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Abstract

Background: Thiotepa-busulfan-fludarabine (TBF) is a widely used conditioning regimen in single umbilical cord
blood transplantation (SUCBT). More recently, it was introduced in the setting of non-T cell depleted haploidentical
stem cell transplantation (NTD-Haplo). Whether TBF based conditioning provides additional benefit in
transplantation from a particular alternative donor type remains to be established.

Methods: This was a retrospective study based on an international European registry. We compared outcomes of
de-novo acute myeloid leukemia patients in complete remission receiving NTD-Haplo (n = 186) vs. SUCBT (n = 147)
following myeloablative conditioning (MAC) with TBF. Median follow-up was 23 months. Treatment groups
resembled in baseline characteristics.

Results: SUCBT was associated with delayed engraftment and higher graft failure. In multivariate analysis no
statistically significant differences were observed between the two groups in terms of acute or chronic graft-versus-
host disease (GvHD) (HR = 1.03, p = 0.92 or HR = 1.86, p = 0.21) and relapse incidence (HR = 0.8, p = 0.65). Non-relapse
mortality (NRM) was significantly higher in SUCBT as compared to NTD-Haplo (HR = 2.63, p = 0.001); moreover,
SUCBT did worse in terms of overall survival (HR = 2.18, p = 0.002), leukemia-free survival (HR = 1.94, p = 0.007), and
GvHD relapse-free survival (HR = 2.38, p = 0.0002).
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Conclusions: Our results suggest that TBF-MAC might allow for a potent graft-versus-leukemia, regardless of the
alternative donor type. Furthermore, in patients receiving TBF-MAC, survival with NTD-Haplo may be better
compared to SUCBT due to decreased NRM.

Keywords: Acute myeloid leukemia, Stem cell transplantation, Conditioning regimens, Thiotepa-busulfan-
fludarabine, Haploidentical stem cell transplantation, Umbilical cord blood transplantation,

Background
Allogeneic hematopoietic stem cell transplantation
(HSCT) is a potential curative treatment for patients with
acute myeloid leukemia (AML) [1]. The introduction of
transplantation from alternative donors, i.e., unrelated
umbilical cord blood transplantation (UCBT) and haploi-
dentical transplantation (Haplo), has increased the avail-
ability of this treatment. UCBT and Haplo are considered
a valid option for patients with acute leukemia lacking a
human leukocyte antigen (HLA) matched sibling or unre-
lated donor, or when transplantation cannot be delayed
[2–6]. Stem cells from both types of donors are readily
available. In the UCBT setting the process of stem cell col-
lection is risk-free to the donor, and the graft is relatively
permissive to HLA incompatibility [7–11]. Contemporary
transplantation practice involving the use of double cord
blood units in case that there are not enough stem cells in
a single cord, flexible conditioning regimens, effective
graft-versus-host disease (GvHD) prophylaxis platforms
with non-T cell depleted (NTD) Haplo, and improved
management of post-transplant complications, have
brought improvement in outcomes of alternative donor
transplantations [3, 7, 12]. Several studies have reported
that results with UCBT and Haplo are comparable with
those of transplants from HLA identical or matched unre-
lated donors [13–22].
Conditioning regimens are administered as part of the

transplant procedure to prevent graft rejection by immu-
noablation and in order to reduce the tumor burden. As
the graft versus tumor effect was recognized to contribute
to the effectiveness of HSCT, reduced-intensity and non-
myeloablative conditioning regimens have been developed,
making HSCT applicable to older or unfit patients [23].
Still, myeloablative conditioning (MAC) regimens remain
the preferred option in adult patients (age ≤ 55 years) with
high-risk acute leukemia [24]. Despite the availability of
various effective conditioning protocols, standard regi-
mens have yet to be established for the different types of
HSCT in the various malignancies, leading to high hetero-
geneity in clinical practice [25]. Therefore, characterizing
the effects of a specific regimen in a particular disease cat-
egory is of major clinical importance.
The use of thiotepa–IV busulfan–fludarabine (TBF) at

a myeloablative dose in single unit UCBT (SUCBT) was
pioneered by the Valencia group, which reported high

