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Abstract

HAP2(GCS1) is a deeply conserved sperm protein that is essential for gamete fusion. Here we use complementation assays
to define major functional regions of the Arabidopsis thaliana ortholog using HAP2(GCS1) variants with modifications to
regions amino(N) and carboxy(C) to its single transmembrane domain. These quantitative in vivo complementation studies
show that the N-terminal region tolerates exchange with a closely related sequence, but not with a more distantly related
plant sequence. In contrast, a distantly related C-terminus is functional in Arabidopsis, indicating that the primary sequence
of the C-terminus is not critical. However, mutations that neutralized the charge of the C-terminus impair HAP2(GCS1)-
dependent gamete fusion. Our results provide data identifying the essential functional features of this highly conserved
sperm fusion protein. They suggest that the N-terminus functions by interacting with female gamete-expressed proteins
and that the positively charged C-terminus may function through electrostatic interactions with the sperm plasma
membrane.
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Introduction

The fusion of gamete plasma membranes is a critical event in

fertilization, but despite the ubiquity of the process among sexually

reproducing eukaryotes, no conserved mechanism for gamete

fusion has been described. At least two factors contribute to our

lack of mechanistic insight. First, many proteins that mediate

binding and fusion of complementary gametes evolve rapidly,

thereby reinforcing barriers to interspecific hybridization [1].

Second, gamete fusion is a transient event occurring between two

cells, limiting the ability to observe fusion and to study it using

biochemical methods.

Genetic analysis in Arabidopsis (Arabidopsis thaliana, At) identified

HAP2(GCS1), a sperm-expressed gene that is essential for

fertilization [2–4]. In flowering plants, two genetically identical

haploid sperm are delivered by a pollen tube to female gametes

that develop within an ovule. One sperm fuses with the egg to

produce a zygote while the other fuses with the central cell to

produce endosperm, a tissue that supports the developing embryo.

Both fertilization events are required to initiate development of a

seed (reviewed in [5–6]). HAP2(GCS1), for HAPLESS2 [2,4] and

synonym GENERATIVE CELL SPECIFIC1 [3], is required for

both sperm fusion events occurring during double fertilization.

The role of HAP2(GCS1) in fertilization may be widespread in

eukaryotes as orthologs are present in several protist, animal, and

plant genomes [7–8]. Loss of HAP2(GCS1) function in male

gametes also blocks fertilization in Plasmodium berghei (sperm

affected [7,9]) and Chlamydomonas reinhardtii (Cr, minus gametes

affected [7]), suggesting it plays a similar role at fertilization

throughout eukaryotes. Key observations made in Chlamydomo-

nas suggest a specific role for CrHAP2(GCS1) in gamete fusion

[7]: (i) The Cr hap2(gcs1) loss-of-function mutation prevents

fertilization, despite the ability of gametes to bind one another

and bring opposing membranes into close proximity and (ii)

CrHAP2(GCS1) is enriched at the tip of the minus mating

projection just prior to fusion.

All predicted HAP2(GCS1) orthologs share a common

primary architecture. Each is divided into two regions by a

single pass transmembrane domain and contains a HAP2-GCS1

domain of about 50 amino acids in the large region amino(N)-

terminal to the transmembrane domain (Figure 1A and

Figure 2A). The carboxy(C)-terminus is enriched in charged

residues that do not follow a defined sequence: histidine is

dominant in flowering plants while other basic residues (lysine,

arginine) are enriched in other species [3–4,7–8]. Primary

sequence analysis of HAP2(GCS1) has not detected other known

motifs or functional domains.

We use quantitative molecular-genetic assays in Arabidopsis to

characterize the major features of HAP2(GCS1). We find that

both regions of the protein are essential for function, and that these

regions are under different selective pressures: Primary sequence

from a closely related plant, not a distant relative, can replace the

Arabidopsis N-terminus. Thus, while HAP2(GCS1) does not

define species-level interactions between gametes, function of the

N-terminus may be constrained by co-evolution with partner

proteins expressed by female gametes. On the other hand, the

Arabidopsis HAP2(GCS1) C-terminus retains function when

replaced with sequence from a distantly related plant or mutated

sequences, as long as positive charge is retained. Thus, net charge

over the C-terminus is the critical feature of this region. These

experiments thus establish essential characteristics of an ancient

protein required for gamete fusion.

PLoS Genetics | www.plosgenetics.org 1 March 2010 | Volume 6 | Issue 3 | e1000882



Results

A Genetic Assay to Evaluate the In Vivo Function of
HAP2(GCS1) Variants
hap2-1 blocks the ability of sperm to participate in fertilization,

but does not affect female reproduction [4]. This allele was

generated by insertion of a T-DNA carrying two marker genes to

facilitate analysis of segregation and transmission: (i) resistance

to the herbicide Basta (BastaR) and (ii) b-glucuronidase (GUS)

driven by the pollen-specific LAT52 promoter (LAT52:GUS) [2,4].

hap2-1 was identified in the quartet (qrt1-2) background, a mutation

that maintains male meiotic products in tetrads [10]. This feature,

combined with LAT52:GUS expression in pollen, allows one to

distinguish heterozygous hap2-1 (hap2-1/+) pollen from wild-type

(Figure 1B–1F and Figure 2B). Self-fertilization of hap2-1/+ results

in 50% heterozygous (BastaR, two GUS+ to two GUS- pollen per

tetrad) and 50% wild-type plants (Basta sensitive (BastaS), GUS-

pollen); homozygous hap2-1 (hap2-1/-) plants are not recovered

[2,4], and thus hap2-1 transmission is distorted (not the expected

1:2:1 segregation of wild type: heterozygous: homozygous mutant).

