
Haplotype-resolved telomere-to-telomere assembly of1

the African catfish (Clarias gariepinus) provides2

insights for semi-terrestrial adaptation of airbreathing3

catfishes4

Julien A. Nguinkal1,4*, Yedomon A. B. Zoclanclounon2, Ronald M. Brunner1, and Tom5

Goldammer1,3*
6

1Research Institute for Farm Animals (FBN), Institute of Genome Biology, Dummerstorf, 18196, Germany7

2Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, 54896, South Korea8

3University of Rostock, Faculty of Agriculture and Environmental Sciences, Rostock, 18059, Germany9

4Bernhard-Nocht Institute for Tropical Medicine, Department of Infectious Disease Epidemiology, Hamburg, 20359,10

Germany11

*Corresponding authors: Julien A. Nguinkal (julien.nguinkal@bnitm.de), Tom Goldammer12

(tom.goldammer@uni-rostock.de)13

ABSTRACT14

Airbreathing catfishes (clariids) are a group of stenohaline freshwater fish that can withstand various environmental conditions
and farming practices, including the ability to breathe atmospheric oxygen. This unique ability has allowed them to thrive in
semi-terrestrial habitats. However, the underlying genomic and adaptive mechanisms remain poorly investigated. Here, we
sequenced the genome of the African catfish Clarias gariepinus, one of the most commonly farmed clariids, and generated a
gapless telomere-to-telomere (T2T) chromosome-level assembly with high-resolution haplotypes, by integrating long-range
sequencing (Hi-C) with PacBio single-molecule (HiFi), Oxford Nanopore, and Illumina sequencing data. The diploid genome
assembly yielded 58 contigs with a total length of 969.72 Mb and a contig N50 of 33.71 Mb. We report 25,655 predicted
protein-coding genes and 49.94% repetitive elements in the African catfish genome. Our genome assembly provides the first
comprehensive gene annotation and haplotype information, such as the male-specific haplotype, enabling us to identify putative
genes and molecular mechanisms underlying amphibious traits and terrestrial adaptation of airbreathing catfishes. Several
gene families involved in ion transport, osmoregulation, oxidative stress response, and muscle metabolism were expanded or
positively selected in clariids, suggesting a potential role in their transition to terrestrial life. The reported findings expand our
understanding of the genomic mechanisms underpinning the resilience and adaptive mechanisms of C. gariepinus to adverse
ecological conditions. They will serve as a valuable resource for future studies in elucidating these unique biological traits in
related teleosts and leverage these insights for aquaculture improvement.

15

Introduction16

The Clariidae family, commonly referred to as airbreathing catfish, constitutes a group of freshwater fishes that can thrive out17

of water for extended periods of time by breathing oxygen from the atmosphere1, 2. Some of these facultative air breathers18

have adapted to terrestrial life by developing the ability to walk on land in sinuous movements using their pectoral fins and19

a protective mucous layer, helping them to retain moisture3, 4. These traits enable them to survive in environments with low20

oxygen levels or stagnant water, such as mangrove swamps, muddy water or flooded forests, which expand their access to new21

habitats and food sources2, 5. To survive in such environments with changing oxygen tensions, this group of fish has developed22

a bimodal gas exchange capacity in which the gill extracts oxygen from water and the accessory respiratory organ extracts it23

from the air. Their accessory airbreathing organ (ABO) consists of a paired supra-branchial chamber in the gill cavity. This24

adaptation of clariids to semi-terrestrial environments (amphibious traits) is however uncommon among bony fish, as only25

about 11 distantly related fish genera (out of ∼2,935)6 are considered amphibious with the ability of bimodal respiration3.26

These independent adaptations and traits diversifications are excellent examples of convergent evolution in teleosts. According27

to FishBase resources (https://www.fishbase.se/search.php), the Clariidae family comprises 16 genera and 11628

species, with clariids being the most widespread and diverse group with more than 32 recognized species. Many clariids are29

well-established aquaculture species, including the African catfish (Clarias gariepinus, Burchell, 1822), one of Africa’s most30
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promising endemic aquaculture fish7.31

C. garipinus is found primarily throughout Africa, where it was first introduced in aquaculture around mid 1970s. This32

omnivorous fish is quite resilient due to its ability to cope with extreme environmental conditions, tolerate various land-based33

farming practices and a large diets spectrum8–11. In addition to its rapid growth, extreme robustness11, 12, and relatively high34

fecundity, C. gariepinus can withstand high levels of ultraviolet B (UV-B) radiation and dramatic temperature fluctuations35

in non-aquatic environments13, 14. This ecological flexibility could explain its hardiness and wide geographical distribution.36

Interspecies hybridization with closely related clariids has been shown to improve C. gariepinus environmental tolerance,37

manipulate sex ratios, and eventually increase growth performance, making it a highly efficient aquaculture fish15. As a38

result, the African catfish is considered an excellent biological model for studying amphibious traits (i.e., bimodal breathing)39

and terrestrial transition16–18. However, current genomics research has primarily focused on phylogenetic and domestication40

studies9, 19–21, as well as on sex-chromosome and karyotype evolution utilizing only a limited panel of molecular markers22–24.41

Clarias gariepinus genome is made up of 2n = 2x = 56 chromosomes (18 m + 20 sm + 18 st/a)25 with a fundamental42

number (NF) of 94. Its chromosome system has historically been contentious. Previous findings suggested a XX/XY male43

heterogametic chromosomal system26–29, while others pointed to a ZZ/ZW female heterogametic sex determination system44

(SDS)30, 31. However, recent research using high-throughput sequencing data have shown that both systems coexist in C.45

gariepinus22, 23. The coexistence of both SDSs is most likely heavily influenced by environmental and social factors, as46

well as geographical habitat: the ZZ/ZW system is indicated in African wild ecotypes25, 30, XX/XY system is observed in47

some anthropogenically introduced populations in Europe and China27, 28, 32, and both systems were evidenced within the48

same population in Thailand22, 33. The lack of genomic resources, including reference genomes, haplotypes information, and49

expression data, has hampered the validation of these SDSs. Yet, few genomic resources of related clariid species, such as the50

walking catfish (Clarias batrachus)34 and the Indian catfish (Clarias magur)35, are publicly available. Despite being only at the51

scaffold levels and highly fragmented with thousands of gaps, these assemblies provide valuable resources for comparative52

genomic analyses. However, more high-quality genome data are still needed to advance our understanding of the evolution and53

adaptation of airbreathing catfish to terrestrial habitats. Gold standard genomes, such as telomere-to-telomere (T2T) phased54

genomes36–40, could facilitate not only studies on sex-chromosome evolution and allele-specific expression, but also provide55

promising tools for investigating biological mechanisms that shape the robustness and adaptation of airbreathing catfishes.56

To gain a better understanding of the adaptive strategies of air-breathing fish, we carried out genome sequencing and57

assembly of the African catfish using HiFi PacBio and Nanopore Technologies, as well as long-range phasing information from58

Hi-C. We derived a nearly-complete, gapless, and validated phased T2T reference genome assembly. Through a combination of59

comparative genomic approaches, several genes, biological pathways and processes that are likely associated with the resilience60

and the emergence of amphibious traits of Clariidae, were identified. Our results provide a new genomic basis for functional61

validation of the molecular mechanisms underlying clariid resilience and their transition out of water, with potential commercial62

and ecological implications.63

Methods64

Sample Collection and DNA extraction65

Tissue samples, including muscle, liver, and gonads, were collected from one adult male (approximately one year old) African66

catfish in the Experimental Aquaculture Facility of the Research Institute for Farm Animal Biology (Dummertorf, Germany).67

