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METHOD Open Access

Haplotype and isoform specific expression
estimation using multi-mapping RNA-seq reads
Ernest Turro1*, Shu-Yi Su2, Ângela Gonçalves3, Lachlan JM Coin1, Sylvia Richardson1, Alex Lewin1

Abstract

We present a novel pipeline and methodology for simultaneously estimating isoform expression and allelic imbalance
in diploid organisms using RNA-seq data. We achieve this by modeling the expression of haplotype-specific isoforms. If
unknown, the two parental isoform sequences can be individually reconstructed. A new statistical method, MMSEQ,
deconvolves the mapping of reads to multiple transcripts (isoforms or haplotype-specific isoforms). Our software can
take into account non-uniform read generation and works with paired-end reads.

Background
High-throughput sequencing of RNA, known as RNA-

seq, is a promising new approach to transcriptome pro-

filing. RNA-seq has a greater dynamic range than micro-

arrays, which suffer from non-specific hybridization and

saturation biases. Transcriptional subsequences spanning

multiple exons can be directly observed, allowing more

precise estimation of the expression levels of splice var-

iants. Moreover, unlike traditional expression arrays,

RNA-seq produces sequence information that can be

used for genotyping and phasing of haplotypes, thus

permitting inferences to be made about the expression

of each of the two parental haplotypes of a transcript in

a diploid organism.

The first step in RNA-seq experiments is the prepara-

tion of cDNA libraries, whereby RNA is isolated, frag-

mented and synthesized to cDNA. Sequencing of one or

both ends of the fragments then takes place to produce

millions of short reads and an associated base call

uncertainty measure for each position in each read. The

reads are then aligned, usually allowing for sequencing

errors and polymorphisms, to a set of reference chromo-

somes or transcripts. The alignments of the reads are

the fundamental data used to study biological phenom-

ena such as isoform expression levels and allelic imbal-

ance. Methods have recently been developed to estimate

these two quantities separately but no approaches exist

to make inferences about them simultaneously to

estimate expression at the haplotype and isoform

(’haplo-isoform’) level. In diploid organisms, this level of

analysis can contribute to our understanding of cis vs.

trans regulation [1] and epigenetic effects such as geno-

mic imprinting [2]. We first set out the problems of iso-

form level expression, allelic mapping biases and allelic

imbalance, and then propose a pipeline and statistical

model to deal with them.

Isoform level expression

Multiple isoforms of the same gene and multiple genes

within paralogos gene families often exhibit exonic

sequence similarity or identity. Therefore, given the short

length of reads relative to isoforms, many reads map to

multiple transcripts (Table 1). Discarding multi-mapping

reads leads to a significant loss of information as well as

a systematic underestimation of expression estimates. For

reads that map to multiple locations, one solution is to

distribute the multi-mapping reads according to the cov-

erage ratios at each location using only single-mapping

reads [3]. However, this does not address the problem of

inferring expression levels at the isoform level.

Essentially, the estimation of isoform level expression

can be done by constructing a matrix of indicator func-

tions Mit = 1 if region i belongs to transcript t. The

‘regions’ may for now be thought of as exons or part

exons, though we later define them more generally.

Using this construction it is natural to define a model:

X Pois bs Mit i it t ( ), (1)* Correspondence: ernest.turro@ic.ac.uk
1Department of Epidemiology and Biostatistics, Imperial College London,
Norfolk Place, London, W2 1PG, UK
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where Xit are the (unobserved) counts of reads from

region i of transcript t, b is a normalization constant

used when comparing experiments, μt is a parameter

representing the expression of transcript t and si is the

effective length of region i (that is the number of possi-

ble start positions for reads in the region). This model

can be fit using an expectation maximization (EM) algo-

rithm, since the Xit are unobserved but their sums

across transcripts k Xi itt
 are observed.

This model has been used by [4] in their POEM soft-

ware, with i representing exons. Their method does not

use reads that span multiple exons or reads that map to

multiple genes. The same model has been used in [5], with

i representing exons or part exons, or regions spanning

exon junctions, enabling good estimation of isoform

expression within genes. They do not, however, include

reads mapping to multiple genes. The RSEM method [6]

employs a similar model, but models the probability of

each read individually, rather than read counts. This

method allows reads to come from multiple genes as well

as multiple isoforms of the same gene. The modeling of

individual reads allows RSEM to accommodate general

position-specific biases in the generation of reads. How-

ever, two recent papers [7,8] have shown that deviations

from uniformity in the generation of reads are in great

part sequence rather than position-dependent for a given

experimental protocol and sequencing platform. Further-

more, the computational requirements of modeling indivi-

dual reads increasing proportionately with read depth,

which, in the case of RSEM, is exacerbated further by the

use of computationally intensive bootstrapping procedures

to estimate standard errors. None of the above methods

are compatible with paired-end data. A recently published

method, Cufflinks [9], focuses on transcript assembly as

well as expression estimation using an extension of the [5]

model that is compatible with paired-end data. However,

this method does not model sequence-specific uniformity

biases and uses a fixed down-weighting scheme to account

for reads mapping to more than one transcription locus,

meaning that the abundances of transcripts in different

regions are estimated independently.

Allelic imbalance

Studies of imbalances between the expression of two

parental haplotypes have mostly been restricted to

testing the null hypothesis of equal expression between

two alleles at a single heterozygous base, typically with a

binomial test [1,2,10]. However, as transcripts may con-

tain multiple heterozygotes, a more powerful approach

is to assess the presence of a consistent imbalance

across all the heterozygotes in a gene together. This has

been done on a case-by-case basis using read pairs that

overlap two heterozygous SNPs [11] while [12] propose

an extension to the binomial test for detecting allelic

imbalance that takes into account all SNPs and their

positions in a gene. However, this approach, which is a

statistical test rather than a method of quantifying hap-

lotype-specific expression, assumes imbalances to be

homogeneous along genes and thus does not take into

account the possibility of asymmetric imbalances

between isoforms of the same gene.

