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1 Abstract12

Individuals sharing recent ancestors are likely to co-inherit large identical-by-descent (IBD)13

genomic regions. The distribution of these IBD segments in a population may be used to14

reconstruct past demographic events such as effective population size variation, but accurate15

IBD detection is difficult in ancient DNA (aDNA) data and in underrepresented populations16

with limited reference data. In this work, we introduce an accurate method for inferring effective17

population size variation during the past ∼2,000 years in both modern and aDNA data, called18

HapNe. HapNe infers recent population size fluctuations using either IBD sharing (HapNe-IBD)19

or linkage disequilibrium (HapNe-LD), which does not require phasing and can be computed20

in low coverage data, including data sets with heterogeneous sampling times. HapNe showed21

improved accuracy in a range of simulated demographic scenarios compared to currently available22

methods for IBD-based and LD-based inference of recent effective population size, while requiring23

fewer computational resources. We applied HapNe to several modern populations from the 1, 00024

Genomes Project, the UK Biobank, the Allen Ancient DNA Resource, and recently published25

samples from Iron Age Britain, detecting multiple instances of recent effective population size26

variation across these groups.27
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2 Introduction28

The increasing availability of high-quality genomic data for both modern and ancient samples is29

creating exciting new opportunities for data-driven investigation of key evolutionary parameters.30

Among these, the effective size of a population plays an essential role in population biology1. A31

population’s effective size is defined as the number of individuals in an idealized evolutionary32

model2,3, and the ability to infer it from genomic data has a wide range of applications, includ-33

ing the study of past demographic events4,5 and cultural practices6, the quantification of the34

effectiveness of natural selection1,7, and the prediction of viability in conservation biology8.35

Several statistical tools have been developed to reconstruct the trajectory of effective pop-36

ulation size from genomic data9, each leveraging different genomic features and enabling the37

analysis of different data types. Methods that rely on the site frequency spectrum (SFS) of38

a sample10–13 avoid modeling recombination and are thus scalable, but require high-quality39

sequencing data to estimate the SFS and have been observed to be statistically inefficient14.40

Methods that model both mutation and recombination processes15–19, on the other hand, tend41

to scale to smaller sample sizes and require high-quality genome sequencing data. Recent ap-42

proaches enable simultaneous modeling of recombination and allele frequencies in unphased43

sequencing data18, or scaling to larger sample sizes for accurately phased sequencing data20.44

Finally, several methods that focus on capturing the signature of recombination through the45

sharing of identical-by-descent (IBD) haplotypes21–25 or linkage disequilibrium26–29(LD) have46

been developed.47

Inference of recent population size fluctuations is particularly appealing because it provides48

unique insights into demographic and evolutionary processes that are specific to the analyzed49

population. IBD-based methods have been used to infer recent demographic history21–23,2550

in SNP array and sequencing data. A key limitation of these methods is that they rely on51

accurate detection of IBD regions30–33. The performance of these algorithms depends on accurate52

long-range computational phasing, which may be hard to obtain, particularly in low coverage53

ancient DNA data. While being a less direct measure of the signature of past recombination54

events, LD-based summary statistics can be computed in unphased samples, including SNP55

array and ancient DNA data. LD has been extensively modeled34–38 and applied to infer effective56

population size26–29,38,39. The most recent methods for IBD- and LD-based inference, IBDNe2557

and GONE,29 enable inference of population size fluctuations in time, without assuming a strictly58
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parametrized demographic model. This strategy, however, poses additional challenges, due to the59

need to adequately regularize the inferred models23,25 to avoid reporting spurious fluctuations,60

while preserving manageable computational costs.61

Here, we present a new method, called HapNe, that enables flexible inference of recent62

effective population size fluctuations using IBD or LD summary statistics, and can be used to63

analyze both phased and unphased SNP array or sequencing data, including low coverage or64

ancient DNA data with heterogeneous sampling time. Using extensive coalescent simulations, we65

show that HapNe accurately and efficiently infers recent demographic history, while regularizing66

the model to control for spurious oscillations in recent generations. We applied HapNe to67

reconstruct recent demographic history in both modern and ancient data, including populations68

from the 1,000 Genomes Project and different postcodes from the U.K. Biobank data set, where69

we observed a bottleneck in the Late Middle Ages corresponding to the period of the Black70

Death. We also analyzed ancient individuals from the Caribbean, Scandinavian Vikings, and71

individuals who lived in England during the Iron Age, observing isolation and expansion events72

that are consistent with past historical events, such as the transition from the Archaic to the73

Ceramic culture in the Caribbean.74
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3 Results75

3.1 Overview of the HapNe algorithm76

The HapNe algorithm infers recent effective population size using either IBD or LD data (see77

Methods and Supplementary Note for a detailed description of the algorithm). We refer to these78

two approaches as HapNe-IBD and HapNe-LD, respectively. HapNe-IBD uses IBD sharing79

information to compute summary statistics related to the count of IBD segments of different80

lengths. However, accurate detection IBD segments typically relies on phasing information and81

modeling of haplotype sharing to differentiate between identical-by-state (IBS) and truly IBD82

regions. Accurate phasing and haplotype modeling may not be possible if the analyzed genomes83

are not of high quality or not well represented in reference panels. HapNe-LD, on the other hand,84

leverages summary statistics related to long-range LD (Pearson correlation between sites). These85

LD statistics are easy to compute and do not require genotypes to be either phased or of high86

quality, enabling the analysis of past demographic events in low coverage or aDNA data.87

HapNe-IBD and HapNe-LD both optimize a composite likelihood. To ensure that the model88

is appropriately regularized, HapNe utilizes a prior on the effective population size Ne(t) that fa-89

vors models with minimal population size fluctuations. When the analyzed IBD or LD data does90

not contain sufficient signal, this regularization mechanism prevents inferring spurious variation91

in Ne(t), which may be incorrectly interpreted as past demographic events. The resulting ap-92

proximate posterior is optimized to compute a maximum-a-posteriori (MAP) estimator of Ne(t)93

and bootstrap resampling is used to provide estimates of uncertainty through approximate 95%94

confidence intervals. Both methods automatically exclude genomic regions harboring unusually95

large amounts of IBD or LD, which may be caused by natural selection or the presence of struc-96

tural variation rather than past demographic events. In addition, HapNe-LD implements a test97

to detect the presence of possible biases due to the presence of strong LD caused by past admix-98

ture events (admixture LD) and can handle samples originating from different time points. The99

HapNe program is freely available as an open-source software package (see Code Availability).100

3.2 Performance on simulated modern data101

We used extensive coalescent simulations to benchmark HapNe-IBD and HapNe-LD against102

other recent methods for haplotype-based inference of recent effective population size. To this103

end, we considered several demographic scenarios (Figure 1a, dotted black lines), including: a104
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Figure 1: Benchmarks in simulated modern populations. (a) Comparison of HapNe-
IBD, IBDNe, HapNe-LD, and GONE on simulated SNP-array data (256 individuals) for four
different demographic scenarios. (b) Accuracy of the different methods on the ”Bottleneck”
demographic model as a function of sample size. Error bars correspond to 1.96× SE computed
using 10 independent simulations. (c) Total running time for each method (including IBD
segment detection and within-chromosome LD estimation, see Methods).
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constant population size of Ne(t) = 20,000; an exponentially expanding population with 200,000105

haploid individuals at t = 0 and 20,000 at t = 50 generations; an exponentially collapsing106

population with 2,000 living individuals at t = 0 and 20,000 at t = 100; and a population107

undergoing a strong bottleneck, evolving from 200,000 haploid individuals at t = 0 to 2,000 at108

t = 25, and then growing back to 20,000 at t = 50. For each of these populations, we simulated109

256 diploid individuals. We generated realistic SNP-array data and used the simulated ancestral110

recombination graph to extract ground truth IBD segments longer than 1cM (see Methods).111

We initially considered the performance of HapNe-IBD and IBDNe31 in an idealized setting112

where ground truth IBD sharing information is available (see Supplementary Figure S1). In113

this scenario, HapNe-IBD generally produced lower error than IBDNe, measured using the root114

mean squared log-error (RMSLE) over the past 50 generations (see Methods). HapNe-IBD115

produced stable estimates of effective population size in the very recent past, whereas IBDNe116

tended to output spurious oscillations, a caveat that was highlighted by the authors31. We next117

inferred and analyzed LD summary statistics from the simulated array data using HapNe-LD.118

Because the LD signal reflects the presence of underlying IBD segments (see Supplementary119

Note), analysis of ground truth IBD data may be seen as an upper bound on the accuracy of120

HapNe-LD. We observed the RMSLE of HapNe-LD applied to SNP array data to be close to121

that of HapNe-IBD using ground truth IBD data, suggesting that HapNe-LD achieves close122

to optimal performance in these simulations, despite not utilizing phasing information (see123

Supplementary Figure S1b). We also tested the performance of GONE29, a recent LD-based124

method, and observed larger RMSLE in the past 50 generations (see Figure 1b). Due to its125

regularization procedure, HapNe-LD tended to infer smooth changes in population size, whereas126

GONE inferred more rapid fluctuations (see Figure 1a). GONE did not produce bootstrap127

confidence intervals in these simulations, due to an insufficient number of available SNPs (see128

Methods).129

We next considered a more realistic scenario for the application of IBD-based methods130

(HapNe-IBD and IBDNe), where we inferred IBD sharing from simulated SNP array data (as-131

suming perfect phasing, see Methods). We detected IBD sharing using the FastSMC program32;132

similar results for IBDNe were obtained by using the recommended HapIBD software33 (see133

Supplementary Figure S2). Figure 1a shows the output of all four methods on a data set of134

256 diploid samples and results for other sample sizes are summarized in Figure 1b (also see135

supplementary figures S3 and S4). In most cases, the noise introduced by inferring IBD from the136
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data resulted in biases in the inferred effective population sizes; IBDNe tended to underestimate137

recent effective population size, while HapNe-IBD tended to overestimate ancestral population138

size (Supplementary Figure S3). We observed the error in IBD detection to be dependent on139

several factors, including demographic history and the length of the inferred segments (see Sup-140

plementary Figure S5). We note that additional biases due to genotyping and phasing errors141

are likely to be present in real data, further affecting the quality of IBD-based analyses.142

We finally benchmarked the computational speed of these methods and observed HapNe-IBD143

and HapNe-LD to be more computationally efficient than IBDNe and GONE (see Figure 1c).144

Computing LD scales only linearly with the number of analyzed samples, while detecting pairwise145

IBD sharing requires computation that is quadratic in the number of samples, making LD-146

based analyses more scalable. Unlike IBDNe, which requires more time to fit larger samples,147

HapNe-IBD only computes a fixed-size vector of the IBD segment lengths, significantly reducing148

computational costs for larger samples. The difference in computational time between HapNe-149

IBD and HapNe-LD is mainly driven by differences in the time required to compute IBD and150

