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Abstract

The UK Biobank (UKB) has recently released genotypes on 152,328 individuals together with 

extensive phenotypic and lifestyle information. We present a new phasing method SHAPEIT3 that 

can handle such biobank scale datasets and results in switch error rates as low as ~0.3%. The 

method exhibits O(NlogN) scaling in sample size (N), enabling fast and accurate phasing of even 

larger cohorts.

Introduction

Estimation of haplotypes from genotypes, known as phasing, is a central part of the pipeline 

of many modern genetic analyses. Estimated haplotypes are important for many population 

genetics analyses1,2, but also form a central part of imputation algorithms that are routinely 

used in genome-wide association studies (GWAS) 3,4. The ability to phase large data sets is 

especially important in the context of biobanks that comprise hundreds of thousands of 

genotyped samples. For example, in May 2015 the UK Biobank (UKB) released genotypes 

from ~152,000 samples, and this will rise to ~500,000 in 2016. Other Biobanks have already 

collected large scale genetic datasets5 or are in the process of doing so6. The unprecedented 

scale of these datasets, and the depth of phenotype information, allows researchers studying 
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many different phenotypes to make novel discoveries7. Accurate and efficient statistical 

methods will play a key role in this research.

In principle, such large samples sizes should lead to more accurately inferred haplotypes. 

SHAPEIT28 has been shown to be one of the most accurate phasing method currently 

available. When run on closely related samples it results in haplotypes so accurate that it 

allows resolution of the handful of recombination events per chromosome9,10. In other 

words, the algorithm can capture and utilize long stretches of shared haplotypes between 

samples when they exist. This is commonly referred to as long-range phasing (LRP) in the 

literature 11. However, when the number of genotyped samples (N) moves beyond around 

10,000 a quadratic O(N2) complexity component of the algorithm begins to have a 

significant impact on the computational time. HAPI-UR12 has been applied on datasets of 

up to ~60,000 samples with sub-quadratic scaling, but has reduced accuracy compared to 

SHAPEIT2. Other algorithms that compare all individuals to all others, will also have 

quadratic O(N2) scaling11,13. Here we present SHAPEIT3, an extension to SHAPEIT2 that 

exhibits O(NlogN) scaling and results in very low switch error rates on large cohorts. In 

practice, when run on the ~152,000 UKB samples the method exhibits very good scaling in 

N (Table 1).

To describe the context in which we have developed our method, we use the following 

notation; Gi denotes a vector of genotypes for the ith of N unphased individuals at L 
markers; H denotes a set of estimated haplotypes from other individuals at the same set of 

markers; and H* is a subset of H of size K. SHAPEIT2 estimates haplotypes for an 

individual iteratively. At each iteration, compatible haplotypes underlying Gi are sampled 

from a hidden Markov model (HMM) in which they are modeled as an imperfect mosaic of 

haplotypes in H*. The computational complexity of this step, using the standard forward-

backward algorithm for HMMs, is O(LK2)14. The complexity is quadratic because the 

model permits the haplotypes that give rise to the genotypes at consecutive sites to switch 

between any pair from H*. The probability of all such transitions must be computed. One 

approach to ameliorating this complexity is to ensure that K ≪ 2N. The K haplotypes can be 

chosen randomly15 or by similarity to previous haplotype estimates for individual i 16. 

Alternatively, a compressed representation of H can be used by considering the region to be 

phased in small, disjoint windows within which only a few of the haplotypes in H are 

distinct 12,17.

SHAPEIT2 introduced a novel strategy that splits Gi into small segments of distinct 

haplotypes that are consistent with Gi, and results in the HMM component of the method 

having complexity O(LK). HAPI-UR adopts a similar strategy but in such a way that the 

scaling with N depends on the diversity of the dataset and is typically super-linear. 

SHAPEIT2 also gains accuracy by combining linear complexity with the haplotype selection 

approach of IMPUTE216 instead of a compressed representation of H. In this approach, at 

each iteration, a search is carried out to find a good conditioning set of haplotypes H* that 

can be used to update each individual. This method can be thought of as a generalization of 

the LRP11 approach in which a search is carried out for just two other samples that can be 

used as surrogate parents when phasing each individual. However, these selection 
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approaches used by SHAPEIT2 and LRP involve comparison of all haplotype pairs, which 

has complexity of O(N2). For N > 10,000 this begins to dominate.

