
Haptic Communication
between Humans and Robots

Takahiro Miyashita∗1 Taichi Tajika∗1∗2 Hiroshi Ishiguro∗1∗2

Kiyoshi Kogure∗1 and Norihiro Hagita∗1

∗1 Intelligent Robotics and Communication Labs., ATR, Kyoto, JAPAN
∗2 Dept. of Adaptive Machine Systems, Osaka University, Osaka, JAPAN

{miyasita, tajika, ishiguro, kogure, hagita} @atr.jp

Abstract

This paper introduces the haptic communication robots we de-
veloped and proposes a method for detecting human positions and
postures based on haptic interaction between humanoid robots and
humans. We have developed two types of humanoid robots that have
tactile sensors embedded in a soft skin that covers the robot’s entire
body as tools for studying haptic communication. Tactile sensation
could be used to detect a communication partner’s position and posture
even if the vision sensor did not observe the person. In the proposed
method, the robot obtains a map that statistically describes relation-
ships between its tactile information and human positions/postures
from the records of haptic interaction taken by tactile sensors and a
motion capturing system during communication. The robot can then
estimate its communication partner’s position/posture based on the
tactile sensor outputs and the map. To verify the method’s perfor-
mance, we implemented it in the haptic communication robot. Results
of experiments show that the robot can estimate a communication
partner’s position/posture statistically.

I. I NTRODUCTION

Haptic communication is as important as vision and voice. It allows
blind people to acquire a certain autonomy in their everyday life, since it
is largely redundant with vision for the acquisition of spatial knowledge
of the environment and object properties [1]. Moreover, people who are
familiar with each other often pat each other’s back or hug each other;
such haptic interaction reinforces their familiarity.

If a communication robot equipped with tactile sensors over its entire
body could have the same capability of haptic interaction as human
do, we would feel greater familiarity with the robot, thus shortening
its communicative distance from people. There has been much research



on developing tactile sensors that cover the entire body of a robot [2],
[3], [4], [5], [6]. Pan et al. [2] and Inaba et al. [4] proposed tactile
sensor suits made of electrically conductive fabric. Hakozaki et al. [5]
proposed telemetric robot skin based on sensor chips that consist of an LC
resonance circuit. In particular, Inaba et al. developed a full-body sensor
suit to detect binary touching information for their remote-brained small
humanoid robot. Iwata et al. [3] also proposed force-detectable surface-
cover systems for humanoid robots and developed an actual humanoid
robot, named WENDY, with the systems. Their systems are based on a
six-axis force torque sensor and force sensing registers (FSR sensors) used
to measure the external force vector and contact positions on the cover
accurately. Regarding haptic communication, Naya et al. collected data
of tactile information from a pet-like robot and proposed a method that
could classify several human touching motions based on the tactile sensor
values [7]. By using that method, a robot can classify human touching
motion and establish a relationship with a person by giving appropriate
responses to the person.

Let us consider some other aspects of haptic interaction. An infant is
hugged by or plays with a caretaker. During that interaction, the caretaker
acquires the infant’s body geometry information in order to carefully
control his or her motions. People often pat a communication partner on
his/her body instead of calling him/her. In this case, since the partner is
able to easily turn his/her face to the patting person directly, the partner
can roughly estimate the position and the posture of the patting person
without looking. This estimation makes human haptic interaction natural
and safe. If we could realize such estimation for humanoid robots, the
haptic interaction between humans and the robots would thus become
more natural and safer. The previous researches, however, have focused
on sensing the contact locations on the robot, and no method has been pro-
posed to estimate position and posture by using only tactile information.
In the field of computer vision, several methods have been developed
to estimate position and posture [8], [9]. Under the situation of haptic
interaction between a human and a robot, however, the distance between
the human and the robot will be short, and images taken from the robot’s
cameras will only include a part of the human’s body. Thus, it is difficult
to use these methods for haptic interaction.

This paper proposes a method for a robot to detect human positions
and postures by using tactile sensor data while the person is touching the
robot. The key idea for handling tactile information is that the possible
combinations of tactile information and human position/posture are quite
limited in the above situations. In this method, the robot acquires a map



that describes the correspondences between the tactile information and
human positions/postures from the records of haptic interaction taken in
situations of communication with humans. Using the map, it is possible
to estimate position and posture based only on the information provided
from the tactile sensors. We demonstrate the validity of the method in
experiments on a robot covered with tactile sensors.

