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Abstract Online social networking communities may exhibit highly
complex and adaptive collective behaviors. Since emotions play such
an important role in human decision making, how online networks
modulate human collective mood states has become a matter of
considerable interest. In spite of the increasing societal importance
of online social networks, it is unknown whether assortative mixing
of psychological states takes place in situations where social ties
are mediated solely by online networking services in the absence
of physical contact. Here, we show that the general happiness,
or subjective well-being (SWB), of Twitter users, as measured from a
6-month record of their individual tweets, is indeed assortative across
the Twitter social network. Our results imply that online social
networks may be equally subject to the social mechanisms that cause
assortative mixing in real social networks and that such assortative
mixing takes place at the level of SWB. Given the increasing
prevalence of online social networks, their propensity to connect
users with similar levels of SWB may be an important factor in how
positive and negative sentiments are maintained and spread through
human society. Future research may focus on how event-specific
mood states can propagate and influence user behavior in “real life.”

1 Introduction

Bird flocking and fish schooling are typical and well-studied examples of how large communities of
relatively simple individuals can exhibit highly complex and adaptive behaviors at the collective level.
Agent-based models of such complex collective behaviors generally rest on the tenets that they are
an emergent property of the local interactions between the individuals in a particular community and
that these local interactions are governed by relatively simple sets of individual rules [14, 16, 19, 33,
39, 43].

An analogous situation may exist in the domain of social networking environments, where a
plethora of complex and adaptive collective phenomena may emerge from the networked interac-
tions between large groups of individuals who each perform relatively simple or minor tasks, such as
answering questions, reporting the news, or updating their personal status. The recent role of social
networking environments in social unrest [32] and large-scale disasters [38] illustrates that the col-
lective behavior of online crowds may be of a complex psychosocial nature and exhibit some of the
key features of complex adaptive systems [18], or in fact life [3].
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Emotions can play an important role in human decision making, and can thus shape collective phe-
nomena that emerge in social networking environments. In fact, several studies have mentioned the
emergence of collective online mood states that are highly adaptive and reactive to external events
[5, 7, 24, 37, 41], and that in some cases have been shown to contain predictive information with regard
to various socioeconomic indicators [6, 17]. A better understanding of how online social networking
environments modulate human mood states is thus crucial to the development of models of how com-
plex patterns of human collective behavior are shaped by their online interactions [26, 27, 47].

As the old adage goes, “Birds of a feather flock together.” In network theory, this effect is known
as homophily [29] or assortative mixing [34, 35, 36], and it occurs in a network when it disproportionately
favors connections between vertices with similar characteristics. The opposite trend, that of favoring
connections between nodes with different characteristics, is known as disassortative mixing. For exam-
ple, a friendship network [29] may be highly assortative if it connects individuals who are at similar
locations or have similar musical tastes. A heterosexual network [44], on the other hand, will be
highly disassortative, since partners will tend to be of the opposite sex. However, few networks
are entirely assortative or disassortative: Most will exhibit both properties to some degree depending
on the particular characteristic.

Social networks can exhibit significant degrees of assortative mixing with respect to a variety of
demographic attributes such as sex, race, age, religion, and education, including behavioral and
health attributes [8, 11, 22, 31] and even genotypes [15]. Surprisingly, this also seems to be the case
for certain psychological states such as loneliness [29]. Individuals preferentially share relations with
individuals who report equally elevated levels of loneliness, and this homophilic tendency increases
over time.

Although it is clear that psychological states affect behavior both online [10] and offline, the mecha-
nisms through which such states exhibit assortativity and contagion across social bonds are not yet fully
understood. However, two different processes are conceivable: that individuals seek homophilic social
relations to share subjective experiences (homophilic attachment), or that the emotional state of an
individual can influence that of the people with which he or she interacts (contagion) [42].

