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Abstract: The fractional differential algorithm has a good effect on extracting image textures, but
it is usually necessary to select an appropriate fractional differential order for textures of different
scales, so we propose a novel approach for haptic texture rendering of two-dimensional (2D) images
by using an adaptive fractional differential method. According to the fractional differential operator
defined by the Grünvald–Letnikov derivative (G–L) and combined with the characteristics of human
vision, we propose an adaptive fractional differential method based on the composite sub-band
gradient vector of the sub-image obtained by wavelet decomposition of the image texture. We
apply these extraction results to the haptic display system to reconstruct the three-dimensional
(3D) texture force filed to render the texture surface of two-dimensional (2D) images. Based on this
approach, we carry out the quantitative analysis of the haptic texture rendering of 2D images by using
the multi-scale structural similarity (MS-SSIM) and image information entropy. Experimental results
show that this method can extract the texture features well and achieve the best texture force file for
2D images.

Keywords: haptic display; haptic texture rendering; adaptive fractional differential; 2D images

1. Introduction

Haptic texture is a crucial cue to inform users of an interaction state with the surface
texture, i.e., fine geometric surface features of an object. Haptic textures have received
substantial attention in various fields [1–3]. Previous researchers have shown that the addi-
tion of haptic texture cues can greatly improve the realism of the virtual environment [4].
Therefore, the haptic texture rendering technique has several potential applications, such as
virtual surgical simulation, haptic feedback teleoperation, on-line e-commerce, and aiding
the visual impaired [5–7].

In general, there are three basic methods to render haptic textures. The first is the sam-
ple-based approach. S. Andrews introduced a system which is based on a tactile probe
and a visual tracker for scanning and synthesizing tactile textures [8]. H. Vasudevan esti-
mated the surface texture according to the frequency spectrum of vertical perturbations
by dragging the tip of the tactile device on the object surface [9]. A. Song developed
a PVDF-based haptic texture sensor by imitating human active texture perception to
measure real object surface texture for haptic texture rendering in virtual reality [10].
V. Bove used holograms to record the surfaces and textures of objects in a holo–haptic
system. The produced haptic images were felt and shaped by a handheld device [11].
The second is the procedural texture approach which uses mathematical functions to syn-
thesize the surface texture of objects. Several related researchers were summarized in de-
tail [12–14]. The third is the image-based approach. This method constructs a texture force
field from 2D image data. Therefore, this kind of haptic texturing approach can also be con-
sidered as a type of VR [15]. L. M. Benjamin computed an elevation map based on the lumi-
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nance coefficient for Texel images using four different techniques. These techniques were
based on the fact that the height value of the pixel is proportional to the luminance value.
Then, the elevation map is used to generate 3D bumps on the surface of the detected
object, and calculate the corresponding tactile force for haptic rendering [16]. J. Wu and
A. Song processed the 2D images with a Gaussian filter to obtain low-frequency compo-
nents, and then subtracted the filtered image from the original image; the left components
denote the texture information. The forces simulated from textures were applied to the user
using a Delta haptic device [17]. S. Xu proposed an image-based haptic texture generation
approach by replacing the Gaussian filter with an improved switching vector median filter
for modeling the textured force and simulating the haptic stimuli [18]. Vasudevan used the
conventional edge detection algorithms and proposed a design method of haptic mask to
allow the user to feel the contours and textures of the image using haptic devices [19]. J. Lu
and A. Song presented a haptic texture rendering method based on color temperature and
luminance to construct 3D texture force fields of 2D color images [20]. E. R. Vimina and
Divya proposed a fixed size descriptor based on local strength for texture calculation, and
further expanded texture information by multi-channel color data collection [21].

Owing to the fact that the image-based haptic texture rendering approach has po-
tential advantages of cost-effective realization, it has attracted substantial attention from
researchers. However, the existing haptic texture rendering methods have problems in
dealing with the images with fine geometric texture features.