Allelic mapping biases

Aligners usually have a maximum tolerance threshold

for mismatches between reads and the reference. Reads

containing non-reference alleles are less likely to align

than reads matching the reference exactly, so genes with

a high frequency of non-reference alleles may be under-

estimated. Ideally, aligners would accept ambiguity

codes for alleles that segregate in the species (cf. Novoa-

lign [13]), but no free software is currently able to do

this. A possible workaround is to change the nucleotide

at each SNP to an allele that does not segregate in the

species, as has been proposed to remove biases when

estimating allelic imbalance [10]. However, in the con-

text of gene expression analysis, this leads to even

greater underestimation of genes with many non-refer-

ence alleles and an increase in incorrect alignments to

homologous regions. Instead, we propose aligning to a

sample-specific transcriptome reference, constructed

from (potentially phased) genotype calls.

MMSEQ

In this paper we present a new pipeline, including a

novel statistical method called MMSEQ, for estimating

haplotype, isoform and gene specific expression. The

MMSEQ software is straightforward to use, fully docu-

mented and freely available online [14] and as part of

ArrayExpressHTS [15]. Our pipeline exploits all reads

that can be mapped to at least one annotated transcript

sequence and reduces the number of alignments missed

due to the presence of non-reference alleles. It is com-

patible with paired-end data and makes use of inferred

insert size information to choose the best alignments.

Our method permits estimating the expression of the

two versions of each heterozygote-containing isoform

(’haplo-isoform’) individually and thus it can detect

asymmetric imbalances between isoforms of the same

gene. Our software further takes into account sequence-

Table 1 Multi-mapping reads. Approximate proportion of

reads mapping to multiple Ensembl transcripts or genes

in human using 37 bp single-end or paired-end data

obtained from HapMap individuals

37 bp single-end 37 bp paired-end

Multiple transcripts 78% 73%

Multiple genes 20% 10%
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specific deviations from uniform sampling of reads using

the model described in [8] but can flexibly accommo-

date other models. We validate our method at the iso-

form level with a simulation study, comparing our

results to RSEM’s, and applying it to a published Illu-

mina dataset consisting of lymphoblastoid cell lines

from 61 HapMap individuals [16]. We validate our

method at the haplo-isoform level by showing we can

deconvolve the expression estimates of haplo-isoforms

on the non-pseudoautosomal (non-PAR) region of the X

chromosome using a pooled dataset of two HapMap

males. We further apply our method to a published

dataset of F1 initial and reciprocal crosses of CAST/EiJ

(CAST) and C57BL/6J (C57) inbred mice [2] and

demonstrate that MMSEQ is able to detect parental

imbalance between the two haplotypes of each isoform.

Results
Overview of the pipeline

The pipeline can be depicted as a flow chart with two

different start positions (Figure 1):

(a) Expression estimation using alignments to a pre-

defined transcriptome reference,

(b) Expression estimation using alignments to a tran-

scriptome reference that is obtained from the RNA-seq

data.

In case (a), the level of estimation (haplo-isoform or

isoform) depends on whether the reference includes two

copies of heterozygous transcripts. In case (b), it

depends on whether the genotypes are phased. The

most exhaustive use of the pipeline proceeds as follows.

First, the reads are aligned to the standard genome

reference using TopHat [17]. Then, genotypes are called

with SAMtools pileup [18]. Genotypes are then phased

with polyHap [19] using population genotype data to

produce a pair of haplotypes for all gene regions on the

genome. The standard transcriptome reference is then

edited for each individual to match the inferred haplo-

types. The reads are realigned to the individualized hap-

lotype specific transcriptome reference with Bowtie [20],

finding alignments for reads that originally failed to

align due to having too many mismatches with the stan-

dard reference (approximately 0:3% more reads recov-

ered, with some transcripts receiving up to 13% more

hits, in the HapMap dataset [16]). Finally, our new

method, MMSEQ, is used to disaggregate the expression

level of each haplo-isoform.

MMSEQ

Poisson model

We use the model in Equation 1 as a starting point for

modeling gene isoforms and extend it to apply to haplo-

isoforms. First, we employ a more general definition of

‘region’: each read maps to one set of transcripts, which

Start (b)

Align reads to reference 
genome

Call genotypes

Phase genotypes
(optional)

Constuct custom 
transcriptome

Align reads to 
transcriptome

Map reads to transcript 
sets

Obtain expression 
estimates

Start  (a)

Figure 1 Pipeline flow chart. Flow chart depicting the steps in the
pipeline and two main use cases. (a) expression estimation using a
pre-defined transcriptome reference; (b) construction of a custom
transcriptome reference from the data followed by expression
estimation. Haplotype-specific expression can be obtained using a
pre-defined transcript reference if the parental transcriptome
sequences are known and recombination has no effect (for example
in the case of an F1 cross of two inbred strains). If the standard (for
example Ensembl) reference is used, then isoform-level estimates
are produced. If a custom reference is constructed solely to avoid
allelic mapping biases, the phasing of genotypes can be omitted
and isoform-level estimates are produced. If the genotypes are
phased, haplo-isoform estimation is performed.
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may belong to the same gene or to various different

genes, and which can have two versions, one containing

the paternal and the other the maternal haplotype.

These sets are labeled by i. Many reads will map to the

exact same set, hence we can model reads counts (ki)

for the set. The Mit are defined very straightforwardly

as the indicator functions for transcript t belonging to

set i. The region length si is the effective length of the

sequence shared between the whole set. If the set of

transcripts all belong to the same gene and haplotype,

then si may be the effective length of an exon or part

exon. However, aligned reads often map to multiple

genes equally well (Table 1) so the region need not cor-

respond to an actual region on the genome. Using our

definition of a region, the si would be difficult to calcu-

late given the sheer number of overlaps and regions,

but in fact the si are not needed in the calculation of

the model (see Materials and Methods). Hence we have

a model for read counts in which the data and fixed

quantities (ki and Mit) are calculated in a straightfor-

ward way, and which allows for reads mapping to mul-

tiple isoforms of the same or different genes in exons

or exon junctions and to paternal and maternal haplo-

types separately.

Without loss of generality, Figure 2a illustrates our

formulation for a gene with an alternatively spliced cas-

sette exon and Figure 2b illustrates it for a gene with a

single heterozygous base. The heterozygote casts a ‘sha-

dow’ upstream of length equal to the read length, which

acts like an alternative middle exon. This is because

reads with starting positions within the shadow cover

the heterozygote and contain one of the two alleles,

thus mapping to only one of the two haplotypes.