While both possibilities are clearly in play in real-world social interactions, it is not clear whether
or not they are present in online social systems, which do not necessarily emerge from physical con-
tact or in-person communication [21, 28]. The Twitter1 microblogging service is a case in point.
Twitter users can post brief personal updates of less than 140 characters at any time. These updates,
known as tweets, are distributed to a limited group of followers, namely, other Twitter users who have
elected to follow the particular userʼs tweets [23]. These follower relations are of a fundamentally
different nature from their off-line counterparts [25]; they are not necessarily reciprocated (i.e., di-
rected), nor modulated and are mostly focused on the exchange of information. In effect, a Twitter
follower relation simply represents the fact that one individual is interested in the content produced
by another, without the requirement that the interest be reciprocated. As a simple example, consider
the case of celebrities that attract the attention and interest of a large number of people without
reciprocating it. This arrangement results in a social network in the form of a directed, unweighted
graph, which is quite different from naturally occurring social networks in which friendship ties are
generally symmetric and vary in strength. As a consequence, one would expect homophily and as-
sortative mixing of emotional states to be absent or fundamentally altered in online social network-
ing environments, in particular those with asymmetric, unweighted connections such as Twitter.

However, in spite of the expectation that online environments fundamentally alter social inter-
action, recent results indicate that personal preferences do indeed exhibit homophilic properties in
online environments such as BlogCatalog and Last.fm [4]. Tantalizingly, this has also been found the
case for sentiment [49] in LiveJournal.2

Here we investigate whether and to what degree the general happiness, or subjective well-being
(SWB) [12], of individual Twitter users exhibits homophilic properties or assortative mixing. Several

2 LiveJournal: http://www.livejournal.com/
1 Twitter, http://www.twitter.com

J. Bollen et al. Happiness Is Assortative in Online Social Networks

238 Artificial Life Volume 17, Number 3



previous works have focused on aggregate [2, 5, 6, 13, 30] measurements of mood or emotion in entire
communities or systems, but we analyze individual mood states in an online social network. On the basis
of a collection of 129 million tweets, we track the SWB levels of 102,009 Twitter users over a 6-month
period from the content of their tweets. Each is rated on an emotional scale using a standard sentiment
analysis tool. A subsequent assortativity analysis of the Twitter social network then reveals its degree of
SWB homophily or assortative mixing. Our results indicate that the overall SWB of Twitter users is
positive, and highly assortative. In other words, Twitter users are preferentially connected to those with
whom they share the same level of general happiness or SWB.

2 Data and Methods

We collected a large set of Tweets submitted to Twitter in the period from November 28, 2008 to
May 2009. The data set consisted of 129 million tweets submitted by several million Twitter users.
Each Tweet contained a unique identifier, date-time of submission (GMT+0), submission type, and
textual content, among other information. Some examples are shown below in Table 1.

We complemented this cross-section sample of Twitter activity by retrieving the complete history of
over 4 million users, as well as the identity of all of their followers. The final Twitter follower network
contained 4,844,430 users (including followers of our users for which we did not collect timeline
information). Armed with the social connections and activity of these users, we were able to measure
the way in which the emotional content of each user varied in time and how it spread across links.

2.1 Creating a Twitter Friend Network
The follower network we collected consists of a directed graph G = (V, E ), in which V is the set of
all 4,844,430 Twitter users in our collection, and E is the set of edges E ⊆ V2, in which each direc-
tional edge v 2 E consist of a pair (vi, vj) that indicates that user vi follows user vj. By design, the
Twitter social network is based on follower relations, which are unidirectional and very easy to es-
tablish. As such, they form a very minimal representation of possible interaction between those who
follow and those who are being followed. In fact, it is quite common for a user vi to follow a user vj,
but for vj not to follow vi back. Thus, follower relations are not necessarily indicative of any personal
relation that might in itself preclude the establishment of assortative mixing and homophily. We
therefore distinguish between mere Twitter followers and actual friends [20, 46] by applying the follow-
ing transformations to the Twitter follower graph G:

• First, we create a network of Twitter friend relations from the follower relations in G by
only retaining edges (vi , vj) 2 E for which we can find a reciprocal relation (vj , vi). Thus the set
of friend connections is E′ = {(vi, vj) : ∃(vj, vi) 2 E}; that is, two users only share a
friendship tie if they are both following each other (Figure 1).

• Second, to exclude occasional users who are not truly involved in the Twitter social
network, we only retained those users in our Twitter friend network who posted more than
one tweet per day on average over the course of 6 months.

Table 1. Examples of tweet data collected from November 28, 2008 to May 2009 for 4,844,430 users.

ID Date-time Type Text

1 2008-11-28 02:35:48 Web Getting ready for Black Friday. Sleeping out at Circuit City or
Walmart not sure which. So cold out.

