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Abstract

Denote S to be the class of functions which are analytic, normalised
and univalent in the open unit disc D = {z : |z| < 1}. The important
subclasses of S are the class of starlike and convex functions, which
we denote by S� and C. This paper focuses on attaining sharp upper
bounds for the functional |a2a4−a2

3| for functions f(z) = z +
∑∞

n=2anzn

belonging to S� and C.
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1 Introduction

Let S denote the class of normalised analytic univalent functions f of the form

f(z) = z +
∞∑

n=2

anzn (1)

where z ∈ D = {z : |z| < 1}. In [5], the qth Hankel determinant for q ≥ 1 and
n ≥ 0 is stated by Noonan and Thomas as

Hq(n) =

∣∣∣∣∣∣∣∣∣∣∣

an an+1... an+q+1

an+1 ...
...

...
an+q−1 ... an+2q−2

∣∣∣∣∣∣∣∣∣∣∣
.

This determinant has also been considered by several authors. For example,
Noor in [6] determined the rate of growth of Hq(n) as n → ∞ for functions
f given by (1) with bounded boundary. Ehrenborg in [1] studied the Hankel
determinant of exponential polynomials. The Hankel transform of an integer
sequence and some of its properties were discussed by Layman in [4].

Easily, one can observe that the Fekete and Szegö functional is H2(1). Fekete
and Szegö then further generalised the estimate |a3 − μa2

2| where μ is real and
f ∈ S. For our discussion in this paper, we consider the Hankel determinant
in the case q = 2 and n = 2,

H2(2) =

∣∣∣∣∣ a2 a3

a3 a4

∣∣∣∣∣ .

We seek upper bound for the functional |a2a4 − a2
3| for functions f belongs to

the class S� and C. The class S� and C are defined as follows.

Definition 1.1 Let f be given by (1). Then f ∈ S� if and only if

Re

{
zf ′(z)

f(z)

}
> 0, z ∈ D. (2)

Definition 1.2 Let f be given by (1). Then f ∈ C if and only if

Re

{
(zf ′(z))′

f ′(z)

}
> 0, z ∈ D. (3)

It follows that f ∈ C if and only if zf ′(z) ∈ S�.

First, some preliminary lemmas.
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2 Preliminary Results

Let P be the family of all functions p analytic in D for which Re{p(z)} > 0
and

p(z) = 1 + c1z + c2z
2 + ... (4)

for z ∈ D.

Lemma 2.1 ([7]) If p ∈ P then |ck| ≤ 2 for each k.

Lemma 2.2 ([3]) The power series for p given in (4) converges in D to a
function in P if and only if the Toeplitz determinants

Dn =

∣∣∣∣∣∣∣∣∣∣

2 c1 c2 ... cn

c−1 2 c1 ... cn−1
...

c−n c−n+1 c−n+2 ... 2

∣∣∣∣∣∣∣∣∣∣
, n = 1, 2, 3, ... (5)

and c−k = c̄k, are all nonnegative. They are strictly positive except for p(z) =∑m
k=1 ρkpo(e

itkz), ρk > 0, tk real and tk �= tj for k �= j; in this case Dn > 0 for
n < m − 1 and Dn = 0 for n ≥ m.

This necessary and sufficient condition is due to Carathéodory and Toeplitz
and can be found in [3].

3 Main Result

Theorem 3.1 Let f ∈ S�. Then

|a2a4 − a2
3| ≤ 1.

The result obtained is sharp.

Proof.

Since f ∈ S�, it follows from (2) that ∃p ∈ P such that

zf ′(z) = f(z)p(z) (6)

for some z ∈ D. Equating coefficients in (6) yields

a2 = c1

a3 = c2
2

+
c21
2

a4 = c3
3

+ c1c2
2

+
c31
6

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (7)
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From (7), it is easily established that

|a2a4 − a2
3| =

∣∣∣∣∣c1c3

3
− c2

2

4
− c4

1

12

∣∣∣∣∣ . (8)

Lemma 2.2 can then be used to obtain the proper bound on (8). We may
assume without restriction that c1 ≥ 0. Rewriting (5) for the cases n=2 and
n=3, result in

D2 =

∣∣∣∣∣∣∣
2 c1 c2

c1 2 c1

c̄2 c1 2

∣∣∣∣∣∣∣ = 8 + 2 Re{c2
1c2} − 2|c2|2 − 4c2

1 ≥ 0,

which is equivalent to
2c2 = c2

1 + x(4 − c2
1) (9)

for some x, |x| ≤ 1.

Further, D3 ≥ 0 is equivalent to

|(4c3 − 4c1c2 + c3
1)(4 − c2

1) + c1(2c2 − c2
1)

2| ≤ 2(4 − c2
1)

2 − 2|2c2 − c2
1|2 ;

and this, with (9), provides the relation

4c3 = c3
1 + 2(4 − c2

1)c1x − c1(4 − c2
1)x

2 + 2(4 − c2
1)(1 − |x|2)z, (10)

for some value of z, |z| ≤ 1.

