
Haplotype Phasing using Semidefinite Programming

Konstantinos Kalpakis and Parag Namjoshi
Computer Science and Electrical Engineering Department

University of Maryland Baltimore County
Email: {kalpakis,nam1}@csee.umbc.edu

Abstract

Diploid organisms, such as humans, inherit one copy of
each chromosome (haplotype) from each parent. The con-
flation of inherited haplotypes is called the genotype of the
organism. In many disease association studies, the haplo-
type data is more informative than the genotype data. Un-
fortunately, getting haplotype data experimentally is both
expensive and difficult. The haplotype inference with pure
parsimony (HPP) problem is the problem of finding a mini-
mal set of haplotypes that resolve a given set of genotypes.

We provide a Quadratic Integer Programming (QIP) for-
mulation for the HPP problem, and describe an algorithm
for the HPP problem based on a semi–definite program-
ming (SDP) relaxation of that QIP program. We compare
our approach with existing approaches. Further, we show
that the proposed approach is capable of incorporating a
variety of additional constraints, such as missing or erro-
neous genotype data, outliers etc.

1. Introduction

Humans and other mammals are diploid organisms, i.e.
they inherit one copy of each chromosome from each par-
ent. Each copy of the chromosome is called a haplotype.
The conflation of the two inherited haplotypes, which may
be identical, is called a genotype.

In many disease association studies, the haplotype data
is far more informative than the genotype data [12]. How-
ever, due to the diploid nature of (most) human cells, finding
the haplotypes experimentally is expensive and technically
difficult. Thus, the question of inferring haplotypes from
genotypes computationally becomes an important and chal-
lenging problem.

An allele is a nucleotide at the given site (locus) of a
chromosome, and hence a haplotype is a sequence of alle-
les. A Single Nucleotide Polymorphism (SNP) is a mutation
(polymorphism) of a single nucleotide. In humans, most of
the SNPs are biallelic, i.e. only two of the four possible

nucleotides are observed in the majority of population. The
haplotypes are usually constructed from SNPs instead of a
complete DNA sequence. A locus where the same allele
is present on both haplotypes is homozygous, otherwise it
is heterozygous. Similarly, a genotype where all loci are
homozygous is homozygous, otherwise it is heterozygous.

Genotypes and haplotypes in the context of haplotype
inference problems are typically represented as vectors of
{0, 1, 2} [5, 6]. Arbitrarily label the two alleles at any SNP
site (locus) with 0 or 1. A haplotype with m SNP sites
is represented by an m–dimensional vector, all of whose
entries are 0 or 1. A genotype with m sites is represented
by an m–dimensional vector g, such that g i is set to 0, 1,
or 2 depending on whether the observation for genotype at
site i is {0}, {1}, or {0, 1}, respectively. A heterozygous
genotype locus takes the value 2, while the homozygous
locus takes value 0 or 1 depending upon the allele at the
site. Two haplotypes h and h′ of sizem conflate to produce
a genotype g as follows: gi = 0, 1, or 2 when hi = h′i = 0,
hi = h′i = 1, and hi �= hj respectively, for each site i.

Two haplotypes are said to resolve a genotype if their
conflation is that genotype. The fundamental problem in
SNP and Haplotype Analysis is the genotype phasing prob-
lem: finding a set a haplotypes that resolve a given set of
genotypes. This problem has many equally plausible solu-
tions and thus as stated is not very meaningful. Observe that
a homozygous genotype g can only be resolved by two hap-
lotypes identical to g, while a heterozygous genotype can
only be resolved by pairs of distinct haplotypes. A genotype
with k heterozygous loci can be resolved by 2k−1 distinct
haplotype pairs.

Many studies show that the number of haplotypes ob-
served in natural populations are far smaller than all the
combinatorial possibilities. This suggests the Haplotype
phasing with Pure Parsimony (HPP) problem: find a min-
imal set of haplotypes that resolve a given set of geno-
types [7].

