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Abstract

Iron is essential for a wide range of cellular processes. Here we show that the bZIP-type regulator HapX is indispensable for
the transcriptional remodeling required for adaption to iron starvation in the opportunistic fungal pathogen Aspergillus
fumigatus. HapX represses iron-dependent and mitochondrial-localized activities including respiration, TCA cycle, amino
acid metabolism, iron-sulfur-cluster and heme biosynthesis. In agreement with the impact on mitochondrial metabolism,
HapX-deficiency decreases resistance to tetracycline and increases mitochondrial DNA content. Pathways positively affected
by HapX include production of the ribotoxin AspF1 and siderophores, which are known virulence determinants. Iron
starvation causes a massive remodeling of the amino acid pool and HapX is essential for the coordination of the production
of siderophores and their precursor ornithine. Consistent with HapX-function being limited to iron depleted conditions and
A. fumigatus facing iron starvation in the host, HapX-deficiency causes significant attenuation of virulence in a murine model
of aspergillosis. Taken together, this study demonstrates that HapX-dependent adaption to conditions of iron starvation is
crucial for virulence of A. fumigatus.
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Introduction

Iron is an essential nutrient for virtually every organism. The

ability to exist in two redox states makes this metal an essential

cofactor of proteins involved in numerous major cellular processes

including respiration, amino acid metabolism and DNA metab-

olism. However, excess iron has the ability to generate toxic

reactive species that can damage cellular components [1]. Despite

its general abundance, the bioavailability of iron is very limited

owing to its oxidation into insoluble ferric hydroxides by

atmospheric oxygen. Consequently, all organisms have developed

tightly regulated homeostatic mechanisms in order to balance

uptake, storage and consumption of iron. Moreover, the

mammalian immune system utilizes iron-withholding mechanisms

to deny invading microorganism’s access to free iron [2,3].

Consequently, the control over access to iron is one of the central

battlefields deciding the fate of an infection. Furthermore, iron

starvation activates not only iron uptake but also virulence

determinants in many prokaryotic and eukaryotic pathogens.

Aspergillus fumigatus is a typical ubiquitous saprophytic mold.

Nevertheless, it causes life-threatening invasive disease especially

in immuno-compromised patients and has become the most com-

mon airborne fungal pathogen of humans [4]. A. fumigatus lacks

specific uptake systems for host iron sources as heme, ferritin, or

transferrin [5]. However, it employs two high-affinity iron uptake

systems, siderophore-assisted iron uptake and reductive iron

assimilation, both of which are induced upon iron starvation.

Siderophores are low molecular mass, ferric iron-specific chelators

[6]. A. fumigatus excretes the siderophores fusarinine C (FsC) and

triacetylfusarinine C (TAFC) to mobilize extracellular iron. Sub-

sequent to chelation of iron, the ferric forms of FsC and TAFC are

taken up by specific transporters [7]. For release of iron, the

siderophores are intracellularly hydrolyzed [8] and the iron is

transferred to the metabolic machinery or stored. A. fumigatus

employs also intracellular siderophores: ferricrocin (FC) for hyphal

storage and distribution of iron, and hydroxyferricrocin (HFC) for

conidial iron storage [9,10].

FsC is a cyclic tripeptide consisting of three N5-cis-anhydrome-

valonyl-N5-hydroxyornithine residues linked by ester bonds,

TAFC is the N2-acetylated FsC, FC is a cyclic hexapeptide with

the structure Gly-Ser-Gly-(N5-acetyl-N5-hydroxyornithine)3 and

HFC is the hydroxylated FC [6]. The siderophore biosynthetic

pathway is shown in Fig. S1. The first committed step in the

biosynthesis of all four siderophores is hydroxylation of ornithine

(Orn). Subsequently, the pathways for biosynthesis of TAFC and

FC split involving acylation of N5-hydroxyornithine, assembly of
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siderophore-back bones by nonribosomal peptide synthetases

(NRPS), and derivatization by acetylation or hydroxylation. Five

A. fumigatus genes encoding respective enzyme activities have been

identified [5,10]: sidA (N5-ornithine-monooxygenase), sidF (N5-

hydroxyornithine:cis-anhydromevalonyl coenzyme A-N5-transacy-

lase), sidC (FC NRPS), sidD (fusarinine C NRPS) and sidG

(fusarinine C:acetyl coenzyme A-N2-transacetylase). Elimination

of both intra- and extracellular siderophores (DsidA mutants)

results in absolute avirulence of A. fumigatus in a mouse model of

pulmonary aspergillosis [5]. Deficiency in either extracellular

(DsidF or DsidD mutants) or intracellular siderophores (DsidC

mutants) causes partial attenuation of virulence [10]. Recently,

siderophores have also been implicated in virulence of Histoplasma

capsulatum and various phytopathogenic ascomycetes [11,12,13].