We now formulate a Poisson model for read counts

from transcript sets:

k Pois bs Mi i it

t

t 














 , (2)

where b is a normalization constant, ∑t Mitμt is the

total expression from the transcript set i and si is the

effective length of the region of shared sequence between

transcripts in set i. Figure 2a shows how the si can be cal-

culated for the gene with a cassette exon. Note that the

sum of lengths of all the regions shared by transcript t

add up to its effective length (transcript length minus

read length plus one for uniformly generated reads): ∑i

siMit = lt, so the transcript-set model is consistent with

the usual Poisson model. Setting lt to the transcript

length minus read length plus one is appropriate if a con-

stant Poisson rate is assumed along all positions in a

transcript: r Pois b Pois blt tp

l
t t

t ( ) 
 1

( ) , where rt is

the number of reads originating from transcript t and the

sum is over all possible starting read positions p. The

non-uniformity of read generation demonstrated in [8],

however, suggests a variable-rate Poisson model:

r Pois b Pois blt tp t

p

l

t t

t

   

















 
1

 , (3)

where lt is an adjusted effective length, referred to as

the sum of sequence preferences (SSP) in [8]. We use

their Poisson regression model to adjust the length of

each transcript based on its sequence, but other adjust-

ment procedures may be used instead. Briefly, the loga-

rithm of the sequencing preference of each possible

start position in a transcript is calculated as the sum of

an intercept term plus a set of coefficients determined

by the sequence immediately upstream and downstream

of the start position. It would also be possible to inte-

grate the method described in [7], which uses a weight-

ing for reads based on the first seven nucleotides of

their sequences, by applying this weighting in our calcu-

lation of ki. However, this approach does not incorpo-

rate the effects of the sequence composition on the

reference upstream of the read start positions or further

downstream than seven bases, and we thus prefer to use

the [8] method instead. The normalization constant b is

used to make lanes with different read depths compar-

able. We set b to the total number of reads (in millions)

and measure transcript lengths in kilobases, which

means the scale of the expression parameter μt is

equivalent to RPKM (reads per kilobase per million

mapped reads) described in [3]. In downstream analysis,

a more robust measure can be used, such as the library

size parameter suggested by [21].

The only unknown parameters in the model are the

μt. The observed data are the ki and the matrix M and

effective transcript lengths lt are known. In principle the

effective lengths of the transcript sets si can be calcu-

lated, but in fact, they are not needed (see Materials and

Methods).

Inference

The maximum likelihood (ML) estimate of μt cannot be

obtained analytically, so instead we use an expectation

maximization (EM) algorithm to compute it, an

approach also taken by [4,6] for isoforms. After conver-

gence of the algorithm, we output the estimates of μt
and refer to them as MMSEQ EM estimates.

The usual approach to estimating statistical standard

errors of ML estimators requires inversion of the

observed information matrix. When analyzing the

expression of thousands of transcripts, the high dimen-

sionality of the observed information matrix and the

possibility of identical columns due to gene homology

make this approach impracticable. Bootstrapping may

Turro et al. Genome Biology 2011, 12:R13
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M =

⎛

⎝

1 1
1 0
0 1

⎞



s =

⎛

⎝

d1 + d3

d2

d4

⎞

 =

⎛

⎝

e1 + e3 − 2(ε− 1)
e2 + ε− 1

ε− 1

⎞



M =

⎛

⎝

1 1
1 0
0 1

⎞

 k =

⎛

⎝

6
4
1

⎞



l1 = s1 + s2 = e1 + e2 + e3 − (ε− 1)

l2 = s1 + s3 = e1 + e3 − (ε− 1)

t2

t1

t
1
t
2

e1 e2 e3

e1 e3

d1 d2 d3

d1 d3d4

(a)

t1

t2

ε-1

ε-1

t1,t2 t1 t1,t2

t1t1,t2 t1,t2

t1t1,t2 t1,t2

(b)

t1A

C

G

d1 d3d2 ε-1

t1B

t
1A
t
1B

t1A,t1B

t1A,t1B

t1A,t1B

t1A

t1A

t1A,t1B

t1B

t1B

k =

⎛

⎝

4
2
2

⎞



Figure 2 MMSEQ data structures to represent read mappings to alternative isoforms and alternative haplotypes. (a) Schematic of a
gene with an alternatively spliced cassette exon. Each read is labeled according to the transcripts it maps to and placed along its alignment
position. Reads that map to both transcripts, t1 and t2, are shown in red, reads that map only to t1 are shown in blue and the read that maps
only to t2 is shown in green. Reads that align with their start positions in the regions labeled by d1 and d3 (in red) may have come from either
transcript, reads with their start positions in d2 (in blue) can only have come from transcript 1, and reads with their start positions in d4 (in
green) must be from transcript 2. Each row i of the indicator matrix M characterizes a unique set of transcripts that is mapped to by ki reads.
There are three transcript sets: {t1, t2} (red), {t1} (blue) and {t2} (green). Exon lengths are e1, e2, e3. Hence s1 = d1 + d3, s2 = d2 and s3 = d4. The
effective length of transcript t is equal to the sum over the elements of s that have a corresponding 1 in column t of M, that is ∑i siMit. It can be
seen from the figure that these lengths are the sums of the exons minus read length (�) plus one, as expected. (b)Schematic of a single-exon
gene with a heterozygote near the center. Reads with starting positions in region d2 contain either the ‘C’ allele or the ‘G’ allele and thus map
to either the haplo-isoform t1A, which has a ‘C’ or t1B, which has a ‘G’. It is evident that the heterozygote acts like an alternative middle exon,
and that the same model and data structures as in the alternative isoform schematic apply.
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also be used to estimate errors, as in [6], but it is a com-

putationally intensive method requiring repeated runs of

the EM algorithm. Instead we use a simple Bayesian

model with a vague prior on μt. As before, we use the

augmented data reads per region and transcript, Xit. The

full model is:

X Pois bs Mit t i it t| ~ ( ),  (4)

  t Gam ( , ). (5)

