
Haptic Rendering of Arbitrary Serial Manipulators

for Robot Programming

Michael Fennel1, Antonio Zea1, Johannes Mangler2, Arne Roennau2, Uwe D. Hanebeck1

Abstract— The programming of manipulators is a common
task in robotics, for which numerous solutions exist. In this
work, a new programming method related to the common
master-slave approach is introduced, in which the master is
replaced by a digital twin created through haptic and visual
rendering. To achieve this, we present an algorithm that enables
the haptic rendering of any programmed robot with a serial
manipulator on a general-purpose haptic interface. The results
show that the proposed haptic rendering reproduces the kine-
matic properties of the programmed robot and directly provides
the desired joint space trajectories. In addition to a stand-alone
usage, we demonstrate that the proposed algorithm can be
easily paired with existing visual technology for virtual and
augmented reality to facilitate a highly immersive programming
experience.

I. INTRODUCTION

The programming of manipulators is a common problem

in robotics and appears in many fields, including industrial

automation, humanoid robots, and even surgical applications.

Despite tremendous efforts to abstract and automate the

programming and control of robotic manipulators, no uni-

versal approach exists that covers all possible aspects of

complex problems like painting or assembly. Furthermore,

increased sensing capabilities and environmental information

in a machine-readable form are required, which are not always

available, especially in cost-sensitive applications, complex

or unstructured environments, or in situations with frequent

reprogramming. To overcome these issues and to leverage

the cognitive capabilities of a human operator or programmer,

several programming methods are available [1]–[3].

One option is text-based programming, but this requires

special knowledge and a high level of abstraction. Beyond

that, it is not guaranteed that a given program with its motions

can be executed correctly by the robot due to kinematic and

environmental constraints. Another option is programming by

demonstration. In its basic forms, the programmer moves the

end effector of the programmed robot (PR) either by directly

touching it or by moving the end effector of a possibly scaled

master robot that is linked with the PR acting as a slave.

The disadvantages of both methods are apparent: In the first

case, physical interaction with the PR is required causing

1 The authors are with the Intelligent Sensor-Actuator-Systems
Laboratory, Institute for Anthropomatics and Robotics, Karlsruhe Institute
of Technology, Adenauerring 2, 76131 Karlsruhe, Germany. E-mails:
michael.fennel@kit.edu, antonio.zea@kit.edu,
uwe.hanebeck@kit.edu

2 The authors are with the FZI Research Center for Information
Technology, Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Germany. E-mails:
mangler@fzi.de, roennau@fzi.de

This work was supported by the ROBDEKON project of the German
Federal Ministry of Education and Research.

digital twin (DT)

haptic robot (HR) programmed robot (PR)

kinematic information

AR/VR headset

environment information

planned trajectory

other sources

Fig. 1. General structure of the proposed digital twin setup for robot
programming using haptic feedback and virtual/augmented reality.

safety issues. In the latter case, each PR type requires its

own, costly master robot with a matching kinematic structure.

Another variant of programming by demonstration is the

use of a marker (i.e., an object that can be tracked by the

programming system) moved by the programmer [1]. Again,

physical access to the robot environment is required and the

resulting motion might not be compatible with the kinematic

constraints of the PR. Additionally, there is no way for the user

to feel interaction forces from the PR and its environment.

To overcome these issues while maintaining the idea of

programming by demonstration, we propose a novel digital

twin (DT) system as depicted in Fig. 1. With this system,

we leverage existing virtual and augmented reality (VR/AR)

techniques in combination with a new method for haptic

feedback for the programming of robot motions. To achieve

this, the kinematic behavior of the arbitrary PR is rendered by

a general-purpose haptic interface, which we will call a haptic

robot (HR). With the proposed solution, the programming

person will be enabled to feel and explore properties like

reach, dexterous workspace, and joint limits of the PR

independent of the visual rendering technology. At the same

time, undesired properties such as gravity can be removed,

while assistive features can be easily added. Due to the

potential usage of VR/AR, it is not just possible to display

the target environment and the state of the PR, but also to

give the programming persons a highly immersive feeling.

