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Haploid genomes illustrate epigenetic constraints
and gene dosage effects in mammals
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Abstract

Sequencing projects have revealed the information of many animal genomes and thereby enabled the exploration
of genome evolution. Insights into how genomes have been repeatedly modified provide a basis for understanding
evolutionary innovation and the ever increasing complexity of animal developmental programs. Animal genomes
are diploid in most cases, suggesting that redundant information in two copies of the genome increases
evolutionary fitness. Genomes are well adapted to a diploid state. Changes of ploidy can be accommodated early
in development but they rarely permit successful development into adulthood. In mammals, epigenetic
mechanisms including imprinting and X inactivation restrict haploid development. These restrictions are relaxed in
an early phase of development suggesting that dosage regulation appears less critical. Here we review the recent
literature on haploid genomes and dosage effects and try to embed recent findings in an evolutionary perspective.
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Review

Haploid genomes in insects and mites

The information for the development of an organism is
encoded in its genomic DNA sequence. In most animals
each cell contains two copies of the genome making up
a diploid chromosome set. Diploid genomes provide a
buffer against deleterious effects of mutations and enable
the maintenance of suboptimal alleles that could become
advantageous if environmental conditions change. Fur-
thermore, diploidy allows co-transmission of beneficial
and suboptimal alleles from the same parent facilitating
maintenance of a diverse genetic basis for selection to
draw from. Advantages of diploidy might explain the rare
observation of single copy genomes outside germ line
development of animal species. In animal development,
haploid genomes are largely limited to post-meiotic germ
cells that show little proliferation and gene expression
according to their specialized function in reproduction.
Haploid genomes do occur in some social insects in-
cluding ants, wasps and honeybees, where they determine
male sex [1]. Haploidy presumably serves to purge dele-
terious mutations from the genome of males. Males are
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largely dispensable compared with females as they are
only during a brief reproductive period in these species. A
small number of fit males can provide a copy of the gen-
ome that is largely free of deleterious mutations for the
next generation. In addition, rare parthenogenetic haploid
species have been described in mites and insects [2,3]. Par-
thenogenetic all-female species appear to be rare excep-
tions but they still illustrate that haploid genomes can
support development of quite remarkably complex organ-
isms. Notably, haploid cell lines have also been isolated
from flies that do not normally show haploid development
[4] indicating that the ability to accommodate a change of
ploidy is widely maintained in insect species. The scaling
of molecular networks and pathways relative to genome
copy number is surprising given the complexity of interac-
tions involved in the animal developmental programs.
Balancing of genome copy number elevations could be
related to evolutionary selection for robustness of regula-
tory networks, but this has not been investigated to date.

Limited haploid development in vertebrates

It is not hard to imagine that ploidy elevation can lead
to problems for organismal development through different
nuclear-cytoplasmic ratio or non-scaling gene dosage rela-
tions. However, evidence suggests that changes in genome
copy number can be compatible with development in a
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range of organisms. Polyploid frogs and lizards can
coexist with related diploid populations, and also inter-
breed in some cases [5-7]. A number of tetraploid amphib-
ians and reptile species have been described [8]. Triploid
vertebrates can arise through hybridization of diploid and
tetraploid species or from nondisjunction of chromosomes
in the egg after fertilization as is commercially applied in
rainbow trout [9]. Even sexually reproductive triploid verte-
brate species have been observed [7]. Notably, it has been
possible to recreate ploidy elevation in the laboratory
through fertilization of triploid eggs of parthenogenetic
asexual vertebrates [6]. This suggests that little obstacles
to ploidy elevation exist in vertebrates. Indeed there is
evidence that two rounds of genome-wide duplications
have occurred during vertebrate evolution [10,11], indi-
cating that current vertebrate genomes are a relic from
a polyploid stage [12]. Notably, haploid cell lines from
frogs have been reported [13] showing that amphibians
can accommodate both genome copy number elevation
as well as reduction.