Again, the only lengths needed are the lt. The conju-

gacy of the Poisson-Gamma model makes the sampling

fast and straightforward as the full conditionals are in

closed form (see Materials and Methods). We use the

final EM estimate of the μt as the initial values for the

Gibbs sampling. We then produce samples from the

whole posterior distributions of the μt and calculate the

sample means and their respective Monte Carlo standard

errors (MCSE), which take into account the autocorrela-

tions of the samples [22]. We set the hyperprior para-

meters to a = 1.2 and b = 0.001, producing a vague prior

on the μt that captures the well-known broad and skewed

distribution of gene expression values. We output the

means of the Gibbs samples of μt, which we refer to as

MMSEQ GS estimates. As we shall show, the regulariza-

tion afforded by the Bayesian algorithm produces esti-

mates with a lower error than the MMSEQ EM

estimates. Moreover, it can readily be shown that for

transcript with low coverage, the ML estimate is often

zero, even though this is likely to be an underestimate of

the expression. For example, suppose there exist two

equally-expressed haplo-isoforms differing by only one

heterozygote. Under the assumption of uniform sampling

of 0.01 reads per nucleotide for both haplo-isoforms, if

the read length is 35, then the probability of observing a

read containing one allele but no reads containing the

other allele is fairly high (2(1-e-0.35)e-0.35 ≃ 0.42). The ML

estimate of the haplo-isoform with the unsampled allele

under this scenario is zero while the ML estimate of the

haplo-isoform with the sampled allele is overestimated.

With Gibbs sampling, on the other hand, this effect is

tempered by the Gamma prior. The MMSEQ GS esti-

mates are thus our preferred expression measures.

Best mismatch stratum filter

While a read may align to multiple transcripts, not all

alignments may be equally reliable. We therefore filter

out all alignments that do not have the minimal number

of mismatches for a given read or read pair (similar to

the –strata switch in Bowtie, but compatible with

paired as well as single end data). In the case of paired-

end data, the number of mismatches from both ends is

added up to determine the ‘mismatch stratum’ of a read

pair. This filter is crucial in order to correctly

discriminate between the two versions of an isoform at

a heterozygous position, since reads from one haplotype

also match the alternative haplotype with an additional

mismatch. The stratum filter thus ensures that reads are

properly assigned to the correct haplotype.

Insert size filter for paired-end data

For paired-end data, both reads in a pair must align to a

transcript for the mapping to be considered. If the frag-

ments are sufficiently large, the alignments may span three

exons and align to transcripts that both retain and skip

the middle exon. However, the alignment with an inferred

fragment size (also called insert size) that is nearer to the

expected insert size from the fragmentation protocol, is

more likely to be correct. We exploit this information by

applying an insert size filter to alignments in the best mis-

match stratum for each read. If an alignment’s insert size

is nearer than x bp (for example equivalent to one stan-

dard deviation) away from the expected insert size, then

all other alignments for that read with an insert size

greater than x bp away from the expected insert size are

removed. This filter can be thought of as an extension of

mismatch-based filtering for reporting only alignments

with moderately high probability of being true. Although

full probabilistic modeling is more principled, filtering is a

commonplace approach to reducing alignment candidates

for each read to a set that can be dealt with pragmatically.

For the HapMap dataset, mistakes in the protocol resulted

in two distributions of insert sizes within some samples, so

we omitted this filter.

MMSEQ output

The mmseq program produces three files each containing

EM and GS expression estimates with associated MCSEs.

The first file provides estimates at the transcript/haplo-

isoform level, the second file provides aggregate estimates

for sets of transcripts that have been amalgamated due to

having identical sequences (and therefore indistinguish-

able expression levels), and the third file aggregates tran-

script estimates into genes, thus providing gene-level

estimates. Homozygous transcripts are aggregated

together, whereas heterozygous transcripts are aggre-

gated separately to produce ‘haplo-gene’ level estimates.

With respect to transcripts that have identical sequences

and hence indistinguishable and unidentifiable expression

levels, the posterior samples exhibit high variance and

strong anti-correlation but the sum of their expression

can be precisely estimated (Additional file 1). We there-

fore recommend use of the amalgamated estimates.

Performance and scalability

The performance of the EM and Gibbs algorithms is

determined principally by the size of the M matrix,

which is bounded by the total number of known tran-

scripts and the total number of combinations of tran-

scripts that share sequence. Marginal increases in the

Turro et al. Genome Biology 2011, 12:R13
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total number of observed reads do not result in com-

mensurate increases in the size of M, because additional

reads tend to map to transcript sets that have been

mapped to by previous reads (Table 2). Consequently,

the mmseq program exhibits economies of scale which

allow it to cope with future increases in throughput.

This contrasts with the RSEM method, which represents

each read separately in their indicator matrix that maps

reads to isoforms [6].

Correction for non-uniform read sampling

We have assessed the effect of applying the Poisson

regression [8] correction for non-uniform sampling using

read data from three Illumina Genome Analyzer II

(GAII) lanes from the HapMap dataset [16] (described

below). Two of the samples were from the same run (ID

3125) and a third from a separate run (ID 3122). We

obtained Poisson regression coefficients for 20 bases

upstream and downstream of each possible start position

using the first 10 million alignments for each lane. The

regression model was fitted using only the most highly

expressed transcripts, as these have the best signal-to-

noise ratio [8]. Specifically, from the 500 transcripts with

the highest average number of nucleotides per position,

we selected a subset containing only one transcript per

gene so as to avoid double-counting of sequence prefer-

ences. As shown in Additional file 2, the coefficients are

highly stable across both lanes and runs. The time-con-

suming task of calculating adjusted transcript lengths

separately for each lane is therefore unnecessary. Instead,

our software can reuse the adjusted transcript lengths

calculated from one sample when analyzing other sam-

ples. Variations in the Poisson rate from base to base

tend to average out over the length of each transcript,

and thus the adjustments to the lengths are generally

slight (Additional file 3). As expected from the Poisson

model (Equation 3), changes in the expression estimates

(estimates of μt) tend to be inversely proportional to

adjustments to the lengths. Nevertheless, as transcripts

sharing reads may be adjusted in opposite directions, for

some transcripts even a small change in the length has a

significant impact on the expression estimate (Figure 3).

