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HANKEL OPERATORS ON HARMONIC BERGMAN SPACES
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Abstract. We study Hankel operators on the harmonic Bergman spaces on bounded
smooth domains, and obtain a necessary and sufficient condition for Hankel operators to be
bounded or compact on both harmonic Bergman space and its dual space.

1. Introduction. LetΩ be a bounded domain withC∞-boundary inRn, n ≥ 2, and
V be the Lebesgue measure onRn. For 1 ≤ p < ∞, theLp harmonic Bergman space
bp = bp(Ω) is the set of all complex-valued harmonic functionsu onΩ for which

‖u‖p =
( ∫

Ω

|u|pdV
)1/p

< ∞ .

Also, byb∞ we denote the space of all bounded harmonic functions onΩ . It is known that
b∞ is dense in eachbp.

As is well-known,bp is a closed subspace ofLp = Lp(Ω,V ) and hence a Banach space.
In particular,b2 is a Hilbert space. Each point evaluation is a bounded linear functional on
b2. Hence, for eachx ∈ Ω , there exists a unique functionR(x, ·) ∈ b2 having the following
reproducing property:

f (x) =
∫
Ω

f (y)R(x, y)dy

for all f ∈ b2, wheredy = dV (y). The reproducing kernelsR(x, ·) are known to be sym-
metric and real-valued. LetQ be the Hilbert space orthogonal projection fromL2 onto b2.
Then, the following integral formula holds:

Q[f ](x) =
∫
Ω

R(x, y)f (y)dy, x ∈ Ω(1.1)

for all f ∈ L2. For each fixedx ∈ Ω , the functionR(x, ·) is known to be bounded onΩ .
Thus, the operatorQ defined by (1.1) extends to an integral operator fromL1 into the space
of all harmonic functions onΩ . Moreover, for 1< p < ∞, it is known thatQ is a bounded
projection fromLp ontobp.

Let 1< p < ∞ andf ∈ L1. TheHankel operator Hf with symbolf is densely defined
onbp by

Hfu = (I −Q)Mf u(1.2)

for u ∈ b∞, whereMf is the multiplication operator defined byMf g = f g.
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Let f ∈ L1. Thecommutator with symbolf is defined byCf = MfQ − QMf . If
g ∈ L∞, then it is easy to see thatCf g is well-defined. SinceL∞ is dense in everyLp , Cf
is densely defined onLp for each 1< p < ∞. As we will see, there is a close relationship
between Hankel operators and commutators.

In this paper, we study Hankel operators on harmonic Bergman spacesbp defined on
a bounded smooth domain inRn for 1 < p < ∞. We present a necessary and sufficient
condition forHf to be bounded or compact on bothbp and its dual space. The results of this
paper extend those in [6] on the unit ball to general bounded smooth domains inRn.

This paper is organized as follows. In Section 2, we state our main results. In Section 3,
we collect some preliminary results that we will need. In the last section, we prove our main
result.

The author would like to thank Professor Hitoshi Arai for his help, encouragement, and
advice. He also thanks Dai Wakisaka for useful discussions during the preparation of this
paper.

NOTATION. Throughout the paper, the exponentp′ will always denote the conjugate
exponent ofp, i.e., 1/p+1/p′ = 1 for 1< p < ∞. χS denotes the characteristic function of
a setS ⊂ Rn. We also use the notationA � B if there exists a positive constantC such that
A ≤ CB. Also, we writeA ≈ B if A � B andB � A.

2. Main results. Let 1 ≤ p < ∞ andδ ∈ (0,1). Forx ∈ Ω , let r(x) = dist(x, ∂Ω)
and

Eδ(x) = {y ∈ Ω ; |y − x| < δr(x)} .
Sinceδ < 1,Eδ(x) is actually the euclidean ball with center atx and radiusδr(x).

Forf ∈ Lp, we define

f̂δ(x) = 1

V (Eδ(x))

∫
Eδ(x)

f (y)dy ,

MVp
δ (f ; x) = 1

V (Eδ(x))

∫
Eδ(x)

|f (y)|pdy ,

MOp
δ (f ; x) = 1

V (Eδ(x))

∫
Eδ(x)

|f (y)− f̂δ(x)|pdy .

TheBloch space B andlittle Bloch space B0 are defined by

B = {f ∈ C1(Ω) ; sup
x∈Ω

r(x)|∇f (x)| < ∞} ,

B0 = {f ∈ C1(Ω) ; r(x)|∇f (x)| → 0 asx → ∂Ω} .
The space BMpδ and its subspace VMpδ are defined by

BMp
δ = {f ∈ Lp ; sup

x∈Ω
MVp

δ (f ; x) < ∞} ,

VMp
δ = {f ∈ Lp ; MVp

δ (f ; x) → 0 asx → ∂Ω} .
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Since MVpδ (f ; x) = (̂|f |p)δ(x), Theorem 3.5 and Theorem 3.11 of [2] indicate that BMp
δ and

VMp
δ are independent of the choice ofδ. So, we may dropδ and simply write BMp = BMp

δ

and VMp = VMp
δ .

The space BMOpδ and its subspace VMOpδ are defined by

BMOp
δ = {f ∈ Lp ; sup

x∈Ω
MOp

δ (f ; x) < ∞} ,
VMOp

δ = {f ∈ Lp ; MOp
δ (f ; x) → 0 asx → ∂Ω} .

We will see later that BMOpδ and VMOpδ are independent of the choice ofδ. Thereforeδ will
be dropped in the future references to these two spaces.