Prior to tissue collection, the fish was euthanized by immersing it in an overdose of 2-phenoxyethanol (50 mg/L) for 15 minutes,68

followed by a bleed cut in the head and posterior spinal cord. Tissue samples were immediately frozen in liquid nitrogen, and69

stored at −80◦ C. Following the manufacturers’ standard protocols, we performed genomic DNA extraction using the DNeasy70

Blood & Tissue Kit (Qiagen), and libraries preparation strategies specific to the sequencing technologies used in this study.71

Libraries preparation and genome sequencing72

Genomic DNA (gDNA) sequencing data were generated by different platforms, including Oxford Nanopore (ONT) long reads,73

PacBio high-fidelity (HiFi) reads, Illumina paired-end reads, and paired-end Hi-C reads (Figure 1a). Illumina short-insert (45074

bp) libraries were prepared from liver tissues using an Illumina TruSeq Nano DNA Library Prep Kit and paired-end (PE150)75

sequenced on the Illumina Novaseq 6000 sequencing platform (Illumina, Inc., San Diego, CA, USA). We used gonad tissues76

for ONT PromethION library preparation and sequencing, following the manufacturer’s (Oxford Nanopore Technologies,77

Oxford, UK) guidelines. In addition, we sequenced a single flow cell on the PromethION instrument, yielding 84 Gb of data78

and a sequencing depth of around 80×, with a maximum read length of 330 kb and an N50 of 32 kb. Liver and muscle tissues79

were pooled for HiFi library preparation and sequenced on the PacBio Sequel IIe sequencing platform (Pacific Biosciences of80

California, Inc.). In total, we sequenced four SMRT cells, yielding around eight million CCS reads (141 Gb of data) with an81

N50 of 16 kb and average base call accuracy greater than 99.7%. A Hi-C library was generated using the Arima-HiC kit and82

following its standard workflow (Arima Genomics, San Diego, CA, USA). All sampled tissues were pooled and then sequenced83
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paired-end (PE150) on an Illumina HiSeq X platform, yielding 182 million read pairs, corresponding to approximately 24×84

coverage of the genome. An overview on generated whole-genome sequencing data is provided in the Supplement Table 1.85

Genome survey analysis86

To estimate the preliminary properties of the African catfish genome, we performed a genome-wide k-mer analysis using the87

k-mer Analysis Toolkit (KAT) (v2.2.0)41. Briefly, we generated k-mer frequency count (k = 21) from high-quality genomic88

HiFi reads using KAT hist function. With the resulting 21-mer histogram, KAT gcp was used to estimate the genome size,89

heterozygosity rate, repeat content, and 21-mers derived from errors and sequencing bias. We rendered these genomic properties90

using a custom R script (Figure 1c-d).91

Haplotype-resolved chromosome-scale assemblies92

Three strategies were used to generate phased assemblies: hifiasm regular mode, HiFi+Hi-C mode, and hoplotype-specific93

HiFi reads obtained through read partitioning. The output assemblies include a primary assembly (Pim), an alternate assembly94

(Alt), and two haploid assemblies that include haplotype 1 (Hap1) and haplotype 2 (Hap2). The primary assembly is a more95

contiguous pseudo-haplotype assembly with long alternating stretches of phased blocks that capture both the homozygous96

regions and a single copy of the heterozygous alleles. Hap1 and Hap2 are phased assemblies that represent the entire diploid97

genome, consisting of both parental haplotypes. We used the haplotype-resolved assembler hifiasm (v.0.16.1)42 in regular98

mode (i.e., without Hi-C data) with default parameters to build a contig-level primary and alternate assemblies with clean99

PacBio HiFi reads. Furthermore, a combination of HiFi and PE Hi-C reads was used in hifiasm to generate a set of two100

haplotype-resolved, phased contig-level (haplotig) assemblies (i.e., hifiasm Hi-C mode). With purge_dups (v1.2.6)43, we then101

identified and removed contigs corresponding to haplotypic duplications, false duplications, sequence overlaps, and repeats. To102

construct chromosomes-level phased assemblies, Hi-C PE data were aligned to the purged contigs using a slightly modified103

Arima Genomics mapping pipeline44. SALSA2 (v2.3)45 was used to perform chromosomes scaffolding in three iterations.104

Using the phasing information of the haplotype-specific HiFi reads, we generated a set of two haploid assemblies following105

the workflow described in Garg et al. (2021)37. In brief, all genomic reads generated in this study (Figure 1) were aligned to the106

unpolished primary assembly generated in hifiasm regular mode, using minimap2 (v2.2.24)42 and BWA-MEM (v0.7.17)46 for107

long and short reads, respectively. We then used HiFi alignments to call heterozygous SNPs using NanoCaller (v.3.0.0)47. With108

WhatsHap (v1.4)48, we phased heterozygous SNPs utilizing inherent phasing information of HiFi, Hi-C, ONT, and Illumina109

alignments. For each genotype, we extracted haplotype-specific HiFi long reads, which were then assembled independently110

with hifiasm regular mode (Figure 1a). High-quality chromosome-scale phased assemblies including Hap1 and Hap2 were111

then built using Ragtag (v2.1.0)49. Lastly, the mitogenome was assembled using the mitoHiFi (v2.2)50 workflow. To check112

for the presence of putative contaminations, contigs were searched against all Refseq microbial genomes using Kraken251.113

In addition, a megaBLAST search against non-animals chromosome-level assemblies from RefSeq was performed requiring114

e-value ≤ 10−5, and sequence identity ≥ 98%. To fill unresolved gaps between contigs in scaffolds, we applied LR_Gapcloser52
115

with clean HiFi reads. The Hi-C contact maps were visually inspected after polishing and iterative gap-filling to detect potential116

assembly errors. A few obvious misplacements and orientations of large contigs were identified and manually corrected.117

Genome assembly quality assessment118

Suitable assembly quality metrics were used to assess the overall completeness and accuracy of the A. catfish genome assemblies.119

Benchmarking Universal Single-copy Orthologs (BUSCO) (v5)53 with the actinopterygii dataset and mapping RNA-Seq data120

from the same species to genome assemblies were conducted to assess gene completeness. The k-mer completeness, phasing121

accuracy, and heterozygosity of the two haplotype assemblies were evaluated by Merqury (v1.3)54. For each assembly, the122

mapping statistics of the raw NGS reads, including Illumina, Hi-C, ONT, and HiFi, were calculated. In terms of completeness,123

phasing accuracy, and contiguity, the haplotype-resolved assembly with HiFi + Hi-C outperformed all other approaches. Unless124

otherwise stated, we used this assembly in the various subsequent analyses in this study.125

Identification of the putative sex-specific haplotype126

To identify the putative paternal haplotype in our assemblies, the full-length nucleotide sequences of two previously identified127

and validated male-specific DNA markers (Accession numbers: CgaY1: AF332597; CgaY2: AF332598) were obtained from128

GenBank29, 55. Both sequences, 2.6 kb (CgaY1) and 458 bp (CgaY2) in length, were BLASTed against Hap1, Hap2, and Prim129

assemblies, requiring stringent mapping criteria (identity >98%; queryCoverage >98%).130