Ideally, they will get the impression that they are operating

the PR in its real environment by guiding the end effector

along desired trajectories.

II. RELATED WORK

The application of haptic feedback for path planning or

selection tasks is an active topic of research. In [4], an



DT

HR

H

R

E

F

Fig. 2. Definition of the used coordinate frames.

algorithm is presented that supports the user while they

choose a path, based on a pre-planned, collision-free path

and guiding forces. Kinematic constraints of the PR are not

respected. Another concept for haptic guidance during the

path selection phase for car-like vehicles is given in [5].

Although this approach respects the kinematic constraints

and the limitations of the steering angle, it cannot be applied

to other mechanical structures, which disqualifies it for the

task of rendering kinematics.

A more general approach for realizing constraints on a

haptic interface is the so-called virtual fixture as proposed in

[6]. While this approach allows constraining the motion on a

path or surface, it cannot deal with complex manifolds as they

appear in the workspace description of average manipulators.

In [7], a method specifically designed for the haptic rendering

of surfaces in 3D space is presented. Similar to virtual fixtures,

this approach is limited to surfaces (i.e., two degrees of

freedom) and cannot be generalized for more degrees of

freedom, making it unsuitable for the haptic rendering of

arbitrary manipulators.

Independent of haptic feedback, the usage of VR and AR

tools in robotics grew in the last decade due to the increasing

accessibility of suitable devices [8]. Examples for this are

given in [9] and [10], where robot trajectories are either

recorded in a fully virtual environment or in the real robot

environment that is augmented with a virtual model of the

actual robot. The combination of both haptics and VR/AR

was demonstrated recently for the application example of

welding robots [11]. Although the idea presented therein is

independent of a priori environmental knowledge, it does not

take into account the kinematic limitations of the robot.

As of this writing, we are not aware of any system for robot

programming that combines haptic feedback with VR/AR

and that respects all kinematic constraints of the PR.

III. PROBLEM STATEMENT

A. Coordinate Systems and Notation

Throughout this paper, vectors are printed underlined and

matrices are printed bold. Positions are denoted with
¯
p and

orientations are denoted using the roll-pitch-yaw angles
¯
θ. A

translation and a rotation can be combined into a pose
¯
x =

[

¯
pT,

¯
θT
]

T. Orientations and poses can also be expressed as

rotation matrices R and homogeneous transformation matrices

T, respectively. Furthermore,
¯
f is used for 3D-forces,

¯
m for

3D-torques,
¯
q for generalized joint angles, and

¯
τ for joint

torques. Superscripts denote the reference coordinate frame in

which a quantity is expressed, whereas the subscripts indicate

a point or a pose. For example,
¯
pAB represents the position of

point B given in coordinates of frame A. To reference the

i-th element of a vector, [i] is appended to the subscript. All

quantities are given in SI units unless otherwise specified.

In the remainder, the coordinate frames as illustrated in

Fig. 2 are used. The frame F denotes the flange of the HR

and is assumed to be coincident with the position of its

force/torque sensor. The frame H denotes the reference frame

of the HR. Moreover, the reference frame of the DT is defined

as R and the end effector frame of the DT coincident with

the programmer’s handle is denoted as E.

B. Objective

In the following, the PR is assumed to be a serial kinematic

structure with n ∈ N
+ joints, that are a mixture of prismatic

and revolute joints. As the PR might be incompatible with

the size of the HR or the user, static up- or downscaling is

allowed. The kinematic model of the scaled PR corresponds

to the forward kinematics of the DT and is given as

¯
xR

E =
¯
f (q) , (1)

¯
qmin ≤

¯
q ≤

¯
qmax . (2)

Additionally, it is assumed that the linkage, i.e., the point

where the user touches the HR to move the end effector of

the DT, and the position of the DT with respect to the HR

are known and fixed. Formally, this can be expressed with

the transformations T
E
F and T

H
R .