Let 1 ≤ p < q < ∞. A simple computation using Hölder’s inequality gives

MVp
δ (f ; x)1/p ≤ MVq

δ (f ; x)1/q, MOp
δ (f ; x)1/p ≤ MOq

δ (f ; x)1/q .(2.1)

Thus, we have

BMq ⊂ BMp, VMq ⊂ VMp, BMOq ⊂ BMOp, VMOq ⊂ VMOp .

Furthermore, it is easy to see that these inclusions are proper. For example, iff is a function
with compact support inΩ such thatf is in Lp but not inLq , thenf is in VMOp but not in
VMOq .

The main result of this paper is the following theorem, which extends the results obtained
by J. Miao in [6].

THEOREM 2.1. Let p ∈ [2,∞) and f ∈ Lp.
(a) Hf is bounded on both bp and bp

′
if and only if f ∈ BMOp.

(b) Hf is compact on both bp and bp
′
if and only if f ∈ VMOp.

The following two corollaries are immediate consequences of the theorem above.

COROLLARY 2.2. Let f ∈ L2.
(a) Hf is bounded on b2 if and only if f ∈ BMO2.
(b) Hf is compact on b2 if and only if f ∈ VMO2.

COROLLARY 2.3. Let p ∈ [2,∞) and f ∈ bp.
(a) Hf is bounded on both bp and bp

′
if and only if f ∈ B.

(b) Hf is compact on both bp and bp
′
if and only if f ∈ B0.

3. Lemmas. Recall thatr(x) = dist(x, ∂Ω) for x ∈ Ω . Forε > 0, we set

Ωε = {y ∈ Ω ; r(y) ≥ ε} ,
andDε = Ω \Ωε. Letπ be the normal projection to∂Ω , namely, forx ∈ Ω near∂Ω , π(x)
is the closest point of∂Ω to x. Then the smoothness of the boundary∂Ω implies that there
existsε0 > 0 such that the following hold.

(a) r is a smooth function onDε0.
(b) The projectionπ : Dε0 → ∂Ω is well-defined and smooth.
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(c) For t > 0 with t ≤ ε0, the projectionπ |∂Ωt : ∂Ωt → ∂Ω is one-to-one and onto,
andη ∈ ∂Ωt can be written asη = π(η)+ tnπ(η). Here and elsewhere,nζ denotes the inward
unit normal to∂Ω at ζ ∈ ∂Ω .

(d) ∇r(η) = nπ(η) for η ∈ Dε0.
(e) For all 0< ε ≤ ε0 and nonnegative continuous functionsf onDε,∫

Dε

f (x)dx ≈
∫
∂Ω

∫ ε

0
f (ζ + tnζ )dtdσ (ζ ) ,(3.1)

whereσ denotes the surface area measure on∂Ω .
We refer to [5] and [3] for more information and proofs.

LEMMA 3.1. Let δ ∈ (0,1). Then we have

(1 − δ)r(x) < r(y) < (1 + δ)r(x)(3.2)

for all x ∈ Ω and y ∈ Eδ(x).
PROOF. See Lemma 3.1 of [2]. �

LEMMA 3.2. Let δ ∈ (0,1) and x ∈ Ω . If y ∈ Eδ/3(x), then Eδ/3(y) ⊂ Eδ(x) and
Eδ/3(x) ⊂ Eδ(y).

PROOF. The proof is essentially the same as that of Lemma 5 of [6]. �

LEMMA 3.3. (a) There is a constant C0 depending only onΩ such that

C−1
0 ≤ R(x, x)r(x)n ≤ C0(3.3)

for all x ∈ Ω .
(b) Let δ ∈ (0,1). Then there is a constant C1 depending only on Ω such that

|R(y, z)− R(x, x)|
|R(x, x)| ≤ C1δ

(1 − δ)n+1
(3.4)

for all x ∈ Ω and y, z ∈ Eδ(x).
PROOF. Part (a) is an easy consequence of Theorem 1.1 of [4]. Now we prove (b). By

Theorem 1.1 of [4], there is a constantC such that

|∇yR(y, z)| ≤ C

d(y, z)n+1 ≤ C

r(y)n+1 ,

|∇zR(y, z)| ≤ C

d(y, z)n+1 ≤ C

r(y)n+1

for all y, z ∈ Ω , whered(y, z) = |y − z| + r(y) + r(z). For y ∈ Eδ(x), (3.2) shows that
r(y) > (1 − δ)r(x). Thus, fory, z ∈ Eδ(x), we have

|∇yR(y, z)| ≤ C

r(y)n+1 ≤ C

(1 − δ)n+1r(x)n+1 ,

|∇zR(y, z)| ≤ C

r(y)n+1 ≤ C

(1 − δ)n+1r(x)n+1 .
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If y, z ∈ Eδ(x), then Mean Value Theorem gives

|R(y, z)− R(x, x)| ≤ sup
u,v∈Eδ(x)

(|∇uR(u, v)||y − x| + |∇vR(u, v)||z − x|)

≤ 2Cδ

(1 − δ)n+1r(x)n
.

Combining this with (a), we obtain (b). �

LEMMA 3.4. Let δ ∈ (0,1) and p ∈ [1,∞). If f ∈ Lp, then

MOp
δ (f ; x) ≤ 1

V (Eδ(x))2

∫
Eδ(x)

∫
Eδ(x)

|f (y)− f (z)|pdzdy ≤ 2pMOp
δ (f ; x)(3.5)

for all x ∈ Ω .