LD summary statistics.151

Overall, HapNe-IBD and HapNe-LD provided improved accuracy and substantially reduced152

computational times compared to existing methodologies. Although IBD-based inference of153

effective population sizes is potentially more accurate than LD-based analysis, the need to154

accurately detect IBD sharing is likely to introduce substantial biases in the inferred population155

sizes. HapNe-LD’s performance was observed to be close to that of IBD-based methods applied156

to ground truth IBD data and may be applied in the analysis of large sample sizes, providing157

several practical advantages over IBD-based methods in the analysis of real data sets.158

3.3 Performance on simulated aDNA data159

HapNe-LD does not require phased or high coverage data, making it especially suitable for the160

analysis of effective population sizes of ancient populations, where phase determination can be161

poor. However, LD-based analysis suffers from several limitations and potential confounders,162

some specific to aDNA data. First, analyses based on aDNA data sets tend to contain fewer sam-163

ples sequenced at relatively low coverage compared with modern panels. Furthermore, different164

sequencing strategies balancing sample size and coverage might lead to different performances165

in effective population size inferences. Next, an important confounder is the potential presence166

of admixture in the analyzed samples, which is often encountered in real populations as a result167
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Figure 2: Results in simulated aDNA data. (a) HapNe-LD inference results for simulated
aDNA-like data under the ”Bottleneck” demographic scenario (dashed lines) where the number s
of simulated samples and fraction m of missing SNPs, or equivalently the coverage C, are varied
(see Methods). (b) RMSLE over the first 50 generations for different coverage levels. Error
bars correspond to 1.96 × SE computed using 10 independent simulations. (c) Comparison of
the accuracy of HapNe-LD based on two sequencing strategies. The red line reports RMSLE
for high coverage data (m = 0, C = 30) with varying sample size s. The blue line reports
RMSLE for fixed s = 256 and varying coverage. Error bars correspond to 1.96× SE computed
using 10 independent simulations. (d) HapNe-LD results under the IM and ICF models of
recent admixture, depicted on the left. For both models, we set tm = 50 generations. For ICF
simulations, we sampled all individuals from one population and selected a migration rate µ such
that ancestors of a sampled individual are located in the second population with probability
close to 1/3 (see Methods). (e) HapNe-LD and GONE inference results for a simulation where
individuals from a population of constant size of Ne = 20,000 are uniformly sampled over an
interval ∆T = 10 generations (red shaded area).
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of past demographic interactions and induces long-range correlations among genomic variants40.168

Finally, individuals sampled at a site are unlikely to have lived at the same time, with a few169

notable exceptions41,42. If not modeled, this source of time heterogeneity may lead to biased170

effective size estimates.171

We set out to test HapNe-LD’s robustness to these sources of confounding. We first cre-172

ated synthetic aDNA samples by generating pseudo-diploid individuals with different levels of173

missingness m, mimicking the effects of reduced sequencing coverage C, with m ≈ e−C (see174

Methods). We tested the relative impact of the simulated sample size s and coverage on HapNe-175

LD’s inference accuracy (see Figure 2a and Supplementary Figure S6 for additional demographic176

scenarios). As expected, RMSLE decreases when more samples are available and when coverage177

increases (see Figure 2b and Supplementary Figure S7). We then tested whether HapNe-LD178

would perform better when analyzing a larger number of low-coverage samples rather than a179

smaller number of high-coverage samples. To this end, we performed simulations where the180

overall number of sequencing reads is kept approximately constant, while the number of ana-181

lyzed samples and their coverage are varied (see Figure 2c and Supplementary Figure S7). We182

considered an analysis involving 256 individuals and observed that reducing coverage from 30x183

to 1.4x had no significant impact on the performance while requiring only about 5% of the reads.184

Using an equivalent number of reads to perform high coverage (30x) sequencing would only allow185

sequencing 16 individuals, resulting in significantly higher RMSLE. These results suggest that186

sequencing at a coverage higher than 1-2x does not lead to significant improvements in HapNe-187

LD’s performance, and that HapNe-LD is more accurate when a larger number of individuals is188

sequenced at lower coverage compared to settings in which a smaller number of high coverage189

samples is analyzed.190

We next simulated a population affected by recent admixture (see Supplementary Note)191

by considering two demographic scenarios (similar to those used in 43). In these scenarios,192

two isolated populations first separate and then either merge again (IM model) or experience193

continuous gene flow (ICF model, see Figure 2c). All simulated models had a constant number194

of 20,000 haploid individuals within each population; the interaction time tm was set to 50195

generations. Simulation results for other values or tm are shown in Supplementary Figure S8.196

For the ICF model, we sampled all individuals from one population and selected a migration197

rate µ such that at time tm the ancestral lineages of all individuals are located in the second198

population with a probability close to 1/3. Figure 2c shows that HapNe-LD results under199

10

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2022. ; https://doi.org/10.1101/2022.08.03.501074doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.03.501074
http://creativecommons.org/licenses/by-nc-nd/4.0/


these models do not strongly deviate from the true underlying effective population size (see200

Supplementary Note). Some ICF simulations resulted in an increase in the inferred recent201

population size (see Supplementary Figure S8), likely due to model regularization, indicating202

that larger sample sizes are needed to infer subtle population size variation at these time scales.203

Taken together, these results suggest that HapNe-LD is robust to reasonable levels of admixture204

LD. The HapNe-LD software implements a statistical test for admixture LD, warning the user205

if significant admixture LD is detected.206

Lastly, we considered potential biases arising due to heterogeneous sampling times of the207

analyzed aDNA individuals. We used analytical modeling (see Methods and Supplementary208

Note) to confirm that, if not accounted for, heterogeneous sampling times lead to biased recent209

effective population size estimates. We performed simulations of aDNA samples originating from210

heterogeneous time locations under a constant demographic history, uniformly drawing the time211

offset of each sample between 0 and ∆T generations in the past (see Methods). In this setting,212

we observed that using GONE to infer effective population size leads to the spurious inference213

of a recent population expansion, consistent with analytical predictions under unmodeled time214

heterogeneity (see Figure 2d). The HapNe-LD algorithm allows utilizing prior knowledge of215

sampling times (e.g. from radiocarbon dating or archeological context) in the form of a user-216

provided time interval for each analyzed individual (see Methods). Using simulations, we verified217

that this approach effectively removes recent biases due to time heterogeneity.218

3.4 Inference of recent effective population sizes in the UK Biobank and 1,000219

Genomes Project data sets220

We used HapNe-IBD and HapNe-LD to analyze recent effective population size variation within221

the UK Biobank data set. Accurate inference of recent demographic events requires a com-222

bination of large sample sizes and small effective population sizes, which make it possible to223

estimate recent coalescent rates. In this case, large recent effective population sizes generally224

present across the UK are balanced by the large sample sizes available in the UK Biobank225

data set. In order to mitigate the impact of admixture LD, we focused on the larger group of226

samples with self-reported white British ancestry, and only considered unrelated individuals to227

avoid biasing demographic inference in recent generations. We grouped individuals based on228

the postcode of their self-reported birthplace and report analyses for three of these postcodes229

(see Figure 3a, Methods). We also used FastSMC to detect IBD segments within each of these230
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Figure 3: HapNe-IBD and HapNe-LD estimates of recent effective population sizes
in modern populations. (a) Inference results for three postcodes: Glasgow (G), s = 14,724;
Edinburgh (EH), s = 9,981; and Llandudno (LL), s = 2,089 from the UK Biobank data set.
The vertical dashed line corresponds to the estimated date of the Black Death in the UK
(1348,44). HapNe results are converted to years assuming 29 years per generation. The shaded
grey area depicts how the placement of the Black Death would shift with respect to the inferred
demographic models if values between 23 and 35 years per generations were assumed. (b)
Inference results for three populations (Finnish, FIN, s = 99; Kinh in Ho Chi Ninh City,
Vietnam, KHV, s = 99; Yoruba in Ibadan, Nigeria, YRI, s = 107) from the 1,000 Genomes
Project.

12

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2022. ; https://doi.org/10.1101/2022.08.03.501074doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.03.501074
http://creativecommons.org/licenses/by-nc-nd/4.0/


postcodes. Regions with unusually high LD or IBD sharing were excluded using HapNe’s filter231

(Supplementary Figure S9).232

Effective size trajectories inferred from these regions in the UK all exhibit a bottleneck event233

during the Late Middle Ages, which roughly corresponds to the period of the Black Death (Fig-234

ure 3a, vertical dashed line). The inferred population size for individuals from the Llandudno235

postcode has a significantly smaller effective population size compared to the ones inferred for236

Glasgow and Edinburgh. Such a smaller effective size offers a stronger source of recent de-237

mographic signal, allowing to perform inference using a smaller sample size (s = 2,089 for238

Llandudno, s = 14,724 for Glasgow, and s = 9,981 for Edinburgh). In contrast, detecting the239

more subtle contraction to a larger minimum bottleneck size in Glasgow required a substantially240

larger sample size, as highlighted when we downsampled data from this postcode to 2,000 indi-241

viduals (see Supplementary Figure S10). In this experiment, the bottleneck was only apparent242

in the output of HapNe-IBD, suggesting that LD-based analysis may lead to comparably lower243

statistical efficiency in cases where high-quality IBD signal is available. Demographic models244

inferred by HapNe-IBD and HapNe-LD are broadly consistent, although HapNe-IBD tends to245

report a larger effective population size, with a significative shift towards more remote times.246

These observations are compatible with the presence of underlying IBD segments that are un-247

detected or broken into smaller segments, due to the presence of phasing or genotyping errors248

in the data.249

We next applied HapNe-IBD and HapNe-LD to data from the 1,000 Genomes Project250

(1kGP,45). Unlike the UK Biobank, most 1kGP groups contain a small number of samples,251

which originate from large populations. Furthermore, several groups represented in the 1kGP252

data set are known to have undergone recent admixture, which complicates LD-based analy-253

ses45. We therefore expected analysis of recent effective population sizes to only be possible in a254

small subset of 1kGP populations. We used HapNe-LD to compute LD for each population and255

estimated recent IBD sharing using the FastSMC algorithm32 (see Methods). We used HapNe’s256

filters to exclude populations that were flagged as either not containing sufficient recent demo-257

graphic signals or exhibiting strong admixture LD (19/26). We then inferred recent effective258

population sizes using the HapNe-LD and HapNe-IBD methods.259

Figure 3b shows results for three populations that passed these filters. Results for all pop-260

ulations without significant admixture LD are shown in Supplementary Figure S11, which also261

reports results obtained by running the IBDNe algorithm. Supplementary Figure S12 shows two262
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additional populations passing these filters for a less stringent significance cutoff and Supple-263

mentary Figure S13 displays the remaining 19 groups. Again, the demographic history inferred264

using IBD data consistently resulted in larger effective population sizes compared to LD-based265

results, particularly for recent generations, and were more strongly regularized due to reduced266

signal. These effects were more pronounced in these groups compared to the UK Biobank anal-267

ysis, likely due to smaller sample sizes leading to lower phasing and IBD detection quality.268

