
Haptic Output in Multimodal User Interfaces

Stefan Munch and Rudiger Dillmann

University of Karlsruhe, Department of Computer Science

Institute for Real-Time Computer Systems and Robotics

Kaiserstralile 12, D-76128 Karlsruhe, Germany

phone: +49 7216083547 fax: +49 721606740

email: {smuench,dillmann} (ijijira.uka.de WWW: http:llwwwipr.ira. uka.del

ABSTRACT

This paper presents an intelligent adaptive systcm for the in-

tegration of haptic output in graphical user interfaces. The

system observes the user’s actions, extracts meaningful fea-

tures, and generates a user and application specific model.

When the model is sufficiently delailled, it is used to pre-

dict the widget which is most likely 10 be used next by the

user. Upon entering this widget, two magnets in a specialized

mouse are activated to stop the movement, so target acqui-

sition becomes easier and more comfortable. Besides the

intelligent control system, we will present several methods

to generate haptic cues which might be integrated in mttlti-

modal user interfaces in the future.

KEYWORDS: Haptic output; User modelling; Adaptive

interfaces; Intelligent feedback; Multimodality

INTRODUCTION

Basically, computers are only tools which should support the

human user in any kind of task—preparing the tax return,

designing a ncw car, analyzing financial data etc. But most

of these tasks require a certain amount of human-computer

interaction (HCI). In this process, information to the human

is mainly conveyed via the visual channel, whereas inputs

arc made with a keyboard and a pointing device (motor chan-

nel). This situation is in contrast with real-world communi-

cation between humans, and it leaves certain capabilities of

both, man and machine, unused: “In an earlier work (Buxton

1986), I speculated on what conclusions a future anthropol-

ogist would draw about our physical make-up, based on the

tools (namely computers) used by our society. The objective

was to point out that these tools reflect a very distorted view

of our physiology and the motor/sensory skills. . . . Nev-

ertheless, things have changed very little in the intervening

years.” [7, p. 1] In the following, we will analyze the reasons

and propose a solution for the integration of haptic output in

user interfaces.

Permission to make digital/hard copies of all or part of this nuiterial for
personal or classroom use is granted without fee provided that the copies

are not made or distributed for pro$t or colnmercial advantage, the, copy-
right notice, the title of the pubhcation snd Its date appesr, and notwe is

given that copyright is by permission of the ACM, Inc. To copy otherwise,

to republish, to post on servers or to redistribute to lists, requires specitic

permission and/or fee.

IU1 97, Orlando Florida USA
@1997 ACM ()-89791-839-8/96/()1 ..$3,50

Haptics in HCI?

With the development and dissemination of multimedia and

virtual reality (VR) systems, things begin 10 change. Speech

input and output are commercially available and animations

are accompanied by sound. But what about haptic output, i.e.

feelable cues? Does today’s HCI make use of the human’s

sense of touch and kinesthesia? According to f3evan, no:

“Whereas synthetic visual and audio images are omnipresent

nowadays, opportunities to reach out and feel non-existent

objects possessing texture, shape and inertia are, to put it

mildly, not.” [2]

In our opinion, the haptic modality is clearly missing in HCI

today. Not because it is not useful, but simply because it

is much more complex than graphical and acoustical output

(see next section). Therefore, we have developed a system

for the integration of haptic output into an application’s user

interface (UI). It runs in the background and is independent of

the application, but it only operates on UIS written in Tcl/Tk.

It is a prototype at the moment, but it already works well with

the combination of a simple device and a complex controller.

The ForceMouse

For the interaction process, i.e. the control of the cursor and

the haptic output, we have built a specialized ‘multimodal

mouse’ with a moveable pin in its left button and two electro-

magnets in its base. This socalled FORCEMOUSE (Figure 1)

is based on an idea by Akamatsu & Sato ([1], see below),

but instead of one we have implemented two clcctromagncts.

Thus, the movement of the mouse can not only be rendered

more difficult but can be stopped completely.

pin buttons

\ /f Diutnovement

relais electromagnets

Figure 1: The FORCEMOUSE with its moveable pin and two

electromagnets in its base

105

The Basic Idea

Two basic ideas have been the starting point of the system’s

development. First, we wanted to give the user an impres-

sion of the interface’s structure and texture during mouse

movements—this is realized with the pin. Second, the mag-

nets are used to stop the mouse when the cursor is above an

interaction object if the user wants to use it, see Figure 2. This

kind of support can not be achieved by pure muscle memory,

because it is independent of the position of an application

and its widgets on the screen.