PROOF. For everyy, z ∈ Ω ,

|f (y)− f (z)| ≤ |f (y)− f̂δ(x)| + |f (z)− f̂δ(x)| ,
and therefore

|f (y)− f (z)|p ≤ 2p−1(|f (y)− f̂δ(x)|p + |f (z)− f̂δ(x)|p) .
Thus

1

V (Eδ(x))2

∫
Eδ(x)

∫
Eδ(x)

|f (y)− f (z)|pdzdy

≤ 2p−1

V (Eδ(x))2

∫
Eδ(x)

∫
Eδ(x)

(|f (y)− f̂δ(x)|p + |f (z)− f̂δ(x)|p)dzdy

= 2p−1

V (Eδ(x))2

∫
Eδ(x)

|f (y)− f̂δ(x)|pdy
∫
Eδ(x)

dz× 2 = 2p MOp
δ (f ; x) .

On the other hand, we have

MOp
δ (f ; x) = 1

V (Eδ(x))

∫
Eδ(x)

∣∣∣∣f (y)− 1

V (Eδ(x))

∫
Eδ(x)

f (z)dz

∣∣∣∣p dy
≤ 1

V (Eδ(x))1+p

∫
Eδ(x)

( ∫
Eδ(x)

|f (y)− f (z)|dz
)p
dy .

Applying Hölder’s inequality, we get

MOp
δ (f ; x) ≤ 1

V (Eδ(x))2

∫
Eδ(x)

∫
Eδ(x)

|f (y)− f (z)|pdzdy . �

REMARK. If p = 2, then it follows from a direct computation that

1

V (Eδ(x))2

∫
Eδ(x)

∫
Eδ(x)

|f (y)− f (z)|2dzdy = 2 MO2
δ (f ; x)

for all x ∈ Ω .

LEMMA 3.5. Let p ∈ [1,∞) and δ ∈ (0,1). Then B ⊂ BMOp
δ and B0 ⊂ VMOp

δ .
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PROOF. Supposef ∈ B andx ∈ Ω . For y ∈ Eδ(x), it follows from Mean Value
Theorem that

|f (y)− f (x)| ≤
(

sup
z∈Eδ(x)

|∇f (z)|
)

|y − x| ≤
(

sup
z∈Eδ(x)

r(z)|∇f (z)|
) |y − x|
(1 − δ)r(x)

≤ δ

1 − δ

(
sup

z∈Eδ(x)
r(z)|∇f (z)|

)
.

The second inequality above comes from (3.2). It is easy to see that

MOp
δ (f ; x) ≤ 1

V (Eδ(x))2

∫
Eδ(x)

∫
Eδ(x)

|f (y)− f (z)|pdzdy

≤ 2p−1

V (Eδ(x))2

∫
Eδ(x)

∫
Eδ(x)

(|f (y)− f (x)|p + |f (z)− f (x)|p)dzdy

= 2p

V (Eδ(x))

∫
Eδ(x)

|f (y)− f (x)|pdy

≤
(

2δ

1 − δ

)p(
sup

z∈Eδ(x)
r(z)|∇f (z)|

)p
.

This shows thatf ∈ BMOp
δ as desired.

Supposef ∈ B0. Then, for anyε > 0, there existsρ > 0 such thatr(z)|∇f (z)| < ε for
all z ∈ Ω with r(z) < ρ. Forx ∈ Ω with r(x) < ρ/(1 + δ), we obtain by (3.2)

r(z) < (1 + δ)r(x) < ρ for z ∈ Eδ(x) .
Therefore we have

sup
z∈Eδ(x)

r(z)|∇f (z)| < ε

for all x ∈ Ω with r(x) < ρ/(1 + δ), which implies that

MOp
δ (f ; x) ≤

(
2δ

1 − δ

)p(
sup

z∈Eδ(x)
r(z)|∇f (z)|

)p
→ 0

asx → ∂Ω . Thusf ∈ VMOp
δ and we are done. �

LEMMA 3.6. Let p ∈ [1,∞) and δ ∈ (0,1). Then BMp ⊂ BMOp
δ and VMp ⊂

VMOp
δ .

PROOF. Supposef ∈ BMp. By Hölder’s inequality, we have

|f̂δ(x)|p =
∣∣∣∣ 1

V (Eδ(x))

∫
Eδ(x)

f (y)dy

∣∣∣∣p

≤ 1

V (Eδ(x))p

( ∫
Eδ(x)

|f (y)|pdy
)( ∫

Eδ(x)

dy

)p−1

= 1

V (Eδ(x))

∫
Eδ(x)

|f (y)|pdy = MVp
δ (f ; x) .
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Thus

MOp
δ (f ; x) = 1

V (Eδ(x))

∫
Eδ(x)

|f (y)− f̂δ(x)|pdy

≤ 2p−1

V (Eδ(x))

∫
Eδ(x)

(|f (y)|p + |f̂δ(x)|p)dy

≤ 2p−1 (MVp
δ (f ; x)+ |f̂δ(x)|p) ≤ 2p MVp

δ (f ; x) .
This shows that BMp ⊂ BMOp

δ and VMp ⊂ VMOp
δ . �

We have shown thatB + BMp ⊂ BMOp
δ andB0 + VMp ⊂ VMOp

δ . We wish to show
the converse inclusions BMOpδ ⊂ B + BMp and VMOpδ ⊂ B0 + VMp. This also means that
BMOp

δ and VMOpδ are independent of the choice ofδ. To prove this, we need the following
lemma.