In this paper, we consider the HPP problem. We provide
a quadratic integer program (QIP) for the HPP problem and
describe a simple heuristic that is based on a vector program



relaxation of that QIP that is solved via semi–definite pro-
gramming techniques. We provide preliminary results of an
experimental comparison between the proposed approach,
Clark’s rule, and a relaxation of Gusfield’s [7] TIP scheme.
Moreover, we show that the proposed scheme has high ex-
pressive power, by showing that it extends easily to handle
a number of variations to the basic HPP problem, such as:
partial genotype and/or haplotype knowledge, shared haplo-
type information, errors in the input genotypes, and outlier
genotypes.

The rest of the paper is organized as follows. We review
previous work in section 2, and provide preliminaries defi-
nitions and notations in section 3. In section 3 we present
the quadratic integer program for HPP and the SDP–based
heuristic. Experimental results are given in section 4. Ex-
tensions to the basic QIP are presented in section 5. We
conclude in section 6.

2. Previous Work

Clark [2], in his seminal work, describes a greedy infer-
ence rule to get a set of haplotypes resolving a set of geno-
types. Starting with a set of haplotypes H that resolves all
the homozygous genotypes, Clark’s rule does the follow-
ing: for each still unresolved genotype g, if there is a pair
(h, h′), h ∈ H , that resolves g, then add h′ to H . The al-
gorithm terminates if no progress can be made. Clark’s rule
may terminate with some genotypes unresolved (orphans);
the rule can be modified to include a pair of haplotypes that
resolve an orphan genotype, and continue as before. The
solution obtained by Clark’s rule is sensitive to the order
genotypes are resolved.

Gusfield [7] introduces the pure parsimony approach
for the haplotype inference problems and provides the TIP
scheme to HPP: enumerating all distinct haplotypes that re-
solve each heterozygous genotype, and then use an Inte-
ger linear Program (IP) to select a minimal set haplotypes
for HPP. The TIP scheme is practical for genotypes with a
small number of heterozygous loci. Wang and Xu [16] give
a branch–and–bound implementation (HAPAR) of the TIP
scheme.

Brown and Harrower [1] give an alternate polynomial
sized IP–formulation for the HPP problem (HB-IP). Using
2n haplotype vectors, they include linear constraints to en-
sure that haplotype 2i − 1 and 2i explain genotype i. 0–1
variables are introduced for each pair of haplotypes which
take value 1 if the two haplotypes i, j are distinct and 0 oth-
erwise. Finally, 0–1 variables are introduced for each haplo-
type to count the number of distinct haplotypes, which take
value 1 if haplotype i is distinct from haplotypes 1 to i− 1
and 0 otherwise. The objective function is to minimize the
sum of the counting variables i.e. minimize the number of
distinct haplotypes used to explain the genotypes. Further

the cuts are given which strengthen the formulation. The
experimental results in [1] show that larger problems can be
solved using this approach compared to Gusfield’s IP.

EM and MCMC based algorithms for haplotype infer-
ence are given in [3, 11, 13]. Halldórson et al [8] give a
nice comprehensive review of problems arising in SNP and
haplotype inference.

3. Preliminaries

We provide a brief introduction to Semi–definite pro-
gramming. For a more thorough introduction the interested
reader is referred to [15, 9] and references therein.

A vector program is the problem of optimizing a linear
function of inner products of vector variables subject to con-
straints that are also linear functions of inner products of
those vector variables.

An n×n real symmetric matrixA is positive semidefinite
matrix, and we write A � 0, if all its eigenvalues are non–
negative. For any positive semidefinite matrix A there is a
real matrix V such that A = V TV ; such a V can be com-
puted from a Cholesky factorization of A or as A1/2 from
its Singular Value Decomposition (SVD). A semi definite
program (SDP) is a problem of optimizing a linear function
of the elements of a variable n×nmatrixX , subject to lin-
ear constraints on the elements ofX and the constraint that
X � 0. SDP programs can be solved numerically to within
additive error ε in time polynomial in n, log(1/ε), and the
number of constraints [4].

For any vector program on n vector variables
v1, v2, . . . , vn there is an equivalent SDP program on matrix
variableX = (xi,j) � 0, by requiring that each xi,j equals
the inner product vT

i vj of vi and vj . Given X = W TW ,
the vectors v1, v2, . . . , vn will be given by the columns of
W . There are many ways to get a matrix W from X . In
this paper, we assume that W = X 1/2 and is computed via
X’s SVD in a standard way. Moreover, since SDP’s can be
solved efficiently, it follows that vector programs can also
be solved efficiently.

