Hankel Determinant for Starlike and Convex Functions

Aini Janteng
School of Science and Technology, Universiti Malaysia Sabah Locked Bag No.2073, 88999 Kota Kinabalu, Sabah, Malaysia aini_jg@ums.edu.my
Suzeini Abdul Halim
Institute of Mathematical Sciences, Universiti Malaya
50603 Kuala Lumpur, Malaysia
suzeini@um.edu.my
Maslina Darus
School of Mathematical Sciences
Faculty of Sciences and Technology
Universiti Kebangsaan Malaysia
43600 Bangi, Selangor, Malaysia
maslina@pkrisc.cc.ukm.my

Abstract

Denote \mathcal{S} to be the class of functions which are analytic, normalised and univalent in the open unit disc $\mathcal{D}=\{z:|z|<1\}$. The important subclasses of \mathcal{S} are the class of starlike and convex functions, which we denote by \mathcal{S}^{\star} and \mathcal{C}. This paper focuses on attaining sharp upper bounds for the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for functions $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ belonging to \mathcal{S}^{\star} and \mathcal{C}.

Mathematics Subject Classification: Primary 30C45

Keywords: starlike functions, convex functions, Hankel determinant

1 Introduction

Let \mathcal{S} denote the class of normalised analytic univalent functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

where $z \in \mathcal{D}=\{z:|z|<1\}$. In [5], the q th Hankel determinant for $q \geq 1$ and $n \geq 0$ is stated by Noonan and Thomas as

$$
H_{q}(n)=\left|\begin{array}{ccc}
a_{n} & a_{n+1} \ldots & a_{n+q+1} \\
a_{n+1} & \ldots & \vdots \\
\vdots & & \\
a_{n+q-1} & \ldots & a_{n+2 q-2}
\end{array}\right| .
$$

This determinant has also been considered by several authors. For example, Noor in [6] determined the rate of growth of $H_{q}(n)$ as $n \rightarrow \infty$ for functions f given by (1) with bounded boundary. Ehrenborg in [1] studied the Hankel determinant of exponential polynomials. The Hankel transform of an integer sequence and some of its properties were discussed by Layman in [4].

Easily, one can observe that the Fekete and Szegö functional is $\mathcal{H}_{2}(1)$. Fekete and Szegö then further generalised the estimate $\left|a_{3}-\mu a_{2}^{2}\right|$ where μ is real and $f \in \mathcal{S}$. For our discussion in this paper, we consider the Hankel determinant in the case $q=2$ and $n=2$,

$$
H_{2}(2)=\left|\begin{array}{cc}
a_{2} & a_{3} \\
a_{3} & a_{4}
\end{array}\right|
$$

We seek upper bound for the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for functions f belongs to the class \mathcal{S}^{\star} and \mathcal{C}. The class \mathcal{S}^{\star} and \mathcal{C} are defined as follows.

Definition 1.1 Let f be given by (1). Then $f \in \mathcal{S}^{\star}$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, \quad z \in \mathcal{D} \tag{2}
\end{equation*}
$$

Definition 1.2 Let f be given by (1). Then $f \in \mathcal{C}$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right\}>0, \quad z \in \mathcal{D} \tag{3}
\end{equation*}
$$

It follows that $f \in C$ if and only if $z f^{\prime}(z) \in S^{\star}$.
First, some preliminary lemmas.

2 Preliminary Results

Let \mathcal{P} be the family of all functions p analytic in \mathcal{D} for which $\operatorname{Re}\{p(z)\}>0$ and

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+\ldots \tag{4}
\end{equation*}
$$

for $z \in \mathcal{D}$.
Lemma 2.1 ([7]) If $p \in \mathcal{P}$ then $\left|c_{k}\right| \leq 2$ for each k.
Lemma 2.2 ([3]) The power series for p given in (4) converges in \mathcal{D} to a function in \mathcal{P} if and only if the Toeplitz determinants

$$
D_{n}=\left|\begin{array}{cccc}
2 & c_{1} & c_{2} \ldots & c_{n} \tag{5}\\
c_{-1} & 2 & c_{1} \ldots & c_{n-1} \\
\vdots & & & \\
c_{-n} & c_{-n+1} & c_{-n+2} \ldots & 2
\end{array}\right|, \quad n=1,2,3, \ldots
$$

and $c_{-k}=\bar{c}_{k}$, are all nonnegative. They are strictly positive except for $p(z)=$ $\sum_{k=1}^{m} \rho_{k} p_{o}\left(e^{i t_{k}} z\right), \rho_{k}>0, t_{k}$ real and $t_{k} \neq t_{j}$ for $k \neq j$; in this case $D_{n}>0$ for $n<m-1$ and $D_{n}=0$ for $n \geq m$.

