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Abstract—In this paper we provide the first evidence that daily
happiness of individuals can be automatically recognized using an
extensive set of indicators obtained from the mobile phone usage
data (call log, sms and Bluetooth proximity data) and “back-
ground noise” indicators coming from the weather factor and
personality traits. Our final machine learning model, based on
the Random Forest classifier, obtains an accuracy score of 80.81%
for a 3-class daily happiness recognition problem. Moreover, we
identify and discuss the indicators, which have strong predictive
power in the source and the feature spaces, discuss different
approaches, machine learning models and provide an insight for
future research.

I. INTRODUCTION

The pursuit of happiness is a right that every American
possesses according to the Declaration of Independence. To
be happy is one of the major goals, if not the ultimate goal,
of human beings. During the last decades, the consequences
and benefits of happiness have also come into the focus of
research. In a recent review, Lyubomirsky et al. [18] showed
that happy people are successful in many life domains and that
this success is at least partly due to their happiness. Happy
people are more social, altruistic, active, like themselves and
others. They have strong bodies and immune systems. For this
reason, there was an explosion of research on happiness and
subjective well-being. Several studies dealt with the problem
of how to measure happiness. Generally, researchers relied
on self-reports which are sometimes coupled with informant
data, interviews by trained clinicians, unobtrusive observations
of nonverbal expressions and physiological assessments (see
[10]). Respondents typically are asked to rate their levels of
positive and negative affect over a particular period of time or
to make a judgment of their overall life quality.

The development of the mobile phones technology created
a new pervasive way. Digital applications started to replace
paper-based questionnaires to collect happiness data. For ex-
ample, “Track your Happiness” [1] is a web based platform for
tracking and visualizing user’s happiness. The main weakness
of this tool is that the final measuring method is still based on
self-reported surveys.

Instead, our paper proposes to use smartphone usage pat-
terns, including social interactions, to recognize users’ daily
happiness automatically. Nowadays, smartphones allow for
unobtrusive and cost-effective access to previously inaccessible
sources of data related to daily social behavior [17], [29].

Recently, the social psychologist Geoffrey Miller wrote
”The Smartphone Psychology Manifesto” in which he argues
that the smartphone should be taken seriously as new research
tools for psychology. In his opinion, these tools could revolu-
tionize all fields of psychology and other behavioral sciences
making these disciplines more powerful, sophisticated, inter-
national, applicable and grounded in real-world behavior [22].

In this work we formulated the automatic recognition of
daily happiness as a 3-class classification problem based on
information concerning: a) peoples activity which is detected
through their smartphones; b) weather conditions; c) personal-
ity traits. The first information type is represented by features
extracted from call and sms logs and from Bluetooth hits,
able to capture (i) amount of call, sms and proximity; (ii)
diversity of call, sms, and proximity; and (iii) regularity in user
behaviors. Concerning weather conditions, both commonsense
and the literature suggest that they can have an important
impact on daily happiness states. Finally, individual disposi-
tions (as captured by personality traits) are expected to interact
with situational and contextual aspects (including weather
conditions) to play a role in determining daily happiness states.

Classification experiments are performed through a variety
of approaches, including support vector machines, neural net-
works and random forests, yielding the accuracy up to 80.81%.

II. RELATED WORK

The automatic recognition of happiness using smartphones
has not been the main target of the research community
so far. Some previous works tried to estimate only a few
possible determinants of happiness. BeWell [16] monitors three
daily behaviors (activity, social interaction, and sleep patterns),
describes the effect of these behaviors on well-being, and
provides some feedback to the user.

More recently, Muaremi et al. [25] proposed to use smart-
phones for automatic measurement of individual and social
happiness level.

Other previous works tried to focus on mood assessment
using mobile phones. Moturu, et al. [24] explored the as-
sociations between sleep, mood and sociability by analyzing
mobile-phone-generated social communication data and self-
reported mood and sleep data. Rachuri et al. [26] proposed
EmotionSense, a novel system for social psychology study of
user emotion based on mobile phones.