Figure 2: Kinesthetic feedback with prediction of the next

interaction object

Especially for this ‘positioning support’, an intelligent con-

trol of the haptic output is needed. The system has to ob-

serve the user’s interactions and to calculate the probability

of a widget to be used. Based on this calculation, the wid-

get which is nzost likely to be used next is predicted, and if

the probability exceeds a threshold, the mouse movement is

stopped. Thus, the selection of this object becomes signifi-

cantly easier. Without the prediction mechanism, the mouse

would be stopped above any widget—which is clearly not

desired and can not be accepted, see Figure 3.

Figure 3: Kinesthetic feedback without prediction of the next

interaction object

In the following section, we will give a brief introduction in

haptic perception and a review of related work. In addition,

we will discuss methods for the generation of haptic output

and Cormulatc some requirements which have influenced the

systcm design. In the third section, the user analysis approach

and its mathematical background as well as some aspects

of the implementation will be described. Finally, we will

present preliminary results, draw conclusions, and present

our ideas for work in the future.

HAPTIC OUTPUT AT THE USER INTERFACE

Although the idea to integrate tactile output and force feed-

back in an application program is not new, there is yet no

standard software available. In this section, we will examine

the reasons for this shortcoming and propose two approaches

to solve the integration problem.

Haptic Perception

Humans interact with their environment by using several

modalities via several communication channels. Regard-

ing perception, the visual channel (i. e. the sense of sight)

is the most important one, but other modalities like hearing,

smelling or feeling are important as well. Here, we will

concentrate on haptic perception, a term which comprises

cutaneous as well as proprioceptive and kinesthetic sensa-

tions. For a comprehensive discussion, see [13] or any good

book on human physiology.

Tactile sensors can be found in the skin which is the largest

human organ with a surface of more than 3,000 inz. With

these sensors, humans are able to recognize the overall shape

of an object as well as the microscopic properties of its sur-

face. With the finger tips, one can detect whether an object is

rough or smooth, stiff or elastic. All of these properties can

only be sensed in direct contact with an object, and no other

modality serves this purpose.

Although “the field of touch is still very much in its forma-

tive stage” [13], some figures shall underline the power of

the sense of touch. The skin has about 500,000 receptors of

six different types which can process about 200,000 bits/see.

Vibrations can be sensed up to 10 KHz, and can be discrimi-

nated up to 320 Hz. For these sensations, an amplitude of 0.1

#m is sufficient. Pressure to the skin can be detected down

to 10–5 N.

In addition, force feedback can be used in HCI to address

the procioceptive and kinesthetic senses. Force feedback is

wellknown in teleoperation for more than 50 years (e. g. [4]),

and it plays an increasingly important role in VR applica-

tions [16, 6]. It can be used whenever object interactions

or manipulations with contact relations are needed to reduce

forces or to simulate objects more realistically,

There are some important aspects which distinguish the hap-

tic modality significantly from hearing and seeing:

Haptic interaction has a spatial (like visual) and ten?po-

ral structure (like acoustic).

Haptic interaction needs direct contact to objects.

Haptic object properties maybe sensed actively or pas-

sively by the human.

The haptic modality is not a unique onc but is composed

of sev&al diflerenj sensations which are convey~d by

several diferent channels.

The last two aspects led to a classification of five different

modes, ranging from tactile perception (passive, cutaneous

information only) to active haptic perception with cutaneous

information and afferent kinesthesis and effrxencc copy [13].

106

Review of Related Work

If “the field of touch is still very much in its formative stage”

then our knowledge on how to make effective use of it in HCI

is still in its infancy. With force feedback in tclcopcration and

tclerobolics it’s a different matter, but regarding the creation

of haptic sensations in standard applications the field has only

recently started to emerge. Even worse, the few techniques

and methods which exist are usually designed for a small

range of applications only, and the integration of haptic cues

in standard software is usually not addressed. Before we

will present our tindings, wc will brielly review three other

approaches.

A publication by two Japanese researchers deals with a mul-

timodal mouse with tactile and force feedback [1]. Akamatsu

& Sato have equipped a standard mouse with a movable pin

in its left button and an electromagnet in the bottom. The pin

can be raised or lowered to indicate a certain state or to create

a kind of vibration, and the magnet can be used to stop the

mouse if moved on a ferromagnetic pad. Experiments with

target acquisition tasks revealed that the error rate increased

slightly with haptic feedback, but the execution time could

be reduced by 7.9% and 10.5%, resp. A result much more

interesting is the fact that the effective target size has been in-

creased significantly, which means that the target acquisition

task is much easier with haptic feedback.