Suppose now that c1 = c and 0 ≤ c ≤ 2. Using (9) along with (10), we obtain∣∣∣∣∣c1c3

3
− c2

2

4
− c4

1

12

∣∣∣∣∣ =
∣∣∣(4 − c2)c2x

24
− c4

16

+
(4 − c2)(1 − |x|2)cz

6
− (4 − c2)x2(12 + c2)

48

∣∣∣.
Application of the triangle inequality gives∣∣∣∣∣c1c3

3
− c2

2

4
− c4

1

12

∣∣∣∣∣ ≤ c4

16
+

c(4 − c2)

6
+

c2(4 − c2)ρ

24

+
(4 − c2)(c − 2)(c − 6)ρ2

48
= F (ρ) (11)

with ρ = |x| ≤ 1. Furthermore,

F ′(ρ) =
c2(4 − c2)

24
+

(4 − c2)(c − 2)(c − 6)ρ

24



Hankel determinant 623

and with elementary calculus, one can show that F ′(ρ) > 0 for ρ > 0; implying
that F is an increasing function and thus the upper bound for (11) corresponds
to ρ = 1, in which case ∣∣∣∣∣c1c3

3
− c2

2

4
− c4

1

12

∣∣∣∣∣ ≤ 1

for all c ∈ [0, 2]. Equality is attained for functions in S� given by

zf ′(z)

f(z)
=

1 + z

1 − z

and
zf ′(z)

f(z)
=

1 + z2

1 − z2
.

This completes the proof of theorem 3.1.

Theorem 3.2 Let f ∈ C. Then

|a2a4 − a2
3| ≤

1

8
.

The result obtained is sharp.

Proof.

Similar approach as in the proof of Theorem 3.1. Since f ∈ C, it follows from
(3) that ∃p ∈ P such that

(zf ′(z))′ = f ′(z)p(z) (12)

for some z ∈ D. Equating coefficients in (12) yields

a2 = c1
2

a3 = c2
6

+
c21
6

a4 = c3
12

+ c1c2
8

+
c31
24

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (13)

From (13), it is easily established that

|a2a4 − a2
3| =

1

144

∣∣∣6c1c3 + c2
1c2 − 4c2

2 − c4
1

∣∣∣ . (14)

Now, assuming c1 = c(0 ≤ c ≤ 2) and using (9) together with (10) we have

∣∣∣6c1c3 + c2
1c2 − 4c2

2 − c4
1

∣∣∣ =

∣∣∣∣∣3c2(4 − c2)x
2

− (4 − c2)(8 + c2)x2

2
+ 3c(4 − c2)(1 − |x|2)z

∣∣∣∣∣
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and an application of the triangle inequality shows that

∣∣∣6c1c3 + c2
1c2 − 4c2

2 − c4
1

∣∣∣ ≤ 3c(4 − c2) +
3c2(4 − c2)ρ

2

+
(4 − c2)(c − 2)(c − 4)ρ2

2
= F (ρ) (15)

with ρ = |x| ≤ 1. For

F ′(ρ) =
3c2(4 − c2)

2
+ (c − 2)(c − 4)(4 − c2)ρ,

it can be shown that F ′(ρ) > 0 and thus is an increasing function implying
Maxρ≤1 F (ρ) = F (1). Now let

G(c) = F (1)

= 3c(4 − c2) +
3c2(4 − c2)

2
+

(4 − c2)(c − 2)(c − 4)

2
.

Trivially, one can show that G has a maximum attained at c = 1.The upper
bound for (15) corresponds to ρ = 1 and c = 1, in which case

∣∣∣6c1c3 + c2
1c2 − 4c2

2 − c4
1

∣∣∣ ≤ 18.

Letting c1 = 1, c2 = −1 and c3 = −2 in (14) shows that the result is sharp.
This completes the proof of Theorem 3.2.
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[3] Grenander, U. and Szegö, G. : Toeplitz forms and their application, Univ.
of California Press, Berkeley and Los Angeles, (1958)

[4] Layman, J.W. : The Hankel transform and some of its properties, J. of
integer sequences, 4(2001): 1-11.



Hankel determinant 625

[5] Noonan, J.W. and Thomas, D.K. : On the second Hankel determinant of
areally mean p-valent functions, Trans. Amer. Math. Soc., 223 (2)(1976):
337-346.

[6] Noor, K.I. : Hankel determinant problem for the class of functions
with bounded boundary rotation, Rev. Roum. Math. Pures Et Appl.,
28(8)(1983): 731-739.

[7] Pommerenke, Ch. : Univalent functions, Vandenhoeck and Ruprecht,
Göttingen, (1975)

Received: January 20, 2007