rates of engraftment and long-term disease-free survival
in patients transplant at early disease stage of
hematological malignancies [26]. TBF is widely applied
in UCBT and its efficacy is well established [27]. Condi-
tioning protocols in the Haplo setting are more hetero-
geneous and often determined according to institutional
policies [2, 28–32]. More recently, TBF has been increas-
ingly employed in Haplo transplantation with favorable
outcomes [31, 32]. Comparing the outcome between pa-
tients receiving an allogeneic HSCT from alternative do-
nors is an unmet need. Therefore, we retrospectively
analyzed and compared the results of allogeneic HSCT
with myeloablative TBF-based conditioning, in a homo-
geneous population of AML adult patients in complete
remission (CR) receiving either NTD-Haplo (n = 186) or
SUCBT (n = 147). The analysis was based on data re-
ported to the European Society for Blood and Marrow
Transplantation (EBMT) Acute Leukemia Working
Party (ALWP), Cellular Therapy and Immunobiology
Working Party, and the Eurocord registry.

Methods
Study design and definition
We retrospectively analyzed patients aged ≥18 years di-
agnosed with de novo AML, who received a first HSCT
either from an NTD haploidentical-related donor (reci-
pient-donor number of mismatches ≥ 2) (n = 186) or an
unmanipulated single cord blood unit (n = 147). Data
were reported by the ALWP of the EBMT and EURO-
CORD, between January 2007 and December 2015. Min-
imal HLA typing requirements for UCBT followed the
current practice of antigen level typing for HLA-A and
-B and allele-level typing of HLA-DRB1. For patients re-
ceiving Haplo, peripheral blood or bone marrow was
used as a stem cell source, without ex vivo T cell deple-
tion. Transplants were performed in 75 EBMT trans-
plant centers: 17 performed only SUCBT, 44 only Haplo,
and 14 centers performed both procedures. All patients
were given a myeloablative reduced toxicity conditioning
regimen consisting of thiotepa, IV busulfan, and fludara-
bine. TBF-MAC was defined as a regimen containing a
total dose of IV busulfan ≥ 9.6 mg/kg [33]. Cytogenetic
risk groups were defined according to the Medical Re-
search Council (MRC) classification system [34].
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All patients provided informed consent for transplants
according to the Declaration of Helsinki. The Review
Boards of the ALWP of EBMT, and Eurocord approved
this study.

Endpoints
The primary endpoint was leukemia-free survival (LFS).
LFS was defined as survival without leukemia or relapse
following transplantation. GvHD-free relapse-free sur-
vival (GRFS) events were defined as grade 3–4 acute
GvHD, extensive chronic GvHD, disease relapse, or
death from any cause [35]. Overall survival (OS) was cal-
culated from the date of transplant until death from any
cause or last observation alive. Relapse incidence (RI)
was defined as the occurrence of disease after trans-
plantation, determined by morphological evidence of the
disease in bone marrow, blood, or extramedullary or-
gans. Non-relapse mortality (NRM) was defined as death
without prior relapse.
Neutrophil recovery was defined as achieving absolute

neutrophil count of 0.5 × 109/l for three consecutive
days. Acute and chronic GvHD was defined using the
standard criteria [36, 37].

Statistical analysis
Median values and ranges were used for continuous var-
iables and percentages for categorical variables. For each
continuous variable, the study population was initially
split into quartiles and into two groups by the median.
Patient-, disease-, and transplant-related variables of the
groups were compared using chi-square or Fischer’s
exact test for categorical variables, and the Mann–Whit-
ney test for continuous variables. The probabilities of
OS, LFS, and GRFS were calculated using the Kaplan–
Meier method and the log-rank test for univariate com-
parisons [38]. The probabilities of neutrophil engraft-
ment, grade II–IV acute and chronic GvHD, relapse, and
NRM were calculated with the cumulative incidence
method and Gray test for comparisons. Multivariate ana-
lyses adjusted for differences between the groups were
performed using the Cox proportional hazards regres-
sion model for LFS and OS, and for engraftment, GvHD,
NRM, and relapse [39].
The final model was adjusted for the following vari-

ables: transplant strategy (Haplo or SUCBT), disease sta-
tus at HSCT (first or second CR), time from diagnosis to
HSCT, age at transplant, year of HSCT, donor/recipient
sex match, Karnofsky performance status (KPS), and
center effect. p values were two-sided. Statistical analyses
were performed with the SPSS 22 (SPSS Inc./IBM,
Armonk, NY, USA) and R 3.0 (R Development Core
Team, Vienna, Austria) software packages.