II. TACTILE SENSORSCOVERING AN ENTIRE ROBOT BODY

A. Robovie-IIS

This section introduces the architecture of the tactile communication
robot named Robovie-IIS. We have been developing communication robots,
each named Robovie, for the study of communication between individual
humans as well as between humans and robots. Robovie-IIS is designed
to study tactile communication used in friendly relationships. This robot
is based on Robovie-II [10], with tactile sensor elements embedded in
a soft skin that covers the robot’s entire body. Figure 1 shows overall
views of two types of Robovie-IIS and scenes of its communication with
a human.

Fig. 1. Two types of tactile communication robot “Robovie-IIS”

B. Tactile Sensor Elements embedded in Soft Skin

Figure 2 shows the hardware architecture of a tactile sensor element
embedded in the soft skin. As the figure clearly illustrates, the soft skin
consists of three layers. The outside layer is made of thin silicone rubber
(thickness: 5 mm), and the middle layer is made of thick silicone rubber
(thickness: 10 mm). We use these silicone rubber layers to achieve human-
like softness. Moreover, the sense of touch and friction of the surface of
the silicone rubber are similar to that of human skin. The thickness of
the silicone rubber also absorbs the physical noise made by the robot’s
actuators. The inner layer is made of urethane foam, which insulates
against heat from inside the robot and has a different surface friction



from human skin. Its density is lower than that of the silicone rubber; the
densities of the urethane foam and the silicone rubber are 0.03g/cm3 and
1.1g/cm3, respectively. The total density of the soft skin consisting of all
layers is 0.6g/cm3. The tactile sensor elements are film-type piezoelectric
polymer sensors inserted between the thin and thick silicone rubber layers.
The film-type sensor, consisting of polyvinylidene fluoride (PVDF) and
sputtered silver, outputs a high voltage proportionate to changes in applied
pressure. Figure 3 shows the arrangement of the sensor elements for the

Thick silicone rubber (10 mm)

Thin silicone rubber (5 mm)

Piezo film sheet (PVDF)

Urethane foam (15 mm)

Fig. 2. Architecture of Soft Skin Sensor

first type of Robovie-IIS, of which there are 48 in its soft skin. The second
type of Robovie-IIS has 276 sensor elements in the skin.
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Fig. 3. Arrangement of sensor elements on Robovie-IIS

Although the sensor element outputs a high voltage, the signal is weak
compared to electric noise disturbance since its electric current is weak.



Therefore, we distribute A/D converters (ADCs) with sensor-signal am-
plifiers to each body part. The ADCs are installed next to the sensor
elements to convert the analog sensor signals to digital data. We developed
two types of ADC, which are shown in Fig. 4. The dimensions of the
first type of ADC are23×137×8 mm. On this board, there are four A/D
converters (each channel has six bits) to obtain the outputs of four sensor
elements. We also use a microcomputer (PIC) to convert the digital data
to a serial signal (RS-232c). By adding other boards’ serial signals to it,
we can realize a daisy-chain connection between the boards, as shown in
Fig. 5 (a). These boards allow us to sense all sensor elements embedded
in the soft skin from a serial port of the host computer.

As for the second type of ADC, its dimensions are22 × 76 × 10.2
mm. This board has 16 A/D converters (each channel has 16 bits) and a
micro-processor (SH2, Renesas Technology Corp.). We can connect 16
sensor elements to the board and preprocess the raw data of tactile sensor
outputs, such as low-pass-filtering on the processor. The preprocessed data
are converted to serial signals and sent to the host computer via a serial
bus (RS-485), as shown in Fig. 5 (b).

Fig. 4. Distributed A/D Converters

Fig. 5. Architecture of A/D Converters

III. H UMAN POSITION AND POSTUREDETECTION

In this section, we describe a method to estimate human position and
posture from the tactile sensor outputs.