The HR is any haptic interface, whose dexterous workspace

is a superset of the DT’s workspace and that accepts Cartesian

pose setpoints
¯
xH∗

F for its flange. Moreover, force and torque

measurements at the flange are available, i.e.,
¯
fH

F and
¯
mH

F ,

are known. Note, that these properties do not require a

manipulator specifically designed as a haptic interface.

Given these conditions, the goal is now to develop a system,

that lets the handle attached to the HR behave like the user is

moving the real kinematic structure of the PR. This requires

1) a haptic rendering algorithm for a kinematic structure

defined by (1) and (2), and

2) a visual rendering of the DT in AR or VR.

This paper mainly deals with the former, whereas the visual

rendering is covered only briefly. Interested readers are

therefore invited to refer to [12] for detailed information

about the visual rendering.

IV. HAPTIC RENDERING OF MANIPULATORS

In the following, the essential parts of the proposed haptic

rendering algorithm are presented.

A. Transformation of Forces and Torques

Force and torque are measured with respect to the reference

frame of the HR. In order to use these measurements, the

reference frame needs to be changed first, using
[

¯
fR

F

¯
mR

F

]

=

[

R
R
H
¯
fH

F

R
R
H ¯
mH

F

]

. (3)



Based on this, the force acting on E,

[

¯
fR

E

¯
mR

E

]

=

[

¯
fR

F

¯
mR

F +
(

R
R
E
¯
pE

F

)

×
¯
fR

F

]

, (4)

must be calculated. This expression assumes that E and F are

rigidly linked and that the mass of the handle is negligible

or compensated for by the force-torque-sensing method.

B. Simulation of Dynamics

To simulate the behavior of the DT under the influence of

the programmer’s grasp, a dynamic system model of the DT

is used. The key idea here is to calculate the joint movements

based on the forces and torques acting on the end effector of

the DT. In contrast to standard physic engines, that model

each link as a body with 6 degrees of freedom and each

joint as a constraint [13], the presented approach performs

all calculations directly in the joint space. The simulated

joint angles are then forwarded to the HR (see Section IV-

C), resulting in a structure similar to an admittance control

scheme.

It is well-known from robot dynamics, that

¯
τ = H

(

¯
q
)

¯
q̈ +

¯
c
(

¯
q,
¯
q̇
)

+
¯
g
(

¯
q
)

(5)

holds, where H represents the joint space inertia matrix,
¯
c

the torques occurring due to centrifugal and coriolis forces,

and
¯
g the torques induced by gravity. The torque

¯
τ can be

split into

¯
τ =

¯
τdri +¯

τcon −¯
τdis , (6)

with the driving torques
¯
τdri, the constraint torques

¯
τcon, and

the dissipative torques
¯
τdis. To make the DT compliant to

the forces and torques applied to its end effector, the driving

torques are determined according to [14] by

¯
τdri = J

T
(

¯
q
)

[

¯
fR

E

¯
mR

E

]

, (7)

where J is the Jacobi-matrix of the kinematics defined in (1).

Other driving torques, e.g., due to joint actuation, are set to

zero. For a more pleasant user experience,
¯
g is set to zero

as well. This means that the user does not have to hold the

static weight of the DT.

Now, solving (5) for
¯
q̈ and inserting (6) and (7) yields

·
[

¯
q

¯
q̇

]

=





¯
q̇

H
−1
(

¯
q
)

(

J
T
(

¯
q
)

[

¯
fR

E

¯
mR

E

]

+
¯
τcon−¯

τdis−¯
c
(

¯
q,
¯
q̇
)

)



 (8)

for the momentary joint speeds and accelerations. In this

system of differential equations, H and
¯
c are determined using

the composite-rigid-body algorithm (CRBA) and the recursive

Newton-Euler algorithm (RNEA), respectively. After that, an

explicit integration scheme is used to obtain the desired joint

positions. Implicit integration schemes are not applicable, as

the mentioned algorithms do not provide gradient information

with respect to
¯
q and

¯
q̇.