HapNe-LD suggests a recent expansion for the individuals from the Kinh population in Ho Chi269

Minh City, Vietnam (KHV) and the Yoruba population in Ibadan, Nigeria (YRI) and infers a270

bottleneck at 1,000 CE for the FIN population, consistent with previous reports25,29,46. These271

demographic events are inferred to have an earlier onset using IBD data, likely also a result of272

noisy IBD detection. We also observed that IBD-based methods inferred strong bottlenecks in273

many African and South American populations around 1,000 CE, which is likely due to biases274

in the IBD-detection (see Supplementary Figure S13).275

Overall, these results suggest that HapNe-LD and HapNe-IBD provide similar results when276

large samples and high-quality IBD data are available. HapNe-LD, however, provides more277

robust results than HapNe-IBD in data sets where phasing and IBD detection accuracy are278

reduced, at the cost of an only slightly reduced statistical efficiency. HapNe-LD may produce279

biased estimates for data sets including a history of strong recent admixture, as highlighted280

for some populations in Supplementary Figure S13. These biases usually result in an apparent281

population collapse in the recent past; in these analyses, however, HapNe-LD implements tests282

to flag populations where strong admixture is likely to result in such a spurious recent bottleneck.283

3.5 Inference of recent demographic history in ancient populations284

We applied the HapNe-LD method to aDNA sampled from four different sites for which large285

cohorts from similar time strata were available (see Methods and supplementary tables S1-S7).286

We first analyzed a group of recently published individuals excavated in Pocklington, York-287

shire, UK47 (see Figure 4a). The archeological context suggests that this group belongs to the288

Arras culture, which is distinctive relative to other Iron Age cultures in the UK but shows289

similarities with contemporary cultures in the Paris Basin and Ardennes/Champagne regions290

of France. These individuals were found to be unusually highly drifted from nearby groups,291

although their F-statistics do not highlight significantly divergent admixture histories47. This292

suggests that these groups share common origins but may have been isolated for some time. To293
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test this, we compared the effective population size for 24 individuals from the Arras culture to294

that of 49 other Iron Age individuals from Southern England (supplementary tables S2 and S3).295

For the Arras, we detected a significant recent population contraction, starting between 500 and296

1,000 BCE, which was not observed in individuals from Southern England. This is consistent297

with isolation of the Arras group from other Iron Age individuals in the South of England,298

possibly also reflecting isolation by distance due to the stronger geographic localization for the299

Arras samples. Admixture LD for these groups was found to be negligible, suggesting that the300

observed demographic signature is not due to admixture (see Supplementary Table S1). The301

small population size of the Arras group might also explain why this population was found to302

be unusually highly drifted from nearby groups. The recent effective population size inferred for303

individuals in the South of England was compatible with population size estimates obtained for304

modern UK Biobank individuals, although confidence intervals were large over the first 1,000305

years due to a reduced sample size.306

200010000
time (CE)

103

104

105

N
e

(a)

Arras
England (MIA-LIA)

20000
time (CE)

104

105

106

(b)

Norway (Vikings)
Gotland (Vikings)

100001000
time (CE)

103

104

(c)

Caribbean Ceramic
Dominican S-E Coast

Figure 4: (a) Analysis of 49 Middle to Late Iron Age individuals from South England, compared
to 24 individuals related to the Arras culture near Yorkshire. (b) Inference based on 22 Viking
samples found in modern Norway (blue) and 28 found in Gotland, a Swedish island (red). (c)
Effective population size inference based on 71 unrelated individuals from the Caribbean Ceramic
clade and 18 from the Dominican South-East coast subclade. The grey shaded area corresponds
to the estimated date for the transition from Archaic to the Ceramic culture in the region.
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We next analyzed 22 genetically similar individuals from the Viking Age buried in Norway,307

together with 28 individuals from the south-east Swedish island of Gotland41 (Figure 4b and308

supplementary tables S4 and S5). Norwegian and Swedish Vikings have been observed to have309

a slightly smaller proportion of ancestry from Neolithic farmers from Anatolia compared to310

Swedish Vikings. On the other hand, Vikings from Gotland have a relatively higher estimated311

fraction of ancestry shared with Bronze Age individuals from the Baltic region. Despite these312

differences, the demographic histories inferred by HapNe-LD for the recent past of these indi-313

viduals substantially overlap, and both trajectories show a significant expansion during the iron314

age (−500 to 800 CE).315

Finally, we focused on 71 unrelated individuals from the Caribbean, first analyzed in Fer-316

nandes et al.48 (n=62) and Nägele et al.49(n=9) spanning ∼1,149 to ∼1,440 CE (supplementary317

tables S6 and S7). For these samples, HapNe-LD infers a weak sign of a bottleneck occurring318

around 1 CE, followed by a significant expansion, as shown in Figure 4c (blue line). This pat-319

tern may reflect the transition from the Archaic to Ceramic context about 2,500-2,300 years ago320

(Figure 4a, grey area), which has been associated with migration events in the region48. We321

also extracted and separately analyzed a subgroup of individuals from South-East Dominican322

sites (Figure 4c, red). These individuals are part of a subclade previously identified in48. The323

population size inferred for this group matches that of the broader Caribbean group in the deep324

past, consistent with common origins, but shows a distinctive sign of contraction in the more325

recent past. Admixture LD is detectable in these individuals, which may partially explain the326

observed contraction, as observed in some 1kGP populations (see Supplementary Figure S13327

and Supplementary Table S1). Nevertheless, the sizes inferred by HapNe-LD in the recent past328

roughly match those inferred using runs of homozygosity50, supporting the possibility of a pop-329

ulation contraction starting after the transition from the Archaic to the Ceramic Culture48. As330

in the case of the Arras and Southern England individuals, these demographic patterns may331

also be due to isolation by distance, where samples originating from different islands result in a332

larger effective size when considered together.333
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4 Discussion334

We developed an algorithm, called HapNe, that leverages the count of IBD segments of different335

lengths (HapNe-IBD) or long-range LD (HapNe-LD) to infer recent effective population size336

fluctuations in modern or ancient DNA data. HapNe-IBD and HapNe-LD implement a num-337

ber of preprocessing steps, as well as tests to verify that sufficient recent demographic signal338

is present in the data and to detect the presence of admixture LD. Both methods minimize a339

power-likelihood based on an analytic link between observed summary statistics and the effec-340

tive population size and use regularization to avoid producing spurious oscillations. We used341

extensive simulation to show that both HapNe methods were more accurate and computationally342

faster than available algorithms for IBD-based and LD-based inference of recent demographic343

history, producing lower error and fewer spurious oscillations. These simulations also showed344

that while HapNe-LD does not require high quality or phased data and scales better with sam-345

ple size, its performance can be close to that of IBD-based methods applied to ground truth346

IBD information. Finally, we applied HapNe to several modern and aDNA data sets, detecting347

evidence for recent past demographic events across these populations. These include population348

size contractions corresponding to the period of the Black Death in different regions of the UK,349

as well as bottleneck and expansion events in 1,000 Genome Project populations. In aDNA350

data, these analyses provided evidence for divergence and isolation events, as well as shared351

demographic histories in subgroups from several ancient populations with diverse geographic352

and temporal origins.353

Our analyses suggest that LD-based inference of recent demographic variation provides a354

route to circumenting biases that may arise in IBD-based demographic inference. Although the355

spectrum of shared IBD haplotypes is an effective source of information for analyses of past de-356

mographic events, accurately estimating IBD sharing is complicated in low coverage and aDNA357

data and may lead to biased results. This may also be the case in modern populations when358

limited data availability prevents accurate phase estimation. Although summary statistics of359

LD rely on less direct observation of historical recombination events, they may be effectively360

computed in unphased and low coverage data sets. This enables analyzing recent demographic361

events in samples from poorly represented populations and, coupled with modeling of heteroge-362

neous sampling time, in aDNA data sets. Performing both IBD-based and LD-based analyses363

may offer validation for an inferred demographic model and allow testing for the presence of364

17

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2022. ; https://doi.org/10.1101/2022.08.03.501074doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.03.501074
http://creativecommons.org/licenses/by-nc-nd/4.0/


biases in either approach. An additional source of potential bias in methods for demographic365

inference is linked to the need to make assumptions about the type of demographic model being366

inferred. In this context, approaches that avoid relying on a predefined set of models provide367

more flexibility, but require further tuning strategies to balance the desired sensitivity to past368

demographic events with the need to prevent the inference of spurious fluctuations. Our work369

suggests that the use of self-tuning regularization mechanisms helps mitigate the risk of spurious370

inferred fluctuations. Finally, our analyses highlight the importance of accurately preprocessing371

both IBD and LD signals before performing demographic inference, as results may vary signifi-372

cantly if unfiltered data is utilized. Key preprocessing steps include testing for the presence of373

admixture LD and systematically filtering out regions of the genome that harbor unusually high374

IBD sharing or LD (see e.g. Supplementary Figure S9). These may be due to natural selection375

or the presence of structural variation and lead to biases in analyses of demographic history and376

selection if not accounted for.377

We outline several limitations and directions of future development for this work. First,378

HapNe-LD assumes that the LD signal observed in the data is solely due to past population379

size fluctuations. In some instances, residual admixture LD can be present in the data after380

filtering, causing a spurious bottleneck in the recent past and creating the need to carefully381

interpret models that resemble this type of signature. Similarly, HapNe-IBD currently only382

relies on the observed spectrum of IBD sharing, which may be biased due to inaccurate IBD383

detection. Future work may allow explicit modeling of type-1 and type-2 errors in IBD detection,384

mitigating biases in the inferred demographic models. Second, while regularization helps prevent385

the inference of spurious demographic fluctuation, it leads to favoring constant and exponential386

demographic histories that lack fluctuations if these are not supported by the data. When387

interpreting demographic models inferred by HapNe, it is important to note that an inferred388

constant growth rate may reflect insufficient evidence for past demographic variation (see e.g.389

Figure S10). Finally, HapNe-LD makes several model simplifications, including the assumption390

that the analyzed samples come from a single population. HapNe may be extended to explicitly391

account for multiple populations, improving the analysis of more complex demographic models392

such as those involving isolation by distance, divergence, and admixture. Similarly, HapNe-LD393

is currently focused on the inference of recent demographic history, but may be extended to the394

analysis of deeper time scales by modeling variation in allele frequencies, which are currently395

assumed to be constant in time. Despite these limitations, we expect that the HapNe framework396
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developed in this work will offer valuable insights into past demographic events in both modern397

and ancient DNA data.398
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5 Methods399