Haploid development in zebrafish can be experimen-
tally induced by fertilization with inactivated sperm [14]
or by fertilization of irradiated oocytes [15,16]. Haploid
gynogenetic or androgenetic zebrafish embryos progress
through embryonic development but do not reach the
mature stage. This shows that in fish a haploid genome
can direct embryonic growth and organogenesis but is
incompatible with full adult development. Interestingly,
haploid pluripotential embryonic cells from Medaka have
been established [17]. These cells maintain an intact hap-
loid karyotype in culture and can contribute to develop-
ment through semicloning. Teleost fish have experienced
a recent third genome duplication event and it is con-
ceivable that haploid development could benefit from
the approximation of an ancestral genome state before
duplication [18,19]. These observations illustrate that
developmental programs in fish, amphibian and reptile
species can accommodate ploidy changes to variable de-
grees. It is conceivable that tolerance to ploidy changes
is related to genome duplication events as a driver of
evolutionary innovations in these branches [12]. Poten-
tially more recent and complex developmental programs
in higher vertebrates might introduce features that en-
counter greater problems with changes in ploidy.

Imprinting and X chromosome dosage restrict haploid
development in mammals

In mammals, haploid development can be induced by
activation of unfertilized oocytes to produce partheno-
genetic haploid embryos [20-22] or by fertilization of
enucleated oocytes to produce androgenetic haploid
embryos [23] (Figure 1). Haploid mouse preimplanta-
tion embryos have also been obtained by mechanical bi-
section of zygotes [24] or by microsurgical removal of
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Figure 1 Experimental production of haploid mammalian
embryos. (A) Normal fertilization results in embryos containing genomic
contributions of both parents. During this process the metaphase |l arrest
of the oocyte is resolved and the second polar body (PB) is extruded
leaving the diploid zygote with a haploid set of chromosomes from
each parent. (B) Parthenogenetic activation of oocytes can be achieved
by treatment with chemicals including Strontium salts or ethanol
without fertilization and results in embryos that contain only one haploid
set of maternal chromosomes [62,66]. (C) Similarly, haploid gynogenetic
embryos can be constructed by removing the paternal pronucleus from
a fertilized zygote by micromanipulation with a glass capillary in the
presence of microtubule inhibiting chemicals. (D) Removal of the
maternal pronucleus from the fertilized zygote results in androgenetic
embryos containing only a haploid paternal genome [64,65]. Half of
these androgenetic embryos containing the Y chromosome and lacking
an X chromosome do not develop. (E) An alternative way for producing
haploid androgenetic embryos is to enucleate the oocyte and introduce
a sperm nucleus [64,65]. Between 10 to 20% of haploid embryos
containing either the maternal or paternal set of chromosomes develop
to the blastocyst stage when they can be used for establishing

embryonic stem cell lines.

one pronucleus [25]. In mice, haploid cells have been
observed until egg cylinder stage embryos [26], but
haploid development beyond implantation is severely
impaired. This is a direct consequence of the fact that
the two parental contributions to the genome are not
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equivalent in mammals (Figure 2A). Genomic imprint-
ing restricts expression of certain genes to one parental
allele [27-29]. As a consequence, both maternal and pater-
nal chromosomes are required for successful development
in mice [30-32]. Genomic imprinting can affect evolution
though selective exposure of mutations in a functionally
hemizygous state and has further been suggested to aid a
greater variability in quantitative traits that could benefit
species in changing environments [33]. Fixation of unbal-
anced parental contributions is hypothesized to be driven
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by genetic effects including conflict over parental invest-
ment between both sexes [34,35].