1) Inertia Matrix: The joint space inertia matrix H
(

¯
q
)

reflects all masses that are present in the DT and its real

counterpart. Consequently, all link inertia values must be

known for the matrix calculation. Simply taking the physical

link inertia values of the PR is a conceivable option for

this purpose, but it has two drawbacks: First, precise inertia

data is not always available, and second, the inertia of a

real robot arm might be higher than that which a user can

handle comfortably. For this reason, a new artificial inertia

distribution is constructed, which concentrates the majority

of the user-configurable inertia (mmain and Imain) in the

end effector E. Additionally, all other links are assigned small

inertia values (mother and Iother) to avoid ill-conditioned, and

hence non-invertible, H-matrices. This way, the felt inertia

is concentrated at the user’s hand and can be tuned to a

comfortable value independent of the real inertia.

2) Friction: It is desired that a passively moving manipula-

tor reaches a resting state after some time without any driving

forces and torques, as is the case with any real manipulator.

This can be achieved by introducing friction into the model

defined in (8), which also permits an effective limitation of

the end effector speeds assuming that the force and torque

exerted by the user are limited in magnitude.

To realize the friction,
¯
τdis is set to the sum of two terms.

The first component is the viscous joint friction

¯
τdis,jnt = djnt

¯
q̇, (9)

with friction coefficient
¯
τdis,jnt and the second component is

based on a Cartesian, isotropically acting viscous friction

defined by
[

¯
fR

E

¯
mR

E

]

dis,cart

=

[

dcart,pI 0

0 dcart,θI

]

¯
ẋR

E , (10)

where
¯
ẋR

E = J(q)
¯
q̇. The parameters dcart,p and dcart,θ char-

acterize the translational and rotational friction, respectively.

Analogous to (7), this yields the dissipative joint torques

¯
τdis,cart = J

T
(

¯
q
)

[

dcart,pI 0

0 dcart,θI

]

J(q)
¯
q̇ . (11)

Both friction components are required for a safe and com-

fortable user experience. While the former is mainly meant

for damping high joint speeds near singularities, the latter

one ensures that the damping force felt by the user is not

dependent on the link lengths of the PR as long as the

kinematic properties are respected.

3) Joint Limits: Robotic manipulators usually have a

limited range of joint motion, which restricts their working

range and introduces properties of a non-trivially solvable

hybrid system. To incorporate this into the presented haptic

rendering algorithm, joint limits must be mimicked as well.

A simple way to achieve this is the modeling of each active

joint limit as a virtual spring. However, this method results

in indistinct joint limits and stiff differential equations that

facilitate oscillations.

For this reason, joint limits are interpreted as contacts

between rigid bodies, which allows the application of the

contact modeling described in [15]. The idea behind this



approach is to use the yet unknown constraint torques
¯
τcon

introduced in (6) and to summarize all known quantities in

(5) as

¯
τ̂ =

¯
τdri −¯

τdis −¯
c
(

¯
q,
¯
q̇
)

(12)

yielding

H

¯
q̈ =

¯
τ̂ +

¯
τcon. (13)

For the modeling of the contacts, let m be the number of

joint limits that are currently active and l (i) ∈ {1, . . . , n}
the joint number of the i-th joint at its limit. Furthermore,

the sign of the joint limit is defined as

s (i) =

{

−1 if
¯
q[l(i)] ≥

¯
q

max[i]

+1 if
¯
q[l(i)] ≤

¯
q

min[i]

. (14)

Now, the constraint torques can be substituted with

¯
τcon = F

¯
α , (15)

where F ∈ R
n×m is a directional matrix given as

F =
[

s (1)
¯
e
l(1) · · · s (m)

¯
e
l(m)

]

. (16)

Here,
¯
ek denotes the k-th unit vector. The vector

¯
α ∈ R

m

contains the yet unknown constraint torque coefficients, which

can be interpreted as the sought constraint torque magnitudes,

since all columns of F are orthonormal. For each contact i,
(

¯
α[i]=0 ∧ s(i)