Repeats annotation131

Assemblies were annotated independently to avoid a skewed comparison. The methods described here were used to annotate132

genes and repeats in both haplotypes and primary assemblies. RepeatModeler (v2.0.3)56 was used to analyze and predict repeat133

sequences, as well as dependencies such as TRF, RECON, and RepeatScout. Using MITE Tracker57, we identified miniature134
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inverted-repeat transposable elements (MITEs). GenomeTools58 and LTR_Retriever (v2.9.0)59 were used to analyze full-length135

LTRs. Furthermore, we retrieved all teleost-specific transposable elements (TEs) from FishTEDB60, a curated database of TEs136

identified in complete fish genomes. We used cd-hit (v4.8.1)61 to cluster repeat elements with identities greater than 98%.137

Repeatmasker (v4.1.3 )62 was used to mask the genome with the final custom non-redundant set of repeats. Utilizing the138

telomere identification toolkit (tidk)63, we scanned C. gariepinus genome for terminal telomeric repeats (5′-TTAGGG-3′)n with139

a minimum length of 270 bp (n = 45) in 25 kb windows of chromosomal termini. To be termed ’terminal telomeric repeats’, we140

required the motif (T TAGGG/CCCTAA)n to exhibit the highest density per 25 kb in the terminal 25 kb windows compared to141

internal 25 kb windows. All non-terminal telomeric repeats are referred to as internal or interstitial telomeric sequences (ITS).142

Genes annotation143

Protein-coding genes were annotated in C. gariepinus genome using ab initio, homology-based, and transcriptome-based144

prediction methods. For homology-based prediction, we obtained high-quality protein sequences from UniProt, which were145

combined with homologous protein sequences from nine closely related catfish species (Supplement Table 2). To map these146

homologous protein sequences to the African catfish genome, we used TBLASTN with an e-value cutoff of 1e-10. We only147

kept the highest-scoring alignments with a minimum identity score of more than 80%. The top-scoring proteins were then148

mapped to the assemblies to predict putative gene models using Exonerate (v2.4.0)64. The transcript-based gene prediction149

was carried out using RNA-Seq data from a conspecific Clarias gariepinus individual with available RNA-Seq reads in the150

Sequence Read Archive (SRA) (BioProject-Accession: PRJNA487132). The quality filtered reads were mapped to our A.151

catfish assemblies using HISAT2 (v2.2.1)65 to detect splice junctions, and StringTie2 (v2.2.0)66 was then used to assemble152

transcripts into gene models.153

Augustus (v3.4.0)67, Genscan68, GeneMark-EP69, and GlimmerHMM70 were used for ab initio gene prediction, along154

with RNA-seq transcript evidence. We used RNA-Seq alignments to train Augustus and GlimmerHMM. In GeneMark-EP and155

Genscan, we used the default settings. We integrated the genes model prediction from the three methods using the funannotate156

pipeline (v1.8.13)71 to build a consensus, non-redundant gene set. Finally, the resulting gene set was filtered to remove genes157

with no start or stop codon, an in-frame stop codon, or a coding sequence (CDS) shorter than 180 nucleotides (nt). Genes158

with a high similarity (>90%, e-value < 1e-10) to transposable elements were also removed from the final coding genes set.159

Several classes of non-coding RNA (ncRNA) genes have also been predicted. tRNAscan-SE72 with eukaryote parameters160

was used to predict transfer RNAs (tRNAs). RNAmmer (v2.1)73 was used to identify eukaryotic ribosomal RNA, and the161

miRDeep2 pipeline74 was used to predict putative microRNAs based on homology to eukaryotic mature miRNA sequences in162

the miRBASE database75.163

Functional annotation of protein-coding genes164

The functional annotation of protein-coding genes was achieved by using BLAST to align predicted protein sequences to165

RefSeq non-redundant proteins (NR) and nucleotides (NT), and UniProtKB/Swiss-Prot databases. Eggnog-mapper (v2.1.9)76
166

and Interproscan (v5.56-89.0)77 were used to query BLAST top hits (query_coverage > 60%, identity_score > 80%) to obtain167

Gene Ontology (GO) annotations and gene names via ortholog transfer.168

Orthologs and phylogenetics analyses169

The annotated genome C. gariepinus allowed us to understand its evolution and estimate divergence time within catfish species.170

We downloaded protein sequences from NCBI of 14 catfish species from six lineages, including Clariidae (five species),171

Ictaluridae (two species), Siluridae (one species), Pangasiidae (three species), Bagridae (two species), and Sisoridae (one172

species). Supplement Table 2 contains extensive meta-information on these species. Throughout this analysis, two Cyprinidae173

species were used as outgroups: the goldfish (Carassius auratus) and the common carp (Cyprinus carpio).174

Gene families from the 14 catfish including outgroup species were identified using the OrthoFinder pipeline with default175

settings, excepted that the diamond_more_sensitive flag was set in alignment parameters. In brief, an all-vs. all BLASTP176

comparison with an e-value threshold of 1× 10−10 was performed with all proteins and then genes were clustered into177

orthogroups using the MCL algorithm. The coding sequences of the single-copy orthogroups were aligned with mafft and178

concatenated into a super gene for each species. The rooted species tree and gene trees were inferred using single-copy179

orthologs. The MEGA1178 program for Linux was used to estimate the divergence times among the species using rapid180

relaxed-clock methods79 and molecular clock data for calibration constraints obtained from the TimeTree database80 between181

the black bullhead (Ameiurus melas) and the goonch (Bagarius yarrell).182

Gene families evolutionary analysis183

The Computational Analysis of Gene Family Evolution (CAFE) analysis was performed with default parameters to estimate the184

contraction and expansion of gene families for the 14 catfish species mentioned above. In brief, the time-calibrated ultrametric185

species tree and orthologous gene families were sent to CAFE (v5)81, and significant (p− value < 0.05) size variance of gene186
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family expansions and contractions were identified using 1000 random samples, and deviated branches were determined using187

the Viterbi algorithm implemented in CAFE with a branch-specific p-value less than 0.05. A custom bash script was used188

to identify significant species-specific gene gain or loss in gene families. Finally, we used the KOBAS-i tool82 to perform189

functional enrichment analyses and to identify pathways and GO terms significantly associated with gene families expansion in190

the airbreathing catfishes examined in this study.191

Positive selection analyses192

We used the PosiGene pipeline83 to scan genome-wide positive selection among the aforementioned catfishes, detect selective193

signatures and understand their role in the adaptive mechanisms of amphibious airbreathing catfishes (Clariidae). Positive194

selection in the Clariidae branch was scanned using branch-site tests based on one-to-one single-copy orthologs. The yellow195

catfish (Tachysurus fulvidraco) served as an anchor species, while the black bullhead and goonch served as outgroups. The196

false discovery rate (FDR) threshold for significantly positively selected genes was set less than 0.05.197

Gene duplication events analysis198

We examined ten catfish with chromosomal-level genome assembly to identify different types of gene duplication events that199

could have shaped their evolution. We identified gene pairs derived from whole-genome (WGD), tandem (TD), proximal200

(PD), transposed (TRD), or dispersed (DSD) duplications using the workflow described by Qiao et al (2019)84 and the201