A significant work is the one conducted this year by
LiKamWa et al. [27], in which the authors reported a smart-
phone software system, called “MoodScope”, able to infer the
mood of its user, based on how the smartphone is used.

III. DATASET: LIVING LABORATORY

We exploited a dataset, called ”Friends and Family”,
capturing more than eight complete weeks of 117 subjects
living in a married graduate student residency of a major
US university, collected between 21 February, 2010 and 16
July, 2011. During this period, each participant was equipped
with an Android-based cellular phone incorporating a sensing
software explicitly designed for collecting mobile data. This
software runs in a passive manner and does not interfere with
the normal usage of a phone [2]. The collected smartphone
activity data consists of: i) call logs, ii) sms logs, iii) proximity
data, obtained by scanning near-by phones and other Bluetooth
devices every five minutes, and iii) self-reported surveys about
personality traits (”Big Five”) and daily happiness. Social
interactions were derived from Bluetooth proximity detection
data in a manner similar to those in previous reality mining
studies [11], [20]. In total, the source dataset includes 33497
phone calls, 22587 sms and 1460939 Bluetooth hits.

Ground-truth data, self-perceived daily happiness, was
reported by the participants filling a seven item categorical
scale with mapping: 1 = ”being very unhappy”, 4 = ”being
neither unhappy, nor happy”, and 7 = ”being very happy”.
Most of the people for most of the time described themselves
as having been from moderately to quite happy during the day
(mean = 4.84,median = 5.00, skew = −0.39, kurtosis =

−0.07). The distribution of this scores has a negative skew
– the density is moved to the higher region of happiness
score. The distribution also has negative excess kurtosis which
is called platykurtic distribution, that means that the focus
group reported a specific daily happiness score more often,
than neutral. Within person and between-subject variance
for happiness scores (Fig. 1) show, that within-person daily
happiness variance range is much wider than between-person.
This property shows that within-person emotional state for
each ground-truth class is seen. Following our hypothesis,
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Fig. 1. Within person and between-subject variance

the “background noise data” we used is the personality data
(“Big Five” personality traits score) and generally available
daily weather data. Our hypothesis was supported by several

studies in social psychology [31], [19], [28], [5], [8]. Big
Five personality traits were measured by asking the subjects
to use 1-5 point scale to answer the online version of the
44 questions Big Five questionnaire developed by John et
al. [13]. Daily weather and happiness relation is supported
by [14] and [9] research results. In our experiments we used
the following weather parameters: mean temperature, pressure,
total precipitation, humidity, visibility and wind speed metrics.

IV. FEATURE EXTRACTION

Taking inspirations from previous works on personality
prediction using mobile phone data [6], [23], we derived a
basic set of 25 call and sms features and 9 proximity features.
The extracted features fall into four broad categories: (i)
general phone usage, (ii) diversity, (iii) active behaviors and
(iv) regularity.

General phone usage features capture the total number of
outgoing, incoming and missed calls, the total number of sent
and received sms.

We also extracted the outgoing to incoming calls ra-
tio, missed to (outgoing + incoming) calls ratio and sms
sent/received ratio. Concerning regularity features, we mea-
sured the time elapsed between calls, the time elapsed between
sms exchanges and the time elapsed between call and sms.
More precisely, we consider both the average and variance
of the inter-event time of ones’ call, sms, call+sms. Even
though two users have the same inter-event time for both
call and sms, their mean inter-event times for call+sms can
be different. Diversity measures how evenly an individual’s
activity is distributed among others. In our case, the diversity of
user behavior is addressed by means of three kinds of features:
(i) entropy of contacts, (ii) unique contacts to interactions
ratio and (iii) number of unique contacts. We compute the
diversity features both for calls and sms. In particular, the
entropy of an individual is the ratio between his/her total
number of contacts and the relative frequency at which he/she
interacts with them. The more one interacts equally often with
a large number of contacts the higher the entropy will be.
From the Bluetooth hits collected we filtered the events where
RSSI = 0, assuming this case being the best proxy for close
social proximity in space. RSSI is an 8-bit integer that denotes
whether the received power level is within the Golden Receiver
Power Range (GRPR). The lower and upper thresholds of
GRPR are loosely bound, leaving them to be device specific.
That means that RSSI is merely a relative parameter. The RSSI
parameter is intended to be used for power control purpose.
The receiver sends increase or decrease transmission power
request to the transmitting side depending on whether the
perceived RSSI level. A positive or negative RSSI, measured
in dB, means the received power level is above or below
the GRPR, respectively. A zero implies that it is ideal. From
the filtered Bluetooth proximity data we extracted Bluetooth
proximity features following three broad categories: (i) general
proximity information, (ii) diversity, and (iii) regularity.