Furthermore, pollination of wild-type females with hap2-1/+
pollen yields no progeny with the hap2-1 allele, e.g. all progeny

are sired by wild-type pollen produced by the heterozygous father.

Thus, hap2-1 cannot be transmitted though the male germline.

We developed a system to test if coding sequence (CDS) variants

of HAP2(GCS1) could restore male transmission of the hap2-1 allele

(Figure 1). Transformation of hap2-1/+ mutants with a wild-type

HAP2(GCS1) genomic clone [including 1.5 kb of HAP2(GCS1)

promoter sequence] complemented the fertilization defect, and

self-fertilization of hap2-1/+ mutants carrying this transgene

produced hap2-1/- progeny (BastaR, four GUS+ pollen per tetrad)

[4]. Pollen from these plants was also capable of transmitting

hap2-1 to progeny when crossed to wild-type females, producing

BastaR hap2-1/+ seedlings [4]. We transformed hap2-1/+ plants

with a series of HAP2(GCS1) CDS variants under the control of the

same 1.5 kb HAP2(GCS1) promoter sequence; each variant

T-DNA construct carried a kanamycin resistance (KanR) gene.

To track expression of CDS constructs and to differentiate

between endogenous and introduced HAP2(GCS1), we included

sequences encoding short epitope tags (V5 [11] and tetra-cysteine

(CCGPCC) [12]; see Materials and Methods) at the 39 end of the

variants (Figure 1A).

To determine if HAP2(GCS1) variants were capable of

mediating gamete fusion, we generated hap2-1/+ transgenic lines

that were homozygous for the CDS variant (CDS/CDS, Figure 1).

These plants produce two pollen genotypes whose ability to

fertilize female gametes could be directly compared: (i)

HAP2(GCS1), CDS (BastaS, GUS-, KanR) or (ii) hap2-1, CDS

(BastaR, GUS+, KanR). As with the genomic construct [4], if the

CDS variant encodes fully functional HAP2(GCS1), the ability to

fertilize wild-type females, and thus transmit hap2-1, should be

restored to hap2-1 sperm.

Introduction of either the native CDS (data not shown), or an

epitope tagged version rescued fertility of hap2-1 (Figure 2C–2E,

top row, and Figure S1). In both transgenic lines analyzed,

hap2-1/- plants were recovered following self-fertilization, and

segregation was restored to,1:2:1 (25% wild-type, 50% hap2-1/+,

25% hap2-1/-, Figure 2D). When these lines were used to pollinate

male sterile1 (ms1) females, hap2-1 was inherited (Figure 2E and

Figure S1), indicating complete or nearly complete complemen-

tation of hap2-1 by the epitope-tagged, native Arabidopsis

HAP2(GCS1) CDS. These control experiments demonstrated that

the addition of C-terminal epitope tags did not disrupt the function

of the HAP2(GCS1) CDS and that expressing the HAP2(GCS1)

CDS from the HAP2(GCS1) promoter resulted in expression of

functional HAP2(GCS1) protein.

Regional HAP2(GCS1) Deletions Are Not Functional
We first asked if the regions N- or C-terminal to the

HAP2(GCS1) transmembrane domain were essential for

HAP2(GCS1) function. The amino acids encoded by exons 2-15

(amino acid residues 62–541, Figure 2A) were deleted, retaining

exon 1 and its signal peptide to ensure that the protein product

was properly directed to the secretory pathway (NAtC, Figure 2C).

In a second construct, we directly fused epitope tags to the end of

the transmembrane domain to test if the C-terminus was essential

(AtNN, Figure 2C). None of the 24 primary transformants

established for either variant segregated .50% BastaR seedlings,

produced hap2-1/- plants, or restored normal segregation among

the progeny of self-fertilization (Figure 2D and Figure S1). Further,

hap2-1/+ pollen did not produce BastaR progeny when crossed to

ms1 (Figure 2E and Figure S1).

Epitope tag sequences were detected in floral mRNA extracted

from AtNN or NAtC lines, and the abundance of HAP2(GCS1)

mRNA was higher in these flowers than in hap2-1/+ flowers

(Figure S2), suggesting that failure of NAtC or AtNN variants to

rescue hap2-1 was not due to lack of construct expression. Thus,

the two regions of HAP2(GCS1) that lie on either side of the

transmembrane domain are essential for function.