DupGen_finder pipeline (https://github.com/qiao-xin/DupGen_finder). For each duplicate gene pair, we202

calculated the synonymous (Ks) and non-synonymous (Ka) nucleotide substitution rates between the two paralogs using the203

calculate_Ka_Ks_pipeline84, 85.204

Results205

Whole genome sequencing206

Sequencing and assembly of teleosts genomes is particularly difficult due to inherent heterozygozity, retained ohnologs, and high207

repeat content. In this study, we used a stepwise data integration and assembly validation approach with four complementary208

NGS technologies to generate a T2T and haplotype-resolved assembly of the African catfish. We sequenced tissues from a209

male C. gariepinus specimen (Figure 1b) using Illumina PE reads (∼82×), PacBio’s HiFi reads (∼118×), Oxford nanopore210

reads (∼80×), and Hi-C library sequencing data (∼24×) (Figure 1a, Supplement Table 1).211

To conduct genome survey analysis, we used 120 Gb high-quality HiFi data. The k-mer analysis (k = 21) revealed an212

estimated genome size of ∼980 Mbp, a relatively high heterozygosity rate of 2.12%, and the expected repetitive sequences213

accounted for approximately 46% of the entire genome (Figure 1c-d). The k-mer spectra histogram illustrates the high214

heterozygosity between both haplotypes, with homozygous regions consisting mostly of 2-copy k-mers and heterozygous215

regions consisting mostly of 1-copy k-mers, as expected from a diploid genome (Figure 1c).216

The C. gariepinus genome was de novo assembled using three methods: the standard HiFi-only mode, HiFi+Hi-C mode,217

and reads partitioning using SNPs phasing information from HiFi, Illunima PE, Hi-C and ONT sequencing data. Except for the218

HiFi-only mode, which produced a partially phased assembly consisting of a collapsed primary assembly and an incomplete219

and fragmented alternate assembly, we benchmarked the contiguity and phasing accuracy of haplotigs from both HiFi+Hi-C220

and reads partitioning approaches. Although there was only a slight difference in assembly contiguity and structural accuracy221

between the two methods, the assembly obtained with HiFi+Hi-C reached a slightly better accuracy (Supplement Table 3).222

Here, we present the HiFi+Hi-C assembly, which has been extensively validated and used as a reference assembly for the223

various analyses performed throughout this study.224

Haplotype-phased T2T chromosome-scale assembly of the African catfish genome225

Following QC filtering and duplicates removal, the initial phased contig-level assembly yielded 58, 142, and 212 sequences,226

with contigs N50 values of 33.71 Mb, 32.12 Mb, and 19.53 Mb for the Primary, Haplotype-1, and Haplotype-2, respectively.227

As confirmed later by scaffolding with Hi-C data, more than half (n = 34) of the 58 primary contigs represented already entire228

chromosomes end-to-end, or full-length chromosome arms. After polishing and quality improvement, enhanced fully phased229

chromosome-scale assemblies were obtained by scaffolding contigs into 28 chromosomes and filling most of the gaps. The230

chromosomes in the Primary assembly (Prim) were sorted and numbered in order of decreasing physical size. Synteny mapping231

to Prim was used to number chromosomes of Haplotype-1 (Hap1) and Haplotype-2 (Hap2). The chromosome sizes range from232

52 Mbp (chr1) to 21 Mbp (chr28), with a median length of 32.3 Mbp. It is possible that the high heterozygosity rate (>2%) of233

the African catfish genome has facilitated this successful haplotype separation, as it has previously been shown that higher234

heterozygosity rate aids efficient genome unzipping54.235

Approximately 99% of the assembled genome is spanned by the 28 chromosomes of the Primary assembly, which have236

no gaps, whereas Hap1 and Hap2 contained only 0.01% and 1.44% unresolved nucleotides (gaps), respectively, mostly in237
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repeat-rich genomic regions. Hi-C analysis identified four chimeric contigs, which were manually examined and corrected. The238

final haplotype-resolved assembly size for Prim, Hap1 and Hap2 is 969.72 Mb, 972.60 Mb, and 954.24 Mb, respectively. Only239

Hap2 dramatically increased the N50 metric from 19 Mb to more than 33 Mb at the scaffold-level (Table 1). Chromosome-wide240

analysis of telemoric repeats captured the terminal and tandemly repeated motif (T TAGGG/CCCTAA)n at both chromosomal241

termini (first and last 25 kbp window) in 21 of 28 C. gariepinus chromosomes (Figure 2a). Terminal telomeric repeats captured242

in the first and last 25 kbp windows range in length from 300 bp to 14 kbp, with an average length of 4.5 kbp (Supplement243

Table 4). Extending the search window to 1 Mbp did not result in significantly larger copy number of terminal telomeric244

repeat. Terminal 25-kbp windows had significantly (p.adjust < 0.01) larger telomere sizes and densities per kbp than terminal245

1 Mbp windows (Figure 2b-c). This result suggests that the terminal 25 kbp windows captured the majority of full-length246

telomeric repeats in our A. catfish chromosomes assembly, which is consistent with previous findings indicating that the length247

of telomeric DNA in fish ranges from 2 to 25 kb86–88. We also identified a few internal telomeric sequences with high copy248

number (n > 200). These interstitial or pericentromeric telomeric sequences (ITS) have been evidenced as relics of genome249

rearrangements in some vertebrates species (Figure 2a).250

Validation of the male-specific marker CgaY1 (AF332598) on Hap1251

CgaY1 (AF332598)29, a previously identified male-specific marker in C. gariepinus, was mapped to only one chromosome252

in Haplotype-1 and Primary assemblies (identity > 99.14; query Coverage > 96.5; e-value = 0). We found no significant hits253

on Haplotype-2. CgaY1 is on chromosome 24 at position chr24:20208252-20208717 (Prim) and chr24:20319406-20319871254

(Hap1). To confirm the absence of this male-specific marker on Hap2, we extracted its flaking sequence (2kb upstream and255

downstream) and aligned it to chromosome 24 in both the Hap2 and Prim assemblies. We found a single (> 95%) match on256

Prim but none on Hap2. Although we cannot conclusively determine the Y/W chromosome from this data, we assume that257

haplotype-1 assembly corresponds most likely to the male-specific haplotype. The Genbank accession numbers for the Primary,258

Haplotype-1, and Haplotype-2 assemblies are GCA_024256425.1, GCA_024256435.1, and GCA_024256465.1, respectively.259

Genome structural and functional annotation260

Integrating ab initio predictions, proteins, and RNA-Seq alignments, we independently annotated the primary assembly and261

both haploid assemblies. In the collapsed diploid assembly, a total of 25,655 protein-coding gene models were predicted. Hap1262

and Hap2 yielded slightly lower number of predicted genes, with 23,577 and 24,223, respectively (Table 1). Approximately263

200 genes predicted in Prim were completely missing from Hap1 and Hap2 assemblies. The primary assembly consistently264

resulted in a better functional annotation, which is to be expected given that the diploid assembly includes both haplotypes and265

maps a more complete representation of the genome structure. Overall, 87.80% of the 73,455 high-quality proteins across266

the primary assembly and both haplotypes were assigned a function in at least one of the functional databases searched either267

through sequence homology or orthologs mapping. (Table 1).268

Repetitive sequences made up half (49.94%) of the C. gariepinus genome, which roughly corresponded to the estimated269

repeat content based on k-mers analysis. This relatively high repeat content in the African catfish genome is comparable270

to that found in other catfishes, including Clarias magur (43.72%)35, Clarias macrocephalus (38.28%)89, Pangasianodon271

hypophthalmus (42.10%)90 and Hemibagrus wyckioides (40.12%)91. Still, this is significantly higher than in Clarias batrachus272