¯
eTl(i)

¯
q̈>0

)

∨
(

¯
α[i]≥0 ∧ s(i)

¯
eTl(i)

¯
q̈=0

)

(17)

must hold. This boolean expression states, that the currently

active joint limit either becomes inactive (i.e., the constraint

torque is zero and the joint is accelerating away from the

limit) or remains active (i.e., no acceleration, but a constraint

torque). If these conditions are reformulated and merged for

all contacts, the vector notation
(

diag (
¯
α)FT

¯
q̈ = 0

)

∧
(

¯
α+ F

T

¯
q̈ ≥ 0

)

(18)

is obtained. Inserting (13) and (15) into the previous expres-

sion yields the quadratic equality/inequality system
(

diag (
¯
α)FT

H
−1 (

¯
τ̂ + F

¯
α) = 0

)

∧
(

¯
α+ F

T
H

−1 (
¯
τ̂ + F

¯
α) ≥ 0

)

,
(19)

which can be solved for
¯
α using the root finding algorithm

given in [15]. The eventually calculated value for
¯
τcon is

then fed back into (8) before integration.

Although the above-mentioned steps ensure that joint limits

are always respected, it does not guarantee that the mechanical

impulse of the DT is preserved, when physically possible. To

avoid this uncomfortable effect for the user, the impact model

between rigid bodies during the compression phase [15] is

applied before each integration step. In this, the sought change

in joint velocity ∆
¯
q̇ is physically described through

∆
¯
q̇ = H

−1
F

¯
γ , (20)

where
¯
γ ∈ R

m can be interpreted as a yet unknown impulse

strength. Similar to (17),
(

¯
γ[i] = 0 ∧ s(i)

¯
eTl(i)

(

¯
q̇ +∆

¯
q̇
)

> 0
)

∨
(

¯
γ[i] ≥ 0 ∧ s(i)

¯
eTl(i)

(

¯
q̇ +∆

¯
q̇
)

= 0
) (21)

Algorithm 1 Simulation of the DT’s dynamic behavior for

the haptic rendering.

1: procedure UPDATE(∆t,
¯
fR

E , ¯
mR

E)

2: H← getInertiaMatrix
(

model,
¯
q
)

⊲ CRBA

3: ∆
¯
q̇ ← calculateVelocityDelta

(

F,H,
¯
q̇
)

⊲ (20), (22)

4:
¯
q̇ ←

¯
q̇ +∆

¯
q̇

5: J← getJacobian
(

model,
¯
q
)

6:
¯
c← getCoriolisTerm

(

model,
¯
q,
¯
q̇
)

⊲ RNEA

7:
¯
τdri ← J

T
[

¯
fRT

E ,
¯
mRT

E

]

T

8:
¯
τdis ← ¯

τdis,jnt +¯
τdis,cart ⊲ (9), (11)

9:
¯
τ̂ ←

¯
τdri −¯

τdis −¯
c

10:
¯
τcon ← calculateConstrTorques(F,H,

¯
τ̂) ⊲ (15), (19)

11:
¯
q̈ ← H

−1 (
¯
τ̂ +

¯
τcon)

12:
(

¯
q,
¯
q̇
)

← integrate
(

¯
q,
¯
q̇,
¯
q̈,∆t

)

13: F← calculateFMatrix(model,
¯
q) ⊲ (14), (16)

14:
¯
q ← max

(

min
(

¯
q,model.

¯
qmax

)

,model.
¯
qmin

)

15: end procedure

has to be true. Here, the former condition represents a contact

that is in the process of breaking (i.e., the new velocity causes

the joint to move away from its active limit) and the latter

condition represents a contact that is still active (i.e., new

velocity must be zero). Combining (20) and (21) for all

contacts yields the system
(

diag
(

¯
γ
)

F
T
(

¯
q̇ +H

−1
F

¯
γ
)

= 0
)

∧
(

¯
γ + F

T
(

¯
q̇ +H

−1
F

¯
γ
)

≥ 0
)

,
(22)

whose solution scheme for
¯
γ is the same as that for (19).