Exchange of the Arabidopsis Amino Terminus with
Sequence from a Closely Related Species Produces a
Functional Protein
We next asked if replacement of the major regions of

Arabidopsis HAP2(GCS1) with sequences from plant orthologs

rescued hap2-1. We chose rice (Oryza sativa, Os) as a representative

monocot sequence; monocots and dicots diverged at least 200

million years ago [13]. OsHAP2(GCS1) is 59% identical with

Arabidopsis in the N-terminal region and 37% identical at the C-

terminus [4] (Figure S3). Expression of the OsHAP2(GCS1) CDS

from the AtHAP2(GCS1) promoter failed to rescue the Arabi-

Author Summary

Recent studies suggest that HAP2(GCS1) is a deeply
conserved protein required for gamete membrane fusion,
a critical yet poorly understood step in sexual reproduc-
tion. HAP2(GCS1) is present in many plant, protist, and
animal genomes, and has been shown to be essential for
fertilization in Arabidopsis, Chlamydomonas, and Plasmo-
dium. The loss-of-function phenotype in Chlamydomonas
suggests a direct role in gamete plasma membrane fusion.
HAP2(GCS1) has no known functional domains, making it
difficult to predict how it contributes to gamete fusion. We
set out to map the critical features of this protein by
testing a series of deletions, substitutions, and interspecific
chimeras for their ability to rescue the hap2-1 fertilization
defect in Arabidopsis. We found that the N-terminus does
not tolerate sequence divergence, but the histidine-rich C-
terminus does. We propose that the N-terminus of
HAP2(GCS1) functions in part by interacting with proteins
on the surface of female gametes. The key feature of the C-
terminus is positive charge, a characteristic that could
favor interactions with the plasma membrane that
promote membrane fusion. Our studies provide a descrip-
tion of HAP2(GCS1) functional domains and provide an
important framework for defining the role of this essential
component of a conserved reproductive mechanism.

Genetic Dissection of HAP2(GCS1)
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Figure 1. Protocol for analyzing complementation of hap2-1 fertilization defects using HAP2(GCS1) CDS variants. (A) Schematic of the
AtNNAtC construct representing the 1.5 kb promoter, HAP2(GCS1) coding sequence with major domains, C-terminal V5C4 epitope tag, and 19S
terminator and polyadenlyation sequence. Grey box represents the predicted signal sequence in exon 1, coils represent the predicted
transmembrane domain. The HAP2-GCS1 domain (Protein Family ID: PF10699; InterPro ID, IPR018928) is the most conserved sequence among
orthologs. (B–F) Method to obtain single-locus-insertion transgenic plants for complementation analysis. (B) hap2-1/+ plants were transformed. (C)
Primary transformants (T1) plants were selected for both BastaR and kanR, indicating they carried hap2-1 and the CDS construct. (D) The progeny (T2)
of self-fertilization of these individuals (T1) were assayed for segregation of the CDS construct and hap2-1 by scoring kanR and BastaR. Self-fertilization
of hap2-1 resulted in 50% BastaR progeny [2,4]. Complementation of the hap2-1 transmission defect by a single locus insertion of a CDS encoding

Genetic Dissection of HAP2(GCS1)
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dopsis hap2-1 fertilization defect (not shown). To ensure that the

rice protein was properly expressed and localized in Arabidopsis

sperm, we replaced Arabidopsis exons 2-15 and the Arabidopsis

C-terminus with the orthologous rice sequences to maintain

the Arabidopsis signal sequence and transmembrane domain

(OsNNOsC, Figure 2C and Figure S1). This exchange also failed to

rescue the hap2-1 defect (Figure 2D and 2E and Figure S1).

In contrast, a chimera consisting of the Arabidopsis N-terminal

region and the rice C-terminal region was fully functional

(AtNNOsC, Figure 2C–2E). Surprisingly, the reciprocal variant

made by exchanging Arabidopsis exons 2–15 with the more

conserved rice N-terminal sequence, was not functional (OsNNAtC,

Figure 2C–2E and Figure S1). However, a similar chimera made

with sequence from Sisymbrium irio (Sisymbrium, Si, 89% identical

N-terminus, Figure S3), a closely related member of the same

family as Arabidopsis (Brassicaceae [14]), did complement hap2-1

(SiNNAtC, Figure 2C–2E and Figure S1). This result suggests that

the failure of OsNNAtC to rescue hap2-1 was a consequence of

primary sequence divergence. Thus, conservation of primary

amino acid sequence is essential for proper function of the N-

terminus, but not the C-terminus. A Sisymbrium N-terminus /

rice C-terminus chimera was not functional (SiNNOsC, Figure 2C–

2E and Figure S1) even though each of these regions can function

when paired with the complementary Arabidopsis sequence. This

result suggests that the Sisymbrium N-terminus and the rice C-

terminus have reduced function compared to their Arabidopsis

counterparts, and that this hybrid CDS produces a non-functional

protein.

Positive Charge Is the Principal Functional Feature of the
HAP2(GCS1) C-Terminus
The ability of the AtNNOsC chimera to rescue hap2-1 implies

that the greater sequence diversity in the C-terminus compared to

the N-terminus [3–4,7] may be a consequence of evolutionary drift

rather than the influence of positive selection, which can also

produce such primary sequence diversity [1]. The drift hypothesis

is further supported by the observation that the C-terminal

enrichment in histidine residues is so far limited to flowering plants

[3–4,7–8]. Thus, localized positive charge at the C-terminus of

HAP2(GCS1) may be functionally more important than primary

sequence.