(30.30%)34, which has a smaller genome size (821.85 Mb). Interspersed repeats are the most abundant class of repetitive273

elements (46%). Retroelements and DNA transposons accounted for only 12 and 6 percent of the repeatome, respectively274

(Supplement Table 5). The distribution of genes and repeats across the chromosomes followed the typical distribution275

in vertebrate genomes, with higher gene densities in GC-rich regions and lower gene densities in repeat-rich distal and276

pericentromeric regions (Figure 3).277

Furthermore, we annotated 6,403 full-length ribosomal RNA, 154 microRNA, and 13,536 transfer RNA throughout the278

African catfish genome. Remarkably, 96% (6150/6406) of the predicted 5S rRNA genes were all found in a single cluster on a279

2-Mbp region on both chromosome 4 (n = 2455) and chromosome 13 (n = 3725). Similarly, 84% (21/25) of the predicted 18S280

rRNA genes were clustered within the first 500 kbp upstream in the terminal telomeric region of chromosome 27 (Supplement281

Figure 1). This result is consistent with earlier findings25 in which 5S rDNA was hybridized on a single site on two C.282

gariepinus chromosomes and 18S on just one site on a submetacentric (sm) chromosome (Supplement Figure 1). The283

ribosomal 18S DNA probe did, in fact, hybridize with the sub-telomeric/telomeric region of a medium-sized sm chromosomal284

pair in C. gariepinus, which most likely corresponds to the 500 kb telomeric region on chromosome 27 in this study. The 5S285

rDNA sequences were identified as a single hotspot in two subtelomeric/acrocentric (st/a) chromososme pairs in C. gariepinus,286

which is most likely the 2 Mbp large 5S rRNA genes cluster our study evidenced on chromosome 4 and chromosome 13 (in the287

regions 16-18 Mbp) (Supplement Figure 1).288
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Assembly assessment and validation289

We performed various assessments to validate the high-quality and completeness of our haplotype-phased African catfish290

genome assembly, including gene completeness, full-length transcript coverage, read mappability rate, phasing accuracy, and291

genomic k-mer completeness. The BUSCO completeness (99.10%) was comparable between haplotypes and the primary292

assemblies. Since we missed only than than 0.7% of the expected universal orthologs, the gene space spanned by our genome293

assembly is nearly complete (Table 1). Furthermore, approximately 92% of the C. gariepinus transcripts could map on our294

assemblies (> 90% coverage and >90% identity), indicating their high functional completeness. We also mapped genomic reads295

to our assemblies to assess structural accuracy and found that more than 96.69% of raw PE reads were concordantly aligned.296

The alignment rate of ONT, HiFi, and Hi-C reads to the primary assembly was 99.91%, 99.95%, and 100%, respectively. The297

mapping rates to Hap1 and Hap2 were both greater than 99% (Supplement Table 6).298

Merqury was used to validate the assembly qualities by evaluating phasing completeness and accuracy with haplotype-299

specific k-mers. We expected the sets of haplotype-specific k-mers to be completely distinct for a perfectly phased assembly,300

with no mixture of k-mers from both haplotypes. Our data shows that Hap1 and Hap2 are orthogonal with only very few301

haplotype switches and nearly no contamination (Figure 4a). Interestingly, homozygous k-mers between both haplotypes302

were ideally shared in the 2-copy peak. In contrast, a substantial amount of haplotype-specific (heterozygous) k-mers was303

distinct in the 1-copy peak in the spectrum copy number plot (Figure 4b). The imbalance of k-mers specific to each haplotype304

representing heterozygous alleles is most likely due to significant differences in sex chromosome sizes.305

In our haplotype-resolved genome assembly, the phased blocks originating from the wrong haplotype were very small306

and almost entirely absent when plotting them sorted by size (Figure 4c). Moreover, the total phased blocks sizes accounted307

for 97% and 94% of Hap1 and Hap2 assemblies, respectively. Merqury reported N50 phase block sizes of 3.6 Mbp and 5.5308

Mbp with only 0.28% switch error rate when a maximum of 100 consecutive switches were allowed within a 20 kbp window309

((Figure 4d-e). The collapsed diploid assembly (Prim) recovered 98.32% of the k-mers derived from genomic reads, while the310

haploid assemblies (Hap1 and Hap2) recovered 83.67% and 82.82%, respectively, demonstrating a high genome completeness311

Figure 4e). The average base-level accuracy in the Prim assembly was roughly QV42, corresponding to an rate of less than312

0.01%. Hap1 and Hap2 had a slightly lower accuracy than QV40. It should be noted that haplotypes assemblies were not313

polished to avoid introducing more switch errors and biased homozygosity (Figure 4f).314

Overall, our assembly quality metrics point to a gapless, fully phased, and telomere-to-telomere (T2T) assembly of the315

African catfish genome. The majority of these metrics meet or exceed the minimum quality standards44 of the VGP consortium.316

Our reported genome, for example, meets the c.c.P5.Q42.C98 VGP standard, with c.c.Pc.Q60.C10044 being the highest317

standard for finished and gapless T2T vertebrate genomes, such as the recently completed gapless human genome sequence92.318

To the best of our knowledge, this assembly is the first T2T, haplotype-resolved, and the most complete Siluriformes (catfish)319

genome assembly published to date (Supplement Table 2).320

Phylogeny, divergence time and evolutionary history of catfishes321

The comparative phylogenomic analyses performed with OrthoFinder assigned 336,681 (94%) of 390,198 genes to 27,587322

orthogroups shared among catfishes and two outgroup species (common carp and goldfish). A total of 16,281 genes in C.323

gariepinus were found to be orthologous between the 14 catfish species, with 378 of them being single-copy orthologs. The324

alignments of single-copy orthologs were used to infer the species tree and evolutionary divergence time (Figure 5). There325

were 80 orthogroups comprising 840 genes in total unique to all airbreathing catfish species, with 208 genes specific to C.326

gariepinus and spanning 80 orthogroups (Supplement Table 7). The vast majority of C. gariepinus-specific genes were not327

characterized in functional databases. Though, ten genes belong to the actin family, eight to the peptidase C13 family, and328

five to the zinc-finger protein family. According to our estimated phylogenetic tree using protein sequences of all homologous329

single-copy genes, airbreathing catfishes (Clariidae clade) split as a monophyletic group around 98 Mya, which is roughly330

comparable to the divergence time between rodents and humans (96 Mya) (Figure 5).331

The African catfish diverged from clariids last common ancestor (LCA) about 39.3 million years ago, which is consistent332

with the current understanding of the historical and geographical distribution of the Clariids, with Clarias gariepinus being333

the only clariid species (in our study) native to Africa93. In contrast, the other Clarias species are all endemic to Asia. This334

result is line in with the paraphyly hypothesis that was previously put up for the genus Clarias94. Due to biogeography and335

adaptive responses to environmental stressors, the African catfish gradually acquired unique traits and features following the336

split between the African and Asian Clarias95. Our phylogeny analysis suggests that, the Asian Clarias clade underwent its337

first speciation event about 25 Mya, which is consistent with the age of the fossil records available for these species96.338