SHAPEIT3 enhances SHAPEIT2 in two ways that enable it to deal with very large datasets, 

such as the UK Biobank study. The first advance is based on the intuition that larger sample 

sizes are likely to result in increased local similarity between groups of haplotypes due to the 

higher probability of more recent shared ancestry. This idea is exploited by using a recursive 

clustering algorithm to partition the haplotypes into clusters of similar haplotypes of 

specified size M ≪ 2N. Distances are computed only between haplotypes within a cluster. 

This reduces the complexity of this step to O(M2) so the complexity of the whole algorithm 

is dominated by the O(NlogN) scaling of the clustering routine (Online Methods). We set 

M=4,000 for the experiments in this paper, and this value leads to a reasonable trade-off 

between run time and accuracy (Supplementary Figure 1). Our clustering method is similar 

to locality-sensitive hashing and further advances in the SHAPEIT development are likely 

by pursuing this approach further18.

The second advance involves changes to the MCMC sampling routine that result in 

additional gains in speed. As sample size grows it becomes more likely that two individuals 

will share a long stretch of sequence in common within a window. We modified the 

algorithm to detect when this occurs as the algorithm proceeds. When a Hamming distance 

equal to zero is found between a haplotype and at least one of its conditioning haplotypes, 

we do not perform HMM calculations within that window from that point on. In this way, 

the method adapts to the local patterns of haplotype sharing, and computation becomes 

increasingly focused on the challenging parts of the dataset. On the UK BiLEVE dataset of 

≈50,000 samples we observed almost 20% of 2Mb windows will have a zero Hamming 

distances as the algorithm converges (Supplementary Figure 2). We have also updated the 

MCMC algorithm so that threading is now performed per window rather than per individual 

as was done in SHAPEIT2. That is, each iteration involves updating N × W haplotype 

windows (typically around 2Mbp in size), and we now process each window in a separate 

thread as opposed to entire individuals per thread (Online Methods).

Results

Phasing the UK BiLEVE dataset

We compared SHAPEIT3 to SHAPEIT2 (r768) and HAPI-UR (v1.01) using a large Biobank 

scale dataset of N = 49,458 individuals from the UK-BiLEVE study7 each of whom were 

genotyped on an Affymetrix Biobank genotype microarray. We phased chromosome 20, 

which had 15,795 SNPs after QC filtering, for a range of sample sizes (N 
=1000,2000,5000,10000,20000,49074) and evaluated computation time and accuracy. We 

developed a novel method to leverage close relatives within the dataset to assess phasing 

accuracy. We identified 384 likely sibling pairs, and obtained partially phased, accurate 

haplotypes for each pair by detecting IBD1 segments using an HMM (Online Methods). 

After filtering, these individuals had an average of 28.7% of their heterozygous sites phased 

and a total of 337,634 phased heterozygous sites on which to calculate switch error. One 

member of each pair was removed from the test dataset and used to provide ‘truth’ 

haplotypes for the other sibling. Figure 1 shows the variation in computation time and switch 
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error rate (SE) with sample size for each method. SHAPEIT3 was run using both one and 

four threads, with a cluster size of M = 4,000 (Online Methods). HAPI-UR 3X indicates that 

haplotypes were averaged across three runs of HAPI-UR, as recommended12.

As expected, accuracy and computation time increase with sample size for all methods. 

While SHAPEIT2 is consistently the most accurate method for N ≤20,000, its quadratic 

distance calculations make it more computationally challenging for larger sample sizes 

(hence it was not run for N >20,000). For the largest sample size (N = 49,074), SHAPEIT3 

had an SER of 1.60% and took 121 hours to run (32 hours using four threads). This 

compares favourably to HAPI-UR-3X (1X), which had a SER of 2.06% (2.24%) and took 

250 hours (83 hours) to run. Notably, SHAPEIT3 is consistently more accurate than both 

HAPI-UR 1X and HAPI-UR 3X and also significantly faster when using four threads.

Supplementary Table 1 reports RAM usage of the different methods. We estimate that 

phasing chromosome 20 in all 500,000 UKB samples would require ~240GB RAM which is 

realistic for modern systems. On larger chromosomes a ligation strategy can be used.