A quadratic function (or constraint) is a (multi–variate)
polynomial with real coefficients and of total degree at most
2. A quadratic function/constraint is strict if all monomials
have total degree either 0 or 2. A quadratic integer program
(QIP) is a problem of optimizing a quadratic objective func-
tion of integer variables subject to quadratic constraints. If
the objective functions and all the constraints are strict, then
we have a strict QIP.

A strict QIP P can be relaxed into a vector program as
follows. With each integer variable xi of P , associate a vec-
tor variable xi, and then replace each non–constant mono-
mial xixj in P , with the inner product xi

Txj . This vector
program relaxation of P can be solved efficiently. Vector
program relaxations to strict QIP programs have provided



good approximation algorithms for various computationally
hard problems (e.g. MAX-CUT, MAX-k-SAT, etc) [15].

A 0–1 variable (±1 variable) takes values in {0, 1}
({−1, 1}). We use the terms 0–1 and boolean variables in-
terchangeably, based on the natural mapping 1 ≡ true and
0 ≡ false. It is easy to show the following equivalences:
logical not x ≡ 1 − x, logical and x ∧ y ≡ xy, logical or
x∨ y ≡ x+ y− xy, and logical xor x⊕ y ≡ x+ y− 2xy.

A bijection between a 0–1 variable x and a ±1–variable
x̂ is given by

x =
1
2

(1 + zx̂) , (1)

where z is a new ±1 variable [15]. Observe that for any
two 0–1 variables x, y, x ·y = 1

4 (1 + x̂ · ŷ + z · x̂+ z · ŷ) ,
since z2 = 1. Therefore, every QIP with n 0–1 variables
can be converted into an equivalent strict QIP with (n + 1)
±1 variables.

Randomized rounding is used for obtaining an approx-
imate solution to the MAX–CUT and MAX–2–SAT prob-
lems from an vector program (i.e. SDP) relaxation of these
problems (see [15] and references therein). The idea is to
choose a random hyperplane through the origin and assign
values ±1 to the ±1 variables depending on which side of
the hyperplane each variable’s vector falls into. We call this
the standard randomized rounding for SDP relaxations of
QIPs. It can be shown that two unit vectors v1, v2 lie on dif-
ferent sides of a random hyperplane through the origin with
probability θ/π = cos−1(aT

1 a2)/π. Moreover, when the
standard randomized rounding is applied to the variables x̂
that correspond to the 0–1 variables x of a QIP, x is rounded
to 1 with probability equal to

Psrr[x = 1] = 1 − cos−1
(
zTx

)
π

(2)

where x is the vector variable corresponding to x̂ (and x as
well).

4. An SDP–based Heuristic for HPP

We give a convenient algebraic formulation of the HPP
problem, describe a QIP for it, and then describe a heuristic
for the HPP problem that relies on a vector program (SDP)
relaxation of the QIP.

4.1. Arithmetic genotypes and the k–HPP
problem.

We associate with any genotype g an arithmetic genotype
δ, which is an m–dimensional vector with δi = 0, 1, or 2 if
gi is equal to 0, 2, or 1 respectively, for i = 1, 2, . . . ,m.
Arithmetic genotypes are beneficial due to the following
important observation: if the conflation of haplotypes h and

h′ is genotype g, then δ = h + h′, where + is the stan-
dard vector addition. Hereafter, for brevity, we refer to an
arithmetic genotype simply as genotype, and assume with-
out loss of generality (w.l.o.g.) that all genotypes are dis-
tinct.