Comparative gene family evolution of airbreathing catfishes339

The expansion and contraction of gene families can play an important role in the adaptation of catfish and other organisms340

to specific environments by enabling the development and expression of beneficial traits while decreasing the expression341

of less essential ones. Gene expansion and contraction can lead to potentially gain or loss of to phenotypes. To investigate342
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lineage-specific adaptation of Clarias, we used CAFE (Computational Analysis of Gene Family Evolution) to estimate gene343

family expansions and contractions among 27,587 ortholog groups shared by catfishes, including five airbreathing and nine344

non-airbreathing catfihes (Methods).345

We found 1,429 and 2,547 gene families that are significantly expanded or contracted in airbreathing catfish. Gene families346

in Clarias magur had the most gene expansion events (1,330), while gene families in Clarias fuscus exhibited the most347

contraction (1,209) events (Figure 5). We identified 629 novel expanded and 848 contracted gene families in the Clarias348

gariepinus genome. The egalitarian nine homolog gene family (EGLN), the rhodopsin (RHO) gene family, the ferretin (FTH)349

gene family, and the Carboxypeptidase A (CPA) gene family are some examples of expanded gene families in C. garipeinus and350

other Clarias sp. (Figure 6). These gene families were all thought to be involved in the environmental adaptation of Clarias351

magur, a closely related species to C. gariepinus35. The EGLN gene family encodes for prolyl hydroxylase enzymes, which are352

involved in the regulation of hypoxia-inducible factor (HIF). HIF is a protein that plays a key role in the body’s response to low353

oxygen levels, and prolyl hydroxylase enzymes regulate HIF expression. The duplication of the RHO gene has been proposed354

as a mechanism for the adaptation of tetrapods97 and amphibious fishes98–100 to terrestrial environments. The expansion of this355

gene family in Clarias may suggest a critical role in their visual system and light adaptation out of water. Finally, FTH proteins356

have been associated with iron metabolism and are involved in environment-fish-cross-talk101, 102.357

Expanded gene families in Clarias are primarily enriched with ion metal binding, apelin signaling, adrenergic sig-358

naling in cardiomyocytes, and neuroactive ligandreceptor interaction pathways, to name only a few. Nucleotide binding359

(GO:0000166), anatomical structure development (GO:0048856), response to stimulus (GO:0050896), and cytoskeletal motor360

activity (GO:0003774) are some of the significantly overrepresented GO terms associated with expanded gene families in361

these facultative airbreathing freshwater fishes (Supplement Figures 2-4). Overall, gene family expansion in airbreathing362

catfishes is primarily characterized by the expansion of gene families encoding for ion transporters and enzymes involved in363

osmoregulation, metabolism, and energy production. The expansion of these gene families may help airbreathing catfishes cope364

with the challenges of terrestrial life, such as fluctuating oxygen levels and adapting to new energy sources. The expansion of365

many gene families involved in cytoskeletal motor activity and anatomical structure development may cause adaptive changes366

in genes expression to promote the development or modification of specialized anatomical structures, such as gills, labyrinth,367

blood vessels, and muscles, as well as traits required for low-oxygen environments and efficient terrestrial locomotion and368

survival.369

Positive selection in airbreathing Clarias370

The genome-wide screening for positive selection in airbreathing catfish detected nine protein-coding genes under selective pres-371

sure (FDR < 0.05) when compared to non-airbreathing catfishes (Supplement Table 8). For example, the 3-hydroxybutyrate372

dehydrogenase (BDH1), a member of the short-chain dehydrogenases/reductases (SDR) protein family found in airbreathing373

catfishes, accumulated up to 14 conserved non-synonymous amino acid substitutions (sites) across Clarias species but not374

in non-airbreathing catfishes. SDR enzymes are known to be involved in the metabolism of lipids and regulating energy375

balance103, which could be important for airbreathing catfishes to preserve energy balance when they are moving on land.376

Additionally, some SDR enzymes are involved in detoxifying harmful compounds such as pollutants and oxidants in terrestrial377

environments104, which can help airbreathing catfishes survive in these harsh conditions.378

Landscape of gene duplications in catfishes379

Gene duplication is most likely another driver of airbreathing catfish adaptation. This process can result in the evolution of380

new genes and the expansion of gene families, which contribute to the acquisition of evolutionary novelty. Among the 25,655381

coding genes in the African catfish genome, there are 13,809 genes derived from diverse gene duplication events. Based on their382

duplication mode, DupGen_finder (Methods) classified duplicated genes into 5 categories: (i) 496 whole-genome duplicates383

(WGDs, 3.6%), (ii) 1,463 tandem duplicates (TDs, 10.6%), (iii) 572 proximal duplicates (PDs, 4.14%), (iv) 2,970 transposed384

duplicates (TRDs, 21.5%), and (v) 8,308 dispersed duplicates (DSDs, 60.16%) (Figure 7a, Supplement Table 9). We then385

estimated the rates of synonymous and non-synonymous substitutions (Ks and Ka) for these five gene categories, and tested for386

selection pressures including positive and purifying selections.387

The distribution of Ka, Ks, and Ka/Ks among different modes of duplication showed a striking trend, with proximal and388

tandem duplications having qualitatively higher Ka/Ks ratios than other modes. The Ks values for PD- and TD-derived gene389

pairs were relatively low (Figure 7b-d). This finding implies that recent TDs and PDs in the African catfish have undergone390

faster sequence divergence than other paralogs. Whole-genome duplications, on the other hand, are more conserved, with391

much lower Ka/Ks ratios. The three distinct peaks in the Ks distribution graph of WGD-derived duplicates reflect the three392

rounds of teleost-specific WGD, with no evidence of catfish-specific WGD events. All retained WGDs (100%) and nearly all393

TRDs (99.93%) paralogs were subjected to purifying selection. Positive selection was significantly detected in PDs (1.34%)394

and TDs (0.6%) duplicate gene pairs. Gene duplications were also analyzed in non-airbreathing catfish species. A similar395

trend was observed in Ka/Ks ratios distribution as well as in the relative proportions of duplicated genes under positive396
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or purifying selection in each paralogs’ category. In particular, purifying selection was observed in 100% and 99.59% of397

WGD-derived duplicate genes in the channel catfish (Ictalurus punctatus, IPUN) and in the shark catfish (Pangasianodon398

hypophthalmus, PHYP), respectively (Figure 7e-f). These insights suggest that most duplicated genes were either eliminated or399

diverged very fast after the most recent whole genome duplication events in catfishes. The generally demonstrated hypothesis400

of rediploidization substantiates this assumption: the genome tends to return to a stable diploid state by losing one copy of each401

duplicated gene through non-functionalization and subfunctionalization105, 106.402