Following this, ∆
¯
q̇ is obtained using (20) and added to

¯
q̇.

With this, all steps involved in the dynamic simulation of

the DT and thus for the haptic rendering are known. If the

operations are now executed as outlined in Algorithm 1, a

full cycle of the dynamic simulation is performed.

C. Output Preparation

After each simulation cycle (i.e., integration step of

differential equation (8)),
¯
q is passed to the forward kinematics

(1) of the DT. The resulting pose
¯
xR

E is then transformed to

the desired flange pose of the HR with respect to its reference

frame using

T
H∗

F = T
H
R T

R
E T

E
F , (23)

which is then sent to the HR for execution.

V. IMPLEMENTATION

A block diagram of the proposed haptic rendering method

is depicted in Fig. 3. The loop closure is achieved through

the user’s hand-arm-system acting as a variable mechanical

impedance.

For validation, the whole system was implemented as a

ROS-node in C++. To ensure reusability, the code is kept robot-

agnostic with respect to the PR and the HR. Therefore, the

HR is commanded via Cartesian pose-setpoints and the entire

geometry and joint information of the PR is provided through

an URDF-based robot description, that can be downscaled if

necessary. The implementations of the CRBA and the RNEA

as well as the kinematic operations are taken from the Orocos



force torque
sensor

pose offsets

T
E
F and T

H
R

¯
xH∗

F

URDF
- geometry information
- joint limits

¯

fR
E ,

¯
mR

E
¯

q
¯
xR

E ¯

fF
H,

¯
mF

Hhaptic robot including
inverse kinematics

dynamic model

¯

q̈ =
¯
h
(

¯

q,
¯

q̇,
¯

fR
E ,

¯
mR

E

)

forward kinematics

¯
xR

E =

¯

f
(

¯

q
) arm of human user

¯
xH

F

Fig. 3. Block diagram of the proposed haptic rendering method for serial manipulators. Blocks drawn in red correspond to the HR, while blocks drawn in
blue correspond to the DT.

(a) Liebherr excavator
(4 joints).

(b) SCARA (4 joints)
with prismatic joint.

(c) Franka Emika
Panda (7 joints).

Fig. 4. Robot models used as PR during the evaluation. The joints are
numbered ascending from the base to the tip for each robot.

Kinematics Dynamics Library (KDL) [16]. For the integration

of (8), the fourth-order Runge-Kutta method was used.

For the visual rendering of the DT and other information

such as forces and environmental information, the iviz

visualization platform [12] is deployed. By leveraging the

Unity Game Engine and a high-performance ROS interface,

iviz enables effortless robotic visualization on a variety

of AR/VR devices, including systems running Apple iOS,

Microsoft Windows, and Google Android. Due to the full

compatibility with ROS and the URDF-format, iviz requires

zero porting effort for existing ROS applications and has a

function range that is comparable with the ROS-tool rviz.

VI. EXPERIMENTAL RESULTS

For the evaluation, a Universal Robots UR16e manipulator,

which can be considered as a low-end haptic device, was

used as an HR. This choice was made to demonstrate that

the presented algorithms do not rely on the availability of

special haptic interfaces. The Cartesian pose control of the

UR16e was realized using the inverse kinematics algorithm

presented in [17]. The control loops were set to a frequency

of 500Hz running on a laptop with an Intel Core i7-9570H

CPU. To demonstrate the capabilities of the proposed haptic

rendering method, a set of different PRs as depicted in Fig. 4

was selected. The chosen manipulators include a variety of

kinematic structures reaching from classical industrial to more

exotic manipulators. In addition, prismatic and revolute joints

are included as well as a redundant kinematic structure.