A set of n genotypes with m sites is represented by an
n × m matrix G = (gi,j), whose rows correspond to the
genotypes. Let ∆ = (δi,j) be the n×mmatrix whose rows
are the corresponding arithmetic genotypes. Similarly, a set
of k haplotypes with m sites is represented by an k × m
haplotype matrix H = (ht,j), whose rows correspond to
the haplotypes. Observe that if the haplotypes in H resolve
the genotypes in G then

∆ = S ·H, (3)

where S = (si,t) is an n × k matrix with elements in
{0, 1, 2}, and with each row having a row–sum of 2. We
call S the selector matrix. Each row of S has either two
1’s or a single 2, with all other entries 0. Observe that the
non–zero entries of the ith row of S provide us with the two
haplotypes that conflate to resolve the ith genotype. If these
haplotypes are distinct, then the row has exactly two 1’s.

The k–HPP problem is: given n×m genotype matrices
G and ∆, find a n × k selector matrix S and an k × m
haplotype matrixH such that ∆ = S ·H , such that S has the
smallest number of non–zero columns. Since n genotypes
can always be resolved by 2n haplotypes, the HPP problem
is the same as the 2n–HPP problem.

There is a simple method to find the selector matrix S
given the (arithmetic) genotype matrix ∆ and the haplotype
matrixH . Just compute all the pairwise conflations of hap-
lotypes and for each genotype, choose one pair that resolves
it.

To find a haplotype matrix H given ∆ and S, we effi-
ciently solve a 2–SAT problem with km variables and 2nm
clauses constructed as follows. Start with an empty set of
clauses F . For each locus j of genotype i, resolved by hap-
lotypes t and l as specified by S, add add to F the two
clauses ht,j ∧hl,j , ht,j ∧hl,j , or (ht,j ∨hl,j)∧ (ht,j ∨hl,j)
if δi,j is equal to 0, 1, or 2 respectively.

Bounds on the number of Haplotypes:

The lower bound of
√
n for the HPP problem is well known.

Similarly 2n is the well known upper bound obtained by re-
solving each genotype independently of others. Arithmetic
genotypes give an alternate lower bound on the number of
haplotypes required to explain the given genotypes.

Proposition 1 The rank of the genotype matrix ∆ is a lower
bound on the number of haplotypes required to explain the
genotypes.
Proof. Let H be an optimal solution to the HPP problem



and let S be the corresponding selector matrix.

∆ = S H,

rank(∆) ≤ min{rank(S), rank(H)},
rank(∆) ≤ rank(H).

Since the number of distinct rows (haplotypes) in matrixH
is at least rank(H) and rank(∆) ≤ rank(H), rank(∆)
is a lower bound on the number of haplotypes required to
explain the given genotypes.

It should be noted that rank(∆) ≤ min{n,m}.

4.2. A QIP and a heuristic based on its SDP
relaxation

Given an n ×m genotype matrix ∆ and either a n × k
selector matrix S or an k×m haplotype matrixH it is fairly
easy to find the other matrix so that ∆ = S · H . Next, we
describe a QIP for the considerably more difficult k–HPP
problem.

Our QIP is given in Table 4.2 and is using the following
variables: (1) si,t ∈ {0, 1, 2} = number of times haplotype
t is used in a resolution of genotype i, (2) s̃ i,t ∈ {0, 1} = 1
if haplotype t is used in a resolution of genotype i, (3) h t,j ∈
{0, 1} = value of locus j of haplotype t, (4) φt ∈ {0, 1} =
1 if haplotype t is used to resolve any genotype, (5) r i ∈
{0, 1} = 1 if genotype i resolved, (6) εi,j ∈ {0, 1} = 1 if an
edit/correction is done at locus j of genotype i, (7) ε+

i,j (ε−i,j)
∈ {0, 1, 2} the amount of positive (negative) correction at
locus j of genotype i,

The objective function is to minimize the number of hap-
lotypes used (which is equivalent to the number of non–zero
columns of the selector matrix). Any solution of this QIP
must satisfy the following constraints:

Constraint (5): the locus j of genotype i should be cor-
rectly resolved. For convenience we call this constraint the
locus resolution constraint. This constraint is omitted if the
value of gi,j is missing.

Constraint (6): two haplotypes (not necessarily distinct)
should be used for resolving a genotype.