In this paper, we propose a novel fractional differential method for image-based hap-
tic texture rendering. Fractional differentiation is currently a new tool for image signal
processing. Complex texture details will show highly self-similar fractal information in
image signals, and the mathematical basis of fractal theory includes fractional differenti-
ation [22,23]. Therefore, the features of complex texture in the image can be extracted by
fractional differentiation and applied to the haptic texture reconstruction.

This paper introduces the Grünvald–Letnikov (G–L) definition of fractional differential
in Euclidean space [24,25]. Based on the G–L definition, the isotropic m × n fractional
differential mask is deduced. Then we propose a novel method to adaptively select
the order of a fractional differential operator by using the composite sub-band gradi-
ent vector (CSGV) relate with the wavelet decomposition [26] and human visual char-
acteristics [27,28]. Thirdly, we apply the approach in haptic texture rendering and give
a quantitative analysis by using the image information entropy and multi-scale structural
similarity (MS-SSIM). We apply these extraction results to the haptic display system to
reconstruct the three-dimensional texture force filed to render the texture surface of 2D
images. Finally, some experiments were carried out on different types of texture images.
Experimental results show that the proposed haptic texture rendering method based on
the adaptive fractional difference can extract texture features well and obtain an excellent
texture force field of 2D images.

2. The Advantage of Fractional Differential

Fractional differential processing of signals can not only enhance the high-frequency
components of a signal nonlinearly, but also enhance the intermediate frequency com-
ponents of the signal nonlinearly to a certain extent, while retaining the low-frequency
components of the signal nonlinearly [29,30]. Using this property of fractional differen-
tiation, we can preserve the low-frequency contour information of digital images while
nonlinearly augmenting high-frequency detailed texture patterns with wider gray dis-
tributions. Finally, the enhanced image is subtracted from the original image to obtain
the texture extraction result.

The Grünvald–Letnikov (G–L) definition, Kaputo definition, and Riemann Liouville
(RL) definition are three commonly used definitions of fractional differential under Eu-
clidean Metric [29]. Recent research indicates that the implementation of differentials in
digital image processing is almost always based on the G–L concept. The Tiansi operator
mask that is constructed according to the definition of G–L will actually have inaccuracy in
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image processing, because it is discrete in digital images and is an approximate expression
of functions, so the effect of image texture extraction is often unsatisfactory.

Therefore, we add adaptive augmentation to the G–L fractional differentiation defini-
tion, and find it is suitable for image texture acquisition.

The low-frequency components of the image can be well preserved under the frac-
tional differential operator mask filtering. The output gradation value is dramatically
enhanced for nearby pixels whose gray value fluctuates rapidly in the area (including
picture borders and texture regions), showing that the fractional differential operator mask
may significantly improve the original image’s high-frequency component.

3. Differential Order for Adaptive Selection Algorithm

Texture is one of the most essential image processing and analysis properties. Texture
gives intuitive assessments of qualities, such as regularity, coarseness, and smoothness.
The majority of texture analysis methods analyze the picture at a single scale. As revealed
by J. Beck et al. [31], the visual cortex may be modeled as multiple channels, where each
channel can perceive a specific direction and frequency tuning. Multi-scale texture analysis
techniques are propelled by multichannel processing. Several multichannel texture anal-
ysis systems have been suggested [32,33]. In the past 10 years, the rapid development of
wavelet theory has also brought new theories and methods to the field of image processing.
I. Daubechies suggested a discretization approach for wavelet transform [34]. The relation-
ship between multiresolution theory and wavelet transforms was further developed by
S. G. Mallat [35]. Since then, wavelet theory has developed into a multi-scale (multi-
resolution) mathematical tool in image analysis. The use of multi-scale methods in texture
image analysis is based on the premise that lower resolution channels can better record
“large” textures, while higher resolution channels can better record “small” textures.