Consequently, the siderophore system represents an attractive

target for antifungal therapy. However, not all fungi produce

siderophores; notable examples are Saccharomyces cerevisiae, Candida

albicans and Cryptococcus neoformans [6].

In agreement with iron playing an important role in the

pathophysiology of A. fumigatus, increased bone marrow iron stores

represent an independent risk factor for invasive aspergillosis [14].

Moreover, polymorphonuclear leukocytes inhibit growth of A.

fumigatus conidia by lactoferrin-mediated iron depletion [15], and

the human body produces proteins able to sequester fungal

siderophores [16]. Consistently, the chelators EDTA and defer-

asirox enhance the efficacy of amphotericine B in animal models

for invasive pulmonary aspergillosis [17,18].

In Aspergillus nidulans, maintainance of iron homeostasis is

mediated by two transcription factors, SreA and HapX, which

are interconnected in a negative feed-back loop: SreA represses

expression of hapX during iron sufficiency and HapX represses sreA

during iron starvation [19,20]. SreA is a DNA-binding GATA-

factor whereas HapX functions by protein-protein interaction with

the heterotrimeric CCAAT-binding factor. SreA represses iron

uptake during iron sufficiency to avoid toxic effects and HapX

represses iron-dependent pathways during iron starvation to spare

iron. This regulatory circuit is largely conserved in Schizosacchar-

omyces pombe and orthologs to SreA and HapX are found in most

fungal species; a notable exception is the fungal prototype S.

cerevisiae, which employs entirely different regulators [6,21].

We have previously demonstrated the role of SreA in repression

of iron acquisition in A. fumigatus [22]. In this study we

characterized the function of HapX and its interplay with SreA.

We demonstrate that HapX function is crucial for the metabolic

reprogramming required for adaption to iron starvation and for

virulence of A. fumigatus.

Results/Discussion

HapX-deficiency decreases growth and sporulation
specifically during iron starvation
In A. nidulans, HapX has been shown to repress iron-dependent

pathways during iron starvation [20]. The A. fumigatus HapX

ortholog displays 70% overall identity and contains all typical

features common to this class of transcription factors: an N-

terminal 17 amino acid motif, which is essential for interaction

with the CCAAT-binding complex, a bZip domain, and three

cysteine-rich regions, which are potentially involved in iron-

sensing. Genome-wide transcriptional profiling revealed that the

transcript level of the A. fumigatus hapX ortholog (Afu5g03920) is

SreA-dependently down-regulated in a shift from iron depleted to

iron-replete conditions [22]. In agreement, Northern analysis

demonstrated up-regulation of the hapX transcript level under

steady-state iron depleted compared to iron-replete conditions and

partial derepression during iron-replete conditions in a DsreA

mutant (Fig. 1A). This expression pattern matches that of the A.

nidulans ortholog [20]. In order to analyze the function of HapX in

A. fumigatus, a deletion mutant (DhapX) was generated as described

in Methods. Consistent with undetectable expression of hapX during

iron sufficiency in wt (Fig. 1A), DhapX displayed no significant

difference to the wt with respect to conidiation and growth rate on

solid or liquid media during iron sufficiency (Fig. 2). In contrast,

DhapX showed mildly reduced radial growth on solid media

(Fig. 2A) and was not able to form colonies from single conidia in

the presence of the iron chelator bathophenanthroline disulfonate

(BPS) (Fig. 2B). Furthermore, hapX deletion decreased conidiation

to 62% of the wt during iron starvation and 4% during iron

starvation in the presence of BPS (Fig. 2C). In iron-starved liquid

culture, hapX deletion decreased the biomass production to 58% of

the wt (Fig. 2E) and caused a reddish pigmentation of the mycelia

(Fig. 2D). Reintegration of a functional hapX copy at the hapX locus

in the DhapX strain, yielding strain DhapXC, cured these and all

other defects (Fig 2 and data not shown), which demonstrates that

the DhapX phenotype is a direct result of the loss of HapX activity.