We dissected the Arabidopsis HAP2(GCS1) C-terminus to

determine what features were required for function. Alignments of

flowering plant C-termini representing dicots and monocots

revealed a run of 13 conserved amino acids immediately after

the predicted transmembrane domain followed by three histidine-

rich domains. The longest histidine-rich stretch is adjacent to the

transmembrane domain, and has an average pI of 12.5 (Figure 3A).

A variant composed of the complete amino terminus plus the

conserved 13 amino acids was not functional (AtNN+13, Figure 3B–

3E and Figure S1). However, extending the C-terminus to include

the first histidine-rich domain (H1) resulted in a fully functional

variant (AtNNAtC mut D, Figure 3D and 3E and Figure S1).

Replacement of all histidines in this truncated version with other

polar, charged amino acids (arginine and lysine) also resulted in a

variant that complemented hap2-1 (AtNNAtC mut +D, pI=11.4,

Figure 3B–3E and Figure S1). In contrast, replacing histidines with

nonpolar residues (glycine and alanine) significantly impaired the

function of HAP2(GCS1) (AtNNAtC mut øD, pI=12.2, Figure 3B–

3E and Figure S1). When this neutralized domain was extended to

include the downstream histidine-rich domains H2 and H3,

function was restored (AtNNAtC mut ø, pI=11.1, the same as the

endogenous sequence; Figure 3B–3E and Figure S1). Thus, a

hypomorph of HAP2(GCS1) can be made by neutralizing the C-

terminus with nonpolar residues.

We observed the following trend among the C-terminal variants

tested. Complete removal of the C-terminus (AtNN) or histidine-

rich region (AtNN+13) abrogates HAP2(GCS1) function. C-termini

consisting of the endogenous H1 or positively charged H1 variants

are fully functional. However, substituting nonpolar residues for

histidine in H1 domain generates a minimally functional protein,

yielding only 2–4% hap2-1/- progeny from self-fertilization and 9–

15% transmission of the hap2-1 allele in crosses to ms1 females

(Figure 3E and Figure S1).

The AtNNAtC mut øD Hypomorph Disrupts Sperm
Function in Fertilization
We further characterized rare AtNNAtC mut øD, hap2-1/- plants

to understand the effect of the nonpolar C-terminus on

HAP2(GCS1) function. Two sperm were present in AtNNAtC

mut øD, hap2-1 pollen grains (97–99%, n.500 per line), indicating

gametophyte development was normal. Furthermore, AtNNAtC

mut øD, hap2-1 pollen tubes were able to target ovules and deliver

sperm, as judged by counting the number of ovules that received

LAT52:GUS activity 7.5 hours after manual self-pollination

(Figure 4A and 4B). Female function was not affected in AtNNAtC

mut øD, hap2-1/- lines, and full seed-set was obtained when pistils

were pollinated with qrt1-2 pollen (Figure 4C). However, when

AtNNAtC mut øD, hap2-1/- plants were allowed to self-fertilize,

only four to seven seeds formed in each silique (,10%, assuming

an average of 50 seeds per normal silique; Figure 4C).

The finding that AtNNAtC mut øD, hap2-1 sperm were being

released in nearly all ovules, yet seed formation was dramatically

reduced, suggested that the HAP2(GCS1) hypomorph specifically

disrupted fertilization. Analysis of embryo and endosperm

development four days after self-pollination of AtNNAtC mut øD,

hap2-1/- plants revealed normal development in 2–8% of ovules

(Figure 5A and 5B), consistent with the number of normal seeds

observed after self-fertilization (Figure 4C). We also found that 18–

50% of ovules remained unfertilized (Figure 5A and 5B), consistent

with lack of HAP2(GCS1) function. In addition, we observed a

significant number of ovules that contained either an embryo or

endosperm, but not both products of double fertilization. Single

fertilization events were not observed when qrt1-2 pollen was used

to pollinate AtNNAtC mut øD, hap2-1/- pistils (Figure 5B). Analysis

of ovule development in ms1 pistils pollinated with AtNNAtC mut

øD, hap2-1 pollen two days after pollination also yielded significant

numbers of unfertilized and singly fertilized ovules (Figure 5C and

5D). When ms1 pistils were pollinated with qrt1-2, hap2-1/+, or

hap2-1/- carrying the functional AtNNAtC CDS, however, no

single fertilization events were observed. About 25% of the ovules

functional HAP2(GCS1) increases this to ,66% BastaR in the progeny of T1 plants. We screened progeny from 15–24 transformants and selected at
least two lines whose progeny exhibited ,66% BastaR. In cases where complementation failed and no lines resulted in .50% BastaR progeny, we
chose two lines siring the highest percentage BastaR progeny for further analysis. We identified and selected transgenic lines with a single insertion of
the CDS construct by analyzing kanR among progeny. (E) Lines homozygous for a CDS variant (CDS/CDS) were identified by scoring kanR in T3
progeny (100%). (F) Assays used to evaluate expression and complementation of each hap2-1/+, CDS/CDS line. The descendents of at least two
individuals from each transgenic line were used to conduct each assay.
doi:10.1371/journal.pgen.1000882.g001

Genetic Dissection of HAP2(GCS1)
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in pistils pollinated with hap2-1/+ pollen remain unfertilized

(Figure 5D), as previously reported [4].