Constraint (7): haplotype t should be selected, i.e. s̃ i,t

should be 1, if it is used in a resolution of genotype i. If
the haplotypes used in a resolution of a genotype are al-
ways distinct, then s̃i,t is always equal to si,t and this con-
straint and the variable s̃i,t are not needed. For example
this happens whenever a genotype is heterozygous. Though
homozygous genotypes can be resolved immediately, ren-
dering this constraint and the variables s̃i,t redundant, we
choose to include them because it enables a simple way to
describe various extensions to the HPP problem.

Constraint (8): haplotype t is selected, i.e. φt equals 1,
if it is used to resolve any genotype.

Constraint (9): two genotypes i and j can not share a
haplotype if they differ in any homozygous locus. This con-
straint, though is implied by the others, is included since is
useful in the numerical solution of the QIP. We define the
homozygous Hamming distance dhomo(i, j) between two
genotypes gi and gj as the number of homozygous loci/sites
that the two genotypes differ.

Note that this QIP has Θ(nk + km) variables and con-
straints.

We can easily incorporate partial knowledge in QIP: sim-
ply replace the known variable with its value. Note that the
QIP already models the k–HPP problem with partial geno-
types. Further, alternate quadratic objective functions are
possible.

Since the HPP problem is NP–hard, it is unlikely that an
optimal solution to the k–HPP and this QIP can be obtained
efficiently.

A equivalent strict QIP can be obtained from this QIP
by introducing a new ±1 variable z and replacing each 0–
1 variable with its corresponding ±1 variable (as discussed
in 3). This strict QIP has a vector program relaxation, and
thus an SDP relaxation, that can be solved efficiently to any
desired degree of accuracy. We describe next a heuristic for
obtaining an approximate solution to the QIP from a solu-
tion to its SDP relaxation.

The idea of the heuristic is to repeatedly fix entries of the
selector matrix until all its entries are fixed to 0 or 1. Af-
ter all the entries of the selector matrix are fixed, we find a
haplotype matrix by solving a 2–SAT problem as described
earlier. We do not use the standard randomized rounding,
since the likelihood of obtaining feasible selector and hap-
lotype matrices is decreasing fast with n,m and k due to
constraints (5)– (8). Instead, we fix entries s i,t (and thus
s̃i,t), one at a time, in decreasing order of their probabil-
ity Psrr[s̃i,t] of being rounded to 1 under the standard ran-
domized rounding. The details of the heuristic are given in
Table 4.2.

Due to an incorrect fixing of s̃i,t and si,t it may hap-
pen that the SDP relaxation of the the QIP problem P is
infeasible at step 8, or the 2–SAT problem at step 15 is un-
satisfiable. ∗ This situation can be handled by incorporating
backtracking into the heuristic. The theoretical analysis of
performance ratio (ounds on the optimality) of the proposed
heuristic remains open.

5. Experiments

We experiment with three algorithms for the HPP prob-
lem: Clark’s rule, linear relaxation of the Gusfield’s TIP
scheme (TIP-APPROX), and our proposed approach. For

∗In our experiments in section 5, backtracking was needed in 18 and 22
times in two datasets each consisting of 80 randomly generated instances.



Table 1. Quadratic Integer Program for the k–HPP problem.
Objective :
minimize

∑k
t=1 φt (4)

Constraints :∑k
t=1 si,tht,j = δi,j , for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. (5)∑k

t=1 si,t = 2, for i = 1, 2, . . . , n. (6)

si,t =
{

2s̃i,t, if i is homozygous
s̃i,t, if i is heterozygous

for i = 1, 2, . . . , n and t = 1, 2, . . . , k. (7)∑n
i=1 s̃i,t ≤ nφt, for t = 1, 2, . . . , k. (8)∑k
t=1 s̃i,ts̃j,t = 0, for all 1 ≤ i, j ≤ n whenever dhomo(gi, gj) ≥ 1. (9)

simplicity, we refer to the proposed approach as the QIP
approach.

The first algorithm is Clark’s inference rule with the
following extension: if there is an unresolved (orphan)
genotype that can only be resolved by a pair (h, h ′) with
h, h′ �∈ H , add both h and h′ to H , and continue.