Other examples for monoallelic expression in mammals
include allelic exclusion of immunoglobulin loci [36],
T-cell receptor genes and olfactory receptor genes. In
addition, the majority of X-linked genes are expressed
monoallelically. Compensation for X-linked gene dosage is
required as a consequence of the mammalian XY sex
chromosome system. In both males (XY) and females
(XX), only a single X chromosome is transcriptionally
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Figure 2 Dosage imbalances in haploid mammalian cells. (A) The inequality of parental genome contributions is illustrated by the lgf2-H19
imprinted gene cluster. In bi-parental diploid cells, H19 is expressed from the maternal whereas Igf2 is expressed from the paternal inherited
chromosome. Haploid cells only contain a single set of chromosomes, either the maternal or paternal, and therefore lack either Igf2 or H19 expression.
(B) The cell volume of haploid cells is between 50 to 66% that of diploid cells. This leads to changes in the surface area to volume ratio and the cell
diameter that can influence transport processes and extension of the mitotic spindle, respectively. In addition, dosage compensation by X inactivation
is not feasible in a haploid karyotype and, as a consequence, a genetic imbalance is incurred as the X chromosome to autosome (X/A) ratio is elevated
to 1:1 from 1:2 in normal diploid cells. This effect is only significant after embryonic stem (ES) cell differentiation as normal diploid ES cells are
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active [37]. This is achieved by transcriptional inactivation
of one of the two X chromosomes in females through the
process of X inactivation. The requirement of a single
active X chromosome per diploid set of autosomes re-
sults in an X chromosome to autosome ratio of 1:2 that
cannot be approximated within a haploid genome and
causes immitigable dosage effects for haploid develop-
ment in mammals (Figure 2B). Gene activity from the
single X chromosome causes a two-fold relative increase
in X-linked gene dosage. Alternatively, inactivation of
the X chromosome leaves haploid cells nullisomic for
X-linked genes, which is not compatible with survival
[38]. Whereas early mouse embryos can tolerate a lack
of dosage compensation, X inactivation becomes essen-
tial soon after implantation [39]. Genomic imprinting,
monoallelic expression and X chromosome dosage impose
genetic limits to haploid development in mammals.

Haploid phases in human tumors

It is a fact - despite rarely being consciously considered -
that a diploid karyotype represents an exception rather
than the rule in established cell cultures. Many permanent
cell lines acquire aneuploidies in culture with gain and loss
of chromosomes providing growth advantages possibly
in combination with acquired mutations. Culture condi-
tions might contribute significantly to the development
of aneuploidies as growth requirements are less strin-
gent than in development where growth depends on
functioning tissues and organs. This is also true for
mouse embryonic stem (ES) cells where aneuploidies
accumulate with an increase in passage number [40].
Notably, aneuploidies are also observed in rare occa-
sions of transmissible tumors in canines and Tasmanian
devils suggesting that unusual and unexpected proper-
ties can result from karyotype changes [41,42]. Elevated
levels of aneuploidy are also common in human tumors.
These observations suggest that a diploid chromosome
set is not essential for cell survival and deviations from
a regular diploid genome might be advantageous in cul-
ture and tumors.

Aneuploidy in most tumors manifests itself in a shift
of the modal average of chromosomes. Interestingly, hy-
podiploid, including rare near haploid tumor karyotypes,
have been reported. Near haploid tumor cells have been
observed in rare cases of leukemia [43-49], and have been
less frequently reported in solid tumors [50-52]. Loss of
chromosomes appears to be the primary event in near
haploid acute lymphoid leukemia and correlates with
poor prognosis [44,53]. Haploid karyotypes in tumors
are not fully intact and often contain diploid genomic
regions and chromosomal rearrangements [54]. This
suggests a selective advantage of the haploid state, prob-
ably in the context of oncogenic mutations and rear-
rangements. A haploid phase where a single hit can

Page 4 of 10

inactivate gene function could be explained by selection
for loss of tumor suppressor genes during tumor devel-
opment (Figure 3). However, it is unlikely that haploidy
is a requirement for loss of tumor suppressor activity
since this could also be achieved by selective loss of few
chromosomes and maintenance of a largely diploid gen-
ome. Therefore, it cannot be ruled out that a haploid
phase might contribute to tumor cell persistence in a
different way, possibly involving gene dosage effects.