These data suggest that neutralizing HAP2(GCS1) C-terminal

charge crippled function. In the majority of cases, neither sperm

was capable of fusing with the egg or central cell (unfertilized,

Figure 5). However, in a significant number of ovules,

HAP2(GCS1) function dropped below a critical threshold in only

one of the two sperm, producing single fertilization events

(embryo-only, endosperm-only, Figure 5). These results are

consistent with the conclusion that AtNNAtC mut øD represents

a hypomorph of HAP2(GCS1).

Discussion

In vivo analysis of HAP2(GCS1) variants has defined two

regions that play distinct roles during HAP2(GSC1)-mediated

Figure 2. Analysis of HAP2(GCS1) deletions and interspecific chimeras. (A) Schematic of the HAP2(GCS1) CDS and protein. Exon boundaries
(numbered above) are mapped to the open reading frame and major features including the signal sequence (ss), transmembrane domain (tm),
Arabidopsis amino acid position numbers delineating the N-terminal region, and the T-DNA insertion for hap2-1 are shown. (B) Pollen tetrads from
wild-type (+/+), hap2-1/+, or hap2-1/- plants. Scale bar = 50 mm. (C) Diagram of the HAP2(GCS1) variants tested. Star at the C- terminus represents the
epitope tag. Genbank accession numbers: A. thaliana = DQ022375; S. irio = GU724984; O. sativa = AK072871. (D-E) Percentage of progeny
inheriting hap2-1 from hap2-1/+, CDS/CDS plants following self-fertilization (D) or crosses of pollen to ms1 pistils (E). Expected frequency of progeny
inheriting hap2-1 if variant is fully functional is shown in the top bar (‘‘rescue prediction’’), and previously published hap2-1 results are shown for
comparison ({, [2] and ¥, [4]). Data from two independent transgenic lines are shown for each HAP2(GCS1) variant. Bars represent the mean
percentages from each transgenic line; horizontal lines denote the percentage range between descendents from two individuals per line. Total
number of plants (D) or seedlings (E) scored per line is shown. Asterisks denote significant differences from expected complementation (p,1025).
doi:10.1371/journal.pgen.1000882.g002

Genetic Dissection of HAP2(GCS1)
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double fertilization. The protein can be divided into N- and C-

terminal regions based on the position of the transmembrane

domain. Both regions are essential for function, but different

evolutionary constraints are driving their roles in fertilization.

We propose that an extracellular orientation of the N-terminus

allows this region to regulate gamete fusion by its interaction with

factors on the egg or central cell. This organization is consistent

with Hidden Markof Modeling (www.cbs.dtu.dk/services/

TMHMM-2.0/); with the invariant conservation of cysteine

residues within the HAP2-GCS1 domain that are predicted to

participate in disulfide bonding in an extracellular environment;

and with the successful use of N-terminal epitopes to produce

antibodies that block Plasmodium reproduction [15]. The

conserved HAP2-GCS1 domain could, for example, interact with

another membrane-bound protein on female gametes facilitating

the juxtaposition of the two plasma membranes. Our analysis of

Figure 3. Positive charge in the C-terminal region is required for HAP2(GCS1) function. (A) Alignment of HAP2(GCS1) C-termini from
selected angiosperms for which complete coding sequences are available (Genbank accessions dicots: A. thaliana = DQ022375, M. trunculata =
AC146573, P. trichocarpa = XP_002298057; monocots: L. longiflorum = BAE71142, O. sativa = AK072871). Thirteen conserved amino acids after the
transmembrane domain (grey) and histidine-rich domains (boxed) are highlighted. Arrow marks the point where a partial C-terminal truncation was
made (AtNNAtC mut D, and variants). Numbers correspond to key residues in the Arabidopsis primary sequence. (B) Diagram of the C-terminal
HAP2(GCS1) variants tested. Star at the C-terminus of the diagrams represents the epitope tag. (C) Sequences of the H1 domain in each C-terminal
variant. (D–E) are presented as in Figure 2.
doi:10.1371/journal.pgen.1000882.g003

Genetic Dissection of HAP2(GCS1)
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interspecific HAP2(GCS1) chimeras is consistent with an extra-

cellular orientation of the N-terminus. Replacement of the

Arabidopsis N-terminus with that of a closely related species

(Sisymbrium, 89% identical) generated a HAP2(GCS1) variant

capable of mediating fusion with Arabidopsis female gametes, but

a variant generated with a distantly related sequence failed (rice,

59% identical). These data are consistent with the hypothesis that

the egg and central cell express a protein that interacts with

HAP2(GCS1) to mediate fusion, and that this protein:protein

interaction fails beyond a certain level of sequence divergence in

the HAP2(GCS1) N-terminal domain.

Our data also show that HAP2(GCS1) does not contribute to a

species level barrier to hybridization. Wind and/or animals

indiscriminately pollinate many flowering plant species, so it is

important to consider mechanisms that limit hybridization. In

some organisms, protein:protein interactions essential for comple-

mentary gamete binding and fusion are rapidly co-evolving to

enhance reproductive isolation of one species from another [1,16].