Results
Patients, disease, and transplant characteristics
Patient and disease characteristics are summarized in
Table 1. Per protocol, all patients received a
TBF-MAC-based regimen. The two populations were
overall homogeneous in terms of patients and disease
characteristics, except for median age at transplant
which was older for NTD-Haplo (44 [range, 19–66] vs.
42 [range, 18–68], p = 0.046). Most patients were in first
CR (NTD-Haplo, 70% vs. SUCBT, 77% p = 0.14); median
interval from diagnosis to transplant was also similar
(176 vs. 194 days; p = 0.09). Cytogenetic risk groups were
alike between the Haplo and SUCBT groups (p = 0.76),
with intermediate risk being most prevalent (36% vs.
41%, respectively). Haplo transplantations were per-
formed in more recent years (median year of transplant-
ation was 2014 vs. 2011; p < 0.001). As expected,
anti-thymocyte globulin (ATG) was mostly used in
SUCBT (91% vs. 29% in NTD-Haplo; p < 0.001). For
SUCBT, the median dose of total nucleated cells at col-
lection was 3.3 × 107/kg (range, 1.7–8.4), and 80% of the
patients received ≥ 2.5 × 107/kg. Cord blood units were
HLA matched with the recipient at a level of at least 4/6
in 68% of the cases. Among NTD-Haplo patients, 80%
received bone marrow as stem cell source, and
post-transplant cyclophosphamide (PTCY) was adminis-
trated in 71% of the cases (Additional file 1: Table S1).
Further details about transplant procedures and GvHD
prophylaxis are provided in (Additional file 1: Tables S2,
S3). The median follow-up was 22 (range, 1–96) and 24
(range, 1–83) months for NTD-Haplo and SUCBT,
respectively.

Engraftment
The cumulative incidence of neutrophil engraftment at
day 60 after NTD-Haplo and SUCBT was 96% vs. 86% (p
< 0.001), respectively. The median time for neutrophil re-
covery was 18 (range − 8-38) days for Haplo and 21 (range
11–57) days for SUCBT, (p < 0.001). Twenty patients did
not engraft after SUCBT; of these, two are alive at 10 and
62 months, respectively, both after salvage with a second
transplant from a haploidentical-related donor. The
remaining 18 patients died in a median time of 1 month
(range, 0–7), one patient after an autologous back-up.
Among the seven patients who did not engraft after
NTD-Haplo, none are alive, with a median time to death
of 1.74 months (range, 0.3–17.22). Three of these patients
received a second allogeneic transplantation, and only one
engrafted, surviving more than 1 year.

Acute and chronic GvHD
The cumulative incidence of day 100 grade II–IV acute
GvHD was 26% and 29% after NTD-Haplo and SUCBT
(p = 0.85), respectively (Table 2). Cumulative incidence
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of grade III–IV acute GvHD was 7% in both groups (p =
0.99). The cumulative incidence of chronic GvHD was
33% after NTD-Haplo and 37% after SUCBT (p = 0.49).
In the multivariate analysis (Table 3), no significant dif-
ference was found between the two groups in terms of
acute or chronic GvHD (hazard ratio (HR) = 1.03, p =
0.92; HR = 1.86, p = 0.92, respectively). A center effect
was found for chronic GvHD (p < 0.001).