Establishment of haploid mammalian cell lines

Cells with near haploid and hypodiploid karyotypes have
been adapted to growth in culture from a partially hap-
loid chronic myeloid leukemia [43]. Apparently, these
cultures were obtained at the blast phase after a long be-
nign phase and repeated chemotherapeutic treatment sug-
gesting significant selection of tumor cells before cultures
were established. The haploid portion of the KBM7 cell
line carries two copies of chromosomes 8 and 15 in
addition to a BCR-ABL chromosomal translocation. Ini-
tially, the KBM7 cell line showed strong inclination to
diploidization such that later passages had lost the hap-
loid fraction of cells. However, a subclone (P1-55) from
early passage KBM7 cells maintained a near haploid
karyotype diploid only for chromosome 8 stably in culture
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Figure 3 Haploid phases are observed in human tumors.
Haploid phases in human tumors could facilitate or accelerate the
loss of tumor suppressor gene function. Mutations that have been
introduced into the haploid tumor genome will become homozygous
when the tumor cell becomes diploid or polyploid. The observation of
tumors with cells at various polyploidy levels can follow a transient
haploid phase, which makes recognition of haploid phases difficult.
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[47]. Notably, the reduced rate of diploidization indicates
a second and independent adaptation that has occurred
after culture. Later work has attempted to change the
cell type of the haploid cells for expansion of their use
in genetic screening [55]. Introduction of viral vectors
used for reprogramming of induced pluripotent stem
cells resulted in an adherent cell line that had lost its
hematopoietic character. Although pluripotency was
not established, these HAP1 cells are of interest as they
possess different growth properties including altered
morphology and differential response to cell toxins [55].
This cell line also no longer contains a second copy of
chromosome 8 suggesting a haploid karyotype, albeit
with chromosomal translocations. These changes have
also led to an increased rate of diploidization. These
findings clearly illustrate that mammalian cells with a
near haploid karyotype can proliferate and display dis-
tinct phenotypes in culture.

Pluripotent haploid cells from early mouse embryos
Following studies on haploid mammalian embryos, ini-
tial attempts to derive pluripotent ES cells from haploid
mouse blastocysts resulted in the establishment of dip-
loid cell lines [56]. This was surprising as both partheno-
genetic and androgenetic diploid embryos can develop
past the blastocyst state and survive beyond implant-
ation [57,58]. Parthenogenetic embryos are lost around
embryonic day 10 (E10) [58,59]. Similarly, embryos with
impaired dosage compensation due to a mutation in the
Xist gene develop beyond implantation [39,60]. These
findings indicate that pre-implantation development is
largely independent of dosage compensation and the
presence of a bi-parental complement of imprints. How-
ever, pre-implantation development in parthenogenotes
does not progress completely independent of X inactiva-
tion and delayed upregulation of Xist from one of the
two maternal X chromosomes has been reported at the
eight cell stage [61]. Recent improvements in ES cell cul-
ture techniques and innovation in flow cytometric cell
sorting technology have finally facilitated the establish-
ment of haploid parthenogenetic [62,63] and androgenetic
[64,65] ES cell lines from mouse embryos (Figure 1). Hap-
loid mouse ES cells proliferate in culture and maintain an
intact haploid karyotype for more than 30 passages as
evidenced by genomic analysis and developmental com-
petence [66].

The developmental stage from which mouse ES cells
are derived appears to tolerate the loss of epigenetic
regulation [67]. It has been reported that abrogation of
DNA methylation [68], Polycomb complex function [69]
and nuclear B type lamins [70] does not prevent prolifer-
ation and self-renewal of mouse ES cells. In contrast,
respective mutations lead to defects in differentiated
cells. ES cells are derived from cells of the inner cell