LEMMA 3.7. Let δ ∈ (0,1). Then there exists a smooth nonnegative function ψ on
Ω ×Ω which satisfies the following conditions:

(a) For each x ∈ Ω ,ψ(x, y) = 0 if y /∈ Eδ/3(x) and∫
Ω

ψ(x, y)dy = 1 .(3.6)

(b) There are constants C0, C1 depending only on Ω and δ such that

|ψ(x, y)| ≤ C0 r(x)
−n ,(3.7)

|∇xψ(x, y)| ≤ C1 r(x)
−n−1(3.8)

for all x, y ∈ Ω .

To construct a function satisfying the above lemma, we need a smooth defining function
by which the distance functionr is bounded from above and below. Letρ be a smooth defining
function forΩ such thatρ(x) = r(x) for x ∈ Ω close enough to∂Ω (see Section 1.2 of [5]).
Then it is easy to see that there exists a constantR such that

R−1 ≤ ρ(x)

r(x)
≤ R for all x ∈ Ω .

We can also take a constantM satisfying|∇ρ(x)| ≤ M for all x ∈ Ω .

PROOF OFLEMMA 3.7. Letφ ∈ C∞
0 (R

n) be a nonnegative function onRn with sup-
port insideB(0, δ/3) = {y ∈ Rn ; |y| < δ/3} such that

∫
Rn φdV = 1. Forx, y ∈ Ω , we

define

ψ(x, y) =
(
R

ρ(x)

)n
φ

(
R(y − x)

ρ(x)

)
.(3.9)

We are going to prove thatψ thus defined satisfies (a) and (b).
Let x ∈ Ω . If y /∈ Eδ/3(x), then

|y − x| ≥ δ

3
r(x) ≥ δ

3R
ρ(x), and we have

R|y − x|
ρ(x)

≥ δ

3
.
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Since suppφ ⊂ B(0, δ/3), it follows thatψ(x, y) = 0 if y /∈ Eδ/3(x). Next, by change of
variables, we get ∫

Ω

ψ(x, y)dy =
∫

Rn
φdV = 1 .

To prove (b), let

C(φ) = sup
z∈Rn

max{|φ(z)|, |D1φ(z)|, . . . , |Dnφ(z)|} .

Then

|ψ(x, y)| ≤ C(φ)

(
R

r(x)

)n
,

and we get (3.7). Note that forx ∈ Ω andy ∈ Eδ/3(x),

∇xψ(x, y) =
(
R

ρ(x)

)n
∇x

(
φ

(
R(y − x)

ρ(x)

))
+ Rn∇x(ρ(x)−n)φ

(
R(y − x)

ρ(x)

)
.

Since∇(ρ(x)−n) = −nρ(x)−n−1∇ρ(x), we have

Rn
∣∣∣∣∇(ρ(x)−n)φ

(
R(y − x)

ρ(x)

)∣∣∣∣ ≤ nRnC(φ)

(
sup
z∈Ω

|∇ρ(z)|
)
ρ(x)−n−1

≤ nR2n+1C(φ)Mr(x)−n−1 .

For eachj = 1,2, . . . , n, the chain rule then gives∣∣∣∣ ∂∂xj φ
(
R(y − x)

ρ(x)

)∣∣∣∣ ≤
n∑
k=1

∣∣∣∣(Dkφ)
(
R(y − x)

ρ(x)

)∣∣∣∣
∣∣∣∣ ∂∂xj

(
R(yk − xk)

ρ(x)

)∣∣∣∣ .
Since ∣∣∣∣ ∂∂xj

(
R(yk − xk)

ρ(x)

)∣∣∣∣ ≤ R

ρ(x)

∣∣∣∣∂xk∂xj

∣∣∣∣ + R |y − x|ρ(x)−2
∣∣∣∣ ∂ρ∂xj (x)

∣∣∣∣
≤ R

ρ(x)
+ RM

|y − x|
ρ(x)2

,

we obtain∣∣∣∣ ∂∂xj φ
(
R(y − x)

ρ(x)

)∣∣∣∣ ≤
n∑
k=1

∣∣∣∣(Dkφ)
(
R(y − x)

ρ(x)

)∣∣∣∣
(
R

ρ(x)
+ RM

|y − x|
ρ(x)2

)

≤ nC(φ)

(
R + R2M

δ

3

)
1

ρ(x)
≤ nC(φ)

(
R + R2M

δ

3

)
R

r(x)
.

The second inequality follows from the fact that(Dkφ)(R(y − x)/ρ(x)) = 0 if |y − x| ≥
(δρ(x))/(3R). Thus,∣∣∣∣∇xφ

(
R(y − x)

ρ(x)

)∣∣∣∣ ≤ n
√
nC(φ)

(
R + R2M

δ

3

)
R

r(x)
.
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Therefore, we obtain

|∇xψ(x, y)| ≤
(
R2

r(x)

)n
n
√
nC(φ)

(
R + R2M

δ

3

)
R

r(x)
+ nR2n+1C(φ)M r(x)−n−1

= nR2n+1C(φ)

(√
n

(
R + R2M

δ

3

)
+M

)
r(x)−n−1 ,

and we are done. �

Now, we can prove the following lemma.

LEMMA 3.8. Let p ∈ [1,∞) and δ ∈ (0,1). Then
(a) BMOpδ = B + BMp,
(b) VMOp

δ = B0 + VMp.