The second method implemented is the TIP-APPROX.
Gusfield’s TIP enumerates all haplotypes that can resolve
each genotype, and then uses an integer program (IP) to se-
lect a minimal set of haplotypes for HPP. Gusfield [7] de-
scribes RTIP, which is TIP with certain efficiency improve-
ments. Using a linear programming (LP) relaxation of TIP’s
IP, and then rounding each haplotype indicator variable to
the nearest integer (0 or 1), we obtain a TIP-APPROX so-
lution to the HPP problem. The LP relaxation gives inte-
ger solutions in many instances as observed in [7], but the
method becomes computationally expensive for genotypes
with moderately many heterozygous loci due to the enumer-
ation stage of the scheme.

The third method is an non–backtracking implementa-
tion of the for k–HPP in section 4.2, with k = 2n. The
MATLAB package SDPT 3.02 [14] is used to solve the SDP
relaxation of the QIP in our algorithm. All experiments are
done on a single CPU MATLAB on a Dual Xeon 2.4 GHz
desktop with 1 GB memory.

Synthetic dataset A is generated as follows. For each
triplet (n,m, k∗) = (5, 5, 5), (8, 8, 8), (10, 10, 10), and
(15, 15, 15), 20 instances of the HPP problem were gener-
ated as follows. The genotypes were generated by random
mating of k∗ haplotypes. Each locus of each haplotype took
value 0 or 1 independently and with equal probability.

We generate the synthetic dataset B using Hudson’s pro-
gram [10]. We generate haplotypes to simulate a population
of k∗ haplotypes withm loci “sampled” from a diploid pop-
ulation of size 106 with neutral mutation rate 1.5 × 10−6,
and at recombination levels ρ = 0, 16 and 40, as in Gus-
field [7]. The k∗ haplotypes are then randomly mated to
produce the n genotypes. The dataset consists of 20 in-

stances for each ρ above and (n,m, k∗) = (5, 5, 5) and
(10, 10, 10).

Table 3 shows the average number ko of haplotypes
found by each approach as well as the average elapsed time
in seconds for the instances in datasets A and B. We ob-
serve that, with respect to the QIP approach, the CLARK

approach uses up to 100% more haplotypes. Furthermore,
TIP is limited by the number of heterozygous loci (and thus
‖E‖) of its genotypes —- TIP-APPROX, our implementa-
tion of the TIP scheme, did not solve any instances with 15
genotypes in dataset A due to insufficient memory.

Our current implementation of the QIP approach does
not use backtracking, and it could not solve 18 and 22 out
of the 80 and 120 instances in datasets A and B respectively.

Moreover, observe that the rank for the (arithmetic)
genotype matrix ∆, provides a tighter lower bound on the
HPP than

√
n. In addition, the QIP approach provides solu-

tions that, on the average, are within 10% of the rank lower–
bound, and thus optimal within 10% for the two datasets in
the experiments.

6. QIP extensions for the k–HPP variants.

The scheme described previous section is quite flexible
and capable of handling some useful variations of k–HPP
problem. To do so, we just need to append and/or modify
constraints of the QIP in Table 4.2, and use the heuristic in
Table 4.2 with the extended QIP. Observe that the QIP in
Table 4.2 handles partial genotypes by simply omitting the
locus resolution constraints for the loci with missing data.

6.1. Shared haplotype information.

If we know that genotypes i and j must share exactly
one haplotype, then we include the constraint (10). This is
useful when it is known that i and j have a parent–child



Table 2. Backtracking algorithm for the k–HPP problem using the SDP relaxation of the QIP.