Page 5 of 10

mass of the blastocyst that will develop into the epi-
blast. At these stages epigenetic patterns are reset and
epigenetic regulation appears substantially different. For
example, the cells of the early epiblast are not dosage
compensated before X inactivation is initiated around the
time of gastrulation in mice. The discovery of new culture
conditions has facilitated the culture of ES cells in a naive
pluripotent ground state by inhibition of the mitogen acti-
vated protein (MAP) kinase and glycogen synthase kinase
pathways [71]. These two inhibitor (2i) conditions are
beneficial for obtaining ES cell lines with a high content
of haploid cells [63]. Haploid ES cells have also been
established or cultured in traditional serum containing
media and Leukemia inhibitory factor (LIF), but with
substantially reduced efficiency and increased rate of
diploidization [62,66]. The question arises how 2i cul-
ture conditions contribute to the maintenance of a hap-
loid karyotype. In serum-based culture conditions, ES
cells are heterogeneous and at any given point in time
only a fraction of cells express naive pluripotency markers
including Nanog and Rexl. In contrast, these markers
are homogenously expressed in all cells in 2i conditions
[71-73]. Therefore, it is conceivable that, in the naive
ground state, selective pressure arising from gene dos-
age effects of a haploid genome are largely alleviated.
Notably, culture in 2i medium also induces drastic
changes in the epigenetic profiles of ES cells. It has been
shown that Polycomb-associated histone H3 tri-methylation
patterns are shifted in 2i conditions with reduced levels
on promoters and greater enrichment over satellite re-
peats [74]. Furthermore, DNA methylation is substan-
tially reduced in 2i medium compared to serum-based
ES cell cultures [75]. This finding is consistent with low
levels of DNA methylation in inner cell mass cells. Irre-
spective of reduced epigenetic modifications, genomic
imprints are maintained in 2i medium [75]. Paternal im-
prints are further partially maintained in androgenetic
haploid ES cells but are progressively lost with time in
culture [64,65]. Loss of imprinting is not special to hap-
loid ES cells but can also be associated with diploid ES
cell cultures [76]. Haploid ES cells are competent to
contribute to a wide range of tissues in chimeras [62-65].
However, contribution to development is only possible
after diploidization in vitro or in vivo. Colonization of
the female germ line and transmission of a transgene
was observed for parthenogenetic haploid ES cells [66].
So far, the germ line competence of androgenetic hap-
loid embryonic stem cells has been limited to early
stages of primordial germ cells [64,65]. However, they
have been used for semi-cloning and appear to contain
functionally relevant paternal imprints. Live mice have
been obtained from injection of haploid androgenetic
ES cells into unfertilized oocytes indicating that they
can substitute sperm cells [64,65]. Haploid ES cells
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appear to have an intrinsic tendency for diploidization.
The trigger for diploidization is not known but appears
crucial for the establishment of stable differentiated cell
types from haploid ES cells. Haploid ES cells proliferate
with similar kinetics as diploid ES cells. Hence the need
to replicate a genome that is half the normal size does
not appear to increase proliferative potential. This ob-
servation is further in line with the observation that
tetraploid ES cells show a similar rate of self-renewal as
diploid ES cells [77]. This indicates that the replication
of the genome is not the rate limiting step in cell division
in ES cells. Alternatively, altered properties might com-
pensate for differences in genome size. Interestingly,
ploidy correlates with cell size. Haploid ES cells possess
a volume that is approximately two-thirds of that of dip-
loid cells (unpublished observation; Figure 2B). There-
fore, a reduction in genome size leads to a concomitant
reduction in the availability of resources due to a smaller
cell volume.