2 2008-11-28 02:35:48 Web @dane I didn't know I had an uncle named Bob :-P I am going
to be checking out the new Flip sometime soon
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• Third, we assign a weight wi, j to each edge (vi , vj), which serves as an indication of the
degree to which users vi and vj have similar sets of friends:

wi ; j ¼
kCi ∩ Cjk

kCi ∪ Cjk
ð1Þ

where Ci denotes the neighborhood of friends surrounding user vi. Note that this approach
does not take into account the number of tweets exchanged between two users, but simply
the degree to which two Twitter users have similar friends (Figure 2).

• Finally, we extracted the largest Connected Component (GCC) from the resulting network,
thereby obtaining a Twitter friend network of 102,009 users and 2,361,547 edges.

The reduction in nodes from our original Twitter follower network (4,844,430) to the resulting
friend network (102,009) indicates that in Twitter only a small fraction of users are involved in the
type of reciprocated follower type that we consider indicative of actual social relationships. However,
once this reduction has occurred, we find that the largest connected component of the friend net-
work, GCC, retains 97.9% of users in the original Twitter friend network. This indicates a high degree
of connectivity across all users in the final friend graph. The diameter of GCC was found to be only
14, indicating that in spite of the low density, two friends are separated by at most 14 steps. Other
relevant network parameters for GCC are provided in Table 2 (Figure 3).

Examining the edge weight distribution as shown in Figure 4, we observe a strongly skewed frequency
distribution, indicating verymany connections inGCCwith low edgeweights (wi, j<0.3) and few connections
with very high edge weights (wi, j > 0.6). The degree frequency distribution reveals a similar pattern, with
most users connected to only a few users and a small minority of users connected to thousands of users.

Figure 1. Converting the original follower network of Twitter into a friend network by only taking into account reciprocal
connections.

Figure 2. Example of Twitter friend similarity as calculated according to Equation 1. Users vi and vj share one friend out of
three total. Therefore their connection is assigned a weight wi;j ¼

1
3 .
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2.2 User-Level Measurements of Subjective Well-Being
We cannot directly interrogate Twitter users about their SWB [12], but we can infer usersʼ SWB from
the aggregate emotional content of their tweets over a period of 6 months. To do so we apply the
following procedure.

Table 2. Network parameters for largest connected component of Twitter friend network.

Network parameter Value

Nodes 102,009 users

Edges 2,361,547 edges

Density 0.000454

Diameter 14

Average degree 46.300

Average clustering coefficient 0.262

Figure 3. A subgraph of 3,587 users extracted from the generated Twitter social network (102,009 users and 2,361,547
edges), illustrating the high degree of clustering in the resulting network at the level of their friend relations (see Table 2).
Clusters result from network connections. SWB is not visualized in this graph.
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To reduce noise, we only included Twitter users in GCC that posted at least one tweet per day.
This guaranteed at least 180 tweets for every individual user from which to assess their SWB. We
then analyzed the emotional content of each userʼs 6-month record of tweets, using OpinionFinder
(OF),3 which is a publicly available software package for sentiment analysis that can be applied
to determine sentence-level subjectivity [48]. In other words, we use OF to identify the emotional
polarity (positive or negative) of each tweet in a userʼs record. OF has been successfully used to
analyze the emotional content of large collections of tweets [37] by using its lexicon to determine
the dominance of positive or negative tweets on a given day. Here we select both positive and
negative words that are marked as either “weak” and “strong” from the OF sentiment lexicon,
resulting in a list of 2,718 positive and 4,912 negative words. For each tweet in an individual userʼs
6-month record, we count the numbers of negative and positive terms from the OF lexicon that it
contains, and increase the individual userʼs score of either negative or positive tweets by 1 for each
occurrence.

The subjective well-being SðuÞ of user u is then defined as the fractional difference between the
number of tweets that contain positive OF terms and those that contain negative terms:

SðuÞ ¼
NpðuÞ − NnðuÞ

NpðuÞ þNnðuÞ

where Np(u) andNn(u) represent, respectively, the numbers of positive and negative tweets for user u.
A number of examples are shown in Table 3.