Notably, germination of DhapX was wt-like under iron-replete and

depleted conditions (data not shown) demonstrating that the

phenotypes of DhapX are caused by growth defects. Limitation of

nitrogen, carbon, copper, or zinc decreased biomass production of

DhapX and wt to similar extents (Fig. 2E), which indicates that

inactivation of HapX does not result in general sensitivity to

starvation but in particular to iron starvation.

HapX and SreA are interconnected by a negative
regulatory feedback loop
In line with the growth defect of DhapX under iron starvation

but not iron sufficiency, expression of hapX was repressed by iron

at the transcriptional level, partly dependent on SreA (Fig. 1A). In

turn, HapX repressed sreA during iron starvation (Fig. 1A). A

similar expression pattern was described previously for the hapX

and sreA orthologs of A. nidulans and S. pombe [20,21].

Author Summary

Due to its requirement for a wide range of cellular
processes, iron is an essential nutrient for virtually every
organism. The mammalian immune system utilizes iron-
withholding mechanisms to deny access to free iron.
Therefore, pathogens must overcome extreme iron limita-
tion. Patients with suppressed immune systems due to
cancer treatments, organ transplantation, or genetic dis-
orders are at high risk of infection with the ubiquitously
present fungal pathogen Aspergillus fumigatus. In this
study we found that in Aspergillus fumigatus iron starvation
results in drastic metabolic changes depending on the
transcription factor HapX. During iron starvation, HapX
functions include the repression of iron-consuming path-
ways to spare iron and activation of iron uptake by
siderophores. Siderophores are small molecules able to
‘‘steal’’ iron from host molecules and have previously been
shown to play a crucial role in the virulence of Aspergillus
fumigatus. Genetic inactivation of HapX attenuates viru-
lence of Aspergillus fumigatus in a murine model of
aspergillosis, demonstrating that adaption to iron limita-
tion is a crucial virulence determinant. The identification of
numerous HapX-affected genes with a yet uncharacterized
link to iron will aid in the further characterization of the
metabolic pathways required for fungal adaption to iron
starvation and virulence traits.

Adaption to Iron Starvation in Aspergillus
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HapX is required for repression of genes during iron
starvation
Genome-wide transcriptional profiling revealed that expression

of hapX is repressed within #30 minutes in a shift from iron

depleted to iron-replete conditions [22], which predicts that HapX

targets also respond quickly to the availability of iron. This HapX

feature allowed analysis of short-term effects of hapX deletion. In

order to identify the genes that are negatively affected by HapX at

the transcript level, we therefore searched by genome-wide

transcriptional profiling for genes fulfilling three criteria: (i) up-

regulation in a 1h-shift from iron starvation to iron sufficiency in

wt (identification of genes repressed by iron starvation), (ii)

decreased up-regulation in a 1h-shift from iron starvation to iron

sufficiency in DhapX compared to wt (identification of genes

showing a short-term response to HapX inactivation), and (iii) up-

regulation during steady-state iron starved growth in DhapX

compared to wt (identification of genes showing a long-term

response to HapX inactivation). This strategy is supposed to select

for rather direct effects of HapX inactivation.

Among the 131 genes negatively affected by HapX (Table S1 in

Supporting Information S1 and Table 1A), 34% can be directly

assigned to iron-dependent pathways including respiration, TCA

cycle, amino acid metabolism, iron-sulfur-cluster biosynthesis, heme

biosynthesis, oxidative stress detoxification, biotin synthesis

(Afu6g03670), vacuolar iron storage (CccA, Afu4g12530), and iron

regulation (SreA, Afu5g11260). This gene set included the orthologs

of all five previously identified A. nidulans HapX-repressed genes

[20]: cycA (cytochrome C, respiration, Afu2g13110), acoA (aconi-

tase, TCA cycle, Afu6g12930), hemA (a-amino-levulinic acid

synthase; heme biosynthesis, Afu4g11400), lysF (homoaconitase,

lysine biosynthesis, Afu5g08890), and sreA (repressor of iron uptake).

A representative Northern analysis of cycA is displayed in Fig. 1B.

The majority of the cellular iron-consuming pathways, e.g. heme

biosynthesis, iron-sulfur cluster biosynthesis, respiration, TCA cycle,

is localized in mitochondria, which might explain the co-regulation

of mitochondrial components that are not directly iron-dependent,

e.g. the mitochondrial processing peptidase (Afu1g14200), which is

essential for import of all mitochondrial matrix proteins. Strikingly,

31% (n= 41) of the genes negatively affected by HapX encode

proteins that are localized in mitochondria (Table S1 in Supporting

Information S1 and Table 1A), which indicates a significant impact

of HapX on mitochondrial metabolism.