We observe that the N-terminus of Sisymbrium, but not rice

HAP2(GCS1), can mediate fertilization with Arabidopsis female

gametes. Arabidopsis and Sisymbrium are in the Brassica family,

but belong to distinct tribes [14]. Thus, our data suggest that

Arabidopsis female gametes can distinguish between the N-

terminal sequences of HAP2(GCS1) from Arabidopsis and

distantly related rice, but cannot discriminate Arabidopsis from

closely related Sisymbrium. The recent finding that pollen tubes

are attracted to ovules by small proteins with species-specific

activity [17] supports a model that barriers prior to gamete-gamete

interaction account for species-level discrimination in flowering

plants, potentially leaving the proteins involved in gamete-gamete

interactions to evolve without diversifying selection.

Positive charge, not primary amino acid sequence, is the C-

terminal characteristic conserved among HAP2(GCS1) orthologs

and our data show that positive charge is required for function.

Unlike the protein:protein interactions proposed for the N-

terminus, the intracellular C-terminus may be functioning through

electrostatic interactions with negatively charged molecules (e.g.

the inner face of the plasma membrane) that favor membrane

fusion. Positively charged domains located on the intracellular

domain of fusion-associated small transmembrane (FAST) proteins

have been implicated in fusion of host cells by non-enveloped

viruses [18].

Flowering plant C-termini are enriched in histidine whereas

other positively charged amino acids (arginine and lysine) are

prevalent in other orthologs [4,7–8], suggesting that selection for

one class of charged amino acids over another has shaped the

evolution of HAP2(GCS1) in different eukaryotes. These three

positively charged amino acids were functionally interchangeable

in our Arabidopsis experiments. In nature, however, differences in

the composition of the C-terminal domain may have been selected

to meet the unique demands of the reproductive systems that use

HAP2(GCS1). Under physiologic pH (e.g. pH 5–7), histidine

exists in either a protonated or neutral form (pKa= 6.08) whereas

lysine (pKa= 10.5) and arginine (pKa= 12.0) are always proton-

Figure 4. AtNNAtC mut øD is a hypomorph of HAP2(GCS1) that affects only male fertility. (A) Representative pistils of self-pollinated plants
homozygous for hap2-1 and the HAP2(GCS1) variant (hap2-1/-, CDS/CDS). Ovules targeted by pollen tubes are indicated by the blue dots (GUS
staining, arrowheads). Image shows pistils from hap2-1/-, AtNNAtC line #13 (left) and hap2-1/-, AtNNAtC mut øD #03 (right). (B) Percentage of ovules
targeted per pistil. Number of pistils scored per line is shown. (C) Seed set per silique when hap2-1/-, AtNNAtC mut øD pistils are crossed with qrt1-2
pollen (left) or manually self-pollinated (right). Number of siliques scored is indicated.
doi:10.1371/journal.pgen.1000882.g004
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Figure 5. AtNNAtC mut øD, hap2-1 sperm are defective at double fertilization. (A) Examples of the products of fertilization by hap2-1,
AtNNAtC mut øD sperm 96 hours after self-pollination. Scale bar = 50 mm. (B) Frequency of observed fertilization events 96-hours after pollination with
self (top) or qrt1-2 (bottom) pollen. Number of ovules scored is indicated. (C) Examples of ms1 ovules fertilized by hap2-1, AtNNAtC mut øD sperm 48
hours after pollination. (D) Frequency of observed fertilization events 48-hours after pollination of ms1 pistils with pollen from the indicated line.
Number of ovules scored is indicated.
doi:10.1371/journal.pgen.1000882.g005
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ated. Perhaps the difference in sperm delivery mechanisms

between flowering plants and other eukaryotes selected for the

bimodal charge state of histidine. Flowering plant sperm develop

within the pollen cytoplasm and are delivered to the ovule by a

pollen tube. hap2-1 pollen tubes have a reduced ability to target

ovules compared to wild type, suggesting that in flowering plants,

HAP2(GCS1) may have a role in pollen tube guidance that is

distinct from its essential role in gamete fusion [4]. Future

experiments will test these hypotheses by determining if

HAP2(GCS1) variants with modified C-termini can complement

the pollen tube guidance defect observed when hap2-1 pollen tubes

compete with wild-type pollen tubes for access to ovules. Pollen

tubes burst upon arrival at the ovule, exposing sperm to the

extracellular environment. It will be interesting to determine if this

change in environment results in a drop in sperm pH that activates

HAP2(GCS1) function.

hap2-1 sperm expressing a HAP2(GCS1) variant with a

neutralized C-terminus (AtNNAtC mut øD) had significantly

reduced fertility. Double fertilization occurred in only ,7% of

the ovules we analyzed, while many ovules remained unfertilized

(,40%). A large portion of the ovules contained products of single

fertilization events (,23% embryo-only, 8% endosperm-only) that

fail to complete seed development. These results highlight a

unique advantage of flowering plants for the study of gamete

fusion: the outcomes of two distinct fertilization events, both

requiring HAP2(GCS1) function, can be observed independently.

This situation provides a sensitive means to detect reduced fusion

efficiency. We consistently observed fertilization of only one female

gamete when two hap2-1 sperm expressing the AtNNAtC mut øD

HAP2(GCS1) variant were delivered to an ovule, specifically

detecting more single fertilizations with the egg (embryo-only) than

the central cell (endosperm-only). This suggests that sperm:central

cell fusion may require more HAP2(GCS1) activity or that central

cell fusion is particularly sensitive to the C-terminal charge of

HAP2(GCS1).