5.1 Simulated genetic data400

We used the ARGON simulator51 (version 0.1.160415) to generate synthetic genotypes and401

ground truth IBD data for modern and ancient populations. Simulations with time heterogeneity402

were performed using msprime52 (version 1.1.1). We simulated genomes of 36.23 Morgans, split403

into 39 independent regions corresponding to human chromosome arms. We used a mutation404

rate of µ = 1.65 × 10−8 and a recombination rate of ρ = 1 × 10−8 per generation per base405

pair. To simulate SNP data we then downsampled sequencing data to match the genotype406

density and allele frequency spectrum observed using Chromosome 2 of the UK Biobank data407

set, using 50 evenly spaced MAF bins. We generated unphased diploid individuals by randomly408

pairing simulated haplotypes. Ancient data was generated using a similar procedure, with two409

additional steps to simulate low coverage data. We first transformed the data into pseudo-410

diploid individuals by randomly sampling one haplotype at each site. We then set each site as411

missing with probabilitym, related to a simulated coverage parameter C through the relationship412

m ≈ e−C , further described below.413

5.2 Simulation of missingness and coverage414

We simulated low coverage data by discarding a proportion m of the SNPs of each individual,415

but often report results referring to corresponding sequencing coverage parameters. To this end,416

we assumed a simple model where a genome of length G is sequenced using N reads of length417

L. Using this notation, the probability that a randomly selected site along the genome is not418

spanned by a read is:419

m = (1− L

G
)N

= (1− C

N
)N

≈ e−C ,

(1)

where C ≡ NL
G represents the coverage parameter. This relation can also be used to obtain a420

link between m and the number of reads:421

N = −s
log(m)

z
, (2)
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where z = −log(1− L
G) > 0 and s is the number of sampled individuals with missingness m.422

5.3 Computation of LD423

We consider a panel of s individuals, M sites and genotypes G̃i,x ∼ Bin(2, px) for individual424

i at site x with minor allele frequency px. We first standardize the genotypes by computing425

Gi,x =
G̃i,x−2p̂x√
2p̂x(1−p̂x)

, where p̂x is the estimated allele frequency. The LD between two sites x and426

y is computed as the R2 statistic:427

R2
x,y =

( s∑
i=1

Gi,xGi,y

)2 − ( s∑
i=1

G2
i,xG

2
i,y

)
s(s− 1)

. (3)

The computation of this statistic scales linearly with the number of samples (O(s)). Note that428

this estimator is biased due to the use of p̂x instead of the unknown allele frequency px during429

the normalization step. We describe a procedure used at runtime to debias these estimates in430

the Supplementary Note. The LD of pseudo-diploid individuals is computed using the same431

approach, with 1
2G̃i,x ∼ Bin(1, px).432

5.4 Detection of IBD segments433

We ran FastSMC32 (version 1.2) using parameters min m = 0.5 (minimum cM length) and434

t = 100 (IBD time threshold). Decoding quantities were generated based on 30 samples using a435

European demographic history. FastSMC was run using multiple jobs, so that each job considers436

at most 100 haploid samples. We also used IBD segments obtained by running the HapIBD437

software31 (version 1.0), using recommended parameters for SNP-array data analysis (default438

parameters).439

5.5 HapNe-IBD and HapNe-LD algorithms440

We developed two algorithms to infer recent effective population size fluctuations Ne(t) from a441

set of s samples, called HapNe-IBD and HapNe-LD. Both approaches take summary statistics442

{Yi,b} as input and maximize a pseudo-posterior function for Ne(t). The input data set {Yi,b}443

is split into 39 genomic regions corresponding to chromosome arms indexed by i, using 0.5cM444

long bins indexed by b.445

HapNe-IBD takes as input a list of IBD segments of length L ∼ O(s2). Input data {Yi,b}446

corresponds to the count of IBD segments in region i whose length lies in bin b. Bins start447
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at 2cM and end at the largest detected IBD segment. We assume that each of these counts448

is the realization of a Poisson random variable, with demographic-dependent mean parameter449

µb

(
Ne(t)

)
Li, where Li is the length of the ith region (µb

(
Ne(t)

)
is described in the Supplementary450

Note). To handle overdispersion, we used a quasi-likelihood approach to compute a weight451

parameter ϕ2
b that multiplies the variance in each bin.452

HapNe-LD uses average R2 statistics as input data {Yi,b}. This input is computed in O(sm),453

where m is the total number of loci. We assumed that these observations are realizations of a454

Normal random variable, with a distance-dependent mean parameter µb

(
Ne(t)

)
(see Supplemen-455

tary Note for a detailed description of µb

(
Ne(t)

)
). The variance parameters ϕ2

b were estimated456

using the usual variance estimator within each bin.457

Give a set of IBD or LD observations {Yi,b} for the ith genomic region and bth bin, HapNe458

aims to maximize P (Ne(t)|{Yi,b}) under the following assumptions. First, Ne(t) is a piece-wise459

exponential function from t = 0 to t = tmax generations, and remains constant afterwards.460

In all our analyses, we used tmax = 125 generations. The lengths of the time intervals are461

iteratively tuned so that each time interval contains the same number of expected ancestors462

of IBD segments (see Supplementary Note). Second, we assume that there exists a prior on463

the effective population size pNe(θ), where θ represents the set of parameters defining Ne(t). A464

discussion about the choice of this prior can be found in the Supplementary Note. Third, we465

assume that the covariance across consecutive bins can be modeled using a power likelihood466

P ({Yi,b}) =
∏

i P (Yi,b)
c. In the Supplementary Note, we show that under these assumptions the467

MAP estimator of Ne(t) depends on a single hyperparameter cσ2, that we automatically tune468

using a heuristic model selection rule (see Supplementary Note).469

Once the time intervals and the value of the regularisation parameter are fixed, HapNe470

assesses the uncertainty of the prediction by performing 100 bootstrap iterations. For each471

iteration, HapNe samples chromosome arms with replacement to create new input data, and472

estimates the effective population size. The 2.5th, 25th, 75th, and 97.5th percentiles are reported473

at each generation to obtain 50% and 95% confidence intervals.474

5.6 Comparisons to other methods475

To perform method comparisons, we simulated genotypes based on the demographic models476

shown in Figure 1 and used the methodology described above to compute summary statistics. We477

ran HapNe-IBD, HapNe-LD, IBDNe (version 23Apr20.ae9), and GONE (Jun 21, 2021 commit)478
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using their default parameters. The simulated SNP array data did not contain enough sites479

to perform the SNP bootstrapping strategy used by GONE to produce confidence intervals in480

sequencing data. All computations were run on an Intel Skylake 2.6 GHz architecture on the481

Oxford Biomedical Research Computing cluster.482

We reported the root mean squared log-error (RMSLE) over the first 50 generations as a483

measure of accuracy. If Ne(t) and N̂e(t) denote the true and predicted demographic models, the484

accuracy is defined as:485

RMLSE =

√√√√ 1

50

50∑
ti=1

(
log

(
N̂e(ti)

)
− log

(
Ne(ti)

))2
(4)

We performed 10 independent sets of simulations and computed error bars reported in each plot486

as 1.96× se.487

5.7 Filtering of high IBD and LD regions488

To mitigate the impact of natural selection and structural variation, HapNe applies a filtering489

algorithm to exclude chromosome arms with unusual amounts of IBD sharing or LD. For LD490

data, parameters of a normal distribution are computed for each bin using the median and491

quantiles of the observed data. We used this quantile-based approach instead of moment-based492

estimators so that the inference is robust in the presence of the outlier regions we aim to filter493

out. Then, each genomic region is discarded using the following two heuristic rules. First, the494

deviation between the observed LD in the region and the median must be within 6 standard495

deviations. Second, the observed values must cross the median at least once, i.e. a region cannot496

have all its observations above or below the median. The IBD data is filtered using a similar497

approach. For each region, the mean of the Poisson distribution and the dispersion factors498

are computed for each bin using all others regions. The region is discarded if the sum of its499

squared deviance residuals is in the upper or lower α-quantile of the underlying χ2 distribution,500

with α = 10−12. The procedure is performed a second time, without considering the discarded501

regions, to prevent outliers to impact the final result.502

5.8 LD-based admixture test503

Admixture creates long-range LD between unlinked pair of sites. HapNe allows testing for504

the presence of admixture LD by computing cross-chromosome LD (CCLD). In the absence of505
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CCLD, we expect the correlations between two sites x and y located on different chromosomes506

to be only due to finite sample sizes (see Supplementary Note):507

E
[
Gi,xGi,yGj,xGj,y −

4

(Nx − 1)(Ny − 1)

]
= 0, (5)

where Nx and Ny are the number of observed haplotypes on sites x and y, respectively. Because508

the LD is only computed between pairs of sites containing at least 2 overlapping observations,509

Nx and Ny are not independent variables. HapNe-LD computes the empirical mean of Eq. 5510

for each pair of chromosomes and then performs a t-test to check for deviation from the 0-mean511

hypothesis. If the hypothesis is rejected, the levels of admixture LD might cause a recent collapse512

in the effective population size, as shown in Supplementary Figure S13.513

5.9 Time heterogeneity in the set of analyzed samples514

Most aDNA data sets contain samples originating from different time points, with an estimated515

date range spanning many generations when the archeological context is used to date the samples.516

We thus extended HapNe-LD to account for time heterogeneity and uncertainty. The user can517

provide a date range for each sample. This information is used by HapNe to compute the density518

of the ages of a randomly selected pair of individuals. This density is then used to marginalize519

out the age of the oldest sample and the generation gap between the two individuals under520

the SMC approximation, resulting in an unbiased estimator of the effective population size (see521

Supplementary Note).522

5.10 Inference of demographic history in the UK Biobank523

We analyzed the subset of 305,784 unrelated samples with self-reported White British ancestry,524

corresponding to the individuals reported in Byrcroft et al.53 that did not withdraw from the525

study and whose birth location can be assigned to a postcode in the U.K. (13,995 were removed526

because of this last condition). The autosomal variants were phased using Beagle 5.154. We527

then grouped the individuals based on their self-reported birth location, labeling each of them528

with the first 1 or 2 letters of their corresponding postcode. We randomly picked postcodes with529

different sample sizes to infer population sizes. LD computations and IBD detection steps were530

performed using the procedure described above.531

24

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2022. ; https://doi.org/10.1101/2022.08.03.501074doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.03.501074
http://creativecommons.org/licenses/by-nc-nd/4.0/


5.11 Inference of demographic history in the 1,000 Genomes Project532

Starting with N = 2,504 samples from the 1,000 Genomes Project data set, we removed related533

individuals (up to 3rd degree) based on publicly available pedigree information. The remaining534

2,460 were split according to population labels. Before running FastSMC, we downsampled the535

genotypes to UK BioBank as done for SNP array data, using the procedure described above.536