Simulation study of isoform expression estimation

We simulated reads from human and mouse Ensembl

cDNA files under the assumption of uniform sampling

of reads and ran the MMSEQ workflow. We found

good correlation between simulated and estimated

expression values and between dispersion around the

true values and estimated MCSEs. We did however

observe a small upward bias in our estimates of tran-

scripts with low expression levels, attributable to our

use of the mean to summarize highly skewed distribu-

tions. We evaluated our gene-level estimates by sum-

ming over the isoform components within each gene.

As anticipated, we obtained more precise estimates for

genes than for transcripts (Figure 4).

We also observed better estimates for mouse, which

has 45,452 annotated transcripts, than for human, which

has higher splicing complexity manifested in 122,636

annotated transcripts (Figure 5). Transcripts may be

connected to other transcripts via reads that align to

regions shared by isoforms of the same gene or to dif-

ferent genes with sequence homology. The complexity

of the graph that connects transcripts with each other

reflects the ambiguity in the assignment of reads to
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Figure 3 Impact on expression of transcript lengths

adjustment. Smooth scatterplot of the log fold change in transcript
length after adjusting for non-uniform read generation vs. the log
fold change in expression. The hundred transcripts in the lowest
density regions are shown as black dots. Changes in the expression
estimates tend to be inversely proportional to adjustments to the
lengths but for some transcripts even a small change in the length
has a significant impact on the expression estimate.

Table 2 mmseq performance. Performance of the mmseq

program on subsets of different sizes of the HapMap

paired-end dataset

Read pairs (millions) Dimension of M Runtime (seconds)

1 63,924 × 68,666 507

2 84,417 × 75,649 541

3 97,576 × 79,035 746

4 107,344 × 81,289 793

8 134,489 × 86,528 1,047

16 166,100 × 91,023 1,204

Where necessary in order to obtain a large enough dataset, reads from

multiple lanes of the same individual were pooled. The program exhibits

economies of scale because the dimension of M increases more slowly than

the number of reads.
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transcripts and thus the errors in our estimates. A bar

plot of the number of transcripts that each transcript is

connected to in human and mouse demonstrates a sig-

nificant difference in complexity between the annotated

transcriptomes of the two species (Additional file 4).

Comparison of isoform expression estimation between

MMSEQ and RSEM

Like MMSEQ, the RSEM method [6] makes use of all

classes of reads to estimate isoform expression. The

authors have shown an improvement of their method for

gene-level estimation over strategies that discard multiply

aligned reads or allocate them to mapped transcripts

according to the coverage by single-mapping reads (as in

[3]). However, isoform-level results for their method

have not been assessed. We obtained RSEM estimates for

Ensembl transcripts using our simulated human

sequence dataset for the purposes of comparison.

We scaled our simulated and estimated expression

values to add up to one in order to make them
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Figure 4 Isoform-level simulation scatterplots. Scatterplots comparing log-scale simulated vs. estimated RPKM expression values for human
and mouse at the transcript and gene levels. Estimates with MCSE greater than the median are shown in black, lower than the median but
higher than the bottom 10% are shown in dark grey and lower than the bottom 10% are shown in light grey.
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comparable to RSEM’s fractional expression estimates.

We found that RSEM and MMSEQ EM are comparable

but, unlike the MMSEQ EM algorithm, RSEM tended to

overestimate some medium-expression transcripts. Both

the RSEM and MMSEQ EM algorithms tended to

underestimate some low-expression transcripts, pushing

them very close to zero and thus producing very large

errors on the log scale. This was avoided by the regular-

ization of the Gibbs algorithm, which produced tighter

estimates and only overestimated slightly some very

lowly expressed transcripts (Figure 5 and Additional file

5), showing the benefits of using the whole posterior

distribution of μt to estimate expression rather than a

maximization strategy.

Isoform-level application to the HapMap dataset

The HapMap paired-end Illumina GAII dataset [16]

consists of 73 lanes: 7 lanes for the same Yoruban indi-

vidual, another 7 lanes for the same CEU individual and

the remaining 59 lanes each for different CEU indivi-

duals. The authors assessed exon-count correlations

between the lanes. Here we look at transcript and gene-

level correlations. We analyzed the data using the

MMSEQ pipeline, aligning approximately 75% of reads

to Ensembl human reference transcripts. The average

rank correlation was 0.92 and 0.84 respectively at the

gene and transcript level (Figure 6). When comparing

identical samples at the gene level the rank correlation

ranged from 0.96 to 0.97 for the Yoruban individual and

from 0.92 to 0.97 for the CEU individual. At the tran-

script level, the ranges were 0.91 to 0.92 and 0.90 to

0.91 for the Yoruban and CEU individuals respectively.

The transcript-level values are comparable to exon-

count correlations found by [16]. Both are lower than

the gene-level correlation, as might be expected due to

the inclusion of within-gene variance.

Although the ordering of transcripts and genes was

broadly maintained even between lanes belonging to dif-

ferent individuals and runs, we found a striking contrast

in the distribution of expression values between lanes of

the same individual and lanes of different individuals

(Additional file 6). The consistency of expression values

for lanes of the same individual indicates that the tech-

nical replicability of the Illumina GAII sequencer is

extremely high and therefore that the variation observed

between lanes from different individuals is mostly a

reflection of biological variability. This is in line with

previous research showing that sequence count data
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Figure 5 Scatterplots comparing RSEM with MMSEQ. Scatterplots comparing simulated vs. estimated normalized expression values from
RSEM, MMSEQ EM and MMSEQ GS for a simulated human dataset. The second RSEM plot from the left is a blown up version of the plot on the
far left so that the y-axis covers the same range as the MMSEQ plots on the right.
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Figure 6 Rank correlation box plots in the HapMap dataset. Boxplots of pairwise Spearman’s rank correlation between expression values in
the HapMap dataset. The first and second sets of seven boxplots correspond to technical replicates while the remaining boxplots correspond to
different CEU individuals.
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follow a negative binomial distribution in biological

replicates and a Poisson distribution in technical repli-

cates [21]. As such, we expect the variance of our esti-

mates to be proportional and greater than proportional

to the expression values for technical and biological

replicates respectively. This is indeed borne out both at

the gene and transcript level (Additional file 7) and cor-

roborates the need to take into account extra variability

for highly-expressed transcripts in differential expression

analysis with biological replication (see Discussion).