In Vienna, Austria, a research team has developed a FEEL-

MOUSE to ‘translate’ the texture of a graphical user inter-

face (GUI) into haptic cues [12]. A standard mouse has

been equipped with an electromagnet at the left button which

serves two purposes: first, it can actively move the mouse

button up and down, thereby giving information about the

interface’s texture. Second, the resistance to press the button

can be varied, so that crucial operations can be made more

explicit to the user.

One major problcm with force feedback in computer mice is

its isolropic nature: the mouse movement can be made more

difficult or even impossible, but the effect is independent of

the direction. Even worse, the mouse can not be moved

actively in either direction. This problem has been addressed

by Engel ct al. who have developed a trackball with socalled

‘contextual’ force feedback [9]; a context-sensitive feedback

of the application’s expectations with respect to the user’s

input. In other words, the user’s interactions are intcrprctcd

by the program in order to give a more detailed and more

useful kind of feedback which supports the interaction.

Engel et al. have equipped a trackball with two scrvomotors

which control the x- and y-axis independently. For first ex-

periments, users had to guide a ‘ball’ through a one-track

maze—a task which clearly favors the kind of feedback sup-

ported by their device. Not surprisingly, the number of errors

as well as the execution time decreased remarkably (by a

factor of= 4 and 1.5, resp.) In a second trial, a less spcciiic

target acquisition task was used. Here, targets of different

size which appeared at a random position on screen had to

be hit. The force feedback was realized by an S-shaped

profile around the object’s center. The primary goal of this

investigation was to find out whether Fitts’ law holds for

devices with haptic feedback as WCII (yes, it dots), but un-

fortunately the figures for execution time and error rate show

only minor improvement when force feedback is used. In-

stead, another benefit has been experienced: “.. . the effort

needed to master the trackball is minimal compared with that

for the conventional trackball without force feedback.” [9]

The findings of Akamatsu & Sato or Engcl et al. are in full

accordance with results from teleoperation experiments with

force feedback: the major benefit is not reduced task com-

pletion time, but lower error rates, more intuitive interaction,

and—in real contact situations—reduced forces. Sometimes,

there is even the effect of ‘intelligence amplification’: “The

most valuable result from using GROPE-III for drug docking

is probably the radically improved situation awareness that

serious users report. Chemists say they have a new under-

standing of the details of the receptor site and its force fields,

. . . “ [5].

Generation of Haptic Cues

For at least two reasons, haptic output should be integrated

into the UI: first, the haptic modality complements the visual

channel. Interactions will be more comfortable and intuitive

if the interface’s structure is presented both, graphically and

haptically. Second, output to the hand and fingers will re-

duce cognitive load. Whereas most visual cues have to be

‘translated’ and interpreted by the user before an action can

start, at least some of the haptic cues can be processed on a

much lower level, thus reducing the perception-action-loop

to a minimum.

Unfortunately, at least two problems have to be solved: first,

techniques and methods to generate haptic cues are needed.

Some of them will be discussed below. Second, if the cucs

are available, we need a way to integrate them. A solution

for this problem which does not affect the already existing

application or its UI will be presented in the following section.

The first method we will describe models the pseudo 3D

relief of the GUI with haptic cues. Therefore, this method

can be called WYSIWYF—What YouSeeIS What You Feel,

i.e. the ‘third dimension’ which represents the structure or

texture of the GUI is mappped to the position of a moveable

pin or button at the input device. Today, pseudo 3D reliefs are

presented graphically with colors and shadows to enhance the

vividness of the interface, thus supporting the idea of direct

manipulation.

An example of a ‘haptic profile’ derived from the GUI’s fea-

tures is depicted in Figure 4. ‘f’he realization is quite simple

because the widgets’ ‘level’ can be used directly for haptic

output with an appropriate device. One of the advantages of

a haptic model is the reduced perception-action-loop, i. e. if

a stimulus like a short vibration caused by a raising pin is

directly presented to the finger which performs the action,

the reaction time will be shortened. It is also practicable to

model all widgets, because in contrast to force feedback the

haptic output does not conflict with the user’s input as long

as the movement is not influenced significantly.