A. Measuring Position and Posture of Humans

We employed an optical motion capturing system (VICON, Vicon Mo-
tion Systems Ltd.) to measure body movements. The motion capturing
system consists of 12 pairs of infrared cameras and infrared lights and
markers that reflect infrared signals. These cameras were set around the
environment of the experiment as shown in Figure 6 (a). The system
calculates each marker’s 3-D position from all of the camera images, and
it features high resolution in both time (60 Hz) and space (accuracy is
1 mm in the room). In this paper, we use three markers to describe the
position and the posture of humans with respect to the coordinates fixed
to the robot. These markers are attached to the waist and the left and
right fingertips of the human.

B. Mapping between Tactile Sensor Outputs and Probability Distribution
of Human Positions/Postures

We calculate probability distributions of positions/postures of humans
that correspond to tactile sensor outputs and build a map between them.
The mapping process is carried out as follows. Figure 6 shows an outline
of the process.

(i) Record time series data of the robot’s tactile sensor outputs and po-
sitions/postures of subjects simultaneously while they communicate
with each other. In this paper, we used 46 tactile sensors along with
three markers that were attached to the waist and both hands of the
subject for the motion capture system as positions/postures of the
subject. Hence, the tactile sensor outputs and the marker positions
of the waist, the left hand, and the right hand are described as
ti ∈ <46, pwaist

i , pL−hand
i , pR−hand

i ∈ <3, respectively, wherei
denotes time.

(ii) From all tactile sensor data{ti}, select the tactile sensor data
{tj} that are greater than a threshold for use while touching. The
threshold is determined by preliminary experiments.

(iii) Classify selected data{tj} into typical clusters{Ck} by using the
ISO-DATA clustering method [12].

(iv) Calculate distributions of marker positions{kp∗j} that correspond
to the tactile sensor data{ktj} at each clusterCk by the following
steps.

a) Classify the marker position data{kp∗j} into clusters{kD∗
l }

by using the ISO-DATA. We first classify the waist marker po-
sition data{kpwaist

j } into clusters{kDwaist
l }. At eachkDwaist

l ,
we assume that the distribution of the marker position data



Fig. 6. Outline of Mapping process

conforms to a normal distributionN(µ, σ2). Under this as-
sumption, we calculate a meanµ and a standard deviationσ
of {k

l p
waist
j }, which are the elements of the clusterkDwaist

l .
b) Calculate probabilities for the existence of the marker position

at each cluster{kD∗
l } when the tactile sensor data belong to

the clusterCk. If the number of the elements{k
l p

waist
j } is

m, and the total number of the waist marker positions that
correspond to the tactile sensor outputs in the clusterCk is n,
we obtain the probability,PkDwaist

l
, as m

n .
c) Label the clusterkD∗

l effective if PDl
becomes greater than

thresholdtp andσ becomes less than thresholdtσ; tp and tσ
are determined by premliminary experiments.

d) Iterate these steps from (iv)-a) to (iv)-c) for the data of the left-
and right-hand marker positions,{kpL−hand

j } and{kpR−hand
j },

respectively.
(v) Label the clusterCk effective if the clusters{kD∗

l } that corre-
sponded toCk have more than one effective cluster.

C. Using the map

Once the map is obtained, the robot can use it as follows.



(i) Obtain tactile sensor data vectort ∈ <46 during communication
with a human.

(ii) Calculate the distance betweent and each cluster{Ck} in the map,
and select the clusterCs for which the distance is shortest. Abandon
the estimation if the distance is longer than a threshold.

(iii) Obtain the probability distributions of the waist, the left- and right-
hand positions that correspond toCs if the cluster is effective.

IV. EXPERIMENT

A. Acquiring Human Position and Posture

Figure 6(a) illustrates the system used to acquire the data of tactile
sensor outputs and positions of the markers. The tactile sensor outputs
were recorded on a hard-disk drive mounted on the robot’s body. In
this experiment, we used the first type of ADC described in Section II-
B to obtain the outputs. The markers were attached to the waist and
left/right fingertips of both the robot and a human subject. The motion
capturing system was arranged to measure their motions representing
haptic interaction. The sampling rate of the tactile sensor was 20 Hz,
and the sampling rate of the positions of the markers was 60 Hz. In
the experiments, Robovie-IIS continuously moved its joints, aside from
its wheels, and communicated with the subject. The program used for
its communication behavior was almost the same as that of Robovie-
II [10], consisting of a behavior network based on situated modules
that describe communication behaviors according to the situation. There
are approximately 100 communication behaviors in Robovie’s present
behavior network.