Validation of haplo-isoform deconvolution

The non-pseudoautosomal region (non-PAR) of the X

chromosome in human males is haploid, and thus the

alleles in that region can be called directly without the

need for phasing. We validated our method for deconvol-

ving expression between two haplotypes of the same iso-

form as follows. We used the RNA-seq data of two males

from the HapMap data (NA12045 and NA12872) to call

their haplotypes. We identified 117 isoforms on the non-

PAR of the X chromosome that differed between the two

individuals. We created custom transcriptome references

for each of the two males, containing their individual ver-

sions of the 117 isoforms. We then created a third hybrid

reference containing two copies of the 117 isoforms, one

matching the haplotype of one male and the second

matching the haplotype of the other. This hybrid refer-

ence mimics the case of a female with two X chromo-

somes with unknown expression of the two parental

copies of each isoform. We obtained individual expres-

sion estimates of the 117 isoforms using the separate

transcriptome references in each male and compared

them with estimates obtained by aligning a dataset

pooled from the data of both males to the hybrid refer-

ence. Although the original correlation between the two

males was 0.85, the correlation between the individual

estimates and the deconvolved estimates was 0.96 and

0.98, showing MMSEQ is capable of disaggregating the

expression from paternal and maternal isoforms (Addi-

tional file 8).

To test whether MMSEQ is able to recover greater

imbalances than found naturally between the two male

individuals, we divided the genes of the 117 isoforms

that are heterozygous in the hybrid reference into

three equal-sized groups. For one group, we artificially

removed 90% of the reads hitting one male and, for

another group, we artificially removed 90% of the

reads hitting the other male. This reduction of reads

mimics what would be observed if more extreme

imbalances existed. We thus reduced the correlation

between the log expression of the two males from 0.85

to 0.48. Despite this large imbalance, there was a cor-

relation of 0.91 and 0.95 between the individual and

the deconvolved estimates obtained from the pooled

dataset (Figure 7), showing that MMSEQ is able to

accurately disaggregate haplotype-specific expression in

the presence of large imbalances.

Demonstration of haplo-isoform expression estimation

using an F1 hybrid mouse brain dataset

We have applied MMSEQ to a published murine embryo-

nic day 15 RNA-seq dataset of CAST/C57 initial (F1i) and

reciprocal (F1r) crosses [2]. Each RNA sample was a pool

from four individuals. The C57 reference transcriptome

used by the authors is available from the UCSC Genome

Browser [23]. The authors called SNPs by aligning reads

from the CAST samples to the C57 reference. We created

a CAST reference transcriptome by changing alleles in the

C57 reference sequences according to those SNP calls. The

two references were combined in a hybrid reference
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Figure 7 Scatterplots of log expression estimates from individual and pooled data with read removal. Left: scatterplot of log expression
estimates of male NA12045 vs. NA12872 obtained from individual datasets where reads were removed from subsets of genes to decrease the
correlation between the two individuals. Center: scatterplot of log expression estimates of male NA12045 obtained from the individual vs.
pooled data. Right: scatterplot of log expression estimates of male NA12872 obtained from the individual vs. pooled data.
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containing two entries for isoforms that differed in

sequence between C57 and CAST. Thus there is a one-to-

one mapping between SNPs called in the parents and het-

erozygotes in the hybrids. The data consist of 152 and 159

million 36 bp Illumina GAII reads for F1i and F1r

respectively.

A scatterplot of the CAST/C57 differential expres-

sion between F1i and F1r crosses reveal a clear cluster-

ing of points into three groups (Figure 8). Firstly, the

points on the upper-left to lower-right diagonal corre-

spond to transcripts which show imbalance towards

the parent of origin, suggesting they are imprinted.

Those on the upper-left quadrant and bottom-right

quadrant correspond to maternally and paternally

imprinted transcripts respectively. Transcripts termed

‘consensus imprinted’ by [2] are highlighted in color.

These were defined arbitrarily by the authors as tran-

scripts with more than two heterozygotes exhibiting

imbalance in favor of the same parental sex, at least

one of which was significant in a c2 goodness-of- fit

test with a P-value threshold of 0.05.

We also identified a clustering of transcripts that

exhibited CAST overexpression in the F1i hybrids but

approximately balanced expression in the F1r’s. We

identified the cluster as consisting wholly of transcripts

on the X chromosome (Additional file 9), which sug-

gests that the initial crosses were male and the

reciprocal crosses female. The sexes of the hybrid mice

are in fact unknown. There was a slight skew in favor of

the CAST strand in the reciprocal crosses. We think it

is unlikely that this was due to mapping biases, since

the CAST reference was produced from SNP calls

against the C57 reference and was thus of lower quality,

so any mapping bias would be expected to be in favor

of C57. Moreover, [24] found a similar skew in adult

samples of the same crosses. It is possible that the skew

is the result of a selective bias in favor of C57 X-inacti-

vated cells [25], possibly caused by one or more of the

three mutations on the X-inactivation transcript (UCSC

ID uc009tzp.1) or mutations in its promoter region.

The third grouping in the plot is on the lower-left to

upper-right diagonal. These transcripts demonstrate

consistent CAST/C57 differential expression regardless

of the sex-strain combination of the parents, and are

thus indicative of cis regulation.

One advantage of MMSEQ is that imbalances are

assessed at the transcript level rather than for individual

SNPs. Thus it is not necessary to set arbitrary thresholds

on the numbers of heterozygotes or the magnitude and

significance of the imbalances to make claims about tran-

script-level imbalances. Indeed, some of the transcripts

that contain one or more heterozygote with a significant

P-value but were not classified as ‘consensus imprinted’

by [2] are clearly shown to be imprinted by our results.

Note however that 27 transcripts had significant hetero-

zygotes with imbalances in opposing directions, demon-

strating that it is not always appropriate to generalize

from a single locus to make claims of imbalance at the

transcript level (Figure 8 and Additional file 10).