PROOF. We have already seen thatB + BMp ⊂ BMOp
δ andB0 + VMp ⊂ VMOp

δ .
To prove that BMOpδ ⊂ B+BMp, letf ∈ BMOp

δ and letψ(x, y) be given by Lemma 3.7.
Define

f1(x) =
∫
Ω

f (y)ψ(x, y)dy

andf2 = f − f1. Note thatf1 is continuously differentiable. Fory ∈ Ω , we have by (3.6)
and (3.7),

|f2(y)|p =
∣∣∣∣
∫
Ω

(f (y)− f (z))ψ(y, z)dz

∣∣∣∣p ≤ C0
p

r(y)np

( ∫
Eδ/3(y)

|f (y)− f (z)|dz
)p

≤ C0
p

r(y)np

( ∫
Eδ/3(y)

|f (y)− f (z)|pdz
)( ∫

Eδ/3(y)

dz

)p−1

≈ 1

V (Eδ/3(y))

∫
Eδ/3(y)

|f (y)− f (z)|pdz .

Thus

MVp

δ/3(f2; x) = 1

V (Eδ/3(x))

∫
Eδ/3(x)

|f2(y)|pdy

� 1

V (Eδ/3(x))

∫
Eδ/3(x)

1

V (Eδ/3(y))

∫
Eδ/3(y)

|f (y)− f (z)|pdzdy .

Becauser(x) ≈ r(y) andEδ/3(y) ⊂ Eδ(x) if y ∈ Eδ/3(x), we have

MVp

δ/3(f2; x) � 1

V (Eδ(x))2

∫
Eδ(x)

∫
Eδ(x)

|f (y)− f (z)|pdzdy ≤ 2pMOp
δ (f ; x) .(3.10)

This implies thatf2 ∈ BMp.
Next we prove thatf1 ∈ B. For everyx ∈ Ω anda ∈ Eδ/3(x), we have by (3.6),

f1(x) =
∫
Ω

(f (y)− f̂δ/3(a))ψ(x, y)dy + f̂δ/3(a) ,
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and it follows from (3.8) that

r(x)|∇f1(x)| ≤ C1r(x)
−n

∫
Eδ/3(x)

|f (y)− f̂δ/3(a)|dy .

Since

|f (y)− f̂δ/3(a)| ≤ 1

V (Eδ/3(a))

∫
Eδ/3(a)

|f (y)− f (z)|dz ,
we have by Lemmas 3.1 and 3.2

r(x)|∇f1(x)| � 1

V (Eδ(x))

∫
Eδ/3(x)

1

V (Eδ/3(a))

∫
Eδ/3(a)

|f (y)− f (z)|dzdy

� 1

V (Eδ(x))2

∫
Eδ(x)

∫
Eδ(x)

|f (y)− f (z)|dzdy ≤ 2MO1
δ (f ; x) .

By (2.1),

r(x)|∇f1(x)| � MO1
δ(f ; x) ≤ MOp

δ (f ; x)1/p .(3.11)

This shows thatf1 ∈ B and finishes the proof that BMOpδ ⊂ B + BMp.
If we let f ∈ VMOp

δ , then (3.10) indicates thatf2 ∈ VMp. By (3.11), we have
f1 ∈ B0. �

It follows from the above lemma that BMOpδ and VMOpδ are independent of the choice
of δ.

LetH be the set of all complex-valued harmonic functions onΩ .

LEMMA 3.9. Let p ∈ [1,∞). Then
(a) BMOp ∩ H = B ∩ H,
(b) VMOp ∩ H = B0 ∩ H.

PROOF. By Lemma 3.5, we have

B ∩ H ⊂ BMOp ∩ H and B0 ∩ H ⊂ VMOp ∩ H .

To show the converse, leta ∈ Ω andx ∈ Eδ/3(a). Then, by Lemmas 3.1 and 3.2,
V (Eδ(a)) � V (Eδ/3(x)) andEδ/3(x) ⊂ Eδ(a). Forf ∈ H,

|f (x)− f (a)| ≤ 1

V (Eδ/3(x))

∫
Eδ/3(x)

|f (y)− f (a)|dy .

Sincef (a) = f̂δ(a) by the mean-value property, we have

|f (x)− f (a)| � 1

V (Eδ(a))

∫
Eδ(a)

|f (y)− f̂δ(a)|dy

= MO1
δ (f ; a) ≤ MOp

δ (f ; a)1/p .
By Cauchy’s Estimates (see, for example, 2.4 of [1]),

|∇f (a)| ≤ sup
x∈Eδ/3(a)

|∇f (x)| = sup
x∈Eδ/3(a)

|∇(f (x)− f (a))| � MOp
δ (f ; a)1/p
r(a)

.
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Sincea ∈ Ω is arbitrary, we conclude that BMOp ∩ H ⊂ B ∩ H and VMOp ∩ H ⊂
B0 ∩ H. �

In order to prove Theorem 2.1, we need the following lemma which indicates the rela-
tionship between Hankel operators and commutators.

LEMMA 3.10. Let p ∈ (1,∞) and f ∈ L1.
(a) Cf is bounded on Lp if and only if Hf is bounded on both bp and bp

′
.

(b) Cf is compact on Lp if and only if Hf is compact on both bp and bp
′
.

PROOF. Letp ∈ (1,∞) andf ∈ L1. Suppose thatHf is bounded on bothbp andbp
′
.

If we let H̃f = HfQ, thenH̃f is bounded onLp. SinceHf̄ u = Hf ū, the boundedness of

Hf onbp
′
yields thatH̃f̄ is bounded onLp

′
. Thus the adjoint operator̃H ∗̄

f
is bounded onLp.