For each feature from our basic subset we calculated
mean, median, min, max, quantiles with a linear step of 0.05,
quantiles for the cases of 0.5, 1, 1.5 and 2 standard deviations
from the mean (applying Chebyshev’s inequality), variance and
standard deviation functions. Moreover, to capture the possible



influence of the previous happiness states on the current one
we computed each basic subset of features using backward
moving windows of different size (2, 3, 4 and 5 days). In order
to get bias corrected empirical entropy estimates we applied
Miller-Madow correction for entropy calculation [21], which
is explained in Equation 1.

ĤMM (θ) ≡ −

p
∑

i=1

θML,i log θML,i +
m̂− 1

2N
, (1)

where m̂ is a number of bins with nonzero θ-probability.
The likelihood function is given as the product of probability
density functions P (θ) = f(x1; θ)f(x2; θ) · · · f(xn; θ) for a
random sample X1, · · · , Xn . θML is the maximum likelihood
estimate of θ, which maximizes P (θ).

V. METHODOLOGY AND EXPERIMENTAL RESULTS

We formulated the automatic recognition of daily happiness
as a classification problem with 3 classes (not happy, neutral
and happy). The ground truth labels for classification problem
were set to −1 for ”not happy” class, when the (score < 4),
0 for ”neutral” (score = 4) and 1 for ”happy” daily mood
(score > 4). We separated all the data at random following
the uniform distribution in a training and a control test set in
proportion of 80:20. To let optimization algorithms converge
more efficiently the feature matrix was normalized by each
column to [−1, 1] interval and centered to 0. Then, we trained
a three families of classifiers: (i) Support Vector Machines, (ii)
Neural Networks and (iii) Random Forests.

For support vector machines model [30] we used the
following decision function for each class:

D(x) = sign(

l
∑

i=1

yiαiK(xi, x) + b) (2)

The classification problem was solved using C-classification
algorithm as the optimization problem:

min
α

1

2
α⊤Qα− e⊤α

s.t. 0 ≤ αi ≤ C, i = 1, . . . , l, (3)

y⊤α = 0,

where e is the unity vector, C is the upper bound, Q is a
positive semidefinite matrix with l by l dimensions, Qij ≡
yiyjK(xi, xj) and the kernel: K(xi, xj) ≡ φ(xi)

⊤φ(xj).

Our multi-class classification problem is solved as a one-
versus-all case by a winner-takes-all strategy, in which the
classifier with the highest output function is assigned to the
class. Linear kernel did not provide accurate enough results
thus only Gaussian radial basis [4] kernel results are reported
in the paper.

The second family of statistical models used to solve our
classification problem is based on random forest algorithm.
Random forests is a combination of tree predictors, such that
each tree is dependent on the values of a random vector
sampled independently with the same distribution for all the
classification trees in the forest [3]. The decision boundary is
formed according to the margin function. Given an ensemble
of tree classifiers h1(x), h2(x), ..., hK(x) and if the training

set is drawn at random from the empirical distribution of the
random vector Y,X the margin function is defined as:

mg(X, Y ) = avgkI(hk(X) = Y )−

maxj!=Y avgkI(hk(X) = j),
(4)

where I(·) is the characteristic function. The margin function
measures the distance between the average votes at (X, Y ) for
the right class and the average vote for any other class. For
this model the generalization error function is:

PE∗ = PX,Y (mg(X, Y ) < 0), (5)

where PX,Y is the probability over 〈X, Y 〉 space. For any
event A ⊂ Ω of the feature space the characteristic function
I(·) of A is:

IA(x) =

{

1 ⇐⇒ (x ⊂ A)

0 otherwise

}{

1 ⇐⇒ ∃x

0 otherwise

}

(6)

Random Forests classifiers were trained with a stepwise
increase of the number of trees equal to the upper limit of 211.
Optimal number of trees for model generalization as measured
by mean misclassification rate for 10-fold cross validation
strategy is estimated to be 100.