Phasing the UK Biobank dataset

As a further validation, we used SHAPEIT3 to phase the first release of the UKB dataset, 

consisting of 152,256 individuals, and genotyped on a combination of the UK BiLEVE array 

and the UKB Axiom array (see URLs). The self-reported ethnicity of these individuals is 

primarily white-British (90.5%) with the remaining 9.5% comprising various ethnic groups. 

To evaluate performance we used 72 mother-father-child trios that were detected in this 

dataset. We used these trios to obtain a ground-truth set of haplotypes. We removed the trio 

parents from the dataset and phased the whole of chromosome 20 (16,265 genotyped sites) 

for the remaining 152,112 individuals. This run resulted in a median switch error (SE) of 

0.4% and took 38.5 hours using 10 threads (Table 1). Supplementary Figures 3-5 show 

visually the accuracy of each trio child and demonstrates how this error rate corresponds to 

many long stretches of accurately phased sequence. When SHAPEIT3 is run on the full 

152,112 samples, it can be seen that many samples have just a handful of switch errors per 

chromosome. We find that 68.5% of the inferred haplotypes consist of correctly inferred 

chunks of length 10Mb or greater (Supplementary Table 2). By increasing the number of 

conditioning states and the cluster size parameter we have obtained switch error rates as low 

as 0.3%.

To assess the advantages of phasing such a large dataset we also ran SHAPEIT3 and 

SHAPEIT2 on a subset of 10,072 samples that included the trio children, and obtained mean 

switch error rates of 1.3% and 1.1% respectively. These runs took 2.5 hours and 3.3 hours 

respectively using 10 threads. On a subset of size 1,072 SHAPEIT3 had a switch error rate 

of 2.6% and took 0.25 hrs. We also ran SHAPEIT3 on the 10,072 subset without using the 

URLs
SHAPEIT3: https://jmarchini.wordpress.com/software/
UK Biobank QC documentation: http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155580
Haplotype Reference Consortium http://www.haplotype-reference-consortium.org/
Oxford Statistics Phasing Server https://phasingserver.stats.ox.ac.uk/
100,000 Genomes Project http://www.genomicsengland.co.uk/the-100000-genomes-project/
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new clustering routine, resulting in a mean switch error of 1.1% and which took 4.2 hours 

using 10 threads. These results show that the new MCMC scheme results in no loss in 

accuracy using ~80% of the run time. The new clustering method results in further 

reductions in run time, but at a small loss in accuracy. Table 1 also highlight how SHAPEIT3 

scales close to linearly with N, with the run on the full 152,112 samples taking 154 times as 

long as the run on 1072 samples, whereas the sample size scaling was 142. This scaling 

behavior will be crucial when running SHAPEIT3 on the full 500,000 samples. 

Supplementary Table 3 shows that SHAPEIT3 also reduces switch error in other ethnicities 

as sample size increases.

Discussion

Overall, we have demonstrated that SHAPEIT3 provides a highly accurate and scalable 

solution to phasing biobank scale datasets. The ultra low switch error rates that we have 

obtained represent strong validation of using SHAPEIT3 to phase the UKB dataset in early 

2015. Switch errors that occur megabases apart (see Supplementary Figure 3) will have 

negligible impact on subsequent downstream imputation13. Due to the multi-ethnic nature 

of the UK population, many thousands of UKB samples will not have European ancestry 

(~10% of samples in the first release). While many novel loci will be uncovered using 

predominantly European samples, these non-European samples will be poorly phased (and 

imputed) using LRP approaches that search for IBD matches of a specific length. Such non-

European samples are likely to be invaluable when deciphering the trans-ethnic nature of 

novel associations. Given SHAPEIT2 was demonstrated to perform well (relative to other 

methods) on cohorts with heterogeneous ethnicity, we expect SHAPEIT3 to have similar 

performance8. Hence SHAPEIT3 represents a scalable method that can adapt to the multi-

ethnic nature of large cohorts due to the custom selection of template haplotypes on a per-

subject basis.

Reducing switch errors down to the levels produced by SHAPEIT3 can result in downstream 

imputation performance at low-frequency SNPs19. Phasing samples altogether also avoids 

having to phase in batches, which would be more likely to introduce artifacts to any 

downstream analysis. In addition, SHAPEIT3 has also been used successfully to re-phase 

the first release of the Haplotype Reference Consortium (HRC) dataset (see URLs), which 

consists of genotypes at ~40M SNPs called from low-coverage sequencing of ~33,000 

samples20. The boost in imputation performance due directly to this re-phasing, has in effect 

already led to a boost in power to detect associations at low-frequency variants, since a large 

number of samples have already been imputed using HRC. Phasing sequence derived 

genotypes in this many samples could not have been performed using other long-range 

phasing methods13.