Application of haploid cells in genetic screens

Diploid karyotypes of virtually all mammalian species
have severely limited forward genetic approaches. The
discovery of haploid mammalian cells has opened new
possibilities for performing genetic screens in mammals
(Figure 4). The use of haploid cells in screens was ini-
tially demonstrated using a near haploid KBM7-derived
human tumor cell line [78]. For this a mutant library
was generated by insertion of viral gene trap vectors in
large pools of haploid cells. This library was subsequently
exposed to various toxins and pathogens. Surviving cell
clones were analyzed and mutations conferring resistance
could be identified. Since then an impressive number of
screens investigated host mechanisms utilized by patho-
gens [55,78-82]. In addition to understanding disease
mechanisms, recent work has also provided insights into
human cellular pathways [81]. Haploid ES cells could
provide advantages through a largely intact genome that
is free of tumor-specific mutations. This is especially
important for dissection of developmental processes in
forward genetic screens. The potential for using haploid
ES cells in screens has been shown by proof-of-principle
experiments identifying factors in the DNA mismatch
repair pathway and mediating ricin toxicity [62,63]. In-
herent tendency to diploidization is not an obstacle for
screening as long as the mutations are inserted in a hap-
loid state. Recently, haploid ES cells have also been used
to investigate the resistance mechanism for the chemo-
therapeutic agent Olaparib [83]. It might be expected
that future screens can utilize the pluripotent potential
of haploid ES cells and the availability of reporter mouse
lines for investigating molecular networks of gene regu-
lation, cell signaling and development. This prospect
suggests that haploid ES cells could become a tool for
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Figure 4 The use of haploid cells in genetic screening. A primary
interest in haploid cells is their use for generating mutations for
assignment of gene function. In haploid cells, loss of function
mutations can be readily generated as no complementation by the
homologous chromosome set is encountered. Phenotypic exposure to
various selection strategies can be used to investigate gene function in
specific pathways. Alternatively, libraries of cells containing mutations
in genes can be generated and characterized. Screening in cell culture
is a distinct advantage in mammals where combination of mutations
to homozygosity requires breeding efforts that are both costly and

time consuming. ES, embryonic stem.

performing developmental screens in culture similar
to screens in haploid zebrafish [84].

Conclusions

The ability to derive haploid ES cells might be facilitated
by a distinct developmental state. Epigenetic mechanisms
are largely dispensable in preimplantation mouse embryos.
This likely reflects a period of resetting the genome to
attain pluripotency. In addition, cell size in preimplanta-
tion embryos changes in a remarkable fashion through
successive cleavage divisions of the oocyte during which
overall embryo growth is negligible. This leads to pro-
gressively smaller cell sizes. It is conceivable that regula-
tory networks have been adapted to cope with changing
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cell sizes and, thus, are robust against dosage effects.
Indeed, ES cells appear to tolerate considerable changes
in gene expression profiles. Gene expression profiles in
Polycomb-deficient ES cells are substantially changed
but do not abrogate self-renewal [69]. Notably, a recent
comparison of serum and 2i culture has also identified
surprisingly large differences in gene expression [74].
These observations suggest that regulatory networks in
ES cells are robust to disturbances in gene expression
patterns. This robustness could contribute to the scaling
of pathways with different levels of ploidy.

The extent to which differentiated cell types can be
maintained with a haploid karyotype remains unknown.
Induction of haploid ES cells to differentiation conditions
inexorably leads to rapid diploidization. An indication that
haploid karyotypes are compatible at least with early de-
velopmental cell fates comes from reports showing that
haploid epiblast stem cells and primitive endoderm-like
cells have been established from haploid ES cells in cul-
ture [64,66]. These reports are consistent with the obser-
vation that haploid cells can contribute to E6.5 post
implantation embryos before diploidization [63-65] and
have been observed in egg cylinder stage embryos [26].

Development of haploid embryos is affected by re-
quirements for imprinted gene expression and dosage
compensation. Haploid ES cells can contribute to the
development of chimeric embryos after diploidization
but are unable to support ES cell derived mice in a tetra-
ploid complementation assay [66]. Imprinting defects
are illustrated by the inability of diploid parthenogenotes
to progress through development beyond E10 [59]. Inter-
estingly, it has been possible to generate bimaternal em-
bryos that can develop normally from fully grown oocytes
and non-growing oocytes that contain double deletions in
the H19 differentially methylated region and the DIk1-
Dio3 intergenic germ line-derived imprinting control re-
gion [85]. It is interesting to consider if similar manipu-
lations could improve the stability and differentiation
potential of parthenogenetic haploid cells. The imprints
that inhibit androgenote growth are yet to be determined.

