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Abstract

We present a haptic rendering framework that allows the
tactile display of complex virtual environments. This
framework  allows surface constraints, surface shading,
friction, texture and other effects to be modeled solely by
updating the position of a representative object, the
“virtual proxy.” This abstraction reduces the task of the
haptic servo control loop to the minimization of the error
between user’s position and that of the proxy. This
framework has been implemented in a system that is able
to haptically render virtual environments of a complexity
that is near and often in excess of the capabilities of
current interactive graphic systems.

1  Introduction

Haptic rendering systems simulate the forces
generated by objects, allowing a person to sense and
interact with a virtual environment through touch.
Coupled with visual feedback these systems can
enhance a users ability to perform tasks [6,14,18] as
well as add physical realism to interactive graphic
systems.

Traditional systems apply forces proportional to the
amount of penetration into a virtual volume. For simple
geometries, like spheres and planes, the direction and
amount of penetration is easy to determine and the
simplicity of this approach has allowed it to be used to
study many interesting simple environments. These
penalty-based methods, however, have a number of
drawbacks. When contact exists with multiple surfaces
it is often difficult to determine the nearest exterior
position. In the worst case, a global search of all the
primitives may be required to find the nearest exterior
surface. If the forces from multiple objects are added
the resultant force can create unstable motions that
could cause device damage or user injury. In addition,
graphics models, which most often consist of infinitely
thin polygons, lines and points, do not contain sufficient
internal volume to generate the repulsion forces needed
to prevent the probe form passing through the object.

 To address the limitations of penalty-based
approaches we have developed a new constraint-based
control framework built around the notion of the “virtual
proxy.” The virtual proxy is a representative object that
substitutes for the physical finger or probe in the virtual
environment. The movement of the proxy towards the
goal (user’s finger location) bares a strong similarity to
reactive path planning in robotics applications. When
unobstructed, the proxy moves directly towards the
goal. When the proxy encounters an obstacle, direct
motion is not possible, but the proxy may still be able
to reduce the distance to the goal by moving along one
or more of the constraint surfaces. The motion is chosen
to locally minimize the distance to the goal. When the
proxy is unable to decrease its distance to the goal, it
stops at the local minimum configuration.

Constraint-based methods were first proposed for
haptic applications by Zilles and Salisbury [25]. A point
(god-point) was constrained by the objects in the
environment. A topology of the rendered object was
required to prevent the god-point from falling through
small gaps commonly found in graphical models. This
computationally expensive preprocessing step limited
the interactivity of the system.

Our exploration has focused on creating a system
that is capable of rendering virtual environments
common in graphic applications. These environments
are typically represented by a large number (20,000 or
greater) of unordered polygonal surfaces, lines and
points (polygon soups). In our implementation no
topological information is assumed and intersecting
polygons are permitted. In addition, surface normals for
shading and image mapped textures, which are often
available in graphic applications, are used in our
system to enhance the richness and complexity to the
haptic scene.

2 Virtual Proxy Update

For simplicity we represent the virtual proxy as a
massless sphere that moves among the objects in the
environment. Because of small numerical errors,
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polygons that are intended to share a common edge
often contain gaps. The radius of the proxy is made
large enough to avoid falling through the holes in the
underlying model. We will also assume that all the
obstacles in the environment can be divided into a
finite set of convex components.

Haptic devices require high controller servo rates –
typically over 1000Hz– to achieve stability and high
disturbance rejection. During each servo tick, a goal
configuration for the proxy is found and an attempt is
made to move the proxy to this configuration by direct
linear motion. The goal configuration is initially taken
to be at the end point of the haptic device. This
position, however, will change as the proxy encounters
obstacles in the environment.

The volume swept by the virtual proxy, as it moves
during a given time period, is checked to see if it
penetrates any primitive in the environment. Because
the path of the proxy is linear, this test involves
determining whether a line-segment, specified by the
proxy’s current and goal configurations, falls within one
proxy radius of any object in the environment.