The third approach for a solution is based on multi-layer
perceptron neural network. In a parametric functional form it
is expressed as:

fθ(x) = S(〈w, x̃〉+ b), (7)

where
x̃ = S(Whiddenx+ bhidden), (8)

with parameters

θ =
{

Whidden,bhidden,w, b
}

, (9)

and the decision function is a sigmoid function

S =
1

1 + e−x
(10)

The happiness recognition problem was solved as the following
optimization problem:

θ̂ = argmin
θ

R̂θ(fθ, Dn), (11)

where the sum of empirical risk and regularization term is
expressed

R̂θ(fθ, Dn) =

n
∑

i=1

L(fθ(x
(i)), t(i)) + λΩ(θ). (12)

Neural network training was performed using classical back-
propagation algorithm. Neural network topology was itera-
tively searched for the best balance between empirical error
minimization and maximum κ metric using 10-fold cross
validation.

In order to select the final approach and the model, we
compared these three families by means of a set of accuracy
and κ metrics. The κ measures pairwise agreement among a
set of functions which are making classification decisions with
correction for an expected chance agreement [7]:

κ =
P (A)− P (E)

1− P (E)
(13)



κ = 0 if there is no agreement more than expected by chance
following the empirical distribution. κ = 1 when there is a
max agreement. κ is a state-of-the-art statistics about how
significantly the classification model is different from chance.
More importantly, it makes the interpretation of what what
the model has learned – being an intuitive task. Also there
is some critique in the literature of this metric, but we found
it highly relevant for our model search and comparison task.
κ statistic has the property of more robust measure than the
simple percent classes agreement measure or the area under
the ROC curve taking into account the agreement occurring
by chance and not equally balanced classes in the training set.

During the learning and model selection process we used
a random sampling with replacement to generate a new set
of data for each fold from the basic training set following
leave-one-out 10-fold cross validation scheme. We adopted this
strategy in order to deal with potential data loss in cases when
calls, sms and Bluetooth proximities existed in the real world
but were not registered in the database.

Given the unbalanced classes of the ground truth daily
happiness labels (that people were more happy than unhappy
during the experiment) we found a solution to prevent data
overfitting by the way we trained the models and searched in
the possible classifier’s space. Our structural risk minimization

as opposed to empirical risk minimization solution, to prevent
the data overfitting, was incorporated by working with a
regularization penalty into the learning process, by balancing
the model’s complexity against its fitting the training data and
by sampling of the model training sets in the way they mimic
the empirical distributions without most probable erroneous
outliers.

κ metrics comparison for each model type using 10-fold
cross validation strategy is provided in Table II. Random Forest
classifier showed an average accuracy for this classification
problem better than the best SVM-based model with radial
basis kernel for 10.09% and better than neural network clas-
sifier for 5.56%. The conservative measure of agreement κ

comparison explains the problem of unbalanced classes for an
SVM classifier. SVM did good only for majority classes. As κ
has a tendency to take the observed categories’ frequencies as
given, which causes the effect of underestimating agreement
for a category that is most commonly used. Neural network
classifier captured relations between the variables in a pretty
stable manner among the unbalanced classes, comparing to
SVM. This best tradeoff between generalization capabilities of
a neural network and high overfitting for a neural network is
still less efficient in comparison to the Random Forest classifier
results.

We found that distribution of the estimated performance
metrics does not vary substantially among each fold, that
means a good generalization despite of possible existence of
heterogeneous data in each fold and the “noise” coming from
the resampling procedure. Given the reason discussed above,
as we trained the models on artifitially generated data from
each fold of the training sample, we have lower accuracy and
κ results for the cross validation results than we get on the
native data.