For all experiments, the friction parameters were chosen

empirically as djnt = 0.8Nms, dcart,p = 17.0N sm−1,

and dcart,θ = 1.5Nms. The inertia values were set to

mmain = 30.0 kg, Imain = 0.03 kgm2, mother = 6.0 kg, and

Iother = 6.0× 10−3 kgm2. These values result in a user

experience with reasonable required user forces without being

susceptible to force/torque sensor noise or exceeding the

driving capabilities of the actuators.

Fig. 5. Recorded joint space trajectories of the excavator’s DT. The upper
and lower joint limits are drawn as dashed lines. The black line marks the
point in time when a velocity impulse is applied to joint 3.

Fig. 6. Joint space trajectories of the SCARA manipulator’s DT, when
singularities (

¯

q
[2]

= 0) are passed.

A. Joint Limits

In order to test the behavior of the DT’s joint limits, the

manipulator of an excavator as shown in Fig. 4(a) was used

as the PR. Therefore, the end effector of the DT, i.e., the

shovel, was moved around by hand to hit the joint limits on

purpose. The resulting joint space trajectories are depicted

in Fig. 5. Clearly, it can be seen that all joint limits are

respected without oscillations at the boundaries, independent

of the number of joints at the limit. At t = 14 s, joint 2 (boom)

reaches its lower limit causing a sudden change in the velocity

of joint 3. This demonstrates that the impulse preservation

described in Section IV-B.3 works as expected. In general,

the obtained joint trajectories are ready to be processed for

validation or to be directly sent to the executing robot.

B. Singularities

The SCARA arm from Fig. 4(b) features a singularity if

it is stretched to its full extent (
¯
q[2] = 0). As illustrated in

Fig. 6, this singularity neither restricts the movements of

the remaining joints nor the proposed rendering algorithm

in general. The manipulator can be moved into and out of

singularities at any time if suitable forces are applied as one

might expect from the real mechanical structure.



Fig. 7. Translational and rotational tracking error between HR and DT for
different maximal forces and torques. The ∞-symbol in the legend indicates,
when the maximal forces and torques are not bounded.

C. Tracking Error

For the goal of accurate robot programming, it is crucial

that the HR closely follows the DT and vice versa. As

explained in Section IV-C, the pose of the DT is used

as an input for the Cartesian controller of the HR. This

implies that the achievable tracking error depends on the

controller properties of the HR. To examine the accuracy,

the tracking errors for the translation
¯
pH

H∗
and the rotation

¯
θH

H∗
were evaluated for different maximal forces and torques

exerted by the user, when the robot in Fig. 4(c) was moved

around randomly. The results depicted in Fig. 7 indicate that

the expected errors are bound. From this, it also becomes

apparent that lower errors can be achieved by limiting the

force/torque artificially without changing the HR or its control.

D. Integration with VR/AR

Due to the implementation as a ROS node, seamless

interoperability with iviz is enabled. This was successfully

tested through the haptic rendering and visualization of

the manipulators shown in Fig. 4. An example for the

visualization, that was performed with the HTC Vive (VR), the

Apple iPad (AR) as well as the Microsoft Hololens (AR) can

be found in Fig. 8. We refer the reader to the supplementary

material of this paper for more examples.1

VII. CONCLUSIONS

In this paper, a haptic rendering algorithm suitable for the

programming of serial manipulators was presented. Practical

tests demonstrated that the presented rendering method

provides a feasible solution for the joint space trajectories

of the PR, independent of the presence of singularities or

the kinematic structure. Furthermore, it was shown that the

achievable tracking accuracy mainly depends on the controller

of the HR and the magnitude of input force and torque. The

overall system is well integrated with VR/AR methods.

Future research will involve the integration of an HR with

a faster Cartesian controller, the application in a real-world

1https://youtu.be/5t37cfeE7E0

Fig. 8. Iviz visualization of the programming process for an excavator. The
robot model is rendered in real-time onto the camera image of an Apple
iPad.

programming scenario, and the design of assistive features

such as the display of forces due to collisions between the DT

and its environment. Additionally, the presented programming

approach will be evaluated with a group of test subjects.