If the proxy’s path does not collide with any
obstacles, the proxy is allowed to move directly
towards the goal. If one or more interfering primitives
are found, the proxy’s position is advanced until it
makes contact with the first obstacle in its path. To
model this interaction efficiently, we consider the
configuration space of the proxy, where the
configuration-space obstacles (C-obstacles)[12], consist
of all points within one proxy radius of original
obstacles. In this space, the position of the proxy is
identified by a point while all C-obstacles have
continuously defined surfaces and non-zero thickness. A
unique constraint plane can be found where the line
segment representing the proxy’s path intersects the C-
obstacle. An example of configuration space, C-
obstacles and proxy constraint planes is shown  in
Figure 1.
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Figure 1: Configuration Space Obstacles &
Constraint Planes

Each constraint plane limits the directions of
motion to the half-space above the plane. The
intersection of all such half-spaces defines a convex,
unbounded polyhedron. The new sub-goal is a point
within this convex region (the local free-space) that is

closest to the user’s position. All the constraint planes
go through the current proxy position, therefore by
translating the current proxy position to the origin the
problem can be written compactly as
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where p is the vector from the current proxy position to
the user’s position, n̂ i mi ,  0 ≤ ≤ , are the unit normals of
the constraint planes, and x is displacement from
current proxy position to the new goal configuration.
Once x is found the iteration can continue.

 This problem may be solved using a general
quadratic programming package like Gill et. al [8].
There are, however, many simplifications that make a
simpler and faster solution possible. In our
implementation, this problem is solved in two stages.
The minimum set of active constraint planes is
identified first; this set is then used to find a new sub-
goal position.

The convex free-space polyhedron has a dual
space consisting of the convex hull defined by the
points, − ≤ ≤n̂ i mi ,  0  (the outward normals of the
planes forming the free-space region) and the origin
(plane at infinity). The constraint planes that bound the
solution can be found by determining the closest face,
edge, or vertex of this hull to a point p̂ , a unit vector
with the same direction as p. This problem may be
solved using the same algorithm employed in the
collision detection process[7]. The vertices of the
closest face, edge or vertex indicate which of the
corresponding constraint planes bound the solution.

Once the bounding planes have been determined
Equation 1 may be solved using only the identified
planes as constraints. With the inequalities replaced by
equalities the problem can be solved easily using
Lagrange multipliers as is described by Zilles in [25].
The solution x represents the displacement from the
current to the new sub-goal. Since, at most, three
planes can be active at one time, the entire solution
can be found in O m( ) time, where m is the original
number of constraint planes.

Each iteration monotonically decreases the
distance between the proxy and the user’s position, and
thus ensures that the movement of the proxy will be
stable if the input from the user is stable.

3  Force Shading

Most graphic interfaces permit the specification of
surface normals on the vertices of polygonal surfaces.
This information is used to alter the lighting model on
the surface to give it the appearance of being
smooth[9,19]. Morgenbesser and Srinivasan [17] were
the first to demonstrate that a similar haptic effect
could be created. Their solution changes the direction
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of the normal force while retaining the magnitude
caused by the penetration of the original surface. While
this technique produces compelling shading effects it is
unclear how to extend this approach to handle multiple
intersecting shaded surfaces or support additional
surface effects, such as friction or texture.

interpolated normal

finger position

proxy position

sub-goal
force shading plane

constraint plane

surface normal

interpolated normal

finger position

proxy position
proxy goal

sub-goal
force shading plane

constraint plane

surface normal

pass 1
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Figure 2: Two Pass Force Shading with

User Supplied Normals

When a polygonal surface is encountered for which
user-specified normals exist, a new local surface
normal is calculated by interpolating the normals from
the vertices of the polygon. This interpolation is very
similar to that required for Phong shading in computer
graphics applications[19].  The interpolated normal
specifies a new constraint plane going through the
contact point. The algorithm proceeds by first finding a
new sub-goal using the interpolated planes instead of
the original constraint planes. This sub-goal is then
treated as the user’s finger position and a second pass
of the update procedure is performed to obtain the final
sub-goal configuration for this iteration. This second
pass is performed using the true (non-interpolated)
constraint planes. This process considers the effect of
all constraint surfaces in both passes and produces the
correct result even if multiple force shaded surfaces
exist. This process is illustrated in Figure 2.

If after the first pass the sub-goal configuration is
above all the true constraint planes, the sub-goal is first
projected back onto the nearest true constraint plane.
This ensures that new sub-goal point will always lie on
the object surface so that surface effects like friction
and texture will be handled correctly.

Force shading may increase the distance between
the user’s finger position and the position of the proxy.
This increase implies that the surface is active and can
add energy to the haptic/user system. This added
energy, however, is typically quite small because the
difference between the interpolated and true constraint
planes is typically quite small.