The final model is based on a Random Forests algorithm
and uses a 111-dimensional feature vector. We identified the

TABLE I. 10-FOLD CV MODEL COMPARISON: ACCURACY

Min. 1st Qu. Median Mean 3rd Qu. Max.

SVM 0.6404 0.6417 0.6434 0.6432 0.6442 0.6462

NeuralNetwork 0.6529 0.6606 0.6718 0.6708 0.6810 0.6865

RandomForest 0.6891 0.7000 0.7093 0.7081 0.7162 0.7247

TABLE II. 10-FOLD CV MODEL COMPARISON: KAPPA

Min. 1st Qu. Median Mean 3rd Qu. Max.

SVM 0.0012 0.0056 0.0133 0.0115 0.0162 0.0226

NeuralNetwork 0.1381 0.1708 0.2055 0.1963 0.2173 0.2570

RandomForest 0.3094 0.3358 0.3565 0.3533 0.3733 0.3950

variables that have more predictive power for the Random
Forest model by calculating mean decrease in Gini index.

This model shows 80.81% accuracy on the training set
and 80.36% accuracy on the test set (Table V). It this table
we provide the final happiness recognition model performance
metrics and statistical estimates comparison. To show general-
ization power of the model, we calculated detailed metrics for
each fold during 10-fold cross validation process.

TABLE III. FINAL CLASSIFIER HAPPINESS RECOGNITION MODEL

CONFUSION MATRIX FOR TRAINING SET

-1 0 1

-1 782 119 75

0 153 1170 145

1 600 903 6448

TABLE IV. FINAL CLASSIFIER HAPPINESS RECOGNITION MODEL

CONFUSION MATRIX FOR TEST SET

-1 0 1

-1 197 30 14

0 34 274 37

1 152 243 1616

The confusion matrices for this model for each training
and test sets are provided in Table III and Table IV. These
matrices show in details that there is a major agreement
between classes. But Table IV shows that there are still a
lot of misclassified samples as “unhappy” (152 out of 2597
samples) which are, in fact, the happy state for the actual class.
243 samples are classified as “neutral” being actually “happy”.
The best result we have for the majority “happy” class (1616
correctly classified). These tables prove us good generalization
capabilities of the model – for each the training and the test
sets we have similar results.

To show our result visually in a simple form, what actually
the final model delivers better then “by chance”, we report the
multi-class area under the ROC curve [32], [12]. The final
model ROC curve plotted for the test subset is provided in
Fig. 2. The multi-class area under the ROC curve (AUC)
= 0.844 means a good reduction of missclassification error
for each class combination [15]. The area between the ROC
curve and the diagonal is, in fact, what our model does better
then “by change”. The area between the ROC curve and the
perpendicular lines going to the upper left corner [1.0, 1.0]
is the measure of what is not explained by our model, what
causes the misclassification error.

VI. DISCUSSION

The present study provides the first evidence that daily
happiness of individuals can be automatically predicted using



TABLE V. PERFORMANCE METRICS

Training set Test set

Accuracy 0.8081 0.8036

Kappa 0.5879 0.5743

AccuracyLower 0.8004 0.7878

AccuracyUpper 0.8156 0.8187

AccuracyNull 0.6415 0.6419

AccuracyPValue 2.139e-303 8.826e-73

McnemarPValue 5.647e-208 1.738e-57

a set of indicators obtained from mobile phone data (call logs,
sms logs and Bluetooth interactions) and additional indicators
related to weather factors and individuals’ personality traits.
Our final model based on a Random Forest classifier using
111-dimensional feature vector obtains an accuracy measure
of 80.81% for a 3-class classification problem.

We found that weather factor and personality traits, em-
ployed as a “filter” on a decision tree in the feature space,
provide much better accuracy, κ and the area under the
ROC curve metrics for the recognition model. But weather or
personality traits data used as a single group of independent
variables does not provide a feasible result.