Let u ∈ C∞
0 (Ω) and writeu = Q[u] + (I −Q)[u]. Then

Cf u = MfQ[Q[u] + (I −Q)[u]] −Q[Mf (Q[u] + (I −Q)[u])]
= (I −Q)[MfQ[u]] −QMf (I −Q)[u] = H̃f u− H̃ ∗̄

f
u .

Now H̃f andH̃ ∗̄
f

are bounded onLp. ThusCf is bounded onLp, as desired.

Next we show the “only if” part. SupposeCf is bounded onLp. Foru ∈ b∞, Cf u =
Hfu, and soHf is bounded onbp. Also, H̃ ∗̄

f
= H̃f − Cf is bounded onLp and thusH̃f̄ is

bounded onLp
′
. It follows thatHf is bounded onbp

′
.

It is easy to see that the same proof as above also works for compact operators.�

LEMMA 3.11. Let 1< p < ∞. Then∫
Ω

|h(x)|p
r(x)p

dx �
∫
Ω

|∇h(x)|pdx,(3.12) ∫
Ω

|h(x)|p
r(x)2p

dx �
∫
Ω

|∇h(x)|p
r(x)p

dx(3.13)

for all h ∈ C∞
0 (Ω).

PROOF. Since the proofs of (3.12) and (3.13) are essentially the same, we only prove
(3.13). Letε = ε0, whereε0 is the number provided by the first part of this section. Then we
have ∫

Ωε

|h(x)|p
r(x)2p

dx ≤ 1

ε2p

∫
Ωε

|h(x)|pdx .
Poincaré’s inequality now shows that∫

Ω

|h(x)|pdx �
∫
Ω

|∇h(x)|pdx .

Since 1� 1/r(x) for x ∈ Ω , we have∫
Ωε

|h(x)|p
r(x)2p

dx �
∫
Ω

|∇h(x)|pdx �
∫
Ω

|∇h(x)|p
r(x)p

dx .(3.14)
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For ζ ∈ ∂Ω , let x = ζ + snζ ∈ Dε, 0 ≤ s < ε, wherenζ is the inward unit normal to
∂Ω atζ . If we writewt = ζ + tnζ , 0 ≤ t ≤ s, then

|h(x)|p =
∫ s

0

∂

∂t
{|h(wt)|p}dt

≤
∫ s

0
p|h(wt )|p−1

n∑
j=1

|Djh(wt )|dt

�
∫ s

0
|h(wt )|p−1|∇h(wt)|dt .

It follows from Fubini’s theorem that∫ ε

0

|h(ζ + snζ )|p
s2p ds �

∫ ε

0

∫ s

0
|h(ζ + tnζ )|p−1|∇h(ζ + tnζ )|dt 1

s2p ds

=
∫ ε

0
|h(ζ + tnζ )|p−1|∇h(ζ + tnζ )|

∫ ε

t

1

s2p dsdt

�
∫ ε

0
|h(ζ + tnζ )|p−1|∇h(ζ + tnζ )| 1

t2p−1dt .

Therefore, we have by (3.1)∫
Dε

|h(x)|p
r(x)2p

dx ≈
∫
∂Ω

∫ ε

0

|h(ζ + snζ )|p
s2p

dsdσ(ζ )

�
∫
∂Ω

∫ ε

0
|h(ζ + tnζ )|p−1|∇h(ζ + tnζ )| 1

t2p−1dtdσ(ζ )

≈
∫
Dε

|h(x)|p−1|∇h(x)| 1

r(x)2p−1dx

=
∫
Dε

|h(x)|p−1

r(x)2(p−1)

|∇h(x)|
r(x)

dx

≤
( ∫

Dε

|h(x)|p
r(x)2p

dx

)1−1/p( ∫
Dε

|∇h(x)|p
r(x)p

dx

)1/p

,

which implies that ∫
Dε

|h(x)|p
r(x)2p

dx �
∫
Dε

|∇h(x)|p
r(x)p

dx .

Combining this with (3.14), we obtain (3.13). �

COROLLARY 3.12. Let 1< p < ∞. Then∫
Ω

|h(x)|p
r(x)2p

dx �
∫
Ω

|∇h(x)|p
r(x)p

dx � ‖h‖pp

for all h ∈ C∞
0 (Ω).
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PROOF. By (3.13), we have

∫
Ω

|h(x)|p
r(x)2p

dx �
∫
Ω

|∇h(x)|p
r(x)p

dx .

By (3.12), we have

∫
Ω

|∇h(x)|p
r(x)p

dx �
n∑
j=1

∫
Ω

|Djh(x)|p
r(x)p

dx

�
n∑
j=1

∫
Ω

|∇(Djh(x))|pdx �
∫
Ω

|h(x)|pdx ,

where the last inequality comes from Proposition III.1.3 of [8, page 59]. This completes the
proof of Corollary 3.12. �

LEMMA 3.13. Let 1 < p < ∞ and (bp)⊥ = {u ∈ Lp
′ ; 〈u, v〉 = 0 for all v ∈ bp}.

Then {h ; h ∈ C∞
0 (Ω)} is dense in (bp)⊥.

PROOF. If h ∈ C∞
0 (Ω), then

〈h, v〉 = 〈h,v〉 = 0

for all v ∈ bp. So we have

{h ; h ∈ C∞
0 (Ω)} ⊂ (bp)⊥ .

