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Abstract

Denote S to be the class of functions which are analytic, normalised
and univalent in the open unit disc D = {z : |z| < 1}. The important
subclasses of S are the class of starlike and convex functions, which
we denote by &* and C. This paper focuses on attaining sharp upper
bounds for the functional |azas — a3| for functions f(2) = 2+ 322 ya, 2"
belonging to $* and C.
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1 Introduction
Let S denote the class of normalised analytic univalent functions f of the form
fz) =24+ a.2" (1)
n=2

where z € D = {z : |z| < 1}. In [5], the ¢th Hankel determinant for ¢ > 1 and
n > 0 is stated by Noonan and Thomas as

Qp, Apni1--- Aptq+1
Qp+1 :
H, (n) = .
An+tg-1 An42q—2

This determinant has also been considered by several authors. For example,
Noor in [6] determined the rate of growth of H,(n) as n — oo for functions
f given by (1) with bounded boundary. Ehrenborg in [1] studied the Hankel
determinant of exponential polynomials. The Hankel transform of an integer
sequence and some of its properties were discussed by Layman in [4].

Easily, one can observe that the Fekete and Szeg6 functional is Ha(1). Fekete
and Szego then further generalised the estimate |as — pa3| where p is real and
f € 8. For our discussion in this paper, we consider the Hankel determinant
in the case ¢ = 2 and n = 2,

We seek upper bound for the functional |asa, — a3] for functions f belongs to
the class §* and C. The class S* and C are defined as follows.

Definition 1.1 Let f be given by (1). Then f € S* if and only if
Zf’(Z)}
Re >0, ze€D. 2
e 2
Definition 1.2 Let f be given by (1). Then f € C if and only if

Re {%(3)/}>0, z € D. (3)

It follows that f € C if and only if zf'(2) € S™.

First, some preliminary lemmas.
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2 Preliminary Results

Let P be the family of all functions p analytic in D for which Re{p(z)} > 0
and
p(2) =1+ crz+cz® + ... (4)

for z € D.
Lemma 2.1 ([7]) If p € P then |cx| < 2 for each k.

Lemma 2.2 ([3]) The power series for p given in (4) converges in D to a
function in P if and only if the Toeplitz determinants

2 c1 Co ... C,
c_ 2 cl ... Cp—

D, =| ! Yon=1,23, .. (5)
C_p Copil C_pio ... 2

and c_y = ¢, are all nonnegative. They are strictly positive except for p(z) =
Sy prpo(€e2), pr > 0, tx real and ty, # t; for k # j; in this case D,, > 0 for
n<m-—1and D, =0 forn>m.

This necessary and sufficient condition is due to Carathéodory and Toeplitz
and can be found in [3].

3 Main Result
Theorem 3.1 Let f € S*. Then

lagay — a3| < 1.
The result obtained is sharp.

Proof.

Since f € §*, it follows from (2) that Ip € P such that
2f'(2) = f(2)p(2) (6)
for some z € D. Equating coefficients in (6) yields

a9 = C1
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From (7), it is easily established that

2 4
C1C3 C C
|a2a4—a§|:T—Z2—1—;' (8>

Lemma 2.2 can then be used to obtain the proper bound on (8). We may
assume without restriction that ¢; > 0. Rewriting (5) for the cases n=2 and
n=3, result in

2 C1 (g
D2 =\ C 2 c | =8+2 Re{cf@} — 2’02‘2 — 463 > O,
52 C1 2

which is equivalent to
200 = ¢} + (4 — ) 9)

for some z, |z| < 1.

Further, D3 > 0 is equivalent to
|(4es — derey +63) (4 — ) + 1200 — ¢1)? < 2(4 — 1) — 2|2¢y — F]? ;
and this, with (9), provides the relation
des = +2(4 — A)err — (4 — )a® +2(4 — ) (1 — |z]?)z, (10)
for some value of z, |z] < 1.

Suppose now that ¢; = ¢ and 0 < ¢ < 2. Using (9) along with (10), we obtain

e & | _ (d=chin_o
3 4 12 24 16
(A=A = |zf)ez  (4=cA)a?(12+ 02)‘
6 48

Application of the triangle inequality gives

%_g_c_‘f c_4+c(4—02)+02(4—02)p
3 4 12 — 16 6 24
(4—c*)(c—2)(c—6)p*
* 48
= Flp) (11)

with p = |z| < 1. Furthermore,

cd-c)  [@=-)e=2)(c=6)p

F'(p) =
(p) 24 24
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and with elementary calculus, one can show that F’(p) > 0 for p > 0; implying
that F is an increasing function and thus the upper bound for (11) corresponds
to p =1, in which case

cie3 2

3 4 12

for all ¢ € [0,2]. Equality is attained for functions in S* given by

712) 14z
f(2) 1—=2

and
2f'(z) 142

flz)  1—22"
This completes the proof of theorem 3.1.

Theorem 3.2 Let f € C. Then

co| —

|azay — a3] <

The result obtained is sharp.

Proof.

Similar approach as in the proof of Theorem 3.1. Since f € C, it follows from
(3) that Ip € P such that

(2f'(2))" = f'(2)p(2) (12)
for some z € D. Equating coefficients in (12) yields
[ %
w=%+E (. (13)

3
—c3 cica g
ay =75+ =g+ 5

From (13), it is easily established that

1 (14)

1
lasay — a3| = 10 ‘60103 +cicy — 4y — ¢

Now, assuming ¢; = ¢(0 < ¢ < 2) and using (9) together with (10) we have

362(42—62)33 B (4—02)(28+02)x2 _|_30(4— 62)(1 . |QZ|2)Z

2 2 4
6cics + cica — 4c; — cl‘ =
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and an application of the triangle inequality shows that

3c2(4 — 2
6cic3 + cicy — 4cy — cﬂ < 3c(4—A)+ M
(4 =) (c—2)(c—4)p?
+
2
= F(p) (15)
with p = |z| < 1. For
3c%(4 —
P = e -,

it can be shown that F’(p) > 0 and thus is an increasing function implying
Max,<; F(p) = F(1). Now let

G(c) = F(1)

3c%(4 — ?) N (4 —c*)(c—2)(c— 4)'

= 3c(4—¢2
cf )+ 5 5

Trivially, one can show that G has a maximum attained at ¢ = 1.The upper
bound for (15) corresponds to p = 1 and ¢ = 1, in which case

‘60103 + ey — 4ch — cﬂ < 18.

Letting ¢; = 1, ¢ = —1 and ¢3 = —2 in (14) shows that the result is sharp.
This completes the proof of Theorem 3.2.
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