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Hanle effect in transport through quantum dots coupled

to ferromagnetic leads
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4 Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

PACS. 85.75.-d – Magnetoelectronics; spintronics.

PACS. 73.63.Kv – Quantum dots.

PACS. 73.23.Hk – Coulomb blockade; single-electron tunneling.

Abstract. – We suggest a series of transport experiments on spin precession in quantum dots
coupled to one or two ferromagnetic leads. Dot spin states are created by spin injection and
analyzed via the linear conductance through the dot, while an applied magnetic field gives rise
to the Hanle effect. Such a Hanle experiment can be used to determine the spin lifetime in
the quantum dot, to measure the spin injection efficiency into the dot, as well as proving the
existence of intrinsic spin precession which is driven by the Coulomb interaction.

Recent progress in nanofabrication technology opens the possibility for spintronic devices
based on coherent manipulation of single spins in quantum dots [1]. Thereby the spatial
confinement of the dot electrons suppresses spin decoherence [2]. While longitudinal spin
relaxation times T1 up to microseconds were measured [3, 4], the size of the spin decoherence
time T2 is still an open question.

The spin coherence time T2 can be accessed in different experiments, for example by
ESR techniques [5], or by the Hanle effect, i.e., the decrease of spin accumulation in the
quantum dot due to precession about a static magnetic field. The optical realization of such a
Hanle experiment involves the measurement of the fluorescent emission of polarized light from
semiconductor quantum dots [6]. But this method requires an ensemble of spins, so the total
signal varies with the spin dephasing time T ⋆

2 rather than the decoherence time T2 > T ⋆
2 .

To void this ensemble averaging, we suggest to measure the Hanle effect in transport
through an individual single level quantum dot. For preparation of the initial spin state,
electronic spin injection from ferromagnetic leads into the dot can be used. This has been
demonstrated in metallic bulk systems [7], quantum dots [8], Zener diodes [9], and metal-
lic grains [10]. For the detection of the accumulated spin, we propose magnetoresistance
measurements of the device as already shown for metallic systems [7, 10]. So an all electrical
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experimental setup can be used to observe the reduction of spin accumulation in a single quan-
tum dot by an external magnetic field, which is a direct measure of the product of precession
frequency ω and spin lifetime.

In a recent experiment Zhang et. al. [11] realized this kind of setup but with a whole
layer of aluminum dots in a tunnel junction between two Co electrodes with many levels
participating in transport in each dot rather than an individual quantum dot with only a
single level contributing to the current. Even so the measurements involve averaging over
different realizations of the dots, multi levels and local magnetizations, they clearly observe a
Hanle resonance in the magnetoresistance of the device.

For our theoretical model we consider only one single-level quantum dot with level energy ε,
measured relative to the Fermi energy of the leads and tunable by a gate electrode as sketched
in fig.1. The dot level can be empty, singly occupied, or doubly occupied. The Coulomb
interaction on the dot is accounted for by the charging energy U for double occupancy. The
dot is coupled to source and drain electrodes by tunnel contacts. The coupling strength to
the left and right lead is characterized by the intrinsic line width Γr with r = L, R. We study
sequential-tunneling regime, which yields kBT ≫ Γr. The electrodes may be nonmagnetic
or ferromagnetic, described by their degree of spin polarization pr with 0 ≤ pr ≤ 1 and
magnetization direction n̂r. Further possible realizations of such systems include molecular
[12] or carbon nanotube [13] junctions, grains in nano-constrictions [14] and junctions [11], or
surface impurities contacted by an STM tip [15].

FM

QD

<S>ΓL ΓR
B+− Nor

FM

Fig. 1 – Quantum dot connected to one or two ferromagnetic leads. Spin dependent tunnel rates lead
to spin accumulation on the dot. This accumulated spin precesses in the external applied magnetic
field.

A full theoretical description of the spin dynamics and its implication on sequential-
tunneling transport has been derived in ref. [16] within a diagrammatic transport theory.
Here, we use this theory to analyze the Hanle effect. To keep the discussion transparent, we
assume symmetric coupling constants, ΓL = ΓR = Γ/2 and consider only the regime of linear
transport, i.e. bias voltages smaller than temperature eV ≪ kBT . The spin accumulation on
the quantum dot is described by the quantum statistical value S, which has the co-domain
0 < |S| < ~/2. The dynamics of the dot spin S is governed by a Bloch-like equation

dS

dt
=

∑

r=L/R

(

~

2e
Irprn̂r −

S − p2(n̂r · S)n̂r

τc,r

)

+ S × ω −
S

τrel

. (1)

The first term describes spin accumulation due to spin-polarized currents from or into ferro-
magnetic leads. In the steady state, IL = −IR, so the spin does accumulate in the direction
pLn̂L − pRn̂R.