1 let P be the QIP program in Table 4.2
2 let V be an initially empty set of s̃i,t variables that have been fixed to 0 or 1
3 let F be an initially empty stack of s̃i,t variables in V
4 while V does not contain all the s̃i,t variables in P do
5 set backtrack to false
6 let P ′ be the program P modified to take into consideration all the fixed variables in V
7 solve the vector program relaxation of P ′ (via its corresponding SDP relaxation)
8 if the relaxation is feasible then
9 find a variable s̃i,t with the maximum Psrr[s̃i,t = 1] among those not in V
10 fix s̃i,t to 1, add it to V , and push it onto the stack F
11 // Infer values for additional entries of S that can be fixed
12 for each row of S whose fixed entries sum to 2 do
13 fix the remaining s̃i,t variables of that row to 0 and add them to V .
14 end–for
15 if the 2-SAT for the genotypes whose S rows are completely fixed is unsatisfiable then
16 set backtrack to true
17 endif
18 else
19 set backtrack to true
20 endif
21 if backtrack is true then
22 while the variable x at the top of the stack F is fixed to 0 do
23 remove x from V and pop it off the stack
24 end–while
25 if the variable x at the top of the stack F is fixed to 1 then
26 remove from V all variables that were fixed to 0 due to x being fixed to 1
27 fix x to 0 instead
28 else
29 stack is empty – return INFEASIBLE
30 endif
31 endif
32 end–while
33 find a haplotype matrixH by solving the 2–SAT problems that corresponds to G and S.
34 return S andH



Table 3. Experimental comparison of approaches on synthetic instances solved by the QIP approach.

CLARK TIP–APPROX QIP
n m k∗ ρ rank(∆) ko time ko time ‖E‖ ko time

Synthetic dataset A (Random)
5 5 5 3.60 5.95 0.01 5 0.19 19.50 4.56 17.48
8 8 8 6.00 11.80 0.02 7.80 7.88 117.95 7.29 164.02

10 10 10 9.00 16.60 0.04 10.05 131.62 411.55 9.33 444.71
15 15 15 12.35 26.85 0.15 N/A N/A N/A 13.13 7241.20

Synthetic dataset B (Hudson)
5 5 5 0 2.00 4.15 0.01 3.45 0.22 23.60 3.65 16.08
5 5 5 16 4.00 4.80 0.00 4.05 0.14 16.00 4.00 14.83
5 5 5 40 3.60 5.95 0.01 5.00 0.19 19.50 4.56 17.48

10 10 10 0 5.13 7.67 0.01 6.10 32.23 156.15 5.80 251.00
10 10 10 16 5.40 9.20 0.02 6.27 50.46 188.35 5.80 259.83
10 10 10 40 6.87 11.27 0.02 8.00 45.57 182.85 6.90 258.40

relationship. Note that this constraint allows no mutations.

k∑
t=1

s̃i,ts̃j,t = 1, (10)

for all applicable genotypes 1 ≤ i, j ≤ n.

6.2. Input errors and loci editing.

It is possible that there are errors in the input genotype
data. Corrections/edits to loci can be dealt with by mod-
ifying the locus resolution constraint and including some
additional constraints and variables. The amount of edit-
ing at a locus gi,j is a number in {−2,−1, 0, 1, 2}, and can
captured by the expression (2ψi,j − 1)(ε+i,j + ε−i,j) where
ψi,j , ε

+
i,j , and ε−i,j are all {0, 1} variables. The ε+i,j + ε−i,j is

the amount of the correction to be applied to the site i, j
while (2ψi,j − 1) gives the sign of that correction. First,
we replace the locus resolution constraint with the con-
straint (11).

k∑
t=1

si,tht,j = δi,j + (2ψi,j − 1)(ε+i,j + ε−i,j) (11)

for i, j = 1, 2, . . . , n. Second, we include the con-
straint (12) to force the correct value for the locus edit indi-
cator variable εi,j .

ε+i,j + ε−i,j ≤ 2εi,j, for i, j = 1, 2, . . . , n. (12)

Third, we include the constraint (13) for limiting the num-
ber of loci that are edited/corrected to at most εmax, a user

specified constant.

n∑
i=1

m∑
j=1

εi,j ≤ εmax. (13)

Note that minimizing εmax can also become the objective
function of the QIP instead of minimizing the number of
haplotypes selected.

6.3. Outliers.

To permit for up to noutliers genotypes to be skipped and
not resolved, treating them as outliers, we need to ensure
that constraints on the selector and haplotype matrix ele-
ments are enforced only when a genotype is resolved (and
thus is not treated as an outlier). We achieve that by doing
the following:

• For every genotype i, include a 0− 1 variable r i that is
1 iff that genotype is resolved (and thus it is not treated
as an outlier)

• include the constraint (14)

n∑
i=1

ri ≥ n− noutliers (14)

• multiply the right hand–side of constraint (6), on the
number of haplotypes used to resolve a genotype, with
ri. Note that whenever ri is 0, the ith row of the S
matrix is forced to be 0.