The following describes the process involved. Apply wavelet and scaling filters to
the image both horizontally and vertically, then sub-sample each output image by 2-1.
This produces a coarse or approximate image Cj and three detail images with direction-
selectivity Dj,k, where k = 1,2,3 and j represents the decomposition level. The same method is
utilized to construct the following level of hierarchy resolution. Therefore, the hierarchical
wavelet decomposition of the image is expressed as:

Cj = [Hx ∗ [Hy ∗ Cj−1]↓2,1]↓1,2
Dj,1 = [Hx ∗ [Gy ∗ Cj−1]↓2,1]↓1,2
Dj,2 = [Gx ∗ [Hy ∗ Cj−1]↓2,1]↓1,2
Dj,3 = [Gx ∗ [Gy ∗ Cj−1]↓2,1]↓1,2

(1)

where C0 = I represents the original image, ↓1,2 means down-sampling every other pixel in
the y direction, ↓2,1 means down-sampling every other pixel in the x direction, and * means
the convolution operator. Gx and Hy and Gy and Hy represent high-pass and low-pass filters
in the x and y directions, respectively. Therefore, the original image can be represented by
a series of sub-images of multiple scales, {Cj, Dj, k} (j = 1, . . . , J; k = 1, 2, 3) is the multi-scale
representation of image I at depth J. DAUB4 is used as the wavelet basis in this instance
because of its superior average performance.

Gradient direction image may provide texture analysis with useful properties [36].
After the image is processed by the gradient operator, the change amplitude and direction
of the pixel gray value can be obtained, and the image gradient describes the change trend
of the image in different directions. A combination of a series of low-pass (H) and high-pass
(G) filters enables wavelet decomposition, using multiple sets of filters for sampling, each
set at half the sampling frequency of the previous set. Therefore, the original image can be
processed to obtain four sub-images, namely:

• LL sub-image: low frequencies in both x and y directions.
• LH sub-image: low frequencies in the x direction and high frequencies in the y direction.
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• HL sub-image: high frequencies in the x direction and low frequencies in the y direction.
• HH sub-image: high frequencies in both x and y directions.

LL, LH, HL, and HH are four sub-images obtained by wavelet decomposition. A gra-
dient vector is constructed for each sub-image, denoted by SGV1, SGV2, SGV3, SGV4,
respectively. We define CSGV = SGV1||SGV2||SGV3||SGV4 , where || is a “superimpose”
operation. Therefore, CSGV can better describe the expression of image texture than
the original gradient vector.

Studying the human visual characteristics reveals that the sensitivity of the human
eye to the gray value in the range of 0~255 in the gray image is not constant. When
the gray value is particularly high or low, it is difficult for the human eye to perceive
the grayscale change of the intensity value. In the vicinity of gray level 0, the human eye
can only feel the change of gray level 8, while in the vicinity of gray level 255, the human
eye can only feel the change of gray level 3, and when the gray level is 128, the human eye
can perceive changes in 2 gray levels [37]. In digital image research, the gradient size of
a certain point in the image is calculated by the change rate of the gray value of the point.
The above-mentioned gradient coincidence vector CSGV represents the gray value change
rate of the image at multiple scales. Therefore, we regard the pixels with CSGV less than
2 as a region with constant grayscale, and the differential order is 0; the pixels with CSGV in
the range of 2~128 are regarded as regions with small grayscale changes, and appropriately
increasing the differential order can enhance the human eye’s perception of fine textures;
while the pixels with CSGV greater than 128 are usually edge contour areas, it must have
a correctly limited gradient interval, and the differential order should be appropriately
reduced. From the above analysis, we have established the function of fractional derivative
γ and CSGV:

γ =

{
1

max′(SGV)+ε1
· CSGV + {ε2} , CSGV > 128

0 , CSGV < 2
(2)

Among them, ε1 is any positive number; max′(SGV) is the maximum value of SGV
of all pixels in the image; ε2 is an artificially set, and its purpose is to enhance the effect of
the center pixel on the neighboring pixels. The condition of ε2 should satisfy the following
formula to ensure that the value of the differential order γ does not exceed 1:

ε2 < 1− 1
max′(SGV) + ε1

· CSGV (3)

When CSGV > 128, ε1 = max′(SGV), from Equation (3) ε2 < 1
2 , so take ε2 = 0.499.