The difference between the force shaded surface
and a normal surface is illustrated in Figures 3 and 4. In
both figures the difference between the actual user
position and the position of the virtual proxy are shown
as the user’s finger follows a circular path around a ten-
sided polygonal approximation of a circular object. For
compactness, only the first quadrant of the circle is
shown. Because the constraint surface is curved, the
differences between the position of the proxy and the
finger are best illustrated in polar coordinates. The
angular displacement corresponds roughly to the
amount to which the user’s finger is pulled tangentially
as the user moves around the cylinder. The radial
displacement indicates roughly the amount of force that
the user feels pushing against the surface of the object.

As seen in Figure 3, a strong discontinuity occurs
when the proxy finally reaches the edge of the object.
In Figure 4, surface normals have been specified on the
vertices. The resulting movement of the proxy shows
that no tangential force is felt by the user as the finger
is moved around the object. This is what would be
expected if the user were moving around a perfectly
circular object. In the radial plot it can be seen that the
proxy still follows the underlying surface of the object
while the motion of the proxy is continuous and
therefore feels smoother to the user.

4  Friction

Surface effects can also be created solely by
altering the movement of the proxy. Several researchers
have proposed methods to simulate static, dynamic and
viscous friction [2,4,14,16,23].

Static friction is particularly simple to model
within the virtual proxy framework. The force exerted
on the proxy by the user can be estimated by the
equation f k p vp= −( ), where p is the position of the

proxy, v is the position of the finger and kp  is the

proportional gain of the haptic controller. For a given
constraint plane let fn  and ft  be the components of the
force on the proxy normal and tangential to the
constraint plane, respectively. If the given constraint
surface has a static friction parameter µs , then the

proxy is in static contact if f ft s n≤ µ . This is

equivalent to stating that the user’s finger position lies
in the friction cone of the surface. When any constraint
surface is in static contact the proxy’s position is left
unchanged.
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Figure 3: Virtual Proxy Path without Force Shading
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Figure 4: Proxy Path with Force Shading

Viscous and dynamic friction can be modeled by
observing the motion of a one dimensional object. The
equation of motion of an object with mass m  moving in
a viscous field, along a surface that exhibits dynamic
friction is

f f mx bxd n− = +µ ˙̇ ˙,              (2)

where b  is a viscous damping term, µd  is the
coefficient of Coulomb friction. As the mass of the
object approaches zero, the body quickly reaches its
saturation velocity. In dynamic equilibrium, the velocity
of the object is given by

˙ .x
f f

b
d n= − µ

             (3)

This limit can be used to bound the amount that the
proxy can travel in a given clock period. When multiple
constraint surfaces exist, the lowest velocity bound is
taken as the limit of the proxy’s movement. In the event
that the maximum velocity is negative, then the
dynamic friction term is sufficient to resist all
movement and the proxy’s position is not changed. If
b = 0  no viscous term exists and the maximum velocity
is not limited. This approach does not use the finger’s
velocity and is therefore not susceptible to errors caused

from trying to estimate this value from a finite number
of encoder readings.

5  Texture

Haptic textures were first demonstrated by Minsky
et al.[16] for the haptic display of height fields on a two
degree of freedom planar haptic display. In our system a
image-based texture map can be used to modulate any
of the surface parameters—friction, viscosity or
stiffness—to create different haptic effects. At present,
the texture values are only evaluated at the proxy
position at the beginning of the each clock cycle. This
produces a convincing effect with slowly changing
textures. In reality, the texture values should be
evaluated as the proxy moves along the surface of the
object, so as to assure that a significant change is not
missed as the proxy travels on the surface.

Another interesting approach to the modeling of
textures is based on the modification of the force-
shading constraint planes in a manner similar to that
employed in bump mapping in computer graphics[3]. In
our current system a texture bump-map generates at
most one additional constraint plane for each textured
surface. This approach is adequate to model
continuously differentiable textured surfaces. Grooved or
cratered surfaces which may contain multiple
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simultaneous constraints require additional constraint
planes and the path of the proxy in the texture space
must be followed to ensure that the proxy would not
become constrained by another texture feature as it
moves along the surface.

6  System Implementation

The system we have developed runs on two
processors: the haptic server and the application client.
The separation of the haptic and application/graphic
processes was first proposed by Adachi et al. [2].
Decoupling the low-level force servo loop from the high-
level control is needed since the haptic servo loop must
run at a very high servo rate, typically greater than
1000Hz. Most graphic application programs typically run
at a much slower rate (around 30Hz).