2.3 Defining SWB Assortativity
Having calculated the SWB of each user, we can now proceed to measure the degree to which the
SWBs of connected users are correlated. Intuitively, a person can be emotionally influenced by their
friends in two complementary ways: Influence can come from interacting with specific individuals to
which one may attribute more importance [40]. We refer to this first type as pairwise node assortativity,
since it assesses the degree to which every two pairwise-connected users have similar SWB values.
Another possibility is that each individual is influenced by the overall SWB of all of the people he or
she interacts with. We refer to this second type as neighborhood assortativity.

Figure 4. Twitter friend network edge weight and degree distributions.

3 http://www.cs.pitt.edu/mpqa/opinionfinderrelease/
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Figure 5 illustrates this distinction; it shows the actual neighborhood friend network of an individual in
GCC who has very high SWB values. Nodes are colored according to their SWB values, with red indicat-
ing high SWB values, blue indicating low SWB values, and white indicating neutral or zero SWB values.
A particular individual with high SWB is connected to a local network of equally high-SWB individuals
(red). The individual can thus be said to be neighborhood assortative within this cluster. However, the
individual is also connected to several individuals with low SWB values (blue). For each individual con-
nection this is a case of pairwise disassortativity. The cluster of low-SWB individuals, on the other hand,
exhibits neighborhood assortativity for low SWB values, and the network in its entirety, including both
low- and high-SWB clusters, exhibits strong SWB assortativity; nodes with similar low or high SWB
values tend to be connected (blue and red clusters).

We formally define pairwise SWB assortativity as follows: For each edge (vi, vj) in the GCC of our
social network, we extract the corresponding two SWB values, one for the source node and one for the
target node. These values are then aggregated into two vectors, SðSÞ and SðTÞ for sources and targets,
respectively. The value of the pairwise assortativity, denoted AP (GCC), is then given by the Pearson
correlation coefficient U of these two vectors:

APðGCCÞ ≡ UðSðSÞ;SðTÞÞ ¼
1

n−1

X

i

SðSiÞ − 〈SðSÞ〉

jðSðSÞÞ

� �

SðTiÞ − 〈SðT Þ〉

jðSðTÞÞ

� �� �

ð2Þ

The pairwise assortativity is thus defined in the interval [−1, +1], with −1 indicating perfect disassorta-
tivity, 0 a lack of any assortativity, and +1 perfect assortativity.

The neighborhood assortativity of GCC with regard to SWB, denoted AN (GCC), can be calculated as
follows. For each user u 2 V, we define its neighborhood:

nðuÞ ¼ f∀v : ∃ðu; vÞ 2 Eg ð3Þ

Table 3. Examples of tweets posted by users with very high and very low SWB values.

Tweets submitted by high-SWB users (>0.5)

So…nothing quite feels like a good shower, shave and haircut…love it

My beautiful friend. i love you sweet smile and your amazing soul

i am very happy. People in Chicago loved my conference. Love you, my sweet friends

@anonymous thanks for your follow I am following you back, great group amazing people

Tweets submitted by low-SWB users (<0.0)

She doesn't deserve the tears but i cry them anyway

I'm sick and my body decides to attack my face and make me break out!! WTF :(

I think my headphones are electrocuting me.

My mom almost killed me this morning. I don't know how much longer i can be here.
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so that n(u), or nu, represents the set of users that user u is connected to. We then calculate an
average SWB value for n(v), which we denote by

SðnuÞ ¼
1

knðuÞk

X

v2nðuÞ

SðvÞ ð4Þ

We can now define two vectors, one for the SWB values of an individual user and one for the
average SWB value of his or her neighborhood, denoted by SðUÞ and SðnÞ. The neighborhood
assortativity of the network GCC with regard to SWB, denoted A

n
, is then given by the correlation

function U computed over these two vectors as follows:

AKðGCCÞ ≡ U SðUÞ;SðnÞ
� �

¼
1

n−1

X

u

SðuÞ − 〈SðUÞ〉

jðSðUÞÞ

� �

SðnuÞ − 〈SðnÞ〉

j SðnÞ
� �

0

@

1

A

2

4

3

5 ð5Þ

with the sum to be taken over every user u. Then AK (GCC) represents the correlation between the
SWB values of user vi and the mean SWB values of his or her friends. This is similar to the pairwise
version, A

ni
in the range [−1, +1], where −1 indicates perfect neighborhood disassortativity, and

where +1 indicates perfect neighborhood assortativity.