The second method also models the relief, but with a different

intention. Instead of simply mapping the relief, the widgets

107

Figure 4: Graphic and haptic modelling of a pseudo 3D relief

are associated with potential fields to support the navigation

process, see Figure 5. This method is more attractive be-

cause it can actively support interactions, but it is far more

complex than the first one. The calculation of potential fields

needs a lot of computing power, and to yield good results,

dynamic calculations are needed. Moreover, the advantage

of potential fields-to provide directed force vectors (a kind

of gravitation)----can only be exploited with a device which

gives directed output.

Figure 5: Haptic modelling with potential fields

Fortunately, there is a solution to avoid these drawbacks: if

a simplified version is used which does not produce directed

output vectors continuously but supports the navigation by

stopping the cursor and mouse moveme}lt at the desired po-

sition only, the complexity of both the calculation and the

device can be reduced significantly. Although the support

during navigation will be reduced, too, there is still some

benefit in the interaction process which is worth the effort

(see next section).

Hard- and Software Requirements

For this simplified kind of haptic output, isotropic forces are

sufficient, but for a more sophisticated output a more complex

device will be needed. For 2D interactions, two degrees of

freedom are adequate, so three types of device with different

characteristics might be modified to provide haptic feedback.

A joystick can easily be equipped with motors to provide

directed force feedback, but it has limited input capabilities

only. A better input device is the trackpoint which can be

found in many notebooks now, but here the feedback is much

harder to realize due to its tiny measurements.

The mouse is the most popular and universal 2D input device,

and as described above, it can be equipped with haptic output

generators. The best solution would be to combine the ad-

justable mouse button of the FEELMOUSE with the magnets

implemented in the FORCEMOUSE. The major drawback of

the mouse is that it is not possible to provide directed force

feedback, although this problem can partially be solved by

an intelligent, low-level mouse controller which stops the

movements in a specified direction. Of course, this method

is not comparable to active force feedback.

With a trackball, the advantages of both joystick and mouse

can be combined. On the one hand, a trackball is a com-

fortable and universal input device. On the other hand, by

adding motors the movement can be influenced in x- and

y-direction, and even active output of forces is possible. Be-

cause the user’s fingers usually rest on one or more buttons,

tactile output mechanisms might be added as well.

Regarding software requirements, the results of our own as

well as other experiments revealed the drawbacks of simple

haptic feedback. A naive approach is clearly not usable with

a complex UI (force feedback is “not only a source of infor-

mation, but may act as a disturbance input as well”. [10], see

Figure 3), therefore several requirements have been formu-

lated which can only be met by an intelligent control method:

Reaction time: To present the user a haptic feedback which

is consistent and coherent with the visual cues, the delay

between entering a widget and launching the feedback has

to be minimized. (According to [8], the delay between

visual and haptic cues must be less than 50 ms: “The

cycle time 7P of the perceptual processor is . . . taken

to be Tp = 100[50 N 200]msec.” and “..., sensory

stimuli that occur within one perceptual processor cycle

may combine into a single coherent percept.”)

Prediction: One method to reduce the delay is to determine

the next widget to be used in advance. Consequently, a

prediction method which processes the user’s interactions

in real-time is needed.

Adaptability: Every application has a specialized layout

and uses different widgets. In addition, every user inter-

acts with an application in his or her own way. Therefore,

we not only need a model of the user’s behavior with

respect to a specific GUI, but the model must also adapt

itself, thus optimizing the system’s performance and error

rate over time.

Independency: The generated model will be application as

well as user specific, but the system must generate it for

whatever application and user. In this sense, the system

should be completely independent and it should not be

necessary to modify the application program.

Versatility: The system architecture should be modular and

flexible in order to support the integration of other modal-

ities and the adaptation to different platforms. Moreover,

the generated model should be usable for other purposes

as well, e.g. for recording macros or generalizing action

patterns.

108

AN INTELLIGENT SYSTEM FOR HAPTIC OUTPUT

‘I’he requirements above lead to the development of a system

which predicts the next user interaction regarding the usage

of widgets in the GUI based on previously recorded data.

The goal of this system can be stated as follows:

The primary task is to predict the next user action

in order to give the haptic feedback selectively and

to adapt this capability over time.

The basic idea of our approach is to create a user and appli-

cation specific model based on empirical data by ‘observing’

and analyzing the user’s interactions. Both, the creation of

the model as well as the on-line analysis is performed by a

multi-agent system based on stochastical classification meth-

ods. With an adequate amount of input data, the model

constitutes the basis for the prediction of future actions.