LD computations were run using all loci with MAF> 0.25.537

5.12 Inference of demographic history in ancient data538

We downloaded version 50.0 of the Allen Ancient DNA Resource (AADR) dataset55. For each539

analysis, we started by removing related individuals reported in the annotation files present in540

the dataset. For each family, the individual with the highest coverage was kept. Information541

about sample ages was also extracted from the annotation file and used as input for HapNe-LD.542

We then removed variants and individuals with low coverage (m > 0.8). Specific information543

about each population is present in the supplementary tables S1-S7.544
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6 Data availability545

Genomic data sets and annotations analyzed in this study include: UK Biobank http://546

www.ukbiobank.ac.uk/, genetic maps ftp://1000genomes.ebi.ac.uk/vol1/ftp/technical/547

working/20110106_recombination_hotspots/, 1000 Genomes Project phase three https://548

www.internationalgenome.org/data/ and the Allen Ancient DNA Resource https://reich.549

hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-550

day-and-ancient-dna-data551

7 Code availability552

The HapNe software package is freely available at https://palamaralab.github.io/software/553
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1 Supplementary Note5

1.1 Derivation of the IBD and LD models6

This note describes the models used to infer effective population size from IBD and LD summary7

statistics. We first describe a link between the effective population size and the probability that8

two sites are spanned by an IBD segment under the SMC’ model1, as well as computationally9

tractable approximations used in several derivations. Related work on calculations presented10

in this section may be found in2–11. We then provide details on how these models are used to11

perform inference based on IBD and LD summary statistics. We conclude by describing further12

details of the LD model related to low coverage data, time-heterogeneity, and admixture LD.13

1.1.1 Notation14

We aim to infer the effective population size Ne(t) based on the genotype of s samples consisting15

of m markers. For simplicity, we will assume that t is a continuous variable, with t = 116

corresponding to 1 generation. Note that Ne(t) refers to haploid individuals in the population.17

AlthoughNe(t) is the quantity of interest, we will derive several expressions in terms of its inverse18

γ(t) ≡ 1
Ne(t)

, the coalescent rate, as well as the cumulative coalescent rate Γ(t) ≡
t!

0

γ(v)dv .19

1.1.2 Survival function for a change of ancestor20

Using the above notation, the distribution of the age of the most recent common ancestor21

(TMRCA) under the coalescent12 may be expressed as:22

f(t) = γ(t)e−Γ(t), (1)

which for a constant coalescent rate takes the form of an exponential waiting time f(t) = γe−γt,23

leading to E[T ] = Ne.24

Given the MRCA at site x, with TMRCA= t, we are interested in the genetic distance U25

at which a change of ancestor is observed. This requires a recombination event, which occurs26

at rate 2t (see e.g.13). When a recombination event happens, a new lineage is created at a time27

V ∼ Uniform(0, t). This new lineage will not lead to a change of ancestor if it coalesces back to28

the lineage from which it branched out between V and t. We refer to this kind of coalescent event29

as a “healing” event and denote its probability by ph(t). To derive an expression for ph(t), we30

2
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note that the coalescent rate of the new lineage is given by f2(t) = 2γ(t)e−2Γ(t), with a factor 231

appearing because the new lineage can coalesce with either of two original ones. Healing requires32

the new lineage to coalesce between v and t, which happens with probability

t!

v
f2(w)dw

1−
v!

0

f2(w)dw
. It also33

requires the new lineage to coalesce to the original lineage, which happens with probability 1
2 .34

Together, these terms lead to the following expression, also derived in7:35

ph(t) =
1

t

t"

0

1

2

t!
v
f2(w)dw

1−
v!

0

f2(w)dw

dv

=
1

2
− e−2Γ(t)

2t

t"

0

e2Γ(v)dv

(2)

For a constant demographic history with coalescent rate γ, this becomes:36

ph(t) =

#
1

2
+

e−2γt − 1

4γt

$
, (3)

Thus, the waiting distance for a change of ancestor is exponentially distributed with rate 2t(1−37

ph(t)) and its survival function is given by:38

S(u|t) = e−2tu(1−ph(t)) (4)

We obtain S(u) by marginalizing the TMRCA,39

S(u) =

∞"

0

e−2tu(1−ph(t))f(t)dt (5)

For a constant population size, this expression becomes:40

S(u | γ) = 2
1
2

"
u
γ
−1

#

e
− u

2γ

#
−u

γ

$− γ+u
2γ

#
Γe

#
u+ γ

2γ

$
− Γe

#
u+ γ

2γ
,− u

2γ

$$
, (6)

where Γe denotes the (incomplete) Euler gamma function Γe(z) =
∞!

0

e−ttz−1dt and Γe(a, z) =41

∞!
z
e−tta−1dt. This survival function, also derived in14, assumes an underlying SMC’ model1,42

but does not lead to a closed-form solution when a piece-wise constant function γ(t) is utilized.43

To obtain a tractable expression, we introduce an approximation of the SMC’ model. Using a44

3
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Taylor expansion, Eq. 4 may be written in the form:45

S(u | t) = e−2t
%
1−ph(t)

&
u

= e−2tu

'
1 +

∞(

k=1

(ph(t)2tu)
k

k!

)

= e−2tu

*

++,1 +

∞(

k=1

pkh(t)

u!

0

(2t)kvk−1e−2tve2tvdv

(k − 1)!

-

../

= e−2ut +

∞(

k=1

pkh(t)

u"

0

ferl(v; 2t, k)e
−2t(u−v)dv,

(7)

where ferl(v; 2t, k) =
(2t)kvk−1e−2tv

(k−1)! is the probability density function of the sum of k exponential46

random variables with rate 2t. In the last sum, k can be interpreted as the number of healing47

events observed within a distance u. The SMC approximation, where each recombination event48

leads to a change of ancestor15, is recovered by only considering the first term and discarding49

the sum:50

S0(u | t) = e−2tu. (8)

For a constant demographic history, the survival function becomes:51

S0(u | γ) = γ

γ + 2u
. (9)

Note that this recovers the expression derived in 16 using a different approach. This approxima-52

tion may become poor when working with small populations and short genetic distances. For53

example, considering u = 1cM and γ = 1
1,000 leads to a relative error S(u)−S0(u)

S(u) ≈ 5%. Taking54

into account a single recombination and healing event leads to increased accuracy (see e.g.3 for55

a related approach). Using the above formulation, this amounts to considering the first term of56

the sum. Under a constant demographic model, the survival function is now:57

S1(u | γ) =
γ
%
3γ2 + 4u2 + 10γu

&

(γ + 2u)2(3γ + 2u)
, (10)

which greatly reduces the relative error compared to the SMC approximation (e.g. ∼ 10× lower58

using the previous example). This approach thus provides a good balance between accuracy59

and computational cost, as it allows multiple expressions to be computed analytically if γ(t) is60

4
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approximated by a piece-wise constant function.61

1.1.3 IBD model62

We aim to model the number of IBD segments of particular lengths shared between pairs of63

individuals from a population. We denote the probability density function of the length of an64

IBD segment by fseg(l|γ(t)), dropping the γ(t) term for clarity. We first consider the length of65

an IBD segment spanning a given site x along the genome. The probability density function for66

the length of such a segment, fsite(l), is related to fseg(l) through the following relation2:67

fsite(l) =
lfseg(l)

∞!

0

lfseg(l)dl

=
l

E[L]
fseg(l),

(11)

where E[L] represents the expected length of a randomly selected IBD segment. The TMRCA68

of the two haplotypes at site x is distributed according to f(t). Conditioned on a TMRCA t, the69

length of the IBD segments spanning x is the sum of the distances to the next change of ancestor70

on either side of the site. By allowing at most one healing event within the IBD segment as71

described above, the density takes the form:72

fsite(l|t) ≈ (1− ph(t))
2ferl(l; 2t, 2) + 2ph(t)(1− ph(t))

2ferl(l; 2t, 3)

≈ (1− 2ph(t))ferl(l; 2t, 2) + 2ph(t)ferl(l; 2t, 3) +O(p2h(t)),

(12)

where the first term accounts for the case of no healing events and the second term allows for73

one recombination event. Marginalizing t, we obtain:74

fseg(l) =
E[L]
l

∞"

0

fsite(l|t)γ(t)e−Γ(t)dt. (13)

For a constant demographic history, this becomes:75

fseg(l|γ) =
12γ2

%
3γ4 + 8l4 + 52γl3 + 90γ2l2 + 51γ3l

&

(γ + 2l)4(3γ + 2l)3
(14)

5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2022. ; https://doi.org/10.1101/2022.08.03.501074doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.03.501074
http://creativecommons.org/licenses/by-nc-nd/4.0/


Neglecting the probability of healing leads to the SMC approximation for a constant demographic76

history:77

fSMC
seg (l|γ) = 4γ2

(γ + 2l)3
. (15)

Conditioned on the total number of IBD segments Ns shared in a region, the expected count78

of IBD segments within a length bin delimited by ui and ui+1 is Ns

ui+1!
ui

fseg(l)dl. Furthermore,79

E[Ns] =
Lc
E[L] , with Lc denoting the genomic length of the current region. Thus, the expected80

value of the number of segments within the ith bin Yi is given by:81

E[Yi] = Lc

ui+1"

ui

∞"

0

fsite(l|t)
l

γ(t)e−Γ(t)dtdl. (16)

Note that we neglect issues due to finite size chromosomes, which we found to have a negligible82

effect. For a constant demographic history, this quantity becomes:83

E[Yi] = Lc
2γ2(8u2 + 6uγ − 3γ2)

(2u+ γ)3(2u+ 3γ)2

0000
ui

ui+1

(17)

Eq. 16 provides the first moment of the distribution of Yi. Note that the approximation intro-84

duced in Eq. 10 allows to compute this expression analytically when the demographic model85

γ(t) is a piece-wise constant function. Previous expressions derived under the full SMC’, on the86

other hand, required the use of special functions or numerical integration7.87

Poisson distributions provide a natural way of describing “count data” such as Yi. However,88

when using the Poisson model, we encountered bin-dependent overdispersion, particularly for89

smaller bins, where IBD segments originate from older coalescence events that likely involve90

multiple samples. We thus used a quasi-likelihood approach17, adding a dispersion parameter91

φi:92

f(y;µi) = e
y log µi−µi

φi
−log y!