3 Results and Discussion

3.1 SWB Distribution
In Figure 6 we plot the probability distribution of SWB values across all Twitter users in our sample.
The distribution seems bimodal with two peaks: one in the range [−0.1, 0.1] and another in the range
[0.2, 0.4]. Excluding users whose SWB= 0 (due to a lack of emotional content in their Tweets), we find
that a majority of Twitter users in our sample have positive SWB values in a rather narrow range [0.1, 0.4],

Figure 5. Neighborhood network of a very high-SWB individual (center ). Blue, white, and red node colors correspond
respectively to low, neutral, and high SWB values.
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with a peak at SWB= 0.16. This is confirmed by the cumulative distribution shown at the bottom left of
Figure 6; 50% of users have SWB values ≤0.1, and 95% of users have SWB values ≤0.285.

3.2 Pairwise and Neighborhood SWB Assortativity
In Equation 2 we defined the pairwise SWB as the correlation between the SWB values of connected
users in our Twitter friend networks, whereas Equation 5 defined neighborhood assortativity as the
correlation between the SWB values of individual users and the mean SWB values of their neighbors
in the graph GCC. The assortativity values were found to be

4 0.443★★★ (N = 2,062,714 edges) for the
pairwise SWB assortativity, and 0.689★★★ (N = 102,009) for the neighborhood assortativity. Both
correlations are highly statistically significant ( p < .001, indicated by ★★★) for the sample sizes.

The scatterplots on the left of Figure 7 and Figure 8 show the distribution of SWB values5 across
the sample of all edges and nodes in GCC and confirm the observed correlation between the SWB
values of connected or neighboring users in GCC.

The pairwise assortativity scatterplot (Figure 7, left) indicates a significant amount of scatter,
commensurate with the lower correlation value of 0.443★★★, which is nevertheless statistically highly
significant. The observed relation is not obviously linear. The distribution of values is affected by the
bimodal distribution of SWB values as shown in Figure 6; large numbers of observations cluster at
SWB values within the ranges [−0.05, 0.05] and [0.1, 0.3]. The clustering pattern of Figure 7, however,
indicates that users with SWB values in a particular range are preferentially connected to users within
that same range, thereby confirming the observed positive pairwise SWB assortativity.

The neighborhood assortativity scatterplot (Figure 8, left) indicates a similar effect, but here the
clustering of users is less pronounced and the amount of scatter is lower than that observed for the
pairwise assortativity scatterplot, commensurate with the higher neighborhood assortativity value of
0.689★★★. Although less pronounced, the bimodal distribution of SWB values is apparent and leads
to a clustering of user and neighborhood SWB values in the ranges [−0.05, 0.05] and [0.1, 0.3]. Never-
theless it is again the case that users with SWB values in either range are most likely to be connected to
users or neighborhoods with SWB values in the same range. The distribution of user and neighborhood
SWB value is furthermore in line with a positive linear relationship.

3.3 Edge Weight and SWB Assortativity
Pairwise SWB assortativity and neighborhood SWB assortativity diverge significantly (0.443★★★ <
0.689★★★). The former is based on the pairwise comparison of SWB values across all connections

Figure 6. Probability density (%) and cumulative distribution (%) of subjective well-being (SWB) for our sample of
Twitter users.

4 The sample sizes for pairwise assortativity and neighborhood assortativity are expressed in edges and nodes, respectively, since the
former correlation is calculated on the basis of a sample of edges that connect pairs of nodes, whereas the latter is calculated on the
basis of a sample of nodes and their neighborhoods.

5 Some banding occurs in the scatterplots, possibly due to common ratios of integers, for example 0.5, factoring into the SWB
calculation.
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in GCC, many of which may be weak or irrelevant connections from the perspective of indicating
actual friend ties. To measure the effect of edge weights, we calculate pairwise and neighborhood
assortativity values under different edge thresholds, that is, we only take into account edges in GCC

whose weight as defined in Equation 1 is wi, j ≥ ∊, where ∊ 2 [0, 1] represents a given edge threshold.
The consequent assortativity calculations will therefore more strongly reflect only those connections
between users that are indicative of stronger friend relations (higher wi, j). In other words, we are
verifying whether stronger user relations lead to higher or lower assortativity.