This necessary and sufficient condition is due to Carathéodory and Toeplitz and can be found in [3].

3 Main Result

Theorem 3.1 Let $f \in \mathcal{S}^{\star}$. Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 1
$$

The result obtained is sharp.

Proof.

Since $f \in \mathcal{S}^{\star}$, it follows from (2) that $\exists p \in \mathcal{P}$ such that

$$
\begin{equation*}
z f^{\prime}(z)=f(z) p(z) \tag{6}
\end{equation*}
$$

for some $z \in \mathcal{D}$. Equating coefficients in (6) yields

$$
\left.\begin{array}{c}
a_{2}=c_{1} \tag{7}\\
a_{3}=\frac{c_{2}}{2}+\frac{c_{1}^{2}}{2} \\
a_{4}=\frac{c_{3}}{3}+\frac{c_{1} c_{2}}{2}+\frac{c_{1}^{3}}{6}
\end{array}\right\} .
$$

From (7), it is easily established that

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right|=\left|\frac{c_{1} c_{3}}{3}-\frac{c_{2}^{2}}{4}-\frac{c_{1}^{4}}{12}\right| . \tag{8}
\end{equation*}
$$

Lemma 2.2 can then be used to obtain the proper bound on (8). We may assume without restriction that $c_{1} \geq 0$. Rewriting (5) for the cases $\mathrm{n}=2$ and $\mathrm{n}=3$, result in

$$
D_{2}=\left|\begin{array}{ccc}
2 & c_{1} & c_{2} \\
c_{1} & 2 & c_{1} \\
\bar{c}_{2} & c_{1} & 2
\end{array}\right|=8+2 \operatorname{Re}\left\{c_{1}^{2} c_{2}\right\}-2\left|c_{2}\right|^{2}-4 c_{1}^{2} \geq 0
$$

which is equivalent to

$$
\begin{equation*}
2 c_{2}=c_{1}^{2}+x\left(4-c_{1}^{2}\right) \tag{9}
\end{equation*}
$$

for some $x,|x| \leq 1$.
Further, $D_{3} \geq 0$ is equivalent to

$$
\left|\left(4 c_{3}-4 c_{1} c_{2}+c_{1}^{3}\right)\left(4-c_{1}^{2}\right)+c_{1}\left(2 c_{2}-c_{1}^{2}\right)^{2}\right| \leq 2\left(4-c_{1}^{2}\right)^{2}-2\left|2 c_{2}-c_{1}^{2}\right|^{2}
$$

and this, with (9), provides the relation

$$
\begin{equation*}
4 c_{3}=c_{1}^{3}+2\left(4-c_{1}^{2}\right) c_{1} x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z \tag{10}
\end{equation*}
$$

for some value of $z,|z| \leq 1$.
Suppose now that $c_{1}=c$ and $0 \leq c \leq 2$. Using (9) along with (10), we obtain

$$
\begin{aligned}
\left|\frac{c_{1} c_{3}}{3}-\frac{c_{2}^{2}}{4}-\frac{c_{1}^{4}}{12}\right|= & \left\lvert\, \frac{\left(4-c^{2}\right) c^{2} x}{24}-\frac{c^{4}}{16}\right. \\
& \left.+\frac{\left(4-c^{2}\right)\left(1-|x|^{2}\right) c z}{6}-\frac{\left(4-c^{2}\right) x^{2}\left(12+c^{2}\right)}{48} \right\rvert\,
\end{aligned}
$$

Application of the triangle inequality gives

$$
\begin{align*}
\left|\frac{c_{1} c_{3}}{3}-\frac{c_{2}^{2}}{4}-\frac{c_{1}^{4}}{12}\right| \leq & \frac{c^{4}}{16}+\frac{c\left(4-c^{2}\right)}{6}+\frac{c^{2}\left(4-c^{2}\right) \rho}{24} \\
& +\frac{\left(4-c^{2}\right)(c-2)(c-6) \rho^{2}}{48} \\
= & F(\rho) \tag{11}
\end{align*}
$$

with $\rho=|x| \leq 1$. Furthermore,

$$
F^{\prime}(\rho)=\frac{c^{2}\left(4-c^{2}\right)}{24}+\frac{\left(4-c^{2}\right)(c-2)(c-6) \rho}{24}
$$

and with elementary calculus, one can show that $F^{\prime}(\rho)>0$ for $\rho>0$; implying that F is an increasing function and thus the upper bound for (11) corresponds to $\rho=1$, in which case

$$
\left|\frac{c_{1} c_{3}}{3}-\frac{c_{2}^{2}}{4}-\frac{c_{1}^{4}}{12}\right| \leq 1
$$

for all $c \in[0,2]$. Equality is attained for functions in \mathcal{S}^{\star} given by

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{1+z}{1-z}
$$

and

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{1+z^{2}}{1-z^{2}}
$$

This completes the proof of theorem 3.1.
Theorem 3.2 Let $f \in \mathcal{C}$. Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{8}
$$

The result obtained is sharp.