Next, suppose thatu ∈ Lp and ∫
Ω

uhdV = 0

for all h ∈ C∞
0 (Ω). Then Weyl’s lemma (see Theorem 2.3.1 of [7]) shows thatu ∈ bp. �

LEMMA 3.14. Let 1 ≤ p < ∞. Then∫
Ω

r(x)p|∇u(x)|pdx �
∫
Ω

|u(x)|pdx

for all u ∈ bp.

PROOF. If x ∈ Ω , thenr(y) ≈ r(x) for y ∈ E1/4(x) or x ∈ E3/4(y) by (3.2). By
Corollary 8.2 of [1], we have

|∇u(x)|p � 1

r(x)n+p

∫
E1/4(x)

|u(y)|pdy .



488 K. OSHIMA

It follows easily from Lemma 3.2 thatχE1/4(x)(y) ≤ χE3/4(y)(x) for all x, y ∈ Ω . Therefore
we get ∫

Ω

r(x)p|∇u(x)|pdx �
∫
Ω

1

r(x)n

∫
Ω

χE1/4(x)(y)|u(y)|pdydx

≤
∫
Ω

|u(y)|p
∫
Ω

χE3/4(y)(x)

r(x)n
dxdy

�
∫
Ω

|u(y)|p V (E3/4(y))

r(y)n
dy ≈

∫
Ω

|u(y)|pdy . �

4. Proof of the main result. We divide the proof into three lemmas.

LEMMA 4.1. Let p ∈ (1,∞).
(a) If f ∈ B, then Hf is bounded on bp.
(b) If f ∈ B0, then Hf is compact on bp.

PROOF. First, we prove (a). Letf ∈ B. By Lemma 3.13, we only need to show

|〈Hfu,h〉| = |〈fu,h〉| ≤ C‖u‖p‖h‖p′

for anyu ∈ b∞ andh ∈ C∞
0 (Ω) in order to prove the boundedness ofHf , since

‖Hf u‖p = sup
g∈Lp′
‖g‖≤1

〈Hf u, (I −Q)g +Qg〉 = sup
g∈Lp′
‖g‖≤1

〈Hfu, (I −Q)g〉 = sup
ψ∈(bp)⊥
‖ψ‖≤1

〈Hf u,ψ〉 .

Using integration by part, we have

〈f u,h〉 = −
∫
Ω

u(∇f ) · (∇h̄)dV +
∫
Ω

(∇u) · (∇f )h̄ dV =: I1 + I2 .

It follows from Hölder’s inequality and Corollary 3.12 that

|I1| ≤
∫
Ω

|u||∇f ||∇h|dV �
∫
Ω

|u(x)| |∇h(x)|
r(x)

dx

≤
( ∫

Ω

|u(x)|pdx
)1/p( ∫

Ω

|∇h(x)|p′

r(x)p
′ dx

)1/p′

� ‖u‖p‖h‖p′ .

On the other hand, using Hölder’s inequality again, we get

|I2| ≤
∫
Ω

|∇u||∇f ||h|dV �
∫
Ω

r(x)|∇u(x)| |h(x)|
r(x)2

dx

≤
( ∫

Ω

r(x)p|∇u(x)|pdx
)1/p( ∫

Ω

|h(x)|p′

r(x)2p
′ dx

)1/p′

.

Thus, Lemma 3.14 and Corollary 3.12 yield

|I2| � ‖u‖p‖h‖p′ .

This completes the proof of (a).
To prove (b), letuj → 0 weakly inbp. Then it is well-known that there is a constantM

satisfying‖uj‖p ≤ M for all j , anduj goes to 0 uniformly on each compact subset ofΩ . For
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anyε > 0, there is a compact setK ⊂ Ω such thatr(x)|∇f (x)| < ε for x ∈ Ω \K. Also, we
can choosej0 such that|uj (x)| < ε, |∇uj (x)| < ε for x ∈ K andj ≥ j0, by Theorem 1.23
of [1]. For j ≥ j0, we have by Corollary 3.12 and Lemma 3.14∫

Ω

|uj ||∇f ||∇h|dV =
∫
Ω\K

+
∫
K

|uj ||∇f ||∇h|dV

�
∫
Ω\K

|uj |ε |∇h|
r
dV +

∫
K

ε
|∇h|
r
dV

� ε‖uj‖p‖|∇h|/r‖p′ + ε‖|∇h|/r‖p′ � ε(M + 1)‖h‖p′ ,

and ∫
Ω

|∇uj ||∇f ||h|dV =
∫
Ω\K

+
∫
K

|∇uj ||∇f ||h|dV

�
∫
Ω\K

r|∇uj |ε |h|
r2 dV +

∫
K

ε
|h|
r2 dV

� ε‖r|∇uj |‖p‖h/r2‖p′ + ε‖h/r2‖p′

� ε‖uj‖p‖h‖p′ + ε‖h‖p′ ≤ ε(M + 1)‖h‖p′ .

Therefore, we have
|〈Hfuj ,h〉| � ε(M + 1)‖h‖p′

for j ≥ j0, and this shows that‖Hfuj‖p → 0 asj → ∞. �

LEMMA 4.2. Let p ∈ (1,∞).
(a) If f ∈ BMp, then Hf is bounded on bp.
(b) If f ∈ VMp, then Hf is compact on bp.