, (18)

where µi = E[Yi] and the Poisson mass function is recovered for φi = 1. The dispersion param-93

eters φi are set so that the variance of the deviance residuals is 1.94

1.1.4 LD model95

Rather than relying on the direct observation of IBD data, HapNe-LD leverages long-range96

correlations that are induced by shared segments, which may be detected using unphased data.97
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To describe the LD model used by HapNe, we begin by noting that alleles found at high frequency98

in a sample are typically older than ancestors transmitting large IBD segments (also see Section99

1.2.1 for calculations related to the age of IBD segments). This implies that high frequency100

mutations found on long IBD segments are also likely to be carried by the shared ancestor101

transmitting the segment. We restrict our analysis to sites with MAF > 0.25. Given one such102

high frequency site x, we assume that the haplotypes of two individuals i and j spanned by a103

large (> 0.5 cM) IBD segment satisfy104

E[XiXj |IBD] = E[X2], (19)

and that the same haplotypes will be independent if not spanned by an IBD segment, i.e.105

E[XiXj |¬IBD] = E[X]2. (20)

The presence of IBD segments therefore leads to correlation in the observed genotypes, which

HapNe-LD aims to leverage for the inference of effective population size variation. The input

for HapNe-LD is a set of unphased genotypes G̃x,i = X̃i,1 + X̃1,2, where i ∈ {1, ..., s} denote

individuals in the panel, and x ∈ {1, ...,M} denote sites. X̃i,1 and X̃i,2 represent the (hidden)

haplotypes of sample i at site x, with X̃i,1 ∼ Bernoulli(px) where px is the population’s allele

frequency at site x. For simplicity, we consider standardized input data:

Xi =
X̃i − p̂x1
p̂x(1− p̂x)

, Gi,x ≡ G̃i,x − 2p̂x1
2p̂x(1− p̂x)

,

where p̂x ≡ 1
s

s2
i=1

X̃i is the estimator of the allele frequency at site x, which is assumed to remain106

constant in the recent past.107

HapNe-LD starts by computing the LD for different bins b. Unless otherwise specified, these108

bins are 0.5cM long and range from 0.5 to 10cM. For every bin b, we compute R2
b as the average109

of all R2
x,y values estimated for pairs of sites (x, y) whose distance is within bin b:110

R2
x,y =

M2
i=1

M2
j=i+1

Gi,xGj,xGi,yGj,y

%
m
2

&

=

% M2
i=1

Gi,xGi,y

&2 −
M2
i=1

%
Gi,xGi,y

&2

M(M − 1)
.

(21)
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Note that this requires O(M) computation.111

We now aim to relate these correlation statistics to the effective population size. The first112

moment of R2
b is given by:113

E[R2
b ] = E[Gi,xGj,xGi,yGj,y]

=
(

α,β,γ,δ∈{1,2}

1

4
E[Xi,αXj,βYi,γYj,δ].

(22)

We can group the 16 terms of the sum into different categories, according to the number of114

distinct haplotypes involved in each of these terms. In particular, the 4 terms where α = γ and115

β = δ involve two distinct haplotypes, i.e. haplotype α for individual i and β for individual j.116

For these 4 terms, we can use equations 10, 19, and 20 to write:117

E[Xi,1Xj,1Yi,1Yj,1] = E[Xi,1Xj,1Yi,1Yj,1|IBD(x, y)]S1(u) + E[Xi,1Xj,1Yi,1Yj,1|¬IBD(x, y)](1− S1(u))

= (E[X2Y 2]− E[XY ]2)S1(u) + E[XY ]2

= S1(u),

(23)

where u denotes the distance between the two sites x and y. Note that we neglect issues due118

to finite sample sizes and admixture LD, which are addressed later. With this assumption, we119

have E[X2Y 2] = E[X2]E[Y 2] = 1 and E[XY ] = 0.120

The 12 other terms of the sum of Eq. 22 involve either 3 or 4 haplotypes. For example,121

a term with α ∕= γ and β = δ involves both haplotypes for individual i and haplotype β for122

individual j. In these cases, correlations induced by IBD require at least two pairs of haplotypes123

to be shared IBD, leading to O(S2
1(u)) contributions, which we neglect.124

Together, these expressions enable obtaining the first moment of R2
b . If bin b is delimited by125

ui and uj , we have:126

E[R2
b ] = µb =

1

uj − ui

uj"

ui

S1(u)du. (24)

To complete the model, we assume that127

R2
b ∼ N (µb,σ

2
b ) (25)

and estimate σ2
b using R2

b,r estimates obtained across chromosome arms.128
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1.1.5 Correcting for finite sample size129

Working with finite sample sizes induces correlations in the data which, if not accounted for,130

lead to bias in the inferred effective population size. These correlations arise as a result of the131

use of an empirical allele frequency p̂x instead of the unknown px. As a first step to debias132

the estimator of R2, we consider the ratio of the expected values as an approximation to the133

expected value of the ratio, which has been shown to be a good approximation for common134

alleles18:135

E[XiXj ] ≈
E[(X̃i − p̂x)(X̃j − p̂x)]

E[p̂x(1− p̂x)]
(26)

If sx haplotypes are observed at site x, the numerator becomes:136

E

34
X̃i −

1

sx

sx(

k=1

X̃k

54
X̃j −

1

sx

sx(

k=1

X̃k

56

= E[X̃iX̃j ]−
2

sx
E[X̃2

i ]−
2

sx
E[X̃i

(

k ∕=i

X̃k] + E[(
sx(

k=1

X̃k)
2]

=
−px(1− px)

sx

(27)

Similarly, the denominator is given by:137

E[p̂x(1− p̂x)] =
sx − 1

sx
px(1− px) (28)

It follows that:138

E[XiXj ] =
−1

sx − 1
∕= 0

E[X2] =
sx

sx − 1
∕= 1,

(29)

When working with low coverage data, sx becomes a random quantity, Sx. Because computing139

LD between x and y requires that at least two individuals are sequenced at both sites, Sx and Sy140

are not independent for the (x, y) pairs considered when computing LD. We therefore average141

realizations of 1
(Sx−1)(Sy−1) over pairs of sites (x, y) to compute an estimate β̂ for the following142

quantity in Eq. 23:143

E[XiXjYiYj |¬IBD] = E[
1

(Sx − 1)(Sy − 1)
] ≡ β, (30)
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which is also relevant for the detection of admixture LD, as discussed later. We use the same144

pairs (x, y) to similarly obtain an estimate α̂ for the quantity145

E[X2Y 2] = E[
SxSy

(Sx − 1)(Sy − 1)
] ≡ α, (31)

and use these terms to obtain a corrected estimate for R2
b146

R̂2
b = (α̂− β̂)S1(u; γ(t)) + 4β̂. (32)

Note that the factor 4 is due to the O(S1(u)
2) terms in Eq. 22 that also cause finite-sample size147

correlations.148

1.1.6 Correcting for time heterogeneity149

Ancient DNA samples in a data set often originate from different time points. Due to the150

uncertainty in obtaining precise time estimates, their origins are often reported as a time range.151

Time heterogeneity across the set of analyzed samples causes a reduction in LD, due to the152

effects of recombination on the underlying haplotypes. If not modeled, this leads to an upwards153

bias in the estimated effective population size. HapNe-LD implements a correction to prevent154

these biases using the reported sample ages, which are obtained via radio-carbon dating or using155

the archeological context.156

Consider two individuals i and j sampled at times Ti and Tj . Assume, without loss of157

generality, that Ti > Tj and define ∆T ≡ Ti − Tj > 0. Following the lineage of individual j158

at a site x, we denote by k the ancestor living at generation Ti. The LD between individuals159

i and k, both of them living at generation Ti, can be computed using Eq. 7 by replacing160

γ(t) with γo(t) = γ(t + Ti). The LD between individuals i and j is obtained by multiplying161

the LD between individuals i and k by the probability that the haplotype is not broken by a162

recombination event when transmitted from k to j, which decays exponentially with rate ∆T .163

Under the SMC approximation, this probability is given by e−∆Tu. In practice, Ti and Tj are164

not known exactly but provided as a range. If the density functions of Ti and Tj are available,165

both times can be marginalized in the above calculations of LD. HapNe supports used-provided166

time intervals for each sample and assumes that the true time is uniformly distributed within167

these intervals.168
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1.1.7 Admixture LD169

Admixture causes correlation due to differences in allele frequencies across diverged populations.170

This correlation, often referred to as admixture LD, may lead to biases in the inferred demo-171

graphic models. We use Eq. 30 to detect the presence of admixture LD and partially correct for172

it. For each pair of distinct chromosomes i and j, we compute the average difference between173

both sides of Eq. 30 and use a two-sided t-test to verify that they do not significantly deviate174

from 0. To mitigate the effects of admixture LD, we estimate E[XiXjYiYj |¬IBD] by averaging175

realizations of XiXjYiYj for loci located on different chromosomes, and used this value as an176

estimate of β in Eq. 32. Note that, because all pairs of chromosomes are used to compute the177

t-test, the samples are not strictly independent, making this approach slightly conservative. An178

alternative approach consists in only considering disjunct pairs of chromosomes, which however179

leads to higher variance in the estimates for β.180

1.1.8 Effective population size in IM and ICF models181

We used the backward-in-time Markov chain introduced in19 to convert coalescence rates for182

the IM and ICF multi-population models into effective sizes for an equivalent single-population183

model. In particular, given a demographic model involving multiple populations, we used a184

Markov chain to compute the probability that two lineages coalesce at generation t, conditioned185

on not having coalesced up to generation t − 1, and took the inverse of this probability to be186

the effective population size for an equivalent single-population model.187

1.2 Additional details on the inference procedure188

We provide additional details on the use of quantiles of the IBD segment age distribution to189

discretize the time intervals and on the regularized loss function minimized by HapNe to infer190

Ne(t).191

1.2.1 Parameterization of Ne(t)192

HapNe aims to infer the demographic model given by Ne(t). We parameterize this function by193

assuming it to be piece-wise exponential, with parameters described by a vector, θ. More in194

detail, we divide the time axis into M consecutive intervals and for each interval i assume that195

Ne(t) varies according to a constant exponential rate λi. We set λM = 0, implying that the196

population size remains constant from the last predicted time to infinity. Ne(t) is thus fully197

11

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2022. ; https://doi.org/10.1101/2022.08.03.501074doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.03.501074
http://creativecommons.org/licenses/by-nc-nd/4.0/


determined by a set of M values θ = {N0, {λi}i=1...M−1}. Time intervals are automatically198

selected so that each of them contains the same expected number of IBD segments (as also199

done in e.g.20). Let fage(t|l > umin) denote the probability density function of the age of IBD200

segments whose length satisfies l > umin. We define time intervals so that they coincide with201

quantiles of this density, which we compute using202

fage(t|l > umin) =

∞!
umin

fage(t|l)fseg(l)dl

1− Fseg(umin)
, (33)

where fseg(u) in defined in Eq. 13 and Fseg(u) =
u!

0

fseg(l)dl. To derive fage(t|l), we note that203

it represents the TMRCA of a randomly selected site spanned by an IBD segment of length l.204

Using Bayes’ rule and the SMC approximation,205

fage(t|l) =
fsite(l|t)f(t)

fsite(l)

=
(2t)2le−2tlγ(t)e−Γ(t)

∞!