We performed GO enrichment analysis of tandem and proximal duplicates to determine whether the significant selective403

pressures observed in TDs and PDs drive the evolution of these genes towards biological functions that support the terrestrial404

adaptation of Clarias species. Tandem and proximal-derived duplicates exhibited divergent functional roles although they405

shared several enriched GO terms involved in immune response, cytoskeletal motor activity, nervous system, and oxygen406

binding, which are critical for Clarias innate immunity, locomotion and adaptation on land (Supplement file 2: Annotation of407

dupliated genes). In particular, the tandem duplicated mucin-13-like (MUC13) genes are not only under positive selection, but408

the MUC gene family has also significantly expanded in all five Clarias species included in our analysis (Figure 7g), suggesting409

a beneficial or adaptive role for these catfish species.410

In summary, these results show that TDs and PDs are substantially involved in the evolutionary mechanisms for adaptation411

and diversification of airbreathing catfish, as opposed to WGDs and TRDs, which are subjected to strong purifying selection,412

preventing them from neofunctionalization and subfunctionalization.413

Discussion414

Here, we report the first high-quality chromosome-level, haplotype-resolved T2T assembly of the African catfish genome,415

an economically and ecologically important airbreathing catfish. Leveraging long reads and Hi-C data, we were able to416

reconstruct the sequences of both haplotypes with total sizes of 954.24 and 972.60 Mbp. Our fully-phased genome assembly417

exhibited superior quality metrics based on several indicators such as BUSCO, Merqury, phasing accuracy and functional418

completeness (Figure 4, Table 1). Haplotype-resolved assemblies provide numerous benefits for genomic-based studies of419

evolution, conservation, and commercial and disease traits. The reported haplotype-resolved genome sequence and annotation420

provide a powerful tool for enhanced aquaculture and breeding of C. gariepinus. It will, for example, aid in sex determination421

and allow for a better understanding of structural variations, tissue-and haplotype-specific expression. Furthermore, these422

genomic resources enable more specific investigations of genomic features such as segmental duplications, hybridization, and423

structural variant hotspots in this and other closely related catfishes36, 40, 107, 108.424

Most C. gariepinus chromosomes assembly are gapless and resolved from T2T (Figure 2). Telomeres are the protective425

structures that are found at the ends of chromosomes. In teleosts, they consist of a tandemly repeated DNA hexamer (T TAGGG)n426

and proteins that help to protect the ends of the chromosomes from damage and from being recognized as broken DNA. Our427

study did not only detect both terminal telomeres in 21 of 28 chromosomes, but also several ITS, mainly located at the428

pericentromeric regions and along the nucleolar organizer regions (NORs). The absence of high-density terminal telomeric429

signals at both ends of some chromosomes (n = 7) is not necessary due to poor assembly of these regions. The telomeres might430

be lost or shortened gradually on these chromosomes. In fact, the C. garipinus genome consists of nine subtelomeric/acrocentric431

(st/a) chromosomes. It has been established that st/a chromosomes have a very short p-arm and that the length of their telomeres432

is often shorter than that of other chromosome types109. We observed that a few chromosomes without terminal telomeres433

at both ends exhibit a high copy number of ITS. This suggests that the terminal scaffold is probably misoriented. Though,434

these ITS may also indicate relics of ancient chromosomal rearrangements in C. gariepinus, including centric and tandem435

chromosome fusion110, 111.436

Gold standards haplotype-resolved assemblies of commercial fish, such as the one presented here, can aid in the design of437

optimal haplotypes for intra-or interspecies hybridization by avoiding the combination of known incompatibility of alleles.438

Furthermore, the availability of the two haplotypes of the African catfish is a turning point for modern genomics-assisted439

breeding strategies for this species. It will ultimately aid in the development of an A. catfish breeding program. Collectively,440

our T2T phased assemblies of the A. catfish provide the first and most complete view of its genome to date. It paves the way441

for a variety of applications, including research into the structure and function of telomeres and their role in chromosomal442

rearrangements and evolution, the loss or fusion of genetic material, and the diversity of karyotypes and sex-chromosome443

systems in Claridae.444

Terrestrial adaptation refers to the process by which aquatic species acquire the ability to live or survive on land for445

an extended period of time. This process is usually driven by genetic, physiological, and behavioural changes triggered446

by gene family dynamics, gene duplication events, or positive selection112, 113. This evolution can involve many processes447

and mechanisms, such as changes in body structure, including respiratory and circulatory systems, and sensory and nervous448

systems98, 114. Although they acquire certain benefits from the two worlds, bimodal (aerial and aquatic) airbreathing fish449

face several challenges when adapting to semi-terrestrial habitats. Hypoxic tension, moisture and humidity loss, prolonged450
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exposure to UV radiation, high-temperature fluctuation, locomotion, and exposure to a different spectrum of pathogens, are451

few typical challenges that are believed to be the driving forces in the genome remodelling and evolution of aquatic species452

in these habitats115–117. Gene family dynamics (expansion and contraction) is one of the genome remodelling mechanisms453

that reflect the evolution of organisms’ adaptations to new environments118. Our findings show that significantly expanded454

gene families in Clarias sp. are primarily involved in osmoregulation, anatomical structure development, cytoskeletal motor455

activity, and stimuli responses. The fluctuating temperature on land will have an impact on osmoregulation and homeostasis456

via biological processes that regulate ion channels, stress response activation, and osmolyte synthesis35, 119. Related gene457

families such as short-chain dehydrogenases/reductases (SDR), Kv channel interacting proteins (KCNIP), Ferritin (FTH) and458

hypoxia-inducible factor (EGLN) were significantly associated with these biological processes. We predicted these genes to459

play a crucial role in the evolution of clariids to semi-terrestrial habitats. For example, FTH plays a role in osmoregulation,460

particularly in response to changing temperature and salinity120. FTH also regulates ion channels and transporters involved461

in osmoregulation and cells’ adaptation to hypoxic stress121–123. In addition, the G-protein-coupled receptor (GPCR) gene462

family is expanded in the A. catfish. The adaptation to terrestrial environments requires fish to maintain proper calcium levels463

in their bodies as they move between aquatic and terrestrial habitats. Maintaining appropriate calcium levels is crucial for fish464

on land because calcium is involved in various physiological processes, including muscle contraction, nerve signalling, skeletal465

development and respiration. These processes may result in structural changes such as a well-developed fish musculature, that466

facilitate efficient support and movement on land3.467

Besides gene family expansion, gene duplication is another process that is believed to trigger the acquisition of evolutionary468

novelty. It has been reported that gene duplication contribute to the emergence of amphibious traits, which enhance the terrestrial469

transition of aquatic species124. We have characterized recent gene duplication events in selected catfishes, including A. catfish470

and other non-airbreathing catfishes. Our findings indicated that TD and PD duplicates exhibited a faster rate of evolution471

than other modes of duplication such as WGD, DSD, and TRD. Several TD and OD derived duplicates in C. gariepinus were472

found to be specifically under positive selection in clariids, implying their importance in the differential adaptation of these473

fish species to new habitats and lifestyles. Gene duplication contributes to gene dosage by increasing the number of genes474

(gene expansion) that are useful in the adaptation continuum in response to new niches and environments125, 126. We found475

evidence of positive selection in BDH1 (3-hydroxybutyrate dehydrogenase), a member of the SDR protein family. With up476

to 14 accumulated non-synonymous substitutions, this tandemly duplicated gene showed an accelerated rate of evolution in477

airbreathing catfishes. Previous studies on Clarias magur127 and in terrestrial mammals128 have found that few members of the478