The results of the calculation of pairwise and neighborhood SWB assortativity under various edge
thresholds are shown in Table 4 and visualized in Figure 9. Values for ∊ > 0.8 are excluded, since the
correlation coefficients were not statistically significant ( p < .1). The graphs in Figure 9 overlay the
different pairwise and neighborhood SWB assortativity values along with the number of remaining
edges and nodes under the given edge threshold, that is, the sample size for the given assortativity
calculation.

Both pairwise and neighborhood assortativity values increase as the edge threshold ∊ increases,
but not in a linear manner. Pairwise SWB assortativity values increase sharply as ∊ increases from 0
to 0.10 and afterward stabilize at a value of approximately 0.750, which is maintained in the interval
∊ 2 [0.15, 0.85]. In other words, removing edges with wi, j < 0.1 increases pairwise SWB assortativity
considerably, but the removal of edges with higher wi, j values has little or no additional effect. We
observe that ∊ = 0.1 reduces the number of edges by a fifth—namely, from 2,062,714 to 479,401—
indicating that a large number of edges are characterized by low similarity values, which when in-
cluded lead to lower pairwise SWB assortativity.

The neighborhood SWB assortativity increases with higher ∊ values, but in a less pronounced
manner. At ∊ = 0 we find a neighborhood SWB assortativity value of 0.689, which increases to
approximately 0.760 for ∊ 2 [0.10, 0.90]. We observe significant declines in the number of nodes
that remain under increasing ∊ values, as was the case for pairwise assortativity.

Figure 7. Scatterplot of SWB values for user connected in Twitter friend network. Left: All edges included. SWB assortativity=
0.443★★★, N = 2,062,714 edges. Right: Scatterplot includes edges wi, j ≥ 0.1, SWB assortativity = 0.712★★★, N = 479,401.

Figure 8. Scatterplot of SWB values for users (x) and their neighborhood ( y) connected in Twitter friend network. Left:
All edges included. SWB assortativity = 0.689★★★, N = 102,009 nodes. Right: Scatterplot includes edges wi, j ≥ 0.1, SWB
assortativity = 0.746★★★, N = 59,952.
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At a value of ∊ = 0.1 we find the highest pairwise and neighborhood SWB assortativity values
combined with the largest sample sizes, excluding the absence of threshold (i.e., ∊= 0). We therefore
generated new scatterplots of SWB values for pairwise and neighborhood SWB assortativity at ∊ =
0.1, as shown in Figure 7 (right) and Figure 8 (right). The scatterplots reflect higher assortativity
values; we find less scatter, a stronger positive and linear relation between SWB value of connected
users, and a less pronounced clustering caused by the bimodal distribution of SWB values.

3.4 Discussion
The above outlined results indicate the following.

First, the Twitter users in our sample exhibit moderate to high SWB, with very few being char-
acterized by very low SWB values. One may thus conclude that they are a moderately happy group.

Table 4. Pairwise and neighborhood subjective well-being assortativity values A(SWB) versus edge threshold ∊. ★★★:
p < .001.

Edge threshold ∊

Pairwise Neighborhood

A(SWB) N edges A(SWB) N nodes

0.0 0.443★★★ 2,062,714 0.689★★★ 102,009

0.10 0.712★★★ 479,401 0.746★★★ 59,952

0.20 0.754★★★ 128,261 0.769★★★ 33,693

0.30 0.755★★★ 36,255 0.780★★★ 16,334

0.40 0.743★★★ 10,355 0.779★★★ 7,699

0.50 0.757★★★ 3,255 0.781★★★ 3,793

0.60 0.798★★★ 1,375 0.805★★★ 1,439

0.70 0.755★★★ 689 0.816★★★ 502

0.80 0.434★★★ 301 0.768★★★ 149

0.90 — — — —

Figure 9. Subjective well-being assortativity and log(number of edges) versus edge weight thresholds for pairwise and
neighborhood assortativity.
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This observation is most likely an underestimation given the relative preponderance of negative terms
in the OF lexicon. However, the SWB distribution is bimodal, showing a group of Twitter users with
zero to very low SWB values (i.e., those that are on the average somewhat happy) and another group
with more pronounced, higher SWB values. This may result from sociocultural differences in how
emotions and mood are expressed on Twitter. Some users may express their emotional states infre-
quently, whereas others are more prone to do so.