0

(2t)2le−2tlγ(t)e−Γ(t)dt

.
(34)

For a constant coalescent rate γ, this becomes206

fage(t|l) =
1

2
t2(2l + γ)3e−(γ+2l)t

fage(t|l > u) = t(2u+ γ)2e−(γ+2u)t,

(35)

i.e. an Erlang-3 and Erlang-2 distribution, respectively (also see6,9). Because time intervals207

depend on Ne(t), HapNe iteratively tunes them at each iteration using the current population208

size estimates.209

Note that a slightly more accurate closed-form solution under a constant population size can210

be obtained by allowing a single recombination event to heal, replacing fsite in Eq. 34 with the211

expression of Eq. 12, leading to:212

fage(t|l) =
t(γ + 2l)4(3γ + 2l)3e−2lt−3γt

%
e2γt(lt(2γt− 1) + 1) + lt− 1

&

8γ (3γ4 + 8l4 + 52γl3 + 90γ2l2 + 51γ3l)
(36)

1.2.2 Loss function213

We aim to find the best set of parameters θ based on correlated observations Y = {yr,b}, where214

yr,b represents LD or IBD summary statistics computed for the bth bin of the rth independent215
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genomic region. Due to the presence of correlations in the data, rather than using standard216

likelihood calculations we work with the approximated power likelihood217

p(Y |θ) =
7

r,b

fb(yr,b; θ)
c, (37)

where 0 ≤ c ≤ 1 is a hyperparameter and fb is the probability mass or density function derived in218

equations 18 and 25. Minimizing Eq. 37 for θ is an ill-defined problem, for which small changes219

in the input data might lead to significant changes in the inferred parameter θ̂ (also see e.g.4).220

To improve convergence and restrict the parameter space we thus impose the following prior on221

the {λ} coefficients of the piece-wise exponential function Ne(t):222

pNe({λi}) ∝ e−

M−1!

i=1

√
λ2
i
+1∆ti

2σ2 , (38)

where ∆ti denotes the length of the ith time interval and λi the growth rate in the same inter-223

val. Because the numerator corresponds to the length of logNe(t) between t = 0 and the last224

predicted time, this choice of prior favors trajectories with reduced fluctuations.225

Combining these expressions leads to the following posterior:226

log p(θ|Y ) ≈ c
(

r,b

log fb(yr,b; θ) +

M(

i=1

log pNe({λi; 0,σ
2}) + Z, (39)

where Z is a normalizing constant.227

We aim to find the MAP of θ:228

θ̂ = argmax
θ

c
(

r,b

log fb(yr,b; θ)−
M(

i=1

8
λ2
i + 1∆ti

2σ2

= c
θ

9

:argmax
(

r,b

log fb(yr,b; θ)−
M(

i=1

8
λ2
i + 1∆ti

2cσ2

;

<

= argmax
θ

(

r,b

log fb(yr,b; θ)−
M(

i=1

8
λ2
i + 1∆ti

2cσ2

(40)

This requires tuning a single hyperparameter κ = cσ2, using the approach described in the next229

section.230
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1.2.3 Numerical optimization231

We used SciPy’s implementation of the L-BFGS-B optimiser21 to minimize Eq. 40. Each min-232

imization step is run 5 times using different starting points. The solution yielding the smallest233

loss is kept.234

1.3 Model selection235

HapNe performs a grid-search over different values of the hyperparameter κ, ranging from a236

strong regularization κ0 = 10−5 to an almost unregularized model with parameter κmax =237

100. For each of these parameters, HapNe infers the MAP θ̂(κ) by optimizing Eq. 40, as238

well as the associated pseudo-likelihood lκ =
2
r,b

log fb(yr,b; θ̂(κ)). HapNe then computes the239

“pseudo-deviance” D(κ) = 2(log lκmax − log lκ). The smallest value of κ satisfying D(κ) < τ is240

selected as the best hyperparameter. Since the parameter c handling correlations between bins241

is neglected when computing the “pseudo-deviance”, we cannot use asymptotic theories about242

the distribution of D to fix the value of τ in a principled way. Instead, we fixed the thresholds τ243

for both HapNe-LD and HapNe-IBD by training them using three sets of simulations that used244

different demographic models than the ones presented in this work.245
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1.4 Supplementary Figures246

Figure S1: Accuracy of HapNe-IBD and IBDNe using ground truth IBD sharing
information, and HapNe-LD using inferred LD. (a) Simulated demographic models (dot-
ted black lines), predictions based on ground truth IBD sharing for both HapNe-IBD (red) and
IBDNe (green), and HapNe-LD results based on simulated SNP-array data (blue). (b) Error as
a function of sample size for corresponding demographic models in (a), measured as the RMSLE
over the first 50 generations (see Methods). HapNe-IBD and IBDNe were run using ground truth
IBD sharing information. Error bars correspond to 1.96× SE computed using 10 independent
simulations.
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Figure S2: Impact of IBD detection on the accuracy of IBDNe and HapNe-IBD. (a)
RMSLE as a function of sample size for IBDNe and (b) HapNe-IBD using different sources of
IBD sharing. Ground Truth refers to the IBD segments obtained from the ARGON simulator,
FastSMC and HapIBD were applied as described in the Methods section. Error bars correspond
to 1.96× SE computed using 10 independent simulations.
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Figure S3: Effect of sample size variation (rows) across several demographic models
(columns). HapNe-IBD was run using IBD segments detected by FastSMC and IBDNe using
segments detected by HapIBD. LD methods were run using their standard pipeline. The y-axis
is truncated for readability in simulations that resulted in very large vaues.
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Figure S4: Inference accuracy as a function of sample size. Accuracy was measured
using RMSLE over the first 50 generations for each simulated demographic history and sample
size (see Methods). IBD segments for HapNe-IBD and IBDNe were computed using FastSMC
and HapIBD, respectively. Error bars correspond to 1.96× SE computed using 10 independent
simulations.
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Figure S5: Relative error in IBD detection. We computed the relative difference between
the true and inferred number of IBD segments for different sample sizes (rows) and demographic
models (columns) for FastSMC. Positive/negative values indicate a depletion/excess of detected
segments.
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Figure S6: Effect of coverage and sample size. (a) Output of HapNe-LD on simulated
aDNA for 256 individuals, with m = 0 (C ≈ 30) and m = 0.25 (C ≈ 1.4). (b) Output of
HapNe-LD on simulated aDNA for 16 individuals with m = 0 (C ≈ 30) and 256 individuals
with m = 0.75 (C ≈ 0.3).
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Figure S7: Accuracy of HapNe-LD as a function of sample size and coverage. (a)
RMSLE for HapNe-LD as a function of sample size for three different levels of coverage (line
color) and different demographic models (column). The different levels of coverage, 30×, 1.4×
and 0.7×, approximately correspond to m = 0, m = 0.25 and m = 0.5, respectively (see
Methods). (b) Comparison of the RMSLE while keeping the number of samples constant (s =
256) and decreasing coverage (blue line), compared to the RMSLE obtained while keeping the
coverage constant at 30×, while decreasing the sample size.
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Figure S8: Inference based on demographic models involving multiple populations.
(a-c) Results for the IM and ICF models for different values of tm (see Methods).

Figure S9: Filtering of high LD regions. The LD at different distances u (in Morgans, M)
was computed by randomly selecting individuals from the UK Biobank. Unusually elevated LD
was observed in the HLA region on Chromosome 6 (blue line) and on Chromosome 8 (orange
line), corresponding to a known large inversion polymorphism.
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Figure S10: Downsampling analysis for the Glasgow postcode in the UK Biobank.
Effective population size inferred using unrelated individuals with self-reported white British
ancestry whose birth location is in the Glasgow (G) postcode area. The numbers above each
plot correspond to the sample size used in each analysis.

Figure S11: Inferred demographic models for 1, 000 Genomes Project populations
where no significant admixture LD was detected. Results for populations for which
the admixture LD test was not significant (p > 0.05). Numbers in parentheses correspond to
−log10(p). IBD segments for IBDNe and HapNe-IBD were computed using FastSMC.
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Figure S12: Inferred demographic models for 1, 000 Genomes Project populations
where significant admixture LD was detected (0.05/26 < p < 0.05). Results for pop-
ulations for which the admixture LD test was significant at 0.05/26 < p < 0.05. Numbers in
parentheses correspond to −log10(p). IBD segments for IBDNe and HapNe-IBD were computed
using FastSMC.
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Figure S13: Inferred demographic models for 1, 000 Genomes Project populations
where significant admixture LD was detected (p < 0.05/26). Results for populations for
which the admixture LD test was significant at p < 0.05/26. Numbers in parentheses correspond
to −log10(p). IBD segments for IBDNe and HapNe-IBD were computed using FastSMC.
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1.5 Supplementary Tables247

Population s Avg. Cov. Date From (bp) Date to (bp) − log10 pval
Arras in Pocklington 24 2.94 2175 2202 0.54
South England MIA(-LIA) 49 2.88 2022 2227 1.00
Viking Norway 22 1.50 950 1100 1.51
Viking Gotland 28 1.45 975 975 3.52
Caribbean Ceramic 71 2.74 510 801 inf
Dominican SE coast Ceramic 18 3.08 849 1150 inf

Table S1: Further information on populations analyzed in Figure 4.
Sample size s, average coverage, estimated age of the most recent and distant samples (given
in years before 1950), and approximate p-value for the CCLD test for each analyzed ancient
population.

Master ID Publication Group ID Source

I5505 PattersonNature202222 England EastYorkshire MIA LIA Publication

I12414 PattersonNature2022 England EastYorkshire MIA LIA Publication

I12413 PattersonNature2022 England EastYorkshire MIA LIA Publication

I12415 PattersonNature2022 England EastYorkshire MIA LIA Publication

I12411 PattersonNature2022 England EastYorkshire MIA LIA Publication

I11034 PattersonNature2022 England EastYorkshire MIA LIA Publication

I13759 PattersonNature2022 England EastYorkshire MIA LIA Publication

I14104 PattersonNature2022 England EastYorkshire MIA LIA Publication

I14101 PattersonNature2022 England EastYorkshire MIA LIA Publication

I14099 PattersonNature2022 England EastYorkshire MIA LIA Publication

I13753 PattersonNature2022 England EastYorkshire MIA LIA Publication

I13756 PattersonNature2022 England EastYorkshire MIA LIA Publication

I13757 PattersonNature2022 England EastYorkshire MIA LIA Publication

I13754 PattersonNature2022 England EastYorkshire MIA LIA Publication

I13760 PattersonNature2022 England EastYorkshire MIA LIA Publication

I14107 PattersonNature2022 England EastYorkshire MIA LIA Publication

I13755 PattersonNature2022 England EastYorkshire MIA LIA Publication

I5510 PattersonNature2022 England EastYorkshire MIA LIA Publication

I14103 PattersonNature2022 England EastYorkshire MIA LIA Publication

I5506 PattersonNature2022 England EastYorkshire MIA LIA Publication

I14105 PattersonNature2022 England EastYorkshire MIA LIA Publication

I5508 PattersonNature2022 England EastYorkshire MIA LIA Publication

I14102 PattersonNature2022 England EastYorkshire MIA LIA Publication

I5511 PattersonNature2022 England EastYorkshire MIA LIA Publication

Table S2: Samples used in the Arras analysis Genotypes were down-

loaded from published supplementary materials.