23% (n= 30) of the identified genes repressed during iron star-

vation in a HapX-dependent manner are involved in ribosomal

biogenesis and translation (Table S1 in Supporting Information S1

and Table 1A). These data might reflect the iron-dependence of the

translation machinery due to the essentiality of iron-sulfur clusters

for function of Rli1 (RNase L inhibitor, Afu1g10310). Because of its

fundamental role in translation initiation and ribosome biogenesis,

RLI1 is one of the most conserved proteins present in all organisms

except eubacteria and it is essential in all organisms tested [23].

Consistent with its iron-dependence, Rli1 expression is repressed

during iron starvation in a HapX-dependent manner (Table S1 in

Supporting Information S1). The down-regulation of translation

during iron starvation indicates a slow-down of the entire meta-

bolism, which might serve extended cellular survival.

Among the 131 A. fumigatus genes negatively affected by HapX,

21 have orthologs in S. pombe (Table S1 in Supporting Information

S1), which are negatively affected by the HapX ortholog Php4

[24]. S. cerevisiae lacks an HapX ortholog and down-regulation of

iron-dependent pathways during iron starvation is mediated by the

paralogous proteins Cth1 and Cth2, which promote decay of

target mRNA’s during iron starvation [25]. A total of 21 of HapX-

repressed genes have orthologs in S. cerevisiae, which are repressed

during iron starvation via Cth1/2 (Table S1 in Supporting

Information S1). Taken together, all three fungal species repress

15 orthologous genes during iron starvation (Table S1 in

Supporting Information S1). All 15 deduced gene products are

Figure 1. HapX affects iron regulation. (A) Mutual transcriptional control between HapX and SreA. (B) Examples for negative (cycA) and positive
(aspF1) impact of HapX in iron regulation. (C) HapX is required for transcriptional activation of the siderophore system. A. fumigatus wt, DsreA and
DhapX were grown in shake flask cultures under iron-replete (+Fe) and depleted (2Fe) conditions. Total RNA was isolated and subjected to Northern
analysis of genes selected from the genome-wide expression profiling (Fig. S1 and S2). As a control for quality and quantity, RNAs were hybridized
with the ß-tubulin encoding tubA gene.
doi:10.1371/journal.ppat.1001124.g001

Adaption to Iron Starvation in Aspergillus
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involved in iron-dependent pathways including respiration, iron

sulfur cluster biosynthesis, TCA cycle, amino acid metabolism and

translation and all are localized in mitochondria with exception

of Rli1 and the leucine biosynthetic enzyme Leu1 (Table S1 in

Supporting Information S1). These data underscore the evolu-

tionary conservation of iron-sparing in different fungal species.

Comparison of the genes negatively affected by HapX with the

previously identified SreA regulon [22] displayed no overlap

Figure 2. During iron depleted but not iron-replete conditions, HapX-deficiency impairs growth in liquid and solid media, colony
formation from single conidia, conidiation, resistance to zinc and tetracycline, and causes reddish pigmentation. (A) Growth on solid
media with and without tetracycline: conidia were point-inoculated on plates reflecting harsh iron starvation (2Fe +BPS), iron starvation (2Fe) and
iron-replete conditions (+Fe). Radial growth was recorded after 48h of growth at 37uC and normalized to that of wt grown under the same condition.
(B) Colony formation from single conidia: approximately 100 conidia were plated and photographs were taken after growth for 48h at 37uC. (C)
Conidiation: conidia production by 1 cm2 of mycelia after growth for 120h of at 37uC was recorded and normalized to that of wt under the same
condition. (D) Hyphal pigmentation: photographs of liquid cultures were taken after 24h of growth at 37uC. (E) Growth in liquid media with and
without limitations or zinc excess: biomass production of 108 conidia inoculated in 100 ml media was scored after 24 h of growth at 37uC and
normalized to that of wt in +Fe. For limitation of carbon (2C), nitrogen (2N), zinc (2Zn) and copper (2Cu), the growth medium contained 0.1%
glucose, 2 mM glutamine, 1 mM ZnSO4 and no added copper, respectively, which decreased the biomass production of the wt to about the same
extent as iron limitation. High zinc-medium (hZn) contained 0.5mM ZnSO4. The data in (A), (C), and (E) represent the means 6 standard deviations
from three independent experiments.
doi:10.1371/journal.ppat.1001124.g002

Adaption to Iron Starvation in Aspergillus
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(Table S1 in Supporting Information S1). However, 38% of these

genes were previously found to be up-regulated indirectly by SreA-

deficiency; i.e., in a shift from iron starvation to iron sufficiency

these genes were up-regulated in DsreA only at late time points. As

iron represses expression of hapX at the transcriptional level (see

above) and most likely also post-translationally, as shown for its

orthologs in A. nidulans and S. pombe [20,26], these data suggest that

the up-regulation of these genes in DsreA cells is caused by

inactivation of HapX through the iron overload in DsreA.