User Modelling

Several different prediction methods exist from which we

have realized two: the first approach analyzes the features of

the cursor’s trajectory, whereas the second one is a dialog-

based approach in which the semantics of the UI and the

dependencies of widgets are reconstructed. To yield best

results, both approaches which complement each other have

been combined.

The prediction mechanism

The basic problem of predicting the user’s actions can be

described as follows: Given a set of widgets (potential tar-

gets) and the user’s observable behavior (a trajectory), find

the widget which is most likely to be used next. This is a typ-

ical classification problem where a given input sample—the

user’s interaction+has to be classified in one of n, classes—

the potential targets.

A sequence of events ei = (xi, yi, si, tz) which set LIP a

relation between the cursor position (zi, yi) and the button

state .s~on the one side and a time tz on the other side is

called a trajectory. Because the cursor is not moved continu-

ously, it can be divided in segments which are usually related

to a positioning operation. When the system has sufficient

information describing the widgets WI, W2, . . . , u,, of an ap-

plication, the goal of the prediction mechanism is to analyze

a given trajectory (eo, el, ez, ..., e~) in order to predict the

widget b which is most likely to be the next target:

P(tileo, el, ..., e~) = m~lx~(wileo,el, . ., e~)

Hence, the first step of the analysis is to extract meaningful

features from the GUI as well as from the trajectory. The ex-

traction of the widgets’ parameters is comparatively simple:

find all widgets which might bc used as interaction objects

(i. e. remove all ‘passive’ widgets like frames and labels) and

get their size, position etc. (this process is described in more

detail below, see The Spy). The trajectory analysis is much

more complicated, because it wvers many features of which

only some are relevant in a given context. Features which

are usually interesting and meaningful are, e. g., the cursor’s

velocity, acceleration, the trajectory’s curvature, the direction

of the enter event etc., see Figure 6. The main difficulty is

to extract and construct an appropriate combination of fea-

tures including adequate information without increasing the

complexity too much.

Trajectory’s curvature:

Velocity:

Acceleration (smoothed):

66

1%

0.25

-

Figure 6: Example of a positioning operation (arrow added

by hand). The vertical lines in the diagrams mark the time a

widget has been entered by the cursor.

Trajectory-based predictioil

The implemented procedure is based on stochastic classifica-

tion. The principle idea is to observe the user’s interactions

for some time, to collect the features extracted from the tra-

jectories of these interactions, and to create a model of the

user’s behavior. For each Errter-Eivent, i.e. whenever the

cursor enters a widget, the characteristic features of the last

part of the trajectory are recorded in two sepwatc models:

one model for the usage of widgets @es), one if the widget

has only been traversed (lpos).

After several interactions, the models will bccorne more and

more powerful and can be used to predict the next action by

analyzing the current mouse movement and calculating an a

priori-probability:

Pj (posltrz) =
r; (fl; , flos)

P(’Vi)
(t)

fj (dz, pos)
=

.fj’(tii, P~s) + .fj(’t, “pOS)

109

Here, $, is a feature vector and fj a~requency denoting how

of~cn widget Wi has been used when the feature vector {~

has been observed. In other words, positive (w] used) and

negative (w, not used) examples are simply counted.

Although (he complete feature space including smoothed ac-

celeration, ~’elocity, trajectory curvature, slopping dislance,

and otvrall distance covers 180 distinct cells, the prediction

usually starts to work after a small number of interactions

bccausc some widgets are used much more frequently than

other ones. This is a great advantage compared to an analysis

based on neural networks, which usually need a Iargc amount

of training data before reliable predictions can be generaled.

By storing the collected data (i.e. the models) in a file, it can

he used in subsequent sessions for the prediction and it will

bc refined and adapt with every ncw user interaction.

Of course, this model can not be perfect and the user’s behav-

ior may change, so a threshold 13jwhich determines whether

to give haptic feedback or not when widget Wj is approached

and feature vector tit is observed is adapted whenever a wrong

decision occurs: Oj is increased if a positioning action has

been predicted although the widget has not been used, and it

is decreased if it is used but not predicted.