Relapse and NRM
The 2-year RI was 17% for NTD-Haplo vs. 12% for
SUCBT (p = 0.7) (Fig. 1a, Table 2). In the multivariate
analysis (Table 3), relapse was not statistically different

between the two groups of patients (HR = 0.8, p = 0.65).
However, it was lower in patients who had a good KPS
(≥ 90) at transplant (HR = 0.35, p = 0.01). NRM at 2 years
was 21% and 48% for NTD-Haplo and SUCBT (p <
0.001), respectively (Fig. 1b, Table 2). The causes of
death are listed in Additional file 1: Table S4. The multi-
variate model confirmed a significantly higher risk of
NRM in the SUCBT group (HR = 2.63, p = 0.002). Also,
NRM was higher in male recipients receiving a female
donor (HR 1.84, p = 0.015), independently of the stem
cell source. Infections and GvHD were the most com-
mon causes of transplant-related deaths in both groups
(NTD-Haplo vs. SUCBT, infections 35% vs. 45%; GvHD

Table 1 Population characteristics

NTD-Haplo (n = 186) SUCBT (n = 147) p value

Follow-up, months median (range) 22.07 (0–96.3) 24.42 (0–83.1)

HSCT year, median (range) 2014 (2008–2015) 2011 (2007–2015) < 0.001

Age, years. median (range) 44.3 (18.5–66.1) 42.6 (18–67.9) 0.046

Recipient sex

Male 85 (45.7%) 65 (44.2%) 0.787

Female 101 (54.3%) 82 (55.8%)

Missing 0 6

Karnofsky performance status

< 90 21 (12.5%) 15 (15.31%) 0.519

≥ 90 147 (87.5%) 83 (84.69%)

Missing 18 49

Interval from diagnosis to HSCT, months, median (range) 6.6 (2.1–189.6) 6 (3–214.2) 0.097

Disease status at HSCT

CR1 130 (69.9%) 113 (76.9%) 0.154

CR2 56 (30.1%) 34 (23.1%)

MRC risk classification

Good 16 (8.6%) 13 (8.8%) 0.762

Intermediate 67 (36.0%) 60 (40.8%)

Poor 19 (10.2%) 16 (10.9%)

Missing 84 (45.2%) 58 (39.5%)

Female donor to male recipient

No 143 (76.9%) 108 (76.6%) 0.952

Yes 43 (23.1%) 33 (23.4%)

Recipient CMV serostatus < 0.001

Negative 35 (19.1%) 29 (25.9%)

Positive 148 (80.9%) 83 (74.1%)

Missing 3 35

In-vivo T cell depletion (ATG)

No 131 (71.2%) 13 (9.0%) < 0.001

Yes 53 (28.8%) 131 (91.0%)

Missing 2 3

NTD-Haplo Non-T cell depleted haploidentical transplantation, SUCBT single umbilical cord blood transplantation, HSCT hematopoietic stem cell transplantation, CR
complete remission, MRC Medical Research Council, CMV cytomegalovirus, ATG antithymocyte globulin
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20% vs. 19%). Disease recurrence accounted for 27% and
16% of deaths after NTD-Haplo and SUCBT,
respectively.

OS, LFS, and GRFS
The probability of 2-year OS, LFS, and GRFS in the
NTD-Haplo vs. SUCBT groups were 69% vs. 42% (p <
0.001), 63% vs. 40% (p < 0.001), and 56% vs. 30% (p < 0.001),
respectively (Table 2). The benefit of NTD-Haplo was main-
tained in a sub-analysis restricted to patients with intermedi-
ate cytogenetic risk (Additional file 1: Table S5). In the
multivariate analysis (Table 3), the type of donor had a statis-
tically significant impact on OS, LFS, and GRFS, which were
significantly lower in SUCBT as compared to NTD-Haplo
(OS, HR= 2.18, p= 0.003; LFS, HR= 1.93, p= 0.007; GRFS,
HR= 2.38, p= 0.0002). The use of female donors for male re-
cipients was independently associated with lower OS, LFS
overall survival (HR= 2.18, p= 0.002) and GRFS (HR= 1.67,

p= 0.02; HR= 1.67, p= 0.014; and HR= 1.54, p= 0.026),
while a KPS ≥ 90 at transplant was associated with higher
LFS and GRFS (HR= 0.5, p= 0.004 and HR=0.57, p= 0.02)
Fig. 2.