The dosage compensation problem is more difficult to
resolve as a half dose of X chromosome linked genes
would be required in the case of a single set of auto-
somes (Figure 2A). The relative expression balance for
X-linked and autosomal genes is assumed to be main-
tained in evolution through upregulation of the active X
chromosome relative to autosomes following Y chromo-
some erosion and a switch to a single active X chromo-
some [86]. The mechanism of X upregulation is presently
not well understood. Recent results suggest that the Males
absent on the first (MOF) histone acetyltransferase con-
tributes to the upregulation of a subset of X-linked genes
[87]. Interference with the mechanism of X upregulation
could potentially be considered for reducing the X-linked
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gene dosage in haploid cells. Not all X-linked genes
appear to be upregulated and subject to dosage com-
pensation [88]. Expression reduction, possibly by RNAi-
mediated strategies, could therefore also be considered.
Genes whose products contribute to multi-subunit com-
plexes appear most critical, as loss of stoichiometry can
topple the balance of fine-tuned regulatory networks
and protein-complex formation [89-91]. Restoration of
X dosage, and hence stoichiometry, could be an effective
means for enhancing haploid cell stability and develop-
mental performance.

The observation of haploid phases in human tumors
suggests that certain oncogenic signals can stabilize a
haploid karyotype. Notably, overexpression of X linked
genes has been implicated as a driver of tumorigenesis
[92,93]. Future work will be needed to establish a con-
nection between oncogenic transformation and changes
in ploidy. This could yield important insights into dosage
sensitive pathways in mammals and also be relevant for
understanding certain human tumors. Dosage balance is
less critical in differentiated cells and aneuploidies are
tolerated in tumors and cell cultures to some extent.
Dosage regulation could be critical in a developmental
window but be less stringent in preimplantation devel-
opment and at the end of the developmental program.
An interesting question is if haploid cells can be gener-
ated directly from somatic diploid cells. Loss of chromo-
somes has been experimentally induced by interfering
with centromere function [94]. Loss of chromosomes
often appears to lead to aneuploidies that are not com-
patible with cell survival and proliferation. It appears
that, in contrast to tumor cells, relative gene dosage
imbalances are more detrimental to survival of un-
transformed cells than haploidy. This suggests that re-
duction of a diploid to a near haploid karyotype in a
single instance or rapid succession of manipulations
would be required. It is hard to imagine how this could
be achieved with current technology. Induction of meiosis
could in principle be considered as an alternative strategy.
However, meiosis is an elaborate process that requires
pairing of homologous chromosomes which in animals
has not been observed outside the germ line. Recent ad-
vances in culture systems suggest that the generation of
germ cells might become feasible. Protocols for deriving
oocytes [95,96] and sperm [97] from ES cells have been
reported. These methods could be useful for establish-
ing haploid cells from ES cells or germ line precursor
cells. Lastly, the still elusive mechanism that cancer cells
use to reduce the genome by half might be applied for
experimental induction of haploidy in cell cultures. Un-
doubtedly, future research will contribute to methods
for establishing haploid cells and rebalancing gene dos-
age that could finally lead to an increased developmen-
tal potential.
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Independently, haploid ES cells might provide a tool
for studying allelic differences in genomic imprinting.
The ability to establish haploid androgenotes and parthe-
nogenotes will allow the maintenance of the two parental
genome contributions in separate cell cultures and fa-
cilitate the functional investigation of parental marks.
Although the haploid cell state is, with the exception of
gametes, either artificial or associated with malignan-
cies, it holds the promise of teaching us about genomic
balance and dosage effects. Haploid embryonic cells will
have important implications for understanding gene
regulatory networks and genome evolution and will pro-
vide a powerful genetic screening platform.
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