Dialog-based prediction

The second method to predict the next user action has been

adapted from speech recognition. Instead of using Equa-

tion 1, socalled trigram probabilities are used to approximate

the a priori-probability:

F’(w) = ~ F’(wjlwj-2, L+l)

J

The underlying idea is to model the semanfics of the man-

machine-dialog. Typically, one user performs a sequence

of actions in the same order, e.g. when changing the font

attributes first change the size and then the style. In addition,

often some actions restrict followup actions to a subset of all

possible actions. In these cases, the usage of some widgets

is much more likely than the usage of other widgets. The

trigram probabilities are an appropriate method to model

these interdependencies.

At any time t],the widgets which have been used last are

W1,W2, U3–3. Thus, P(wj Iwj–z, Wj - I) determines the

probability that widget Wj will be the next target to be used

if w,)_z and Wj–l were the last two widgets used. This prob-

abilityy, which is completely independent of the probability

calculated in the trajectory-based approach, can be modelled

as follows:

P(wj [wj_2, wj_l) =
f(wj-2, wj-l, q)

f(w) -2,+1)

(2)

Here, .f(wJ–2, Wj–l, Wj) denotes the frequency of the occur-

rence of the positioning sequence (w] –2, wj _ 1, wj).

Combining both approaches

By introducing a weight J, the overall probability P.ll to usc

a specific widget Wj can be calculated from a combination of

both, the trajectory-based and the dialog-based prediction in

Equations I-and 2“:

~0~[= APj(~OSliJ~) + (1 – A) P(wJlwj-2, wj-1) (3)

Interestingly, the trajectory- and the dialog-based model com-

plement each other with their different prediction methods:

the first one seems to predict rather ‘optimistically’, whereas

the second one shows a more ‘pessimistic’ behavior. Depend-

ing on the user’s preferences, the factor A can be adjusted to

favor one of the models.

System Architecture

The most flexible implementation of a software system can be

achieved by realizing its single parts as indcpenctcnt modules

which exchange data—a multi-agent system, see Figure 7. By

using PVM (Parallel Virtual Machine [11]) as the underlying

software package for interprocess communication, such a

system is fairly easy to realize and might be extended with

other components with minimal effort.

u

Figure 7: The multi-agent architecture

The central component of the system is the FORCEAGENT. It

manages the statistical model, analyzes the user’s behavior,

predicts the next widget, and launches the feedback by send-

ing a command to the FORCEMOUSE driver. This low-level

module provides several commands for different feedback

modes and has been integrated in the X Window System to

control the standard cursor (not described here).

In order to increase the system’s performance and to reduce

the FORCEAGENT’S load, the observation tool SPY has been

developed. This module creates a simplified model of the

GUI which contains all necessary datid for the FORCEAGENT.

Finally, the visualizer tool SHOW has been implemented. It

can be used to display the internal models and to record and

play back movement trajectories, but it mainly serves as a

debugging tool during system development (not described

here).

The Spy

The SPY has been developed to ‘spy’ on other applications.

Its main task is to create a model of the GUI. Hence, it

extracts all relevant features of a Tcl/Tk application, e, g. the

uppermost picture of Figure 6 is a model of the application

shown in Figures 2 and 3. Tcl is a simple scripting language,

and Tk a toolkit for the X Window System providing its own

widget set [15]. In principle, the SPY can be used to observe

applications using other widget sets based on X, too, but this

has not been realized yet.

110

Besides its many features, Tk provides two mechanisms

which arc especially useful: event bindings and the send

command. An e}’ent binding allows to associate a script or a

imgram with an event, e. g. the entering of a widget. When-

ever the event occurs, the script will bc processed. With the

send command, this can be done in ‘foreign’ applications

as well: “With send, any Tk application can invoke arbi-

trary ‘rcl scripts in any other Tk application on the display;

. ..” [15]. Although of great power, send is processed syn-

c/]romMsly. IJccause the complete widget hiwarch y of an

application has to be processed in order to collect data for

all widgets, the delay is not acceptable if this command is

cxccrrlcd in the FORCEAGENT which has to fulfill real-time

requirements.

Therefore, the SPY checks the display periodically. If a

new application is detected, it uses the send command for

each widget in order to get the widget class and the X-ID,

which are both sent to the FORCEAGENT via sockets by using

PVM in an asymdv-onoas mode. With this information, the

FORCEAGENT can observe the widget’s Iifccycle with mini-

mal effort. In addition, the SPY installs ncw event bindings

in all applications which send information whenever a new

widget is created, an existing one is destroyed or the state of a

widget changes. Thus, every application has to be processed

only once, whereupon configuration changes arc reported

automatically.