• replace δi,j with ri · δi,j in the locus resolution con-
straint (5) (or constraint (11) if applicable).



• replace the constraint (9) with the constraint

k∑
t=1

s̃i,ts̃j,t ≤ 2(1 − rirj), (15)

for all 1 ≤ i, j ≤ n, and whenever dhomo(gi, gj) ≥
1. Note that this constraint is enforced only if both
genotypes are resolved.

• multiply the right hand–side of constraint (10), on
sharing a haplotype between two genotypes, with r i ·
rj .

7. Conclusion

We present a QIP for the k–HPP problem, together with
a heuristic that is based on an SDP relaxation of that QIP.
The proposed approach is capable of incorporating simulta-
neously a variety of additional constraints and prior infor-
mation (such as shared partial genotypes, haplotypes, input
errors, outliers etc.) We provide a preliminary experimen-
tal comparison of the proposed approach with two existing
approaches.

Future work includes theoretical analysis and a thorough
experimental evaluation of the proposed approach.

References

[1] D. Brown and I. Harrower. A new integer programming for-
mulation for the pure parsimony problem in haplotype anal-
ysis. In WABI, pages 254–265, 2004.

[2] A. Clark. Inference of haplotypes from PCR amplified sam-
ples of diploid populations. Molecular Biology and Evolu-
tion, 7(2):111–133, 1990.

[3] L. Excoffier and M. Slatkin. Maximum likelihood estima-
tion of molecular haplotype frequencies in a diploid popu-
lation. Molecular Biology and Evolution, 12(5):921–927,
1995.

[4] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Al-
gorithms and Combinatorial Optimization, volume 2 of Al-
gorithms and Combinatorics. Springer–Verlag, second cor-
rected edition edition, 1993.

[5] D. Gusfield. Inference of Haplotypes in Samples of Diploid
Populations: Complexity and Algorithms. Journal of Com-
putational Biology, 8(3):305–323, 2001.

[6] D. Gusfield. Haplotyping as perfect phylogeny: concep-
tual framework and efficient solutions. In Proc. of the 6th
Intnl. Conference on Computational biology, pages 166–
175. ACM Press, 2002.

[7] D. Gusfield. Haplotyping by Pure Parsimony. In Combi-
natorial Pattern Matching (LNCS 2676), pages 144–155.
Springer–Verlag, June 2003.

[8] B. Halldórsson, V. Bafna, N. Edwards, R. Lippert,
S. Yooseph, and S. Istrail. Combinatorial problems aris-
ing in SNP and Haplotype Analysis. In 4th Conf. on Dis-
crete Math. and Theoretical Computer Science, pages 26–
47, 2003.

[9] C. Helmberg. Semidefinite Programming for Combinatorial
Optimization. Technical report, ZIB Report 00–34, October
2000.

[10] R. R. Hudson. Generating samples under a Wright-Fisher
neutral model of genetic variation. Bioinformatics, 18:337–
338, 2002.

[11] J. C. Long, R. C. Williams, and M. Urbanek. An E–M al-
gorithm and testing strategy for multiple-locus haplotypes.
American Journal of Human Genetics, 56(799-810), 1995.

[12] National Center for Biotechnology Information.
http://www.ncbi.nlm.nih.gov/ about/primer/snps.html.

[13] M. Stephens, N. Smith, and P. Donnelly. A new statistical
method for haplotype reconstruction from population data.
American Journal of Human Genetics, 68:978–989, 2001.

[14] K.-C. Toh, M. J. Todd, and R. H. Tutuncu. SDPT3–
a MATLAB software package for semidefinite-quadratic-
linear programming, version 3.0. Technical report, National
University of Singapore, August 2001.

[15] V. V. Vazirani. Approximation Algorithms. Springer–Verlag,
2003.

[16] L. Wang and Y. Xu. Haplotype Inference by Parsimony.
Bioinformatics, 19(14), 2003.