Discussion
TBF is a well-established conditioning regimen in
SUCBT and has more recently brought into use in Haplo
transplantations [26, 27, 31, 32]. In this retrospective
analysis, we compare outcomes of NTD-Haplo and
SUCBT in a population of AML patients conditioned
with TBF at a myeloablative dose. Overall, the treatment
groups resembled with regard to baseline characteristics.
The risk for relapse and acute and chronic GvHD were
similar regardless of donor type. Engraftment was faster
with a Haplo donor. Importantly, the risk of NRM,
death, or having a GRFS-related event was all higher in
UCBT patients.

Table 2 Univariate analysis
Acute GvHD
II–IV [95% CI]

Acute GvHD
III–IV [95% CI]

2-year chronic
GvHD [95% CI]

2-year relapse
[95% CI]

2-year NRM
[95% CI]

2-year LFS
[95% CI]

2-years OS
[95% CI]

2-year GRFS
[95% CI]

Donor type

NTD-Haplo 25.6% [19.4–32.2] 6.8% [3.7–11.2] 33% [25.2–40.9] 16.6% [11.1–23.1] 20.6% [14.7–27.2] 62.8% [55.1–70.6] 69.2% [61.9–76.6] 55.5% [47.5–63.5]

SUCBT 28.5% [21.3–36] 7% [3.6–12] 37.1% [27–47.2] 11.6% [6.9–17.6] 48.4% [39.4–56.8] 40% [31.5–48.6] 41.7% [33–50.4] 30.3% [22.3–38.3]

p value 0.853 0.997 0.492 0.709 < 0.001 < 0.001 < 0.001 < 0.001

HSCT year

≤ 2013 26.5% [20.6–32.9] 6.2% [3.4–10.2] 37.1% [29.4–44.8] 14.1% [9.6–19.4] 37.4% [30.5–44.3] 48.5% [41.4–55.7] 52.8% [45.7–59.9] 41.1% [34.1–48.1]

> 2013 27.4% [19.8–35.4] 8% [4.1–13.6] 27.6% [18.4–37.6] 14.6% [8.3–22.7] 26.3% [17.4–36] 59.1% [48.5–69.7] 61.4% [50.1–72.8] 49.5% [38.9–60.2]

p value 0.780 0.483 0.278 0.834 0.027 0.022 0.023 0.142

Age, years

< 44 30.7% [23.7–37.9] 6.3% [3.2–10.8] 32.6% [24.1–41.3] 16.5% [10.9–23.1] 28% [20.9–35.5] 55.5% [47.2–63.7] 61% [53–69] 48.2% [39.9–56.6]

≥ 44 23% [16.8–29.8] 7.5% [4.1–12.2] 36.3% [27.4–45.2] 11.8% [7.2–17.8] 38.6%[30.5–46.6] 49.6% [41.2–57.9] 52.2% [43.7–60.7] 39.2% [30.9–47.4]

p value 0.133 0.683 0.355 0.576 0.043 0.137 0.089 0.090

Karnofsky performance status

< 90 31.6% [16.9–47.3] 14.4% [5.1–28.2] 33.4% [14.7–53.4] 20.5% [8.8–35.6] 49.2% [29.9–65.9] 30.2% [13.5–47] 41.1% [23.4–58.8] 22.9% [7.1–38.7]

≥ 90 26.3% [20.7–32.3] 5% [2.6–8.4] 32.2% [25–39.6] 12.9% [8.6–18.1] 29.1% [22.9–35.7] 58% [50.9–65] 59.8% [52.8–66.8] 49.2% [42–56.5]

p value 0.634 0.042 0.880 0.085 0.017 < 0.001 0.007 0.002

Interval from diagnosis to HSCT, months

≤ 6.3 25.2% [18.7–32.2] 6.3% [3.2–10.9] 33.9% [25.3–42.7] 15.9% [10.1–22.8] 33.3% [25.4–41.3] 50.8% [42.2–59.5] 56.4% [47.8–65] 40% [31.4–48.5]