In other work21, we have shown that large and accurately phased haplotype reference panels 

can be used to help phase single sequenced samples. This approach uses rare variant sharing 

between the sequenced sample and the reference panel to efficiently select a set of template 

haplotypes to use within the HMM model. The Oxford Statistics Phasing Server allows users 

to phase their samples against the HRC haplotype panel20 (see URLs).
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Extending this approach further, we suggest that an accurately long-range phased and 

imputed version of the UK Biobank dataset, at a union of all SNPs on commonly used 

genome-wide SNP microarrays, could act as a highly accurate reference panel for phasing 

newly genotyped samples with predominantly European ancestry. Combining such a panel 

with the multi-ethnic reference panel planned for the next release of the HRC, and with the 

planned 100,000 Genomes Project reference panel (see URLs), would likely provide a 

reference panel useful for phasing samples with a wide range of ancestries.

Online methods

A sub-quadratic method for haplotype distance calculations

At the tth iteration of SHAPEIT2, a pair of haplotypes,  for the ith of N individuals 

are re-sampled from an HMM. The hidden states of this HMM are a set of K conditioning 

haplotypes, H*, chosen from the remaining 2(N-1) estimated haplotypes, H, in the cohort. 

An optimal choice for H* would be the set of conditioning haplotypes that would give rise to 

) with highest probability, but this is unknown. As a proxy, we choose haplotypes 

which are locally similar: the region to be phased is divided into windows of specified size. 

In each window, H* is formed from the K haplotypes in H that are closest in Hamming 

distance to the haplotype estimates,  from the previous iteration. The intuition is 

that, in small windows, closeness in Hamming distance is correlated with shared ancestry. In 

each window, all 2N haplotypes are compared to one another. Consequently, the distance 

calculation of SHAPEIT2 has O(N2) complexity. When sample sizes become large, say 

N>10,000, this starts to dominate the computational cost of the algorithm.

In SHAPEIT3, we circumvent the O(N2) distance comparisons by a two step procedure:

1. cluster the 2N haplotypes into clusters of size M;

2. for each individual, form the set H* from the other M-1 haplotypes 

belonging to the same cluster. An individual’s haplotypes may be in two 

distinct clusters in which case there are 2(M-1) haplotypes to consider

Step 2 requires distance computations between the M haplotypes within a cluster and so has 

complexity O(M2), independent of N. We now describe a simple clustering method, divisive 

k-means clustering, to perform step 1. We show that this has complexity O(NlogN) 

Consequently, our new algorithm exhibits overall complexity of only O(NlogN).

Divisive K-Means clustering to partition the data

K-Means clustering is a well-known technique for uniquely assigning samples to one of K 
clusters based on the similarity of some real-valued attribute. Assignments are performed so 

as to minimize the within-cluster sum of squares, , where μc is the cluster 

mean for class c and Cj denotes the cluster membership of haplotype j. This objective 

function can be minimized by iteratively assigning class labels to each observation based on 

which cluster mean is closest and then recalculating the cluster means. When the distance 

measure is Euclidean, convergence is guaranteed22. We implemented this routine, allowing 
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up to ten iterations (or stopping when class labels stabilize). Ten iterations are often not 

sufficient for convergence but we only require a rough partitioning. We used K-Means with 

K=2 to partition clusters of haplotypes recursively. Each cluster is split into two smaller 

clusters. The recursion is terminated when the cluster size is <M. Upon termination, we “top 

up” the cluster at the leaf of the bifurcating tree with haplotypes from the closest leaf. This 

last step ensures each haplotype is compared to M-1 other haplotypes.

Formally, we wish to find a vector of labels C = {C1…C2N} where Ci tells us the cluster 

which haplotype Hi belongs to. We refer to Cj as the primary cluster of Hj. We also store a 

dictionary D of sets, which we call secondary clusters. Every set in D has exactly M<<2N 
elements. It is possible for a haplotype to be in more than one secondary cluster, but 

haplotypes will only ever have one primary cluster (determined by Cj). We assume to that 

we have the functions available; K-Means(H) and euc(Hj, μc).The first performs the K-

means clustering routine with K=2 on H and returns a vector of class labels, the second 

which calculates the Euclidean distance between Hj and μc. Our algorithm is described using 

pseudo-code in the Supplementary Note.