Proof.

Similar approach as in the proof of Theorem 3.1. Since $f \in \mathcal{C}$, it follows from (3) that $\exists p \in \mathcal{P}$ such that

$$
\begin{equation*}
\left(z f^{\prime}(z)\right)^{\prime}=f^{\prime}(z) p(z) \tag{12}
\end{equation*}
$$

for some $z \in \mathcal{D}$. Equating coefficients in (12) yields

$$
\left.\begin{array}{c}
a_{2}=\frac{c_{1}}{2} \tag{13}\\
a_{3}=\frac{c_{2}}{6}+\frac{c_{1}^{2}}{6} \\
a_{4}=\frac{c_{3}}{12}+\frac{c_{1} c_{2}}{8}+\frac{c_{1}^{3}}{24}
\end{array}\right\} .
$$

From (13), it is easily established that

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right|=\frac{1}{144}\left|6 c_{1} c_{3}+c_{1}^{2} c_{2}-4 c_{2}^{2}-c_{1}^{4}\right| \tag{14}
\end{equation*}
$$

Now, assuming $c_{1}=c(0 \leq c \leq 2)$ and using (9) together with (10) we have

$$
\left|6 c_{1} c_{3}+c_{1}^{2} c_{2}-4 c_{2}^{2}-c_{1}^{4}\right|=\left|\frac{3 c^{2}\left(4-c^{2}\right) x}{2}-\frac{\left(4-c^{2}\right)\left(8+c^{2}\right) x^{2}}{2}+3 c\left(4-c^{2}\right)\left(1-|x|^{2}\right) z\right|
$$

and an application of the triangle inequality shows that

$$
\begin{align*}
\left|6 c_{1} c_{3}+c_{1}^{2} c_{2}-4 c_{2}^{2}-c_{1}^{4}\right| \leq & 3 c\left(4-c^{2}\right)+\frac{3 c^{2}\left(4-c^{2}\right) \rho}{2} \\
& +\frac{\left(4-c^{2}\right)(c-2)(c-4) \rho^{2}}{2} \\
= & F(\rho) \tag{15}
\end{align*}
$$

with $\rho=|x| \leq 1$. For

$$
F^{\prime}(\rho)=\frac{3 c^{2}\left(4-c^{2}\right)}{2}+(c-2)(c-4)\left(4-c^{2}\right) \rho
$$

it can be shown that $F^{\prime}(\rho)>0$ and thus is an increasing function implying $\operatorname{Max}_{\rho \leq 1} F(\rho)=F(1)$. Now let

$$
\begin{aligned}
G(c) & =F(1) \\
& =3 c\left(4-c^{2}\right)+\frac{3 c^{2}\left(4-c^{2}\right)}{2}+\frac{\left(4-c^{2}\right)(c-2)(c-4)}{2} .
\end{aligned}
$$

Trivially, one can show that G has a maximum attained at $c=1$. The upper bound for (15) corresponds to $\rho=1$ and $c=1$, in which case

$$
\left|6 c_{1} c_{3}+c_{1}^{2} c_{2}-4 c_{2}^{2}-c_{1}^{4}\right| \leq 18
$$

Letting $c_{1}=1, c_{2}=-1$ and $c_{3}=-2$ in (14) shows that the result is sharp. This completes the proof of Theorem 3.2.

References

[1] Ehrenborg, R. : The Hankel determinant of exponential polynomials, American Mathematical Monthly, 107(2000): 557-560.
[2] Fekete, M. and Szegö, G. : Eine Bemerkung uber ungerade schlichte Funktionen, J. London Math. Soc., 8 (1933): 85-89.
[3] Grenander, U. and Szegö, G. : Toeplitz forms and their application, Univ. of California Press, Berkeley and Los Angeles, (1958)
[4] Layman, J.W. : The Hankel transform and some of its properties, J. of integer sequences, 4(2001): 1-11.
[5] Noonan, J.W. and Thomas, D.K. : On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc., 223 (2)(1976): 337-346.
[6] Noor, K.I. : Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures Et Appl., 28(8)(1983): 731-739.
[7] Pommerenke, Ch. : Univalent functions, Vandenhoeck and Ruprecht, Göttingen, (1975)

Received: January 20, 2007