The FbrceAgent

The FOIZCEAGENTdecides when to apply which kind of haptic

feedback. The decision is based on the application model,

the trajectory-based model, the dialog-based model, and the

preferences of the user.

Managing widgets Relevant widget attributes Iikc size, po-

sition, status etc. are received from the SPY and managed

internally to enhance the performance.

Managing user inputs Afl user input is received by the X

server and sent to the respective clients as evenfs. Al-

though there is no common structure for all events, the

attributes xly-position, time stamp, and window of occur-

rence (X-ID) are always included.

In a first preprocessing step, the FORCEAGENT determines

the relevant events from the sequence of all events. Sub-

sequently, the event data are converted into a special data

structure trajectory for further processing. This structure

has been developed and implemented in order to support

direct input and access in O(1). In addition, it allows easy

fdtcring, processing, and segmentation of the tmjcctory.

Managing interaction models All trajectory and dialog

specific data sampled during the interaction process are

recorded in interaction models which are stored in order

to be used in subsequent sessions. Thus, an overall user

and application specific model is created which adapts to

the user’s needs over time,

The decision process The FORCEAGENT’S main task is to

support the user during positioning tasks by giving haptic

feedback when needed. The decision when to trigger is

determined by the overall probability ~a~t calculated by

.

the prediction mechanism, sce Equation 3. The decision

whiclz kind of feedback (Fro,Od,) to use is determined by

the user—several different modes and combinations can

be selected via the FORCEAGENT’S user intcrhcc. The

final decision rule can be written as follows:

when (Pa~~ >= Oj) if (Z?7,10~C) tlten + haptic output

RESULTS

The system has not been evaluated in detail so far, bul never-

theless some preliminary results will be presented. The main

purpose of the FORCEAGENT is the prediction of the next

interaction object Ut which might bc wrong in two senses:

1. w, is predicted but the user did not intend to use it.

2. w, is not predicted although the user selects it.

The haptic feedback is only an addi[ioilal modality which

should support the user during positioning (or target acqui-

sition) tasks. Therefore, the second type of error is a minor

problcm only, but not critical. In contrast, the first type of

error has to be minimized because every lime the mouse is

stopped when the user does not want it to stop, the user is

actively hindered to complete the desired Pdsk(see Figure 3).

Although an evaluation of the systcm’s performance is diffi-

cult due to the fact that many different factors will influence

the result, first tests with simple applications and a short train-

ing phase have shown a mean error rate between 5–257o, with

most errors belonging to type 2. With the default parameter

settings, the error rate for type 1 errors was less than 5~0.

More important, the error rate drops down when the system

is used for a longer period.

CONCLUSIONS AND FUTURE WORK

We have presented a way of supporting direct manipula-

tions with a mouse by introducing haptic output. A sophisti-

cated mechanism predicts the next target of the current cursor

movement and stops the mouse at the desired position. Thus,

positioning tasks become faster and safer, especially when

target regions are very small. In order to give the best sup-

port, the system generates a user and application specific

model and improves its capabilities over time by adapting

the models and thresholds.

The multi-agent system realized to support the prediction of

user interactions creates two independent models: First, a

trajectory-based model reflecting the user’s way to move the

cursor and to interact with a specific application is generated.

Second, part of the application’s semantic is modelled by

analyzing the order in which the widgets are used (dialog-

based approach). Both models do not fully cover the user’s

behavior but are complementing each other, so that the com-

bination leads to good results in the prediction of the next

interaction object.

The system’s design has two major advantages. First, it is

a plug-and-play solation which is fully compatible with any

Tcl/Tk application (versions 7.4/4.0 or later) running under

X. In order to use the haptic modality, the multi-agent system

runs in the background, identifies Tcl/Tk applictitions, and

111

●

modilies them at run-time without affecting the source code.

The second advantage is its flexibility. Although designed to

support haptic feedback, it might be used for other modalities

as well. In addition, the system is not perfect but works well

with a very cheap and simple device.

On the other hand, there is still some work to be done. First

of all, the system’s performance has to be evaluated under

various conditions. This will be done best by letting several

users try the system and ask them to judge it. Unfortunately,

the current version is more a kind of prototype which shows

that the approach works, but which has some drawbacks

regarding the performance (e. g., the FORC%MOUSE moves

not smooth enough on the iron pad and not all Tk widgets

have been included in the implementation.)

Although the benefits of haptic feedback have already been

demonstrated in isolated tasks, for complex systems the prove

is still missing. In this context, an improved version of the

system could be realized with a better device than the FORCE-

MousE—see section ‘Hard- and Software Requirements’.