> 6.3 28% [21.3–35.1] 7.5% [4.1–12.3] 34.8% [25.9–43.8] 12.9% [8.2–18.8] 33.4% [26–41] 53.7% [45.7–61.7] 56.7% [48.7–64.7] 47.7% [39.6–55.7]

p value 0.502 0.665 0.955 0.718 0.713 0.830 0.676 0.576

Disease status at HSCT

CR1 26.8% [21.3–32.6] 7.3% [4.4–11.1] 36% [28.8–43.2] 13.9% [9.6–19.1] 33.2% [26.9–39.7] 52.9% [45.9–59.8] 57.7% [50.8–64.5] 42.8% [35.8–49.7]

CR2 26.8% [17.9–36.6] 5.8% [2.1–12.2] 29.8% [18.3–42.2] 15% [8.2–23.9] 33.3% [23.1–43.9] 51.6% [40.4–62.9] 54.1% [42.9–65.2] 46.2% [35.1–57.3]

p value 0.965 0.654 0.367 0.591 0.906 0.618 0.376 0.960

Female donor to male recipient

No 25.7% [20.4–31.4] 5.4% [3–8.8] 32.1% [25.1–39.2] 14% [9.7–19.1] 30.2% [24.2–36.5] 55.8% [49–62.6] 60.2% [53.6–66.9] 46.8% [39.9–53.7]

Yes 31.5% [21.2–42.3] 12.3% [6–21] 42.4% [29–55.2] 13.3% [6.4–22.6] 41.9% [29.8–53.5] 44.8% [32.7–57] 48.5% [36.2–60.8] 36.2% [24.6–47.8]

p value 0.295 0.041 0.133 0.485 0.073 0.035 0.055 0.063

GvHD Graft-versus-host disease, NRM non-relapse mortality, LFS leukemia-free survival, OS overall survival, GRFS GvHD-free relapse-free survival, CI confidence
interval, NTD-Haplo non-T cell depleted Haploidentical transplantation, SUCBT single umbilical cord blood transplantation, HSCT hematopoietic stem cell
transplantation, CR complete remission
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Differences in OS and LFS in favor of Haplo trans-
plantation are the results of increased NRM with
SUCBT. The difference in NRM was mainly driven by
infectious complications since the incidence of acute
and chronic GvHD was similar between groups. Several
factors might have contributed to the excess NRM ob-
served in the SUCBT. First, consistent with previous
publication, engraftment with CB was inferior [40].
These issues could translate to an incidence of
life-threatening infections. Indeed, infection accounted
for 45% of deaths in the SUCBT vs. 35% in NTD-Haplo
transplantation. Novel strategies for CB stem cell expan-
sion and others facilitating engraftment kinetics equiva-
lent to other graft sources may help to overcome this
limitation [41]. Another important difference is the use
of ATG, mainly in patients undergoing SUCBT. Retro-
spective analyses have found ATG to be associated with
worse outcomes after myeloablative and reduced inten-
sity conditioning in the setting of UCBT [42–44]; pos-
sibly due to a delayed immune recovery with ATG and

increased incidence of post-transplantation lymphopro-
liferative disorder and infections [43, 45–48].
Finally, Haplo transplantations were performed more

recently compared to SUCBT (median year of trans-
plantation 2014 vs. 2011, p < 0.001), possibly accounting
for lower rates of NRM in the former (20.6% vs. 48.4%,
p < 0.001) due to improvements in supportive care. Still,
one would not expect such a major difference solely on
the basis of year of transplantation. Furthermore, in a
multivariable analysis, adjusting for transplantation year,
the benefit of Haplo was maintained.
TBF is widely used in the setting of SUCBT. Sanz et

al. reported in 2012 on a single center experience of 88
patients with hematologic malignancies, who were
treated with a SUCBT after conditioning with TBF-MAC
[26]. Over 90% of patients engrafted at a median of
19 days. Furthermore, the 5-year cumulative incidence
of NRM and relapse were 44% and 18%, respectively.
Ruggeri et al. have found a similar incidence of relapse
and lower NRM (33%) in acute leukemia patients treated