PROOF. If f ∈ BMp or VMp, Theorem 3.5 or Theorem 3.11 of [2] implies that the
multiplication operatorMf is bounded or compact onbp, respectively. ThusHf = (I −
Q)Mf is bounded or compact onbp, respectively. �

LEMMA 4.3. Let p ∈ (1,∞) and f ∈ Lp.
(a) If Hf is bounded on both bp and bp

′
, then f ∈ BMOp.

(b) If Hf is compact on both bp and bp
′
, then f ∈ VMOp.

PROOF. (a) SupposeHf is bounded on bothbp andbp
′
. By part (a) of Lemma 3.10,

Cf is bounded onLp. Let δ ∈ (0,1) and define

S(x, y, z) := R(y, z)

R(x, x)
− 1 .

It follows from Lemma 3.3 that for allx ∈ Ω andy, z ∈ Eδ(x)
|S(x, y, z)| = |R(y, z)− R(x, x)|

|R(x, x)| ≤ C1δ

(1 − δ)n+1
.(4.1)

By definition, we have

1 = R(y, z)

R(x, x)
− S(x, y, z) ,
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which implies that

MOp
δ (f ; x) = 1

V (Eδ(x))p+1

∫
Eδ(x)

∣∣∣∣
∫
Eδ(x)

(f (y)− f (z)) · 1dz

∣∣∣∣p dy
≤ 2p−1

V (Eδ(x))p+1

∫
Eδ(x)

∣∣∣∣
∫
Eδ(x)

(f (y)− f (z))
R(y, z)

R(x, x)
dz

∣∣∣∣p dy
+ 2p−1

V (Eδ(x))p+1

∫
Eδ(x)

∣∣∣∣
∫
Eδ(x)

(f (y)− f (z))S(x, y, z)dz

∣∣∣∣p dy =: I1 + I2 .

We can estimateI1 as follows:

I1 = 2p−1

V (Eδ(x))p|R(x, x)|p
∫
Eδ(x)

∣∣∣∣
∫
Eδ(x)

(f (y)− f (z))
R(y, z)

V (Eδ(x))1/p
dz

∣∣∣∣p dy
≤ 2p−1

V (Eδ(x))p|R(x, x)|p
∫
Ω

∣∣∣∣
∫
Ω

(f (y)− f (z))R(y, z)hx(z)dz

∣∣∣∣p dy ,
where

hx(z) = χEδ(x)(z)

V (Eδ(x))1/p
.

It follows from Lemma 3.3 that there is a constantC2 independent ofδ such that

2p−1

V (Eδ(x))p|R(x, x)|p ≤ C2

δnp
.

Note that forg ∈ L∞,

Cf g(y) = (MfQ[g] −Q[f g])(y) =
∫
Ω

(f (y)− f (z))R(y, z)g(z)dz .

Thus we have

I1 ≤ C2

δnp
‖Cf hx‖pp .

Next, we estimateI2. It follows from (4.1) and Hölder’s inequality that

I2 ≤ 2p−1C
p

1 δ
p

(1 − δ)p(n+1)V (Eδ(x))p+1

∫
Eδ(x)

( ∫
Eδ(x)

|f (y)− f (z)|dz
)p
dy

≤ 2p−1C
p
1 δ

p

(1 − δ)p(n+1)V (Eδ(x))2

∫
Eδ(x)

∫
Eδ(x)

|f (y)− f (z)|pdzdy

≤ 22p−1C
p

1 δ
p

(1 − δ)p(n+1)
MOp

δ (f ; x) .
We use Lemma 3.4 for the last inequality. Combining the above two estimates, we obtain

MOp
δ (f ; x) ≤ C2

δnp
‖Cf hx‖pp + 22p−1C

p

1 δ
p

(1 − δ)p(n+1)
MOp

δ (f ; x) .
Now we chooseδ small so that

22p−1C
p

1 δ
p

(1 − δ)p(n+1)
≤ 1

2
.
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Then

MOp
δ (f ; x) ≤ 2C2

δnp
‖Cf hx‖pp .(4.2)

Since‖hx‖p = 1 for all x ∈ Ω , we have

sup
x∈Ω

MOp
δ (f ; x) ≤ 2C2

δnp
‖Cf ‖p .

This shows thatf ∈ BMOp and completes the proof of (a).
(b) SupposeHf is compact on bothbp andbp

′
. By part (b) of Lemma 3.10,Cf is

compact onLp. Because of (4.2), it suffices to show thathx → 0 weakly inLp asx → ∂Ω .
For everyg ∈ Lp′

, by Hölder’s inequality, we have∣∣∣∣
∫
Ω

hx ḡdV
∣∣∣∣ ≤ 1

V (Eδ(x))1/p

∫
Eδ(x)

|g|dV ≤
( ∫

Eδ(x)

|g|p′
dV

)1/p′

→ 0

asx → ∂Ω . This completes the proof of Lemma 4.3. �

PROOF OFTHEOREM 2.1. (a) Iff ∈ BMOp, thenf ∈ BMOp′
, sincep ≥ p′. Thus

by Lemmas 3.8, 4.1 and 4.2,Hf is bounded on bothbp andbp
′
. This proves the sufficiency

of f ∈ BMOp for (a). The necessity off ∈ BMOp for (a) has already been proved in
Lemma 4.3.

(b) If f ∈ VMOp, thenf ∈ VMOp′
, sincep ≥ p′. Thus, by Lemmas 3.8, 4.1 and 4.2,

Hf is compact on bothbp andbp
′
. This proves the sufficiency off ∈ VMOp for (b). The

necessity off ∈ VMOp for (b) has already been proved in Lemma 4.3. �
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