Second, we find statistically significant levels of pairwise and neighborhood SWB assortativity,
indicating that Twitter users either prefer the company of users with similar SWB values (assumption)
or converge on their friendsʼ SWB values (contagion). The relation between user SWB values is not
linear and is biased by the bimodal distribution of SWB values, users being clustered in two groups
with equally low or equally high SWB values. In other words, low-SWB users are connected to low-
SWB users, and high-SWB users are connected to high-SWB users. Again, this may confirm the
notion that distinct sociocultural factors affect the expression of emotion and mood on Twitter,
and cause users to cluster according to their degree of expressiveness as well as SWB.

The results of measuring pairwise and neighborhood assortativity under different edge weights
indicate that we find a stronger and more significant relation between the SWB values of connected
users when we only take into account connections with higher weights wi, j, that is, those that are
deemed more reliable indicators of actual friend ties. A possible mechanism to explain this effect
might be that usersʼ neighborhoods contain individuals that they are indeed strongly assortative with,
and whose SWB values affect mean neighborhood SWB values and thus neighborhood assortativity
overall, whereas they are drowned out in the process of making pairwise comparisons between all
individuals that a user is connected to in the process of calculating pairwise SWB assortativity. For
example, users might generally have 10 neighbors, but be generally highly SWB assortative with only
one friend. In the calculation of pairwise assortativity, this leads to 10 pairwise comparisons between
SWB values, only one of which contributes to the overall observed pairwise SWB assortativity in the
graph. However, the neighborhood assortativity relies on a mean SWB value calculated for the entire
neighborhood, including the single highly assortative individual. The latter thus influences the aver-
age SWB value for the entire neighborhood, causing an increased neighborhood assortativity value.

The greatest improvement in assortativity values indeed occurs for pairwise SWB assortativity,
which is most affected by the preponderance of weakly weighted connections, since it is defined at
the level of all individual user-to-user connections. Both pairwise and neighborhood SWB assorta-
tivity converge on a value of approximately 0.750, which indicates a significant degree of SWB assor-
tativity in our Twitter friend graph GCC.

4 Conclusion

Recent findings show that assortative mixing can occur in a variety of social contexts and personal
attributes. Here we show that subjective well-being is equally assortative in the Twitter social network,
that is, the SWB of individuals that have reciprocal Twitter follower links are strongly related. Happy
users tend to connect to happy users, whereas unhappy users tend to be predominantly connected
to unhappy users. The convergence of pairwise and neighborhood assortativity under increasing edge
weight thresholds indicates that users tend to be most assortative with a limited number of individuals
that they have strong social ties to and that weaker ties fulfill a different social role, possibly as out-
lined by Centola and Macy [9].

We do not not address the social or cognitive mechanisms that cause the observed SWB assor-
tativity. Two different mechanisms may be at work [1]. The first is based on the notion of homophily,
that is, users and connections tend to preferentially connect to users with similar SWB values. As an
online social network grows, new connections are thus biased toward connecting individuals with
similar SWB values. This process may be modeled in terms of preferential attachment theory. The sec-
ond mechanism that may cause SWB assortativity is that of mood contagion, namely, that connected
users converge to similar SWB values over time. In other words, being connected to unhappy users
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can make one unhappier, and vice versa. The latter suggests that users may control their own level of
SWB by choosing the right set of online friends and influence their friendsʼ SWB by creating strong
social ties and hoping for some form of SWB contagion to take place. A third possibility is that users
assess or express their SWB relative to that of their friends. As a userʼs neighborhood becomes hap-
pier, this may affect their own expression of SWB-related sentiment. This phenomenon may occur at
the level of entire cultures, which may be more prone or less prone to open expressions of individual
sentiment.

At this point our research does not offer any information on which of these mechanisms causes
the observed SWB assortativity, or in fact whether both may be occurring. Future research will there-
fore focus on analyzing user connections and SWB values over time, and relating these changes in the
framework of homophily and preferential attachment [45]. Twitter has now become a major interna-
tional phenomenon, and this investigation must therefore include linguistic, cultural, and geographic
factors.
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