Master ID Publication Group ID Source

I11145 PattersonNature202222 England LIA Publication

I19869 PattersonNature2022 England LIA daughter.I19870 Publication
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I16458 PattersonNature2022 England MIA LIA Publication

I16457 PattersonNature2022 England MIA LIA Publication

I16450 PattersonNature2022 England MIA LIA Publication

I17017 PattersonNature2022 England LIA highEEF Publication

I21308 PattersonNature2022 England MIA LIA Publication

I11142 PattersonNature2022 England LIA Publication

I27379 PattersonNature2022 England LIA Publication

I21311 PattersonNature2022 England MIA LIA Publication

I16601 PattersonNature2022 England MIA LIA Publication

I11992 PattersonNature2022 England MIA LIA Publication

I21312 PattersonNature2022 England MIA LIA Publication

I17263 PattersonNature2022 England MIA LIA Publication

I21310 PattersonNature2022 England MIA LIA Publication

I11991 PattersonNature2022 England MIA LIA Publication

I21307 PattersonNature2022 England MIA LIA Publication

I13726 PattersonNature2022 England MIA LIA Publication

I11143 PattersonNature2022 England MIA LIA Publication

I21309 PattersonNature2022 England MIA LIA Publication

I21313 PattersonNature2022 England MIA LIA Publication

I20989 PattersonNature2022 England MIA LIA Publication

I17262 PattersonNature2022 England MIA LIA Publication

I20987 PattersonNature2022 England MIA LIA Publication

I20985 PattersonNature2022 England MIA LIA Publication

I20983 PattersonNature2022 England MIA LIA Publication

I20986 PattersonNature2022 England MIA LIA Publication

I20982 PattersonNature2022 England MIA LIA Publication

I20984 PattersonNature2022 England MIA LIA Publication

I19657 PattersonNature2022 England MIA LIA Publication

I19855 PattersonNature2022 England MIA LIA Publication

I19854 PattersonNature2022 England MIA LIA Publication

I11993 PattersonNature2022 England MIA LIA Publication

I11994 PattersonNature2022 England MIA LIA Publication

I12792 PattersonNature2022 England MIA LIA mother.I12793 Publication

I20990 PattersonNature2022 England MIA Publication

I19912 PattersonNature2022 England MIA Publication

I13680 PattersonNature2022 England MIA Publication

I17261 PattersonNature2022 England MIA Publication

I14863 PattersonNature2022 England MIA Publication

I17267 PattersonNature2022 England MIA LIA Publication

I20988 PattersonNature2022 England MIA LIA Publication

I17264 PattersonNature2022 England MIA LIA Publication

I14866 PattersonNature2022 England MIA Publication

I17016 PattersonNature2022 England MIA Publication

I14859 PattersonNature2022 England MIA Publication

I17015 PattersonNature2022 England MIA Publication
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I19909 PattersonNature2022 England MIA Publication

I17014 PattersonNature2022 England MIA Publication

Table S3: Samples used in the South England MIA-LIA analysis Geno-

types were downloaded from published supplementary materials.

Master ID Publication Group ID Source

VK387 MargaryanWillerslevNature202023 Norway Viking.SG V5024

VK414 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK530 MargaryanWillerslevNature2020 Norway Viking o2.SG V50

VK386 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK389 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK393 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK394 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK422 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK515 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK516 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK520 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK524 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK415 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK420 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK448 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK547 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK518 MargaryanWillerslevNature2020 Norway Viking o1.SG V50

VK392 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK417 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK525 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK526 MargaryanWillerslevNature2020 Norway Viking.SG V50

VK548 MargaryanWillerslevNature2020 Norway Viking.SG V50

Table S4: Samples used in the Norway Viking analysis. Genotypes were

downloaded from V50 of the Allen ancient data resource.24

Master ID Publication Group ID Source

VK58 MargaryanWillerslevNature202023 Sweden Viking.SG V5024

VK429 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK433 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK455 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK456 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK56 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK64 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK60 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK432 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK460 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK461 MargaryanWillerslevNature2020 Sweden Viking.SG V50
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VK463 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK434 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK431 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK475 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK468 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK50 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK479 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK474 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK478 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK473 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK477 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK53 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK51 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK232 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK48 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK454 MargaryanWillerslevNature2020 Sweden Viking.SG V50

VK452 MargaryanWillerslevNature2020 Sweden Viking.SG V50

Table S5: Samples used in the Gotland Viking analysis. Genotypes were

downloaded from V50 of the Allen ancient data resource.24

Master ID Publication Group ID Source

I15109 FernandesSirakNature202025 Dominican Atajadizo Ceramic V5024

I15108 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

CDE003 NagelePosthScience202026 Cuba CuevaEsqueletos Ceramic V50

I15667 FernandesSirakNature2020 Dominican LaCaleta Ceramic.SG V50

I13206 FernandesSirakNature2020 Dominican JuanDolio Ceramic V50

I15667 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I17901 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

I15962 FernandesSirakNature2020 Dominican LaCaleta Ceramic.SG V50

I15962 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I17908 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

I13207 FernandesSirakNature2020 Dominican JuanDolio Ceramic V50

I17900 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

ELM001 NagelePosthScience2020 Cuba ElMorrillo Ceramic V50

I13199 FernandesSirakNature2020 Dominican JuanDolio Ceramic V50

I15972 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I14992 FernandesSirakNature2020 Dominican LosMuertos Ceramic V50

I17907 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

I14883 FernandesSirakNature2020 Bahamas SouthAndros Ceramic.SG V50

I14880 FernandesSirakNature2020 Bahamas SouthAndros Ceramic.SG V50

I14880 FernandesSirakNature2020 Bahamas SouthAndros Ceramic V50

I14881 FernandesSirakNature2020 Bahamas SouthAndros Ceramic V50

I15668 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I13201 FernandesSirakNature2020 Dominican JuanDolio Ceramic V50

I7970 FernandesSirakNature2020 Dominican LaUnion Ceramic V50
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I13195 FernandesSirakNature2020 Dominican ElSoco Ceramic V50

I14923 FernandesSirakNature2020 Bahamas AbacoIsl Ceramic V50

I15107 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

I7969 FernandesSirakNature2020 Dominican LaUnion Ceramic V50

I15111 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

I13738 FernandesSirakNature2020 Bahamas LongIsl Ceramic published V50

I13739 FernandesSirakNature2020 Bahamas LongIsl Ceramic published V50

I14991 FernandesSirakNature2020 Dominican LomaPerenal Ceramic V50

I15591 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I7971 FernandesSirakNature2020 Dominican LaUnion Ceramic V50

I14882 FernandesSirakNature2020 Bahamas SouthAndros Ceramic.SG V50

I14882 FernandesSirakNature2020 Bahamas SouthAndros Ceramic V50

I15973 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I8118 FernandesSirakNature2020 Dominican ElSoco Ceramic V50

I14879 FernandesSirakNature2020 Bahamas SouthAndros Ceramic.SG V50

I14879 FernandesSirakNature2020 Bahamas SouthAndros Ceramic V50

I14879 FernandesSirakNature2020 Bahamas SouthAndros Ceramic.SG V50

LAV010 NagelePosthScience2020 StLucia Lavoutte Ceramic V50

I13208 FernandesSirakNature2020 Dominican JuanDolio Ceramic V50

I17902 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

I13560 FernandesSirakNature2020 Bahamas SouthAndros Ceramic published V50

PDI008 NagelePosthScience2020 PuertoRico PasodelIndio Ceramic V50

LAV003 NagelePosthScience2020 StLucia Lavoutte Ceramic V50

I15082 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I16175 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I13196 FernandesSirakNature2020 Dominican JuanDolio Ceramic father.or.son.I23524 V50

LAV002 NagelePosthScience2020 StLucia Lavoutte Ceramic V50

I8549 FernandesSirakNature2020 Dominican Andres Ceramic V50

I13192 FernandesSirakNature2020 Dominican ElSoco Ceramic V50

I16176 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I14990 FernandesSirakNature2020 Dominican EdilioCruz Ceramic V50

I13323 FernandesSirakNature2020 PuertoRico SantaElena Ceramic V50

I15112 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

I15106 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

I14994 FernandesSirakNature2020 Dominican LosCorniel Ceramic V50

I15105 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

I13190 FernandesSirakNature2020 Dominican ElSoco Ceramic V50

LAV006 NagelePosthScience2020 StLucia Lavoutte Ceramic V50

LAV004 NagelePosthScience2020 StLucia Lavoutte Ceramic V50

I13318 FernandesSirakNature2020 Bahamas CrookedIsl Ceramic V50

I13321 FernandesSirakNature2020 Bahamas EleutheraIsl Ceramic V50

I13319 FernandesSirakNature2020 Bahamas CrookedIsl Ceramic V50

I13737 FernandesSirakNature2020 Bahamas LongIsl Ceramic V50

I13189 FernandesSirakNature2020 Dominican ElSoco Ceramic V50

I15966 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

16

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2022. ; https://doi.org/10.1101/2022.08.03.501074doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.03.501074
http://creativecommons.org/licenses/by-nc-nd/4.0/


I18300 FernandesSirakNature2020 Dominican Atajadizo Ceramic V50

PDI011 NagelePosthScience2020 PuertoRico PasodelIndio Ceramic V50

Table S6: Samples used in the Caribbean Ceramic analysis. Genotypes

were downloaded from V50 of the Allen ancient data resource.24

Master ID Publication Group ID Source

I8547 FernandesSirakNature2020 Dominican Andres Ceramic V50

I15975 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I15081 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I15592 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I15672 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I15968 FernandesSirakNature2020 Dominican LaCaleta Ceramic.SG V50

I16519 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I15978 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I15969 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I20527 FernandesSirakNature2020 Dominican ElSoco Ceramic.SG V50

I20527 FernandesSirakNature2020 Dominican ElSoco Ceramic V50

I15976 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I15682 FernandesSirakNature2020 Dominican LaCaleta Ceramic V50

I12347 FernandesSirakNature2020 Dominican ElSoco Ceramic V50

I12344 FernandesSirakNature2020 Dominican ElSoco Ceramic V50

I12350 FernandesSirakNature2020 Dominican ElSoco Ceramic V50

I12341 FernandesSirakNature2020 Dominican ElSoco Ceramic V50

I8121 FernandesSirakNature2020 Dominican ElSoco Ceramic published V50

Table S7: Samples used in the South East Coast Dominican Republic

Ceramic analysis. Genotypes were downloaded from V50 of the Allen ancient

data resource.24
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