When 2 < CSGV < 128, intended to use ε1 = 2max′(SGV), ε2 < 2
3 , so take ε2 = 0.666.

Therefore, the relationship between the differential order γ and CSGV is expressed as:

γ =


1

2max′(SGV)
CSGV + 0.499 , 128 < CSGV

1
3max′(SGV)

CSGV + 0.666 , 2 ≤ CSGV ≤ 128
0 , CSGV < 2

(4)

According to these equations, the gray value varies drastically along the image’s
edge contour, and the CSGV is bigger, thus γ should be reduced accordingly. For densely
textured areas, the grayscale variation and CSGV are small, so the fractional derivative
γ obtained is appropriately increased. For areas where the gray value does not change or
changes very little, γ is 0 and no processing is performed to maintain the gray value.

4. Texture Extraction Performance Evaluation

This section aims at demonstrating that the proposed adaptive algorithm based on
CSGV has better capability using in the texture extraction.

For fractional differential G–L, we set the 0.3, 0.55, and 0.7 as the fixed fractional
differential order. In order to analyze and compare the differences in the ability to obtain
texture information between the adaptive order differential and the specified fractional
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order differential, five groups of comparative experiments were conducted, and their
results are shown in Figure 1. These results of five sets of comparative experiments
show the advantages of fractional difference in extracting complex texture information.
Although the 0.3-order differential extraction effect can preserve the detailed texture well,
the texture extraction effect is too weak to be clearly displayed on the picture (as shown
in Figure 1(a1,b1,c1,d1,e1). However, as the differential order increases (between 0 and 1),
image enhancement promotes “large” textures to sharper images, but “small” textures are
lost. The adaptive differential order selection algorithm adopted in this paper can retain
almost all texture details to achieve the best texture extraction among five groups (as shown
in Figure 1(a4,b4,c4,d4,e4).
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Figure 1. Texture extraction comparison tests: (a0–e0) are the original image; (a1–e1) are the 0.3-order
fractional derivative; (a2–e2) are the 0.55-order fractional derivative; (a3–e3) are the 0.7th order
fractional derivative; (a4–e4) are the adaptive fractional differentiation.

Multi-scale structural similarity and information entropy (MS-SSIM) is used as an eva-
luation criterion to evaluate the effect of texture information extraction in images [38,39].
Among them, information entropy can indirectly reflect the amount of information con-
tained in grayscale images, and is very sensitive to images containing textures. Therefore,
we adopt the calculation method of information entropy to analyze the amount of infor-
mation in the image texture after extracting the image texture features. The information
entropy is calculated as follows:

E(p) = −
N

∑
i=1

pi ln(pi) (5)
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Because the human vision system is very suitable for extracting structural information
from scenes, measurement results with similar structures can provide a reference for
whether image quality is good for perception. The MS-SSIM value of an image is usually
used to compare the quality of two images and is an objective evaluation method that
replaces the human subjective perception [39]. We use it to compare the differences between
the extraction results after using the adaptive method and the specified order differential
method, thereby further verifying that the texture extraction effect of the adaptive method
has obvious advantages.

A comparison method for structure, brightness, and contrast is given in Ref. [39]:
l(x, y) = 2µxµy+C1

µ2
x+µ2

y+C1

c(x,y) = 2σxσy+C2

σ2
x+σ2

y+C2

s(x,y) = 2σxy+C3
σxσy+C3

(6)

where x = {xi|i = 1, 2, · · · , N }, y = {yi|i = 1, 2, · · · , N } are two image patches extracted
from the same spatial location from two images, respectively. And µx, σ2

x and σxy are
the mean of x, the variance of x, and the covariance of x and y, respectively. C1, C2 and C3
are small constants given by

C1 = (K1L)2, C2 = (K2L)2, C3 = C2/2 (7)

where L is the dynamic range of the pixel values (L = 255 for 8 bits/pixel gray scale images),
and K1 << 1 and K2 << 1 are the two scalar constants.