The subjects of our experiment were 40 university students (males: 12,
females: 28). An experimenter explained the purpose of the experiments
as collecting haptic interaction data from the subjects and asked each of
them to communicate with the robot for three minutes.

B. Results of mapping between tactile sensor outputs and probability
distribution of human positions/postures

Table I shows the results of clustering the tactile sensor outputs and
the evaluation of each cluster. The total number of data from the tactile
sensor output, which was described asti ∈ <46 in section II-B, was
247,622. We used the first half of the data (123,811 data) for building
the map between tactile sensor outputs and positions/postures of humans.
The latter half of the data were used to verify the map.

First, we selected 14,265 touching data from the first-half data by
employing the threshold of each tactile sensor. We then obtained 150



clusters using ISO-DATA. In this experiment, we set the thresholdtp to
0.1,tσ for waist to300 mm, andtσ for both hands to150 mm. Finally, we
obtained 137 effective clusters for use in estimating human position and
posture. Figure 7 describes in detail the number of effective clusters in a
Venn diagram. We obtained 110 clusters for the waist position estimation,
90 clusters for left-hand position estimation, and 88 clusters for right-hand
position estimation. As the figure shows, the robot can also estimate all
positions, i.e. waist and both hand positions, from 54 clusters.

TABLE I

RESULTS OFCLUSTERING AND EVALUATION OF EACH CLUSTER

total # of skin sensor data 123,811
# of touching data 14,265
total # of clusters 150

# of effective clusters 137

Fig. 7. Venn diagram of effective clusters

To verify the performance of the map, we used tactile sensor outputs
of the latter-half data (123,811 data) as inputs of the robot and compared
the estimation results of marker positions and the actual positions taken
from the motion capturing system. In this paper, we decided that the
estimation would be successful if the actual marker position fell within
the area fromµ−2σ to µ+2σ at the estimated distribution conforming to
a normal distribution,N(µ, σ2). We obtained 14,314 touching data from
the latter-half data, and there were 12,711 data (89%) that belonged to
the tactile sensor cluster in the map. Success rates of the estimations for
the waist, the left hand, and the right hand were 87%, 63%, and 72%,
respectively.

To verify the effectiveness of the estimation based on the map, we
applied reflexive behaviors to the robot so that it would look at the



subject’s face based only on the tactile sensor outputs and the map.
This behavior is difficult to achieve for robots that do not have such
a map. The photographs in Figs. 8 (a), (b) and (c) show these reflexive
behaviors. In these figures, the bar charts denote the tactile sensor outputs
obtained during the haptic interaction shown in the photographs. The
figures of the robot model show the distributions of waist and hand
positions that correspond to the bar chart. As can be seen in these figures,
the robot is able to estimate the positions of waist and hands statistically
as information on human position and posture. The robot can look at the
subject’s face by utilizing the tactile sensor outputs, as the photographs
indicate.
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Fig. 8. Estimation results of human position and posture

V. D ISCUSSION ANDCONCLUSION

We proposed a method to estimate human position and posture by
utilizing tactile information. In our method, the robot first acquires a rela-
tionship between its tactile information and human positions and postures
from the history of haptic interaction. In our experiments, we obtained
the success rates of the estimation for the waist, the left hand, and the
right hand as marker positions. The success rate for the left hand turned
out to be the lowest because almost all of the subjects were right-handed
persons. They used mainly their right hand for touching the robot. Thus
the position of the left hand became unstable while touching with the
right hand. If the robot obtained more data of haptic interaction with
left-handed persons, the success rate of the estimation for the left hand
would increase. This implies that the success rates depend on the robot’s
experiences of haptic communications.

In this paper, we used the communication partner’s position and posture
based on a 3-D motion capture system. If the robot could sense more



information from the partner by accessing its passive-type sensors and
correlating their data to tactile information, it would estimate the partner’s
state more precisely based only on the tactile information. In future work,
we will use the information described above to estimate the partner’s state
more precisely.
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