The second term describes the relaxation of the dot spin due to coupling to the leads.
Since neither an empty nor a doubly-occupied dot can bear a net spin, the relaxation time
is exactly the life time of the single-occupation dot state. The time scale for tunneling of
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an electron to or from the electrode r is given by τ−1
c,r = Γr/~(1 − fr(ε) + fr(ε + U)), where

fr(ε) is the Fermi function of the lead. The total life time of the single-occupation state for
a weak bias voltage is given by τ−1

c =
∑

r τ−1
c,r = Γ/~(1 − f(ε) + f(ε + U)). Together with

the phenomenological spin-relaxation rate τ−1

rel
, describing decoherence e.g., due to spin-orbit

coupling or hyperfine interaction within the quantum dot, the total spin coherence time of
the dot spin is

(τs)
−1

= (τrel)
−1

+ (τc)
−1

. (2)

Quantum information processing with quantum-dot spins is anticipated to be operated in the
Coulomb-blockade regime, where τc is large and T2 is limited by τrel. Below we will propose a
scheme to measure τs in the opposite, the sequential-tunneling regime. Therefore, in order to
estimate the relevant T2 for quantum-computing applications from the measured τs, one has
to subtract the influence of τc.

The third term in eq. (1) describes precession of the quantum-dot spin about an effec-
tive magnetic field. This includes an externally-applied magnetic field B and the exchange
interaction to the ferromagnetic leads. In the presence of strong Coulomb interaction on the
dot, the tunnel coupling to ferromagnetic electrodes renormalizes the energy levels spin de-
pendent [16,17]. This renormalization leads also to spin precession which can be described by
a magentic-like exchange field. In total, we get

ω = ωB + ωx , (3)

with ~ωB = gµBB and the exchange contribution ωx = AΓ[pLn̂L + pRn̂R]. In the linear-
response regime, the ε dependent numerical factor A is determined by the integral A =
(1/2π)

∫

′

dE[(E − ε − U)−1 − (E − ε)−1]f(E).
Since both, the accumulation and the relaxation term in eq.(1) transfer spin through the

tunnel barrier, the partition in accumulation and damping is to some extend arbitrary. The
current choice has the advantage, that the accumulation term is direct proportional to the
electrical current. On the other hand the interpretation in ref. [16] gives a more intuitive
isotropic damping term proportional to S.

In the following calculation we consider the parameter regime Γ ≈ ~ωB ≪ eV ≪ kBT .
The magnetic field ~ωB must be comparable to Γ, to observe coherent rotation of the dot spin
rather than incoherent transport through Zeeman-splitted levels. Furthermore, if ~ωB . Γ, we
can neglect the influence of the Zeeman splitting on the transition rates, since these corrections
would be of the order ΓB ≈ Γ2, comparable to cotunneling. The condition ~ωB ≪ eV ensures
that the electrical spin injection dominates the spin dynamics rather than the equilibrium spin
due to the Zeeman splitting. We emphasize that, although the latter condition requires a finite
transport voltage, we can calculate the conductance in linear response as long as eV ≪ kBT .

In the rest of the paper we apply our formalism to three different setups. The first one
consists of a quantum dot attached to one nonmagnetic and one ferromagnetic electrode
(fig. 2), a geometry already realized experimentally [14].

When a transport voltage is applied, the quantum dot becomes spin polarized. The direc-
tion of the accumulated spin depends on the direction of current flow (the linear conductance,
though, does not). In case the electrons are flowing from the unmagnetized source lead (left) to
the ferromagetic drain (right), the dot spin will accumulate anti-parallel to the magnetization
direction n̂R since the tunnel barrier to the drain is more transparent for electrons polarized
along n̂R than for those along −n̂R. A transverse magnetic field rotates the dot spin away
from this anti-parallel position. The rotated spin has an increased component along n̂R, i.e.,
the electron can more easily tunnel into the ferromagnetic drain electrode. As a consequence,
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Fig. 2 – The differential conductance as function of the magnetic field applied transverse to the
ferromagnetic lead fior different gate voltages. By shifting the dot into Coulomb blockade, the electron
dwell time of the electrons increase. Since the electrons have then more time to precess and to relax
inside the dot, width of the Hanle resonance as well as the depth decreases. The parameters are
p = 0.5, U = 7kBT , τrel = 20~/Γ, and level positions ε/kBT = −3.5 (dot-dashed), −1.5 (dashed),
and 0 (solid).