These results are interesting because the previous studies
in social psychology focus mainly on the associations between
happiness or subjective well-being and Extraversion or Neu-
roticism. Instead, our work shows the important contribution
played also by Conscientiousness, Openness and Agreeable-
ness. Moreover, these results open us the possibility of creating
a multi-step stochastic model in which first we estimate
the personality and then we use the estimated variables as
independent variables for a happiness recognition problem.

Regarding the role played by mobile phone data in predict-
ing daily happiness, it’s interesting to note the significant con-
tribution of the proximity features. Among the top 30 features
used for happiness recognition, 10 features are proximity ones
calculated from the Bluetooth data. In particular, an interesting
predictive role is played by the time intervals for which an id is
seen. Social proximity, measured by Bluetooth interactions, has
strong predictive power for daily happiness recognition based
on median, 0.75, 0.9 and 0.95 quantiles from the distribution of
the time intervals, measured in seconds, for which a Bluletooth
identifier is seen.

Moreover, features capturing the diversity in co-location
interactions are in the top 30 list (e.g. entropy of proximity
contacts). This result seem to confirm previous studies in social
psychology that found associations between people’s happiness
and the richness in terms of the amount and the diversity of
people’s social interactions. For call interactions, we can infer
the role played by general phone usage features such as the
number of incoming calls and the number of outgoing calls.

This result is consistent with previous studies on happiness
showing that happy people are usually more social and have
more interaction and exchange. In addition, a role of the reg-
ularity in call patterns (average and standard deviation values
of the time elapsed between two calls) and active behavior
of an individual (the ratio of calls initiated by the individual)
also play predictive role. The latter indicator could be easily
explained making reference to the standard definition of happy
people as more active people given by social psychologists.

The role of sms interactions is less evident from our

investigation. The only feature related to sms interactions
among the top 30 predictive features is a feature related to
an active behavior of the individual and more specifically is
the latency in replying to a text message that we define as the
median value that people take to answer a text. The predictive
power of the sms data needs further investigation.

Among the limitations of the present study we list the
following: our sample comes from a population living in the
same environment (our subjects were all married graduate
students living in a campus facility of a major US univer-
sity); the non-availability of proximity data concerning the
interaction with people not participating in the data collection,
a fact that is common to many other studies of this type.
The first two problems are at least partially attenuated by the
large variability of the sample in terms of provenance and
cultural background, which can be expected to correspond
to a wide palette of interaction behaviors that efficaciously
counterbalance the effects of living-place homogeneity.

Moreover, the FUNF framework used for collecting this
data did not account for the data loss in cases when calls,
sms and Bluetooth proximities existed in the real world but
were not registered in the database as “NA”. The source data
loss, when the battery is out, was also not registered and was
unpredictable during the data collection. In order to solve
these potential problems, we proposed and used a random
sampling with replacement for each fold in our learning task
thus generating a better set from the training dataset.
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Fig. 2. Final Model ROC curve

VII. CONCLUSION

The goal of our paper is to investigate the feasibility
of automatic recognition of people’s daily happiness from
mobile phone data. To achieve this goal, we formulated the
automatic recognition of daily happiness as a 3-class classifica-
tion problem based on the information concerning: a) peoples
activity, as detected through their smartphones; b) the weather
conditions; c) personality traits. The first information type is
represented by features extracted from call and sms logs and
from Bluetooth hits, able to capture (i) amount of call, sms



and proximity; (ii) diversity of call, sms, and proximity; (iii)
user active behaviors; and (iv) regularity in user behaviors.

Despite the limitations of this study discussed above, we
believe that our results (80.81% for a 3-class classification
problem) have provided compelling evidence that individual
daily happiness can be reliably predicted from smartphone
usage data and from additional indicators related to the weather
factors and individual dispositions (personality traits). Hence,
on a practical side our results are a first important step towards
automatic systems able to predict people’s daily happiness and
towards engineering a construct that is not only a goal of
people’s life but also a means for reaching other goals and
for facilitating the desirable behaviors and outcomes.
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