All evidence to date indicates that HAP2(GCS1) has an essential

role in fertilization [2-4,7,9,15], but its exact function remains

unknown. Observations made in Chlamydomonas suggest it is

required for gamete fusion because gamete attraction and

binding/juxtaposition of membranes are normal in HAP2(GCS1)

loss-of-function minus gametes, yet membranes fail to fuse [7]. One

hypothesis is that HAP2(GCS1) directly catalyzes membrane

fusion [19]. While HAP2(GCS1) does not share primary sequence

with known fusogenic proteins, it shares features with the FAST

proteins of non-enveloped viruses. FAST proteins have a single

transmembrane domain, a conserved, extracellular N-terminus

and a variable C-terminus that is positively charged [18]. A cell

expressing FAST proteins can fuse with a non-expressing

neighboring cell [18,20], so like HAP2(GCS1), the requirement

for FAST proteins in fusion is asymmetric. Thus, by virtue of their

common attributes, HAP2(GCS1) and FAST proteins may use a

similar mechanism to catalyze membrane fusion.

We have mapped the key domains of HAP2(GCS1) and

propose a model in which the N-terminus functions by interacting

with female gamete-expressed proteins and the C-terminus is

required to interact with the plasma membrane through its

positive charge. By analogy to known fusogenic proteins, we

propose that these interactions bring gamete membranes into close

proximity, destabilize the phospholipid bilayer, and generate

membrane structures favoring their fusion [19,21–23]. Future

studies designed to directly assess the ability of HAP2(GCS1) to

catalyze membrane fusion will be required to test this model and

to elucidate the biochemical function of this ancient reproductive

protein.

Materials and Methods

Maintenance of Plants
All seeds were plated onto solid Murashige and Skoog (MS)

medium (MP Biomedicals LLC, Solon, OH, USA) supplemented

with 0.5% sucrose containing 25 mg/mL glufosinate ammonium

(Basta; Sigma Aldrich/Riedel-de Haën, St. Louis, MO, USA)

and/or 50 mg/mL kanamycin sulfate (Sigma-Aldrich, St. Louis,

MO, USA). Seedlings were transplanted to sterile 2MIX potting

medium (Conrad Fafard Incorporated, Agawam, MA, USA) and

grown at 20uC, 16 day/8 night hour light cycle in a GCW30 walk-

in Arabidopsis chamber (Environmental Growth Changes,

Chagrin Falls, OH, USA) at 50–60% humidity. Plants were

bottom-watered with 0.5X 15-5-15 (N-P-K) Peters Professional

fertilizer (The Scotts Company, Marysville, OH, USA) as needed.

Plasmid Constructs
Chimeric constructs were made using a modified Arabidopsis

HAP2(GCS1) CDS. Mutations were made in the CDS to eliminate

the endogenous EcoRI site at position 71 (‘A’ of the initiating

methionine codon of A thaliana is position 1), to create a second

BamH I site at position 1618 that complements the endogenous

BamH I site at 178, and to create a Bmt I site at position 1740.

Each directed mutation was made using the QuickChange

mutagenesis protocol (Stratagene/Agilent Technologies, Santa

Clara, CA, USA). Additional changes and sequence swaps were

introduced through linker primers that contain both appropriate

restriction sites and new sequences.

All CDS variants were subcloned into a custom vector based on

the pTAT backbone [24] that contains sequence encoding tandem

V5 [11] and tetra-cysteine (CCGPCC) [12] epitope tags

downstream of the multiple cloning site. The tagged CDS was

then moved into pCamHap2, a variant of pCambia2300

(Genbank: AF234315; [25], containing,1.5 kb of the endogenous

Arabidopsis HAP2(GCS1) promoter [4] and 19S terminator

flanking a modified multiple cloning site (Figure 1).

Transformation of hap2-1/+ and Selection of Transgenic
Lines
Each recombinant pCamHap2 T-DNA plasmid was trans-

formed into Agrobacterium strain GV3101 [26] and resultant

colonies were expanded for floral dipping [27]. T1 plants were

selected on MS plates containing both Basta and kanamyacin, but

subsequent generations were selected on either Basta or kana-

myacin (Figure 1). Fifteen to twenty-four T1 plants were screened,

and at least 2 lines were selected for further analysis with ,66%

BastaR (expected full rescue in T2 plants). In cases where

complementation failed and no lines resulted in .50% BastaR,

lines with the highest percentage BastaR were analyzed. Trans-

genic lines with a single insertion of the CDS construct were

selected based on kanR data (expect 75–83% kanR).

GUS Staining
Stage 12 flowers or pistils dissected 7.5 hour after manual

pollination were fixed and stained for GUS according to

previously published methods [2,4].