the conductance increases, which defines the Hanle effect in transport. Based on the transport
theory in ref. [16], we derive the the linear conductance of this setup to be

G

G0

= 2 −

[

1 −
p2

4

τs

τc

1 + [n̂R · (ωB + ωx)τs]
2

1 + (ωB + ωx)2τ2
s

]−1

, (4)

where G0 = e2 P1/τckBT is the asymptotic value of the conductance for large magnetic field,
B → ∞, for which the spin accumulation is completely destroyed. The latter is proportional
to P1, the equilibrium probability to find the dot occupied by a single electron, and τc is given
by τ−1

c = (Γ/~) [1 − f(ε) + f(ε + U)]. Note that the dependence of the expression in eq. (4)
on the magnetic field differs from the optically-measured Hanle signal [9], as a consequence of
the different way to probe the spin.

Results are shown in fig. 2, where ωB = gµBB/~ characterizes an external magnetic
field applied perpendicular to the direction of lead magnetization, and ωx the exchange field
(aligned parallel), such that ω = ωB+ωx. For not too large values of the spin polarization p in
the ferromagnet, (p2/4)τs/τc is small, and eq. (4) can be expanded in the latter quantity. The
dip in the relative conductance at zero magnetic field is, thus, approximatively (p2/4)τs/τc,
which provides an estimate of the degree p of spin polarization in the ferromagnet. To max-
imize τs/τc ≤ 1 one can tune the quantum-dot level on resonance. The widths ∆ωB of the
dip as a function of the applied field is determined by the condition ∆ωBτs =

√

1 + 2(ωxτs)2.
The inverse of the measured width, 1/∆ωB, does therefore only provide a lower limit for the
spin lifetime τs, since the exchange field modifies the line width.
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External field components parallel to the magnetization directions influence the result in
exactly the same way as the exchange field ωx does, leading to a broadening of the Hanle
resonance. In the experiment by Zhang et. al. [11], the authors propose that stray fields
leading to this kind of broadening mechanism are the major source of error for measuring T2.
To reduce the influence of the stray fields, the dot-lead coupling can be increased. Since τs is
inverse to Γ, the accumulated spin becomes less sensitive to the magnetic fields for stronger
couplings, making small stray fields insignificant. Typical transport experiments [12,14] show
current plateaus of the order 10pA to 10nA in the I-V characteristic, which yields Γ/~ to
be of the order of 108s−1 to 1011s−1. The typical magnetic field strength required for the
observation of the precession is then of the order 100µT to 100mT, which can exceed the
stray fields of the ferromagnetic leads in appropriate probe designs [10, 11]. It is worth to
mention, that since the exchange field is also a linear function of Γ, its influence, which is
proportional to ωxτs, does not depend on the coupling strength.

The structure discussed so far has the advantage that only one lead is ferromagnetic, which
might simplify the manufacturing procedure. It is suitable to prove the existence of the spin
precession analogous to the optical Hanle effect. The influence of the exchange field, though,
makes it difficult to directly determine τs. We, therefore, turn now to a second setup which
involves two ferromagentic leads with magnetization directions anti-parallel to each other, see
fig.3.

−2 0 2
ω τs

1.0

G
  /

  G
0

1 −τs
τc

 p
2

τs
−1

FMFM
QD

B

Fig. 3 – Differential conductance, for ferromagentic leads with anti-parallel magnetization, as a
function of the magnetic field ω applied perpendicular to the accumulated spin. The half line width
of the Hanle resonance directly determines the spin coherence time τs.

For symmetric coupling ΓL = ΓR, equal degree of polarization pL = pR = p and in the
linear-response regime, the exchange field originating from the left and the right tunnel barrier
cancel out each other so ωx = 0, and the dot spin precesses only due to the external magnetic
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field. The linear conductance, then, is

G

G0

= 1 − p2
τs

τc

1 + ( n̂L−n̂R

2
ωBτs)

2

1 + (ωBτs)2
. (5)

If we assume the field to be aligned perpendicular to the lead magnetizations (see fig. 3), we
find the Lorentzian dependence on the external magnetic field that familiar from the optical
Hanle effect. The depth of the dip is given by p2τs/τc while the width of the dip in fig. 3
provides a direct access to the spin lifetime τs. Of course, the conversion of applied magnetic
field to frequency requires the knowledge of the Lande factor g, which must be determined
separately like in ref. [14].