CLIENT SERVER

proxy update

model construction

low level control

HL Library

User
Application

Haptic
Interface

Graphic
Display

Figure 5: System Architecture

In our system, illustrated in Figure 5, the bulk of
haptic rendering effort is placed on the haptic server,
thus freeing the client machine to perform the tasks
required by the user’s application. The haptic server
receives high level commands from the client, tracks
the position of the haptic device, updates the position of
the virtual proxy, and sends control commands to the
haptic device. This arrangement places the performance
bottle-neck on the haptic server CPU rather than on the
I/O channel, an advantage given current technological
trends.

6.1  The Client Application

Applications communicate to the haptic server
through the HL network interface library, we have
developed.  The current library supports a limited set of
the functions provided by the GL graphics library. The
HL Library allows users to define objects as a collection
of primitive objects — points, line segments, or
polygons. Transformations are provided to allow objects
and primitives to be freely translated or rotated. Surface
normals and texture coordinates can be associated with
polygon’s vertices to allow the definition of force shaded
or textured surfaces. Object hierarchies and material

properties such as friction and stiffness may also be
defined.

6.2  Model Construction

Once the modeling commands are received from
the client, they must be stored in a form suitable for
haptic rendering. Vertices are transformed into local
object frames and meshes and line segment sequences
are represented as sets of independent convex bodies.

Because each object is normally constructed from a
large number of primitives, a naive test based on
checking if each primitive is in the path of the proxy
would be prohibitively expensive. In general the proxy’s
path will be in contact at most a small fraction of the
underlying primitives. In our approach a hierarchical
bounding representation for the object is constructed to
take advantage of the spatial coherence inherent in most
objects. The bounding representation, based on spheres,
is similar to that proposed by Quinlan[20].

6.3 Low Level Control

A virtual proxy reduces the task of the low-level
servo controller to minimization of the error between the
configuration of the proxy and position of the haptic
device. In our current implementation a simple
operational space proportional derivative (PD) controller
is used[11].

The low-level control loop may be separated from
the contact/proxy update loop to guarantee stability of
the system even in the presence of a large number of
objects. By running the control loop at a high fixed
clock rate, stability can be ensured and the fidelity of
the haptic display made to degrade gracefully as the
complexity of the environment is increased. If the proxy
update procedure is unable to maintain the same rate as
the controller, objects feel “sticky.” While this effect
may not be desirable, it is preferable to permitting
unstable and dangerous behavior of the haptic device.

7  Results

Our haptic library has been successfully tested on a
large number of polygonal models, including some
containing more than 24000 polygonal primitives. In our
tests the client computer was a SGI Indigo2 High Impact
running IRIX 6.2 while the haptic server was a 200Mhz
Pentium Pro running Linux 2.0.2. Communication
between computers was made through a standard
ethernet TCP/IP  connection. The haptic device
employed was a ground based 3 dof PHANToM
manipulator. The server produced stable results with
position gains over 1800 Newton/meter  and no artificial
damping. Computational expense grows at a logarithmic
rate with the number of polygons.

The current system is quite adept in modeling a
large number of geometric models.  Figure 6 shows a
VRML model of an AT-AT from Star Wars containing
over 11,000 polygons. Force shading is used to model
some of the apparently curved surfaces of the underlying
polygonal model. A high servo rate is obtained even in
configurations containing over 40 simultaneous contact
surfaces between the proxy and the model. The location
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of the proxy, rather than finger position is displayed to
the user, to further enhance the sense of rigidity of the
model [24].

Figure 6: Haptic AT-AT (11088 polygons)

8  Future Work

While the current system is able to model a wide
variety of objects and material properties, it only
supports limited manipulation of the objects in the
environment. As is the case with graphic systems,
movement is simulated by re-rendering the moving
objects at different locations. These discrete motion
steps, which are specified by the client process, result in
a discontinuous jerky motion. Furthermore, it is also
possible, in some cases for the proxy to lie outside of an
object at one time step and within it the next. We are
currently looking at several ways of allowing the
application program to easily endow haptic objects with
smooth, continuous and dynamic motions.

The virtual proxy framework can be expanded to
handle other geometric representations such as NURB
surfaces and volumetric data sets directly, without
transforming these representations into polygonal surface
models. This ability is beneficial when the cost of this
transformation is prohibitive or can degrade the
interactivity of the application.
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