For genes containing heterozygotes with opposing

imbalances, one approach is to scan the transcript anno-

tations to identify isoform structures consistent with the

observed SNP positions and imbalances. This approach

was taken by [2], who defined these genes as ‘complex’

as long as at least one SNP was significant. An example

of a complex gene is H13, which has two short isoforms

and three longer isoforms with several additional exons

towards the 3’ end (Figure 9). The short isoforms con-

tained heterozygotes with a paternal bias in their 3’

exons while the heterozygotes on the 3’ and intermedi-

ary exons of the longer isoforms had a maternal bias (cf.

Figure S9 of [2] for a SNP-by-SNP visualization of the

results of their preoptic area F1 samples). Using

MMSEQ, we were able to discern this effect by direct

quantification of haplo-isoforms. The two short isoforms

were clearly imbalanced towards the paternally inherited

haplotype while two of the long isoforms were clearly

imbalanced towards the maternally inherited haplotype.

An additional gene within the boundaries of H13,

Mcts2, was also found to be paternally overexpressed

(Table 3). By exploiting the data and annotation
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simultaneously, MMSEQ can be used to detect opposing

imbalances between isoforms of the same gene directly.

Discussion
We have presented a pipeline and statistical method that

can disaggregate expression between isoforms and even

between the two haplotypes of each isoform within an

individual. MMSEQ produces improved isoform esti-

mates compared to RSEM for medium to low expres-

sion transcripts, is more scalable, and estimates standard

errors more efficiently. Furthermore, our principled

approach to haplo-isoform quantification obviates the

need for ad-hoc interpretations of SNP-by-SNP imbal-

ances in terms of transcripts. Two aspects of our

method, however, deserve further discussion.

Transcript discovery

MMSEQ aims to quantify the abundance of known tran-

scripts, and as such relies on the comprehensiveness of the

transcriptome’s annotation. It is usually possible to align a

very large proportion of the reads to Ensembl transcripts

(approximately 75% in the HapMap study using Ensembl

version 56). However, samples may contain previously

unobserved genes or isoforms. MMSEQ can in such cases

work in tandem with transcript discovery methods by add-

ing newly predicted isoform sequences to the reference

transcript FASTA file and using it in the alignment and

mapping steps of the MMSEQ workflow.

Modeling biological variability

The Poisson distribution captures technical variability

arising in repeated sequencing experiments with the

same biological sample. The true expression value is, in

effect, fixed by the experiment, and the only source of

variability arises from measurement error and mapping

uncertainty. However, between biological replicates such

as different individuals in the HapMap study, there is,

additionally, variability of a biological origin. As has been

previously reported, this results in expression values

between replicates that show overdispersion, captured,

for example, by a negative binomial distribution [21].

Here we have focused on the problem of estimating

the posterior distribution of expression values indepen-

dently per sample. Nevertheless, it would be possible to

add a further level to our Bayesian model to capture

overdispersion across samples flexibly. For example, if

exchangeable Gamma priors are set on the μt, a suitable

negative binomial model can be induced.

Phasing with paired-end data

In this work, we have phased genotype calls obtained

from SAMtools pileups - an approach that works well

with both single and paired-end data. However, in the

case of paired-end data, the haplotypes observed directly

at multiple SNPs spanned by overlapping read pairs

could be used to increase confidence in the phasing calls.

Although incorporating this information would benefit

phasing estimates only for some sets of SNPs, we believe

it is a worthwhile area of future research. As phasing is a

distinct step in our pipeline, improved methodologies

can be integrated flexibly as they become available.

Conclusions
RNA-seq is a promising and rapidly developing technol-

ogy that provides sequence and expression intensity

information of a sample in a single experiment. We

have presented a novel pipeline and fast, scalable metho-

dology to estimate expression of diploid organisms at

the haplotype, isoform and gene levels. This allows

researchers to go beyond allele-specific expression ana-

lysis and assess imbalance between paternal and mater-

nal copies of isoforms, which in turn may be compared

to differential isoform expression between individuals.

We have shown that our method is able to deconvolve

Hm13/uc008nfz.1

H13/uc008nga.1

H13/uc008ngb.1

H13/uc008ngc.1

H13/uc008ngd.1

Mcts2/uc008nge.1

UCSC Genes Based on RefSeq, UniProt, GenBank, CCDS and Comparative Genomics

Figure 9 Isoform structures of H13 and Mcts2. Labeled graphical depiction of H13 and Mcts2 UCSC isoform structures.

Table 3 MMSEQ estimates for H13 and Mcts2 isoforms in

F1 hybrid samples. MMSEQ estimates for each haplotype

and isoform of H13 and Mcts2 of the initial and

reciprocal crosses are shown

Mother Father

CASTi C57r C57i CASTr

uc008nfz.1 1.26 1.63 9.61 9.17

uc008nga.1 1.29 3.58 7.68 7.51

uc008ngb.1 12.97 9.81 0.94 0.39

uc008ngc.1 13.63 10.51 1.10 1.08

uc008ngd.1 0.22 0.18 0.30 0.13

uc008nge.1 2.01 4.20 11.29 14.66

The two short isoforms of H13 (uc008nfz.1 and uc008nga.1) were found to be

paternally imprinted, while the longer isoforms uc008ngb.1 and uc008ngc.1

were found to be maternally imprinted. The long isoform uc008ngd.1 was

estimated to be close to absent. The short Mcts2 gene (uc008nge.1), located

within the boundaries of H13, was found to be paternally overexpressed.
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the expression of transcripts on each of two X chromo-

somes from human males in a pooled dataset, and that

it can be successfully applied to detect genomic imprint-

ing and cis-regulated transcripts in mouse hybrids. Our

method retains reads that emanate from junctions as

well as wholly within exons, models alignments to mul-

tiple transcripts, potentially across genes, exploits insert

size information in paired-end data to choose the best

alignments and flexibly incorporates corrective models

for non-uniform read sampling. The pipeline, the

MMSEQ software and related documentation are freely

available online [14].