The procedure of the MS-SSIM method for image structural similarity assessment
is illustrated in Figure 2. The two images to be compared are used as input signals, and
then the low-pass filter is applied for iteration, and the filtered image is down sampled by
factor 2. The original image index is scale 1, and the highest index is scale M. At the j-th
scale, the contrast comparison cj(x,y) and the structure comparison sj(x,y) are calculated,
respectively. The luminance comparison is computed only at scale M as lm(x,y). Thus,
the MS-SSIM evaluation is obtained by combining the measurements at different scales using:

SSIM (x,y) = [lM(x,y)]α ·
M

∏
j=1

[cj(x,y)]β[sj(x,y)]γ (8)

where α, β and γ are parameters to define the relative importance of the three components.
To simplify parameter selection, we set α = β = γ = 1.
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5. Texture Extraction Results Analysis

The analysis and comparison results are shown in Figure 3. The information entropy
obtained by the adaptive method is marked in blue, and the red curve shows the informa-
tion entropy obtained from order 0.05~0.95 (step length is 0.05 order). It can be seen that
the result of the adaptive method is close to order 0.5~0.7, which is the fractional order
interval with the best extraction effect. The grey curve shows the structural similarity of
the adaptive results. When the MS-SSIM value of the extraction result of each specified
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order is closer to 1, it is closer to the adaptive result. From Figure 3, we find that the ex-
traction results of order 0.5~0.7 are most similar to the results of the adaptive method.
The comparison result of Figure 3 is the same as that of Figure 1. Quantitative analysis
shows that the adaptive method can improve the effect of texture extraction with less losing
of texture details.
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Using the statistics constructed based on the gray level co-occurrence (GLCM) matrix
to calculate the physical information of the texture image, and select four commonly used
statistics (Set the offset to 1 and the direction to [0◦, 45◦, 90◦, 135◦]), as shown in Table 1,
where the rows correspond to the pictures in Figure 1, and the columns correspond to
the directions.

AMS is a measure of the uniformity of image grayscale distribution and texture
thickness. Entropy measures the randomness contained in an image and expresses the com-
plexity of image texture. The contrast reflects the clarity of the image and the depth of
the texture. The more obvious the “large” texture, the greater the contrast. The correlation
reflects the consistency of the image texture.

After the texture image is processed by the adaptive fractional differential method,
the “small” texture is significantly enhanced, so the values of AMS and entropy are in-
creased. The gray value of the “small” texture is closer to that of the “large” texture than
before, so the contrast value is reduced.
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Table 1. Physical information of the texture image.

Original Images (a0–a4) Extracted Textures (e0–e4)

AMS
[0.00015 0.00013 0.00013 0.00011]
[0.00040 0.00028 0.00037 0.00029]
[0.00011 0.00009 0.00011 0.00010]
[0.00027 0.00023 0.00036 0.00023
[0.00066 0.00041 0.00061 0.00040]

[0.00038 0.00031 0.00034 0.00030]
[0.00075 0.00060 0.00077 0.00061]
[0.00011 0.00009 0.00010 0.00009]
[0.00052 0.00048 0.00061 0.00047]
[0.00273 0.00187 0.00245 0.00188]

Entropy
[0.0120 0.0112 0.0115 0.0105]
[0.0201 0.0167 0.0192 0.0169]
[0.0105 0.0094 0.0103 0.0099]
[0.0162 0.0153 0.0189 0.0151]
[0.0258 0.0202 0.0247 0.0200]

[0.0195 0.0175 0.0183 0.0174]
[0.0274 0.0246 0.0277 0.0246]
[0.0104 0.0096 0.0102 0.0100]
[0.0228 0.0219 0.0247 0.0217]
[0.0522 0.0433 0.0495 0.0433]

Contrast
[457.73 657.91 531.97 1177.25]
[202.81 782.97 616.01 780.25]
[555.80 1184.74 621.75 940.61]
[738.38 970.86 544.27 1283.43]
[383.83 601.95 247.00 644.16]

