech-

nical Report TR95-007, Department of Computer Science,

University of North Carolina - Chapel Hill.

[4] R. T. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and

B. MacIntyre. Recent advances in augmented reality. IEEE

Computer Graphics and Applications, 21(6):34–47, Nov./

Dec. 2001.

[5] G. Borgefors. Distance transformations in digital images.

Computer Vision, Graphics and Image Processing, 34:344–

371, 1986.

[6] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Active

shape models-their training and application. Computer Vision

and Image Understanding, 61(1):38–59, 1995.

[7] S. Feiner, B. MacIntyre, T. Höllerer, and A. Webster. A touring

machine: Prototyping 3D mobile augmented reality systems

for exploring the urban environment. In Proc. ISWC ’97 (First

Int. Symp. on Wearable Computers), pages 74–81, Cambridge,

MA, Oct. 13–14 1997.

[8] M. Fiala. Artag, a fiducial marker system using digital tech-

niques. In CVPR ’05: Proceedings of the 2005 IEEE Com-

puter Society Conference on Computer Vision and Pattern

Recognition (CVPR’05) - Volume 2, pages 590–596, Wash-

ington, DC, USA, 2005. IEEE Computer Society.

[9] E. Foxlin and M. Harrington. Weartrack: A self-referenced

head and hand tracker for wearable computers and portable

vr. In Proc. ISWC ’00 (Fourth Int. Symp. on Wearable Com-

puters), pages 155–162, Atlanta, GA, Oct. 16–17 2000.

[10] A. Heap. Real-time hand tracking and gesture recognition us-

ing smart snakes. In Interface to Human and Virtual Worlds,

1995.

[11] T. Höllerer and S. Feiner. Mobile augmented reality. In

H. Karimi and A. Hammad, editors, Telegeoinformatics:

Location-Based Computing and Services. Taylor and Francis

Books Ltd., London, UK, 2004.

[12] T. Höllerer, J. Wither, and S. DiVerdi. Anywhere Augmenta-

tion: Towards Mobile Augmented Reality in Unprepared Envi-

ronments. Lecture Notes in Geoinformation and Cartography.

Springer Verlag, 2007.

[13] Intel Corporation. Open Source Computer Vision Library ref-

erence manual. December 2000.

[14] M. J. Jones and J. M. Rehg. Statistical color models with ap-

plication to skin detection. In CVPR, pages 1274–1280. IEEE

Computer Society, 1999.

[15] H. Kato and M. Billinghurst. Marker tracking and hmd cali-

bration for a video-based augmented reality conferencing sys-

tem. In Proceedings of the 2nd International Workshop on

Augmented Reality (IWAR 99), Oct. 1999.

[16] M. Kölsch, A. C. Beall, and M. Turk. The postural comfort

zone for reaching gestures. Technical report, University of

California, Santa Barbara, Computer Science, Aug. 29 2003.

[17] M. Kölsch and M. Turk. Fast 2D hand tracking with flocks

of features and multi-cue integration. In Vision for Human-

Computer Interaction, page 158, 2004.

[18] T. Kurata, T. Okuma, M. Kourogi, and K. Sakaue. The hand

mouse: Gmm hand-color classification and mean shift track-

ing. In Second Intl. Workshop on Recognition, Analysis and

Tracking of Faces and Gestures in Real-time Systems, 2001.
[19] W. Lee and J. Park. Augmented foam: A tangible augmented

reality for product design. In ISMAR, pages 106–109. IEEE

Computer Society, 2005.
[20] Letessier, Julien and Berard, Francois. Visual tracking of bare

fingers for interactive surfaces. In Proceedings of the ACM

Symposium on User Interface Software and Technology, Inter-

active surfaces, pages 119–122, 2004.
[21] K. Oka, Y. Sato, and H. Koike. Real-time fingertip tracking

and gesture recognition. IEEE Computer Graphics and Appli-

cations, 22(6):64–71, 2002.
[22] W. Piekarski and B. Thomas. Tinmith-Metro: New outdoor

techniques for creating city models with an augmented reality

wearable computer. In Proc. ISWC ’01 (Fifth Int. Symp. on

Wearable Computers), pages 31–38, Zürich, Switzerland, Oct.

8–9 2001.
[23] I. Poupyrev, D. Tan, M. Billinghurst, H. Kato, H. Regenbrecht,

and N. Tetsutani. Developing a generic augmented-reality in-

terface. Computer, 35(3):44–50, March 2002.
[24] G. Reitmayr and T. W. Drummond. Going out: Robust model-

based tracking for outdoor augmented reality. In IEEE/ACM

International Symposium on Mixed and Augmented Reality,

pages 109–118, 2006.
[25] T. Starner, S. Mann, B. Rhodes, J. Levine, J. Healey,

D. Kirsch, R. Picard, and A. Pentland. Augmented reality

through wearable computing. Presence, 6(4):386–398, Aug.

1997.
[26] T. Starner, J. Weaver, and A. Pentland. A wearable comput-

ing based american sign language recognizer. In Proc. ISWC

’97 (First Int. Symp. on Wearable Computers), pages 130–137,

Cambridge, MA, Oct. 13–14 1997.
[27] B. D. R. Stenger. Template-based hand pose recognition using

multiple cues. In Asian Conference on Computer Vision, pages

II:551–560, 2006.
[28] E. B. Sudderth, M. I. Mandel, W. T. Freeman, and A. S. Will-

sky. Visual hand tracking using nonparametric belief propa-

gation. In Workshop on Generative Model Based Vision, page

189, 2004.
[29] B. H. Thomas and W. Piekarski. Glove based user interac-

tion techniques for augmented reality in an outdoor environ-

ment. Virtual Reality: Research, Development, and Applica-

tions, 6(3):167–180, 2002. Springer-Verlag London Ltd.
[30] D. Wagner and D. Schmalstieg. First steps towards handheld

augmented reality. In Proc. ISWC ’03 (Seventh Int. Symp. on

Wearable Computers), pages 127–137, White Plains, NY, Oct.

21–23 2003.
[31] G. Welch and G. Bishop. An introduction to the kalman filter.

In Technical Report. University of North Carolina at Chapel

Hill, 1995.
[32] G. Ye, J. Corso, G. Hager, and A. Okamura. Vishap: Aug-

mented reality combining haptics and vision. In International

Conference on Systems, Man and Cybernetics, pages 3425–

3431. IEEE Computer Society, 2003.
[33] Z. Y. Zhang. A flexible new technique for camera calibra-

tion. IEEE Trans. Pattern Analysis and Machine Intelligence,

22(11):1330–1334, Nov. 2000.

8