Materials and methods
Expectation maximization

We augment the data with the reads per region and

transcript, Xit, where Σt Xit = ki and use the Poisson

approximation for the augmented data likelihood:

X Pois bs Mit i it t ( ). (6)

The distribution of the augmented data conditional on

the observed data and the parameters is multinomial:
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The derivative of the expected Poisson log likelihood

over X given k and μ
(p) with respect to μt is linear in X,

and hence

arg max 


X k

p

p L X b M s

L X k b

,

( )

( ) log ( ; , , , )

argmax log ( ; ( , ), ,
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 



MM s, ).
(9)

The EM algorithm can be thus be expressed as repeat-

edly updating the t
p( ) at each iteration p using a form

of the Poisson ML estimator in which the Xit have been

substituted with ( , )( )
X kit it t

p :

t
p it

p

i

t

X

bl

( )
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which converges to the ML estimate of μt. To initia-

lize the algorithm, we set μ(0) equal to 1
bl

M k

Mit

it i

t it  
 ,

which is equivalent to distributing ki evenly between

cells of Xi where Mit is one. For a given region i, the

probability of reads being allocated to a given transcript

depends only on the μt and not on si (as the region is

the same length on all transcripts). Hence, the si do not

appear in the update steps.

Bayesian model and Gibbs sampling

As before, we use the augmented data reads per region

and transcript, Xit. The full model is:

X Pois bs Mit t i it t  ( ), (12)

  t Gam ( , ). (13)

The full conditionals are:
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Again, the si are not needed as they are absent from

the full conditionals.

TopHat settings

Gapped alignment to the genome is performed with

TopHat. We use a GFF file (specified with -G) based on

the Ensembl annotation. We set –no-novel-juncs,

–min-isoform-fraction 0.0 and –min-anchor-

length 3. The expected inner distance between mate

pairs is specified with the -r switch.

SAMtools pileup settings

Genotypes output by SAMtools pileup were filtered

using samtools.pl varFilter with default options and set-

ting a minimum Phred-scaled probability of the geno-

type being identical to the reference (’SNP quality’)

threshold of 20.
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Bowtie settings

Alignment to the transcriptome with Bowtie is per-

formed with the -a –best switches, which ensure all

the best alignments in terms of mismatches are pro-

duced. Additionally, we recommend using –strata to

output only alignments with the minimum number of

mismatches, although it currently has no effect on

paired-end data. The minimum and maximum insert

sizes should be set appropriately with the -I and -X

switches respectively, as should –norc/–nofw for

stranded protocols.

Additional material

Additional file 1: Gibbs traces of identical transcripts. Gibbs traces for
two transcripts that have identical sequences, ENST00000436491 and
ENST00000415119, and their sums. The individual transcript estimates
exhibit high variability and anti-correlation, but the total expression level
of the two transcripts can be well estimated.

Additional file 2: Poisson regression coefficients for three lanes in

the HapMap dataset. Plots of the Poisson regression coefficients
obtained using the method described in [8] from three lanes in the
HapMap dataset. The first two plots are for two lanes of the same
Illumina GAII run (3125_2 and 3125_7), while the last plot is for a lane in
a separate run (3122_7). The coefficients are highly stable across both
lanes and runs.

Additional file 3: Plots of adjusted transcript lengths. Scatterplot of
log10 true vs. adjusted transcript lengths (top) and histogram of the
log10 fold change in transcript length after adjustment (bottom). The
adjustments are in general very slight.

Additional file 4: Transcript connectivity bar plot. Bar plot of the
number of transcripts that each transcript is connected to via shared
reads for human and mouse.

Additional file 5: MMSEQ vs. RSEM scatterplots. Normalized simulated
expression vs. log ratio between simulated and estimated normalized
expression for RSEM (left) and MMSEQ GS (right) (note the difference in
the scales of the y-axes). The RSEM estimates tend to underestimate
some low-to-medium expression values and set them very close to zero,
which translates to large negative log ratios. This also applies to MMSEQ
EM estimates. The posterior means estimated using MMSEQ Gibbs
sampling are less biased except for a slight upwards bias for very lowly
expressed transcripts.

Additional file 6: Quantile-quantile plots between pairs of lanes of

the same individual and between pairs of lanes of different

individuals. Quantile-quantile plots of transcript expression estimates
between pairs of lanes in the HapMap dataset. The lane IDs are shown
along the diagonal. The bottom-left triangle shows pair-wise
comparisons for a single individual sequenced in seven lanes of the
same run. The upper-right triangle shows pair-wise comparisons
between different individuals all sequenced in different lanes. There is a
striking contrast in the consistency of the distribution of high values
between pairs in the two triangles.

Additional file 7: Log-base mean-variance correlation between

technical and biological replicates. Scatterplots of log mean
expression values against the log of the variance across technical and
biological replicates at the transcript and gene levels. Each scatterplot
has a line with a gradient of one if it shows technical replicates and two
if it shows biological replicates. The variance is approximately
proportional to the mean for technical replicates and the square of the
mean for biological replicates.

Additional file 8: Scatterplots of log expression estimates from

individual and pooled data. Left: scatterplot of log expression estimates
of male NA12045 vs. NA12872 obtained from individual datasets. Center:
scatterplot of log expression estimates of male NA12045 obtained from

the individual vs. pooled data. Right: scatterplot of log expression
estimates of male NA12872 obtained from the individual vs. pooled data.

Additional file 9: Reciprocal vs. initial cross, omitting transcripts on

the X chromosome. Scatterplot of log fold changes between haplo-
isoforms in the reciprocal (F1r) and the initial (F1i) cross, omitting
transcripts on the X chromosome.

Additional file 10: Reciprocal vs. initial cross, highlighting isoforms

containing at least one significant SNP. Scatterplot of log fold
changes between haplo-isoforms in the reciprocal (F1r) and the initial
(F1i) cross, highlighting in green circles and red crosses isoforms
containing at least one significant SNP imbalanced towards the paternal
and maternal strain respectively. SNPs were called significant using a c2

goodness-of-fit test with a P-value threshold of 0.05 and are listed in [2].
Some transcripts contain significant SNPs with opposing imbalances, one
example of which is clearly visible in the bottom-right quadrant.

Abbreviations

CEU: Utah residents with ancestry from northern and western Europe; EM:
expectation maximization; GAII: Genome Analyzer II; GS: Gibbs sampling;
Haplo-isoform: haplotype-specific isoform; MCSE: Monte Carlo standard
errors; ML: maximum likelihood; PAR: pseudo-autosomal region; RPKM: reads
per kilobase per million mapped reads; SNP: single nucleotide
polymorphism; UCSC: University of California: Santa Cruz.
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