[238.31 479.46 341.27 547.85]
[122.90 238.49 134.69 243.24]
[1117.87 2451.20 1251.64 1540.86]
[221.82 293.59 165.43 323.46]
[89.14 135.43 54.82 136.63]

Correlation
[0.843 0.774 0.817 0.596]
[0.897 0.602 0.687 0.604]
[0.888 0.76 0.875 0.811]
[0.790 0.723 0.846 0.635]
[0.879 0.812 0.923 0.799]

[0.608 0.213 0.439 0.101]
[0.647 0.316 0.614 0.303]
[0.627 0.183 0.582 0.487]
[0.465 0.294 0.603 0.222]
[0.610 0.407 0.761 0.401]

6. Haptic Texture Rendering Model

Haptic texture rendering is a method to reconstruct the surface attributes of virtual
objects according to force fields or force vectors, so that users can feel the surface texture of
virtual objects haptically by using haptic devices (such as Phantom, Force-Dimension Delta
hand controller, etc.). In this section, we use the adaptive fractional differentiation method
to provide a new tactile texture model based on the image texture extraction results.

The texture force vector
→
F (i) at each pixel of an image can be modeled as the combina-

tion of normal force vector
→
F N(i) and tangential force vector

→
F T(i) as

→
F (i) =

→
F N(i) +

→
F T(i) (9)

The tangential force vector of the image is calculated based on the following assump-
tion. There exists an interaction force between any two pixels in the gray image after
processed by the proposed adaptive fractional differential method. The interaction force
between any two pixels Pi and Pj is proportional to the absolute vale of the difference of
the two pixel’s gray values, and inversely proportional to the distance between two pixels.
The direction of interaction force vector is defined as from pixel with high luminance value
to the pixel with low luminance value.

→
F ij =

∣∣G(pi)− G(pj)
∣∣

‖pi − pj‖
ri,j (10)

where ‖pi − pj‖ is distance between two pixels pi and pj, and G(pi), G(pj) are grey value
of pixels pi and pj, respectively. ri,j denotes the direction from high luminance pixel to low
luminance pixel.

If the distance between two pixels pi and pj is small, the difference of the two pixel’s
gray values will cause a big interaction force, and vise versa. Thus, the force vector of
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the pixel pi can be defined as the vector sum of all interaction force vectors from pixels
within n × n neighborhood N to the center pixel pi.

→
F i = ∑

pj∈N
pj 6=pi

→
F ij (11)

The force vector of each pixel is a two-dimensional vector associated with pixel grey
change direction of image, as illustrated in Figure 4. Figure 4b is an amplified picture of
the small red square area in Figure 4a, which shows the tangential force vectors of some
pixels computed by Equation (11) with the 3× 3 neighborhood N. Here, the arrow direction
represents the direction of force vector while the arrow length represents the amplitude of
force vector.
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When the grey values of neighbor pixels change more greatly, the pixel force vector is
larger, and vice versa. Since this pixel force vector is consistent with the texture information,
it can be regarded as the texture tangential force component.

→
F T(i) =

→
F i = ∑

pj∈N
pj 6=pi

→
F ij (12)

According to the psychological principle of the human sense of color and space, when
a person observes the environment, he always feels the brighter object is closer to him

than the darker object [40]. Therefore, we can define the normal force vector
→
F N(i) to be

proportional to the image pixel gray value as

→
F N(i) = c× G(pi) + fwall (13)

where c is a proportion factor, and fwall denotes the constraint force of the object surface.
The above equation implies that if a portion of an image is brighter, then the rendered
normal force is larger, which provides the user with feeling of bump when the virtual
object is touched; and if the case is darker, then the rendered normal force is smaller, which
expresses feelings of being shallow.

7. Experiment

The experimental system for haptic texture rendering of 2D images consists of
a Phantom Omini haptic device and a computer, shown in Figure 5. The Phantom Omini
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haptic device has a six degrees of freedom position/attitude detection and a three degrees
of freedom force feedback with the maximum force of 3.3 N. Its workspace is 160 mm
width × 120 mm height × 70 mm depth with location accuracy 0.055 mm.
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Figure 5. The experimental system of haptic texture rendering of 2D image.