On each iteration of the SHAPEIT3 algorithm, we find the primary cluster labels C and 

build the dictionary of secondary clusters D. For each individual i we choose K conditioning 

haplotypes from H* = D[C2i-1] ∪ D[C2i] based on the minimum Hamming distances but 

excluding individuals estimated to be IBD2 within the region 8. We set the cluster size to 

M=4,000 for all the experiments described in this paper. We note that the final set of K 
conditioning haplotypes are chosen based on minimum Hamming distance, whereas the K-

means routine uses Euclidean distance. Hamming distance is appropriate for pairs of binary 

vectors, we use this where possible since such distances can be calculated very rapidly via 

lookup tables. The K-Means routine needs to use a distance measure appropriate for real 

numbers, since the means of the clusters are unlikely to be 0 or 1 rather something on the 

interval [0,1], hence Euclidean distance was used. We suspect that this part of the algorithm 

can be improved via careful choice of the SNPs used to calculate Euclidean distances 

between haplotypes. For example, by focusing preferentially on rare SNPs21.

We further decrease the computational cost of our routine by thinning the SNPs that K-

means is performed on. For each K-means clustering performed (each leaf of the recursion), 

Euclidean distances are only calculated on SNPs l={8k+o : k ∈ 0… L/8} where o ∈
{0,1,2,3,4,5,7} and is sampled randomly within each leaf. In words, we only use every 

eighth SNP (starting from a random offset) in our clustering routine. So in practice 4NL/8 

differences (2 centroids, 2N haplotypes, L/8 SNPs) are calculated per iteration of K-means 

when clustering N samples, we include this description for completeness but remove the 8 in 

the denominator henceforth for clarity. The initial iteration of K-Means clustering requires 

4NL calculations for calculating the distance between the N haplotypes and two clusters for 

L SNPs. As a rough approximation, we assume that K-Means divides the data into two 

clusters of equal size. Consequently, after the dth recursion, we have 2d clusters of size N/2d. 

The recursion continues until a cluster of size <M is reached. This will take log2(N/M) 

recursions. Hence, we can derive the computational complexity of the clustering routine 

quite simply:
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Since L and M are constants our clustering routine has O(NlogN) complexity.

Modified MCMC sampling routine

We implement two modifications to the MCMC sampling routine of SHAPEIT2. Firstly, 

when a Hamming distance of zero is found between a haplotype and at least one 

conditioning haplotype, we do not perform HMM calculations within that window on the 

current iteration. In such cases, it is unlikely that a different haplotype will be generated in 

preference to this perfect match. In other words, when there is evidence that locally that the 

algorithm has converged, then we stop updating that individual. We refer to this as adaptive 
algorithm termination. Therefore, we simply carry forward the haplotype generated by the 

previous iteration. As shown in Supplementary Figure 2, this can be expected to happen 

quite frequently as N increases leading to considerable savings in computation time.

The second modification is an approximation to the MCMC sampling routine, which offers 

significant additional gains in speed when using multiple threads. In SHAPEIT2, the 

parallelization scheme updates the phase of T samples in parallel using T threads 

conditioning on the N-T other samples already processed. The problem with this approach is 

a given thread becomes idle as soon as it has finished processing its assigned sample before 

the other threads, and therefore has to wait for the other threads to finish. Because of this 

synchronization that has to be repeated many times, the parallelization efficiency of this 

scheme decreases with the number of threads. In SHAPEIT3, we introduce a new 

parallelization scheme based on another approximation of the MCMC process. This scheme 

takes advantage of the fact that SHAPEIT updates the phase of samples within windows of 

usually few Mb: it splits the N samples into W overlapping windows prior to any MCMC 

iteration and distributes the N × W jobs to be done into T distinct queues, one for each 

thread. Then, a thread performs the window-sample pairs in its queue independently of the 

other queue and therefore does not need any particular synchronization, which results in 

better usage of all CPU cores. Once all the jobs are done, the haplotype for each sample are 

updated and we move on the next MCMC iteration. Of note, this scheme implicitly assumes 

a MCMC scheme in which the phase of all samples is updated in parallel at the same time. 