An interesting feature not provided by the FORCEMOUSE is a

voltage regulator for the electromagnets which could be used

to map the probabilities of the prediction mechanism to the

strength of the magnets.

It would also be interesting to develop and integrate a module

for prediction based on artificial neural networks. Especially

time delay neural networks (TDNNs) could perhaps lead to

even better prediction results than the stochastic method used

so fw. Unfortunately, TDNNs-like other neural networks-

need a very large amount of training data before the prediction

works.

Other open questions are whether a model for one user can be

used for more than one application and whether an application

specific model is useful for several users. Maybe a method

exist to generate a kind of ‘universal’ default model for all

users and applications instead of starting from scratch? If this

is possible, the model would still adapt to specific interaction

schemes but would be working from the beginning without

the need for an initial training phase.

Finally, new system versions which could support other wid-

get sets based on X (e.g. OSF/Motif) would be attractive in

order to cover a broader range of applications. The ultimate

solution would be a system which is independent of any wid-

get set but uses X functions only to create the GUI models

and to observe the user’s interactions.

ACKNOWLEDGEMENTS

This work has been funded by the European Union, ESPRIT

BRA project No. 8579, Multimodal Integration for Advanced

Multimedia Interfaces (MIAMI). It has been performed at

the Institute for Real-Time Computer Systems and Robotics,

Department of Computer Science, University of Karlsruhe.

Parts of this work have been previously published in [14],

copyright Eurographics Association. The authors would like

to thank M. Stangenberg for his support during system devel-

opment and the reviewers of this article for their constructive

criticism and valuable comments.

REFERENCES

1

2

3

4

5

6

7

8

9

M. Akamatsu and S. Sate. A multi-modal mouse with tac-

tile and force feedback. Int. Journal ofHunzan-Computer

Studies, 40:443-453,1994.

M. Bevan. Force-feedback technology. W{ NEWS - Wr-

tual Reality Worldwide, 4(6):23–29, July 1995.

K. R. Buff, L. Kaufman, and J. P.Thomas, editors. Hand-

book of Perception and Human Performance, volume II.

John Wiley and Sons, 1986.

T. L. Brooks. Telerobotic Response Requirements. In

Proceedings of the IEEE, pages 113–120, 1990.

F. P. Brooks, Jr. et al. Project GROPE - Haptic Dis-

plays for Scientific Visualization. In F. Baskett, editor,

Computer Graphics (SIGGRAPH ’90 Proceedings), VOL

ume 24, pages 177-185, Dallas, TX, 1990. ACM.

G. Burdea and P. Coiffet. V7rtual Reality Technology.

John Wiley & Sons, Inc., 1994.

W. Buxton. Human Skills in Interface Design. In L. Mac-

Donald and J. Vince, editors, Interacting with WrtualEn-

vironments, chapter 1, pages 1–12. John Wiley & Sons

Ltd., 1994.

S. K. Card, T. P. Moran, and A. Newell. The Model

Human Processor — An Engineering Model of Human

Performance. In [3], chapter 45.1986.

F. L. Engel, P. Goossens, and R. Haakma. Improved Ef-

ficiency through I- and E-Feedback: A Trackball with

Contextual Force Feedback. International Journal of

Hantan-Computer Studies, 41(6):949–974, 1994.

10 W. R. Ferrell. Delayed force feedback. Human Factors,

11

12

13

14

15

16

pages 449-455, October 1966.

A. Geist et al. PVM: Parallel Wwtal Machine--+l User’s

Gaide and Tutorial for Networked Parallel Cotnputing.

The MIT Press, Cambridge, London, 1994.

W. Kerstner, G. Pigel, and M. Tscheligi. The FeelMouse:

Making Computer Screens Feelable. In W. Zagler et al.,

editors, Computers for Handicapped Persons. Proc. of

the ICCHP’94. Springer-Verlag, 1994.

J. M. Loomis and S. J. Lederman. Tactual Perception. In

[3/, chapter 31.1986.

S. Miinch and M. Stangenberg. Intelligent Control for

Haptic Displays. COMPUTER GRAPIfICS forum, Con-

ference issue (Eurographics ’96, Augusl 26-30, Poitiers,

France), 15(3):217–226, 1996.

J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley

Publishing Company, 1994.

H. Rheingold. Wr[ua/ Reality. Simon & Schuster (Tow-

erstone Books), 1991.

112