Fig. 2 The estimated probability of overall survival (a), leukemia-free survival (b), and GRFS (c) by donor type. The numbers of patients at risk for
the event are included below each graph. Graft-versus-host disease-free relapse-free survival (GRFS), haploidentical transplantation (Haplo), and
single umbilical cord blood transplantation (CBT)

Fig. 1 The cumulative incidence of relapse (a) and NRM (b) by donor type. The numbers of patients at risk for the event are included below each
graph. Haploidentical transplantation (Haplo) and single umbilical cord blood transplantation (CBT)
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with SUCBT and TBF-MAC [27]; outcomes were evalu-
ated at 2 years following transplantation. The rather low
relapse rates reported in these two analyses have paved
the way for the increasing use of TBF-MAC for SUCBT.
Indeed, our results further support the anti-leukemia ef-
fect of TBF not only in SUCBT but also with Haplo
transplantations, both groups experiencing relatively low
relapse rates. The effectiveness of the TBF regimen may
be related to the combination of two alkylating agents,
as shown in other regimens (e.g., busulfan and melpha-
lan or carmustine [BCNU] and melphalan) [49]. More
recently, our group compared TBF to a
fludarabine-busulfan protocol in AML patients. Relapse
rate was lower in the former, suggesting a stronger
anti-leukemic effect with two alkylating agents [33]. In
an additional study, the likelihood of relapse was lower
with TBF compared to busulfan-cyclophosphamide, indi-
cating that even within possible combinations of alkylat-
ing agents, thiotepa confers an additional anti-leukemia
advantage [50].
Aside from donor type, additional prognostic factors

were observed in our population. Low-performance sta-
tus was a major predictor of relapse, decreased LFS and
GRFS. Poor performance status may be a confounder of
disease aggressiveness and exposure to multiple treat-
ments. Therefore, it is difficult to determine its inde-
pendent merit. Our analysis was not designed to study
the importance of donor–recipient sex mismatch in the
alternative donor setting. However, we found that trans-
plantation from a female donor to male recipients was
associated with an increase in NRM risk, without an ap-
parent reduction of relapse. The results are in line with
findings described by Wang and others [51–53].
The current study has several limitations. First, being

a retrospective registry-based study, unknown or un-
measured factors could influence the results. However,
such studies provide useful guidelines for clinical prac-
tice while waiting for randomized trials comparing spe-
cific conditionings in defined transplant settings Second,
the GvHD prophylaxis strategy varied within each trans-
plantation type. Nonetheless, both the ATG and PTCY
are established options in the setting of NTD-Haplo [31,
32, 54]. Finally, a minority of patients in the SUCBT
group received grafts with a total nucleated cell dose
below 3 × 107/kg, thereby, possibly contributing to the
higher incidence of NRM in this group [55]. Yet, since
only 20% grafts with less than 2.5 × 107/kg, it is unlikely
that changes in NRM can be entirely attributed to the
cell dose.
The results of the current analysis validate the effect-

iveness of TBF-MAC as a potent conditioning platform
allowing for graft-versus-leukemia, regardless of the type
of alternative donor. While 2-year relapse risk was simi-
lar between NTD-Haplo and SUCBT in the current

analysis, OS, GRFS, and NRM were superior with the
former. Efforts to decrease toxicity and
transplant-related mortality needs to be done to further
improve outcomes. Nonetheless, a decisive conclusion
that NTD-Haplo is preferable is still premature. Pro-
spective trials comparing the two donor types are cur-
rently ongoing, and the results will help to clarify the
place of the type of graft in the algorithm of donor selec-
tion. Second, UCBT safety is likely to improve with the
introduction of novel technologies for stem cell expan-
sion and better graft selection. Third, the selection of an
alternative donor is mostly dependent on center prefer-
ence. Currently, most institutions performing these types
of transplantation are highly experienced.

Conclusion
This retrospetive analysis suggest that TBF conditioning
at a myeloablative dose enables a potent
graft-versus-leukemia, regardless of the alternative donor
type. Furthermore, in patients receiving TBF, survival
with NTD-Haplo may be better compared to SUCBT
due to decreased NRM.
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