Finally, we discuss the case of a non-collinear configuration of the leads’ magnetizations
with a magnetic field applied along the direction n̂L + n̂R as shown in fig. 4.
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Fig. 4 – Linear conductance of the dot for an applied external magnetic field B along n̂L + n̂R. A)
Linear conductance as a function of the applied field for ε = 0. B) Linear conductance as a function
of the level position ε without external field (dashed-dot-dot) and for the applied field ωB = 0.1Γ/~

(solid). Further parameters are φ = 3π/4, p = 0.8, U = 7kBT , and τrel = 0. The vertical lines relate
the Conductance increase of the dot at ε = 0 for a magnetic field ~ωB = 0.1Γ.

In this case, both the exchange field and the external magnetic field are pointing along
n̂L + n̂R, perpendicular to the accumulated spin. The linear conductance is, then,

G

G0

= 1 − p2 τs

τc

sin2 φ
2

1 + (ωB + ωx)2τ2
s

, (6)

where φ = ∢(n̂L; n̂R) is the angle enclosed by the leads’ magnetization directions.
This setup allows for a stringent experimental verification of spin precession due to the

exchange field. The conductance reaches its minimal value when the external magnetic field
has opposite direction and equal magnitude as the exchange field. The shift of the minimum’s
position relative to B = 0, thus, measures the exchange field, see fig. 4A. One can clearly
separate the exchange field from possible stray fields of the leads by varying the gate voltage
of the quantum dot. While the stray fields does not depend on the gate voltage, the exchange
interaction does as plotted in the inset of fig. 4B.
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In the flat band limit, the exchange field even changes its sign as a function of gate
voltage, so by plotting the conductance as function of the gate voltage in Rig. 4B, we observe
an increased conductance for one resonance peak, and a decreased for the other one. At
the intersection point of the conduction curves with and without external field, the absolute
value of ω remains unchanged but has opposite sign, i.e., the exchange field at this point is
−gµBB/2.

In summary, we suggest to measure the Hanle effect in transport through quantum dots
coupled to one or two ferromagnetic leads. We propose schemes how to observe non-equilibrium
spin accumulation, determine the dot-spin lifetime and verify the existence of an intrinsic spin
precession caused by Coulomb interaction.

We thank J. Barnas, B. Kubala, S. Maekawa, G. Schön, and D. Urban for discussions.
This work was supported by the DFG under CFN, SFB 491, and GRK 726, the EC RTN on
’Spintronics’, Project PBZ/KBN/044/P03/2001 and the EC Contract G5MACT-2002-04049.

REFERENCES

[1] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
[2] A. V. Khaetskii, D. Loss, and L. Glazman, Phys. Rev. Lett. 88, 186802 (2002); A. V. Khaetskii

and Y. V. Nazarov, Phys. Rev. B 64, 125316 (2001).
[3] T. Fujisawa, D. G. Austing, Y. Tokura, Y. Hirayama, and S. Tarucha, Phys. Rev. Lett. 88,

236802 (2002).
[4] J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen,

and L. P. Kouwenhoven, Nature 430, 431 (2004).
[5] P. Recher, E. V. Sukhorukov, and D. Loss, Phys. Rev. Lett. 85, 1962 (2000); H. Engel and D.

Loss, Phys. Rev. Lett. 86, 4648 (2001); Phys. Rev. B 65, 195321 (2002).
[6] R. J. Epstein, D. T. Fuchs, W. V. Schoenfeld, P. M. Petroff, and D. D. Awschalom, Appl. Phys.

Lett. 78, 733 (2001).
[7] M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985); Phys. Rev. B. 37, 5326 (1988).
[8] Y. Chye, M. E. White, E. Johnston-Halperin, B. D. Gerardot, D. D. Awschalom, and P. M.

Petroff, Phys. Rev. B 66, 201301(R) (2002).
[9] P. Van Dorpe, Z. Liu, W. Van Roy, V. F. Motsnyi, M. Sawicki, G. Borghs and J. De Boeck,

Appl. Phys. Lett. 84, 3495 (2004); V. F. Motsnyi, P. Van Dorpe, W. Van Roy, E. Goovaerts,
V. I. Safarov, G. Borghs and J. De Boeck, Phys. Rev. B 68, 245319 (2003); Appl. Phys. Lett.
81, 265 (2002).

[10] M. Zaffalon and B. J. van Wees, Phys. Rev. Lett. 91, 186601 (2003).
[11] L. Y. Zhang, C. Y. Wang, Y. G. Wei, X. Y. Liu, D. Davidović, cond-mat/0502181.
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