In this experimental system, we selected five images with 500× 500 pixels from the Bro-
datz texture image database [41] and used the proposed adaptive fractional differential
method to extract the texture features, shown in Table 2. Then, we used the proposed
haptic texture rendering model to render the object surface based on the extracted texture.
In order to verify the effect of our method, 20 volunteer subjects (10 male and 10 female,
aged 21 to 31) is randomly selected to perform the texture perception experiments. The sub-
ject just haptically felt the surface of 25 2D images, which are stochastically produced by
a computer one by one, and classified them into 5 types of images by using the Phantom
Omini haptic device without any visual information of the 2D image.

Table 2. Texture feature extracting of 2D images using adaptive fractional differential method.

Image 1 Image 2 Image 3 Image 4 Image 5

Original
images
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The appearance of the original image and the texture image are hidden, and only the ca-
lculated texture force is mapped to a smooth virtual plane of 500 × 500 pixels. The cal-
culation of the constraint force of the virtual plane is based on Hooke’s law. When the vol-
unteers “groped” the “blank” virtual plane, the hand controller fed back the texture force of
the image together with the constraint force of the virtual plane to the subject. Volunteers
need to select the image to be reproduced by force/haptic sense of texture from five original
images according to the perceived texture, and then count the correct rate of volunteers’
perception of each image.

The experimental results show that the average classification accuracy of 5 types of
images based on haptic feelings are 87%, 72%, 81%, 91%, and 83%, shown in Figure 6. It
is obvious that the proposed haptic texture rendering method can help users understand
the texture contents of the image. So, it is an effective approach of image-based haptic
texture rendering.
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calculated texture force is mapped to a smooth virtual plane of 500 × 500 pixels. The cal-
culation of the constraint force of the virtual plane is based on Hooke’s law. When the 
volunteers “groped” the “blank” virtual plane, the hand controller fed back the texture 
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Figure 6. Experiment results of image classification using haptic texture feeling.

Further, we conducted another group of experiments, we selected four 2D images,
and extracted their texture features through the proposed adaptive algorithm, shown in
Table 2. It can be seen from the extraction results that the image texture extracted by
the adaptive fractional differentiation algorithm is clear and the details are retained com-
pletely, which indicate the excellent effect of the adaptive fractional differentiation algorithm
in extracting the detail texture.

The TV-Gabor model is used for comparison (the TV-Gabor model decomposes the im-
age by using the prior conditions of frequency and texture direction, so as to distinguish
the contour shape of the image body from the texture part), and selected 4 real object images
with textures, shown in Table 3. Similarly, we used the proposed Haptic texture rendering
model to render the object surface based on the extracted texture. In the cases where
the volunteers were blindfolded, we calculated the correct rate of each image recognition,
shown in Figure 7. It is verified again that the texture feature outputs by the tactile texture
rendering model conform to the more realistic perception of volunteers.

Table 3. Comparison of image classification experiments with different haptic extraction algorithms.
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8. Conclusions

In this paper, a haptic texture rendering method for 2D images based on a novel
adaptive fractional differentiation has been described. The optimal order of fractional
differentiation operator has been adaptively selected by using the CSGV after wavelet de-
composition and the human visual features. Additionally, the quantitative analysis method
based on image information entropy and multi-scale structure similarity (MS-SSIM) has
been proposed to evaluate the results of texture feature extraction. On this basis, we have
provided a novel haptic texture model; these extraction results were used for reconstructing
the three-dimensional texture force filed to render the texture surface of 2D images. The ex-
perimental results show an average classification accuracy improvement of 0.4dB compared
to the established technique (TV-Gabor), and verify the proposed haptic texture rendering
method based on this adaptive fractional differential can extract the texture features well
and achieve the best texture force file for 2D images. It is an effective approach to enhance
image texture and also can improve the human ability of haptic texture perception in
image-based haptic display system.
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