SDR gene family, including BDH1, were significantly upregulated in response to low oxygen levels, stressing their potential479

role in adapting and surviving in hypoxic environments. This is consistent with the hypothesis that airbreathing in fish evolved480

as a response to aquatic hypoxia129.481

Overall, these findings suggest that the transition of airbreathing catfish to terrestrial life may rely on a combination of482

genetic mechanisms such as gene duplication, gene expansion, and positive selection associated with biological processes483

that shape environmental adaptation. However, it is important to note that the specific roles of the above mentioned genes484

and biological process in the adaptation of airbreathing catfish remain hypothetical. Though, these predictions lay a solid485

basis for future studies and further functional validation to fully understand the specific mechanisms that have facilitated the486

development of additional capabilities for ecological flexibility of airbreathing catfishes. In order to fully understand the drivers487

underlying the adaptation and evolution of this group of fish to terrestrial or semi-terrestrial habitats, extensive research would488

be needed to establish causal relationships. Undoubtedly this haplotype-resolved assembly, along with the characterization489

of potential genes and genetic changes/mechanisms involved in environmental adaption, establish the fundamentals for such490

future studies. These may include studying gene expression patterns in these fish in response to different environmental factors491

and performing functional validation of these genes’ function. It could also be insightful to compare the genes and pathways492

known to be involved in the early evolution and adaption of terrestrial vertebrates to the panel of genes and biological processes493

hypothesized in this study.494

Conclusions495

We have deciphered and annotated the African catfish (C. gariepinus) genome, an ecologically and commercially important496

freshwater airbreathing catfish. This T2T chromosome-level assembly, along with both resolved haplotypes, represent a497

significant advance in our understanding of C. gariepinus genomic makeup. Comparative genomics analysis with related498

catfishes provided critical insights into the evolutionary mechanisms underlying airbreathing catfish’s unique terrestrial499

adaptation, including genes and pathways associated with hypoxia tolerance, locomotion, skeletal muscle development,500

respiration, osmoregulation, and antioxidant defense. However, to fully uncover the genomic underpinning of these catfishes’501

transition from aquatic to terrestrial habitats, further research is needed to validate the specific mechanisms by which these502

unique genetic changes might have contributed to amphibious traits development in Claridae. Furthermore, this work has503

demonstrated the utility of HiFi data in achieving fully haplotype-resolved genome assemblies. Overall, this study provides a504
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valuable resource for future studies on the genomic mechanisms underlying catfishes’ resilience and adaptive mechanisms to505

adverse ecological conditions. The insights gained could also be leveraged to improve aquaculture practices and enhance the506

sustainability of catfish farming.507
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Table 1. Summary of assembly metric of the Clarias gariepinus genome, including the
primary (Prim), haplotype-1 (Hap1) and haplotype-2 (Hap2).

Category Quality Metrics Primary Haplotype-1 Haplotype-2
Total asembly size (Mb) 969.72 972.60 954.24
GC content 39.0 38.98 38.93General
Repeat content (%) 49.94 50.07 49.29
No. Contigs 58 142 212
Contig N50 (Mb) 33.71 32.12 19.53
No. Scaffolds 47 119 98
Scaffolds N50 (Mb) 33.71 34.0 33.18
Scaffold L50 12 12 12
Number of gaps 0 180 115
% Unplaced sequences (Mbp) 1.01 (12.69) 1.70 (16.5) 2.63 (25.12)

Continuity

% Gapless length 100 99.99 98.54
Base accuracy QV 41.86 38.14 39.39

k-mer completeness (%) 98.32 83.61 81.93
Concondantly mapped PE reads (%) 96.75 96.69 97.81
BUSCO duplicate (%) 1.42 1.47 1.31
BUSCO missing (%) 0.7 1.26 1.58

Structural accuracy

Reliably phased blocks (%) — 96.87 94.00
Proteing coding genes 25,655 23,577 24,223
BUSCO complete (%) 99.10 97.95 97.76
NR annotation (%) 87.80 86.17 87.00
Swissprot/Uniprot annotation (%) 68.23 63.12 64.45

Functional

completeness
Transcripts alignment rate (%) 95.52 94.61 94.09
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Figure 1. Haplotype-resolved genome assembly workflow of Clarias gariepinus and genome survey analysis. a The
workflow developed to build a haplotype-resolved genome assembly of the the African catfish. Generated genomic sequencing
data include Illumina paired-end 150, PacBio’s long high-fidelity (HiFi) reads, Oxford Nanopore (ONT) ultra long reads and
Hi-C data. A primary assembly and two haplotype-resolved assemblies were obtained using three assembly modes that
combined different data types; b The African catfish specimen whose genome was sequenced in this study with the
chromosome number for male individuals: A diploid genome with 18 metacentric (m), 20 submetacentric (sm), and 18
subtelomeric/acrocentric (st/a) chromosomes. NF is the fundamental number indicating the total number of chromosome arms;
c K-mer frequency distribution of the diploid genome of the African catfish and its size estimate; d Preliminary genome
characteristics estimated using k-mers analysis.

18/24

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.23.533919doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.23.533919


0

500

1000

1500

2000

2500

Terminal Internal

Chromosomal loci

(T
TA

G
G

G
/C

C
C

TA
A

) n

Window 1Mbp 25Kbp

C
op

y 
nu

m
be

r 
of

 th
e 

re
pe

at
 m

ot
if 

b.a.

****

0

25

50

75

Terminal Internal

Chromosomal loci

C
ov

er
ag

e 
of

 th
e 

re
pe

at
 m

ot
if

(T
TA

G
G

/C
C

C
TA

A
) n

 p
er

 K
bp

Window 1Mbp 25Kbp

c.

****

****

P
ri

m
ar

y 
as

se
m

b
ly

's
 c

h
ro

m
o

so
m

es

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

****

Repeat density

(TTAGGG/CCCTAA)n>200 loci

0 10 20 30 40 50

Chromosome size (Mbp)
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Figure 3. Genomic features of Clarias gariepinus. From the outer to the inner circle: a Length of the 28 diploid
chromosomes (Mb); b Chromosome-wide gene density per non-overlapping 500 kb windows; c Repeats density in
non-overlapping 500 kb windows; d GC content; e Distribution of heterozygous SNPs density; f Chromosomal loci of
hypoxia-responsive (HR) genes predicted in the C. gariepinus genome; g The inner curve lines indicate syntenic gene pairs
identified between C. gariepinus chromosomes.
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Figure 6. Examples of Clarias-specific expanded gene families. Maximum likelihood gene tree showing the phylogenetic
relationship of four gene families significantly expanded only in Clariidae (airbreathing catfishes), but not in non-airbreathing
catfishes. Species of the same taxonomic family have the same shape and color. Bootstrap values are indicated with black,
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Figure 7. Landscape of gene duplication and positive selection in the A. catfish. a TThe number of gene pairs derived
from various duplication modes in representative catfish genomes. DSD dispersed duplication, PD proximal duplication, TD
tandem duplication, TRD transposed duplication, and WGD whole-genome duplication are the different types of duplication. It
also shows a schematic representation of the phylogeny of the various catfish species used in the study; b,c Evolution of gene
pairs duplicated by different modes in A. catfish. Ka distributions (b) and Ks distributions (c); d The Ka/Ks ratio distributions
of gene pairs derived from different modes of duplication in the African catfish; e Percentage of genes under positive selection
in three catfish lineages; f Percentage of genes under puryfing selection in three catfish lineages. CGAR: The African catfish
(Clarias gariepinus), IPUN: The channel catfish , (Ictalurus punctatus), PHYP: shark catfish (Pangasius hypophthalmus); g
Duplicated genes in C. gariepinus that are positively selected in all clariids examined in this study.
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