At the theoretical level, the stability of the system during

human-robot interaction needs to be studied. Especially the

observation, that a limited force input yields a bounded

tracking error, which would imply stability, needs to be proven

mathematically.

REFERENCES

[1] G. Biggs and B. MacDonald, “A survey of robot programming
systems,” in Proceedings of the Australasian conference on robotics

and automation, 2003.
[2] G. F. Rossano, C. Martinez, M. Hedelind, S. Murphy, and T. A.

Fuhlbrigge, “Easy robot programming concepts: An industrial perspec-
tive,” in 2013 IEEE International Conference on Automation Science

and Engineering (CASE), 2013, pp. 1119–1126.
[3] V. Villani, F. Pini, F. Leali, C. Secchi, and C. Fantuzzi, “Survey

on human-robot interaction for robot programming in industrial
applications,” IFAC-PapersOnLine, vol. 51, no. 11, pp. 66–71, 2018.

[4] N. Ladeveze, J. Y. Fourquet, B. Puel, and M. Taı̈x, “Haptic assembly
and disassembly task assistance using interactive path planning,” in
2009 IEEE Virtual Reality Conference, 2009, pp. 19–25.

[5] M. Fennel, A. Zea, and U. D. Hanebeck, “Haptic-guided path generation
for remote car-like vehicles,” IEEE Robotics and Automation Letters,
2021, to appear.

[6] P. Marayong, M. Li, A. M. Okamura, and G. D. Hager, “Spatial
motion constraints: Theory and demonstrations for robot guidance
using virtual fixtures,” in 2003 IEEE International Conference on

Robotics and Automation, vol. 2, 2003, pp. 1954–1959.
[7] N. Zafer, “Constraint-based haptic rendering of a parametric surface,”

Proceedings of the Institution of Mechanical Engineers, Part I: Journal

of Systems and Control Engineering, vol. 221, no. 3, pp. 507–517,
2007.

[8] Z. Makhataeva and H. A. Varol, “Augmented reality for robotics: A
review,” Robotics, vol. 9, no. 2, 2020.

[9] H. Fang, S. K. Ong, and A. Y. Nee, “Robot programming using
augmented reality,” in 2009 International Conference on CyberWorlds,
2009, pp. 13–20.

[10] A. Burghardt, D. Szybicki, P. Gierlak, K. Kurc, P. Pietruś, and R. Cygan,
“Programming of industrial robots using virtual reality and digital twins,”
Applied Sciences, vol. 10, no. 2, 2020.

[11] D. Ni, A. W. W. Yew, S. K. Ong, and A. Y. C. Nee, “Haptic and
visual augmented reality interface for programming welding robots,”
Advances in Manufacturing, vol. 5, no. 3, pp. 191–198, 2017.

[12] A. Zea and U. D. Hanebeck, “iviz: A ROS visualization app for mobile
devices,” Software Impacts, vol. 8, 2021.

[13] D. Baraff, “Physically based modeling,” in SIGGRAPH 99 course notes,
1999.

[14] R. Featherstone and D. E. Orin, “Dynamics,” in Springer Handbook

of Robotics, B. Siciliano and O. Khatib, Eds. Berlin, Heidelberg:
Springer, 2008, pp. 35–65.



[15] R. Featherstone, Robot dynamics algorithms. Boston, Dordrecht,
Lancester: Kluwer Academic Publishers, 1987.

[16] P. Soetens, T. Issaris, H. Bruyninckx, S. Joyeux, R. Smits et al. (2021,
Feb.) KDL overview – Orocos documentation. [Online]. Available:
https://docs.orocos.org/kdl/overview.html

[17] S. Scherzinger, A. Roennau, and R. Dillmann, “Inverse kinematics
with forward dynamics solvers for sampled motion tracking,” in 2019

19th International Conference on Advanced Robotics (ICAR), 2019,
pp. 681–687.