Quantitative Reverse Transcription Polymerase Chain
Reaction
Stage 12–14 flowers were collected, frozen in liquid nitrogen,

and stored at 280uC until needed. RNA was isolated from 25–50

flowers per line using Qiagen RNA Mini columns (Qiagen

Corporation, Valencia, CA, USA), including the optional on-
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column DNase treatment. Complementary first strand DNA was

synthesized from 1 mg of total RNA with random hexamers and

poly dT primers using the TaqMan kit (Applied Biosystems, Foster

City, CA, USA). One fortieth of each reverse transcription

reaction was used per 25 mL quantitative real-time PCR (qPCR)

replicate. qPCR was completed on a 7300 Real-Time PCR

System (Applied Biosystems, Foster City, CA, USA) using

Platinum Taq SYBR Green Mix with ROX (Invitrogen

Corporation, Carlsbad, CA, USA). Amplification was quantified

over 40 cycles of 95uC, 0:15 denaturation and 60uC, 2:30

extension, and amplicons were evaluated with a standard

dissociation step. Primers for the HAP2(GCS1) transmembrane

domain (F= 59- TCCAACAAATGCTCGAGTTTC; R=59-

ATTGGGAAGAGAGCGAGGAG; 101 bp), H3.3 (At1g19890;

F= 59- ATTGCCTTTCCAACGACTTG; R=59- AACAACCC-

CACCAAGTATGC; 120 bp) and the exogenous V5C4 dual

epitope (F = 59- CCTAACCCTCTCCTCGGTCT; R=59-

TCCCTTATCGGGAAACTACTCA) were used at a final

concentration of 100 nM.

Ct values of triplicate reactions were averaged per sample,

normalized to sperm-expressed histone H3.3 transcript [28–29],

and compared to the expression levels in hap2-1/+ flowers

(transmembrane primers) or presented without fold-change ratios

(V5C4 epitope primers). This difference in data presentation is due

to the nature of the targets of each primer set: The transmembrane

primers (TM) amplify the same sequence from both endogenous

HAP2(GCS1) and CDS transcripts. This primer set thus allows us

to quantify how much more HAP2(GCS1) variant mRNA is

present compared to hap2-1/+. The epitope tag primers (V5C4)

only recognize the CDS transgene (Figure S2D), thus only a

normalized value may be presented against a similar amplification

from plants that lack this tag.

Embryo Sac Analysis by Chloral Hydrate Clearing
Pistils were dissected 48 (ms1 crosses) or 96 hours (self-pollinated

pistils) after manual pollination, and prepared for analysis by

chloral hydrate clearing [30].

Statistics
The two-tailed Student’s t-test was used to evaluate differences

in transmission of hap2-1. Significance was assigned based on p-

values ,1025.

Supporting Information

Figure S1 Compilation of data for each HAP2(GCS1) variant.

Schematic of each variant (left) is paired with the data from each

transgenic line and is compared to hap2-1/+ ({, [2] and ¥, [4]. (A)

Schematic of each variant. (B-D) Data presented are: (B) BastaR

and kanR among T2 progeny resulting from self-fertilization of the

primary transformant; (C) percentage of T3 progeny with specific

hap2-1 genotypes (see also Figure 1 and Figure 2) based on tetrad

scoring; and (D) percentage of BastaR progeny from ms1 cross with

pollen from CDS homozogyous, hap2-1/+ T3 plants (see also

Figure 1 and Figure 2).

Found at: doi:10.1371/journal.pgen.1000882.s001 (0.37 MB TIF)

Figure S2 Transcript levels of HAP2(GCS1) variants in

hap2-1/+, CDS/CDS transgenic lines. (A-C) mRNA abundance

of the CDS variants. Quantitative real-time PCR data was

normalized to values for sperm-expressed histone H3.3 [28,29].

The two values indicate the range obtained for each transgenic

line, from total RNA extracted from 25 flowers pooled from 5

individuals representing descendents of two individuals from each

line. (A) Schematic of each variant. (B) DCt value for the V5C4

epitope tag mRNA sequence; values greater than 12, based on

additional negative controls (data not shown), indicates an absence

of mRNA. Note lower DCt values denote the presence of more

mRNA in each sample. (C) Relative abundance of each CDS

variant, compared to hap2-1/+. The quantity of mRNA encoding

the transmembrane domain, which is shared by endogenous

HAP2(GCS1) and all variants, was measured and expressed relative

to hap2-1/+. Expression levels higher than one correspond to

transcript quantities of CDS variants greater than found in hap2-

1/+ flowers. (D) Representative ethidium bromide-stained agarose

gel of qPCR amplification of the V5C4 epitope tag from the

control line (AtNNAtC) or constructs that failed to complement

hap2-1 (see Figure 1 and Figure 2). Neither a control LAT52:GUS

transgenic line (LAT52:GUS) or hap2-1/+ contain a sequence

corresponding to the epitope tag, and are thus negative with a DCt

value .12.

Found at: doi:10.1371/journal.pgen.1000882.s002 (0.52 MB TIF)

Figure S3 Alignment of HAP2(GCS1) orthologs used. (A)

Schematic of the relationship between mRNA and CDS of A.

thaliana HAP2(GCS1). Vertical lines in the CDS represent

exon:exon junctions, these positions are marked by carets in B.

(B) Primary sequence alignment of the N-terminal region for the

three HAP2(GCS1) orthologs used in this study in the context of

the entire Arabidopsis CDS. Amino acid identity at respective

positions in the Arabidopsis sequence is shown with a dot (N); gaps

in alignments are shown with a dash (-). Key Arabidopsis amino

acid position numbers are given above the sequence.

Found at: doi:10.1371/journal.pgen.1000882.s003 (0.30 MB TIF)
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