In other words, we move from a Markov chain state to the next by updating all samples 

simultaneously which differs to the standard MCMC scheme in which we move from as 

state to the other by updating only one sample. We refer to this as completely parallel 
updating. We assessed the performance of this approach by running SHAPEIT3 without the 

new clustering routine on the 10,072 sample subset of the UK Biobank dataset and 

compared it to SHAPEIT2 run on the same dataset. The median switch error rate was 1.1% 

for both methods, indicating little difference in performance when using this new MCMC 

routine (see Table 1). Performance for increasing numbers of threads is shown in 

Supplementary Table 4.
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Creating a validation data set for assessing accuracy

SHAPEIT3 was initially developed and tested on the UK-BiLEVE dataset, which contained 

a large number of apparent sibling pairs but no identifiable mother-father-child trios. 

Regions in which siblings inherit exactly one chromosome from the same parent, (IBD1) can 

be phased using simple Mendelian rules. So we developed a novel method for inferring the 

identity by descent (IBD) status of siblings, with the aim of constructing a set of ‘known’ 

haplotypes against which we could compare accuracy of different methods.

We identified 384 pairs of individuals with a kinship coefficient >0.35, indicating they were 

likely first order relatives (sibling-pairs or parent-child duos). Parents will share 100% of the 

chromosomes IBD1 with their children and siblings will share (on average) their genomes 

25% IBD0, 50% IBD1 and 25% IBD2. No pairs of individuals had close to 0% IBD0 

suggesting these samples were sibling-pairs, not parent-child23. By detecting IBD1 regions 

we can accurately phase loci within those regions using simple Mendel rules. This will 

generate accurate haplotypes for validation purposes, albeit partially phased ones.

We infer regions of IBD1 sharing by a two-stage approach. Firstly, we applied a simple 

Hidden Markov Model (HMM) to the genotypes of each sib-pair (see Supplementary Note), 

with three unobserved states indicating IBD status. However, because this model does not 

account for LD (IBD sharing from more distant ancestors) it is vulnerable to inferring 

spurious stretches of IBD1. This issue has been noted in previous work on phasing siblings 

with missing parents24. We circumvent it via simple post-hoc filtering of short (<10cM) 

IBD1/IBD2 segments. Supplementary Figure 6 shows the consequences of this filtering step 

for the IBD state for a pair of probable siblings across chromosome 20. The filtering step did 

indeed reduce the SE for all methods (Supplementary Figure 7) and also flattened the 

distribution of switch error rates with respect to the percentage of phase resolved sites for 

the corresponding individual (Supplementary Figure 8).

We note that the switch-error rates when using these validation data were higher than the trio 

phased validation haplotypes created in the UK Biobank experiments. This suggests our 

sibling-pair validation haplotypes were not as accurate as those produced via trio phasing. 

We can think of two likely causes. While we filter short stretches of (likely spurious) IBD1, 

such a spurious segment may also flank a longer (true) IBD1 segment introducing some 

errors on the edges of the segment. Secondly, genotyping errors will induce incorrect phase, 

and there is greater power to detect such errors in the trio setting. Nevertheless, this 

validation data set provides a reasonable relative comparison of methods and was of great 

utility when developing SHAPEIT3.

Methods comparison using the UK BiLEVE dataset

For the results presented in Figure 1 of the main paper that compares methods each phasing 

run was performed on independent Amazon EC2 m2.2xlarge instances to avoid any 

possibility of diminished performance from other running processes. The elapsed time of 

each run was measured with the GNU time command. HAPI-UR results were generated 

with v1.01 of the software, using a window size of 80 as suggested in the HAPI-UR manual 
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for a microarray of this density. SHAPEIT2 results were generated with version r778 of the 

software using the default parameters.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Performance on UK-BiLEVE chromosome 20 dataset.
Computation time (left) and switch error rate (right) of different phasing routines. Estimated 

haplotypes are compared to those derived from the IBD1 segments of the 384 likely sibling 

pairs. HAPI-UR 1X is the average switch error rate/time across three runs of HAPI-UR. 

HAPI-UR 3X performs majority voting of haplotypes across three runs (computation is the 

sum of three runs of HAPI-UR). SHAPEIT3 was run with cluster size M = 4,000, which 

substantially improves computational complexity, and hence running time compared to 

SHAPEIT2. Both SHAPEIT runs use K=100 conditioning states.
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