HapX is involved in induction of genes during iron
starvation
To identify the genes affected positively by HapX, the inverse

criteria compared to the screening for HapX-repressed genes by

transcriptional profiling were applied (see above): (i) down-

regulation in a shift from iron starvation to iron sufficiency in

wt, (ii) decreased down-regulation in a shift from iron starvation to

iron sufficiency in DhapX compared to wt, and (iii) down-regulation

during steady-state iron starved growth in DhapX compared to wt.

Genes affected positively by HapX or its ortholog have been

described for neither A. nidulans nor S. pombe yet. However, the

transcriptional profiling identified 139 such genes in A. fumigatus,

which are mainly involved in siderophore metabolism, amino acid

metabolism, protein degradation and uptake, carbohydrate

metabolism, and lipid metabolism (Table S2 in Supporting

Information S1 and Table 1B). Strikingly, 27% of these genes

were previously found to be SreA targets, i.e. repressed during iron

sufficiency by SreA [22], e.g., genes involved in siderophore

metabolism (Table S2 in Supporting Information S1 and

Table 1B). As hapX deletion derepressed expression of sreA during

iron starvation (see above), hapX deletion might repress SreA-

targets indirectly via its transcriptional derepression of sreA.

However, hapX deletion affected expression of various SreA-

target genes differently (Table S2 in Supporting Information S1,

Fig. 1C). HapX-deficiency drastically reduced the transcript levels

of the putative siderophore transporter-encoding mirB and the

siderophore-biosynthetic sidG but had only minor effects on the

siderophore transporter-encoding mirD and siderophore-biosynthetic

Table 1. Categorization of the genes affected by HapX.

A

Process Genes Mitochondrial Transmembrane . in DsreA

iron-dependent 44 35 (79%) 2 (5%) 29 (86%)

respiration 20 20 (100%) 0 10 (70%)

aa metabolism 4 3 (75%) 0 4 (100%)

FeS-cluster biogenesis 2 2 (100%) 0 2 (100%)

heme metabolism 3 2 (67%) 1 (33%) 3 (100%)

TCA cycle 6 6 (100%) 0 6 (100%)

cellular detoxification 3 1 (33%) 0 2 (67%)

other processes 6 1 (17%) 1 (17%) 2 (33%)

ribosomal biogenesis 30 0 0 2 (7%)

aa metabolism 7 2 (29%) 0 2 (29%)

additional mitochondrial 4 4 (100%) 1 (25%) 1 (25%)

additional regulatory 12 0 0 5 (42%)

additional non-regulatory 17 0 3 (29%) 5 (29%)

unknown function 17 0 0 5 (29%)

Total 131 41 (31%) 6 (5%) 50 (38%)

B

Process Genes Mitochondrial Transmembrane SreA targets

siderophore metabolism 8 0 3 (38%) 8 (100%)

aa metabolism 9 0 0 0

protein degradation/uptake 8 0 5 (63%) 4 (50%)

acetyltransferases 5 0 0 4 (80%)

carbohydrate metabolism 14 0 4 (295) 5 (36%)

lipid/ergosterol/fatty acid 6 0 0 2 (33%)

GPI 3 0 0 1 (33%)

regulatory/signalling 11 0 0 1 (10%)

transmembrane proteins 8 0 8 (100%) 3 (38%)

other functions 36 0 0 1

hypothetical proteins 31 0 0 10 (32%)

Total 139 0 20 (14%) 38 (27%)

(A) Genes repressed during iron starvation in wt and derepressed in DhapX (from Fig. S1), and (B) genes induced by iron starvation in wt and down-regulated in DhapX
(from Fig. S2).
doi:10.1371/journal.ppat.1001124.t001
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sidA and sidF, which indicates SreA-independent effects. In line, 73%

of the genes negatively affected by hapX deletion do not appear to be

SreA targets (Table S2 in Supporting Information S1 and Table 1B).

A prominent example is one of the major allergens of A. fumigatus, the

ribotoxin Aspf1 (Afu5g02330) [27]. The microarray data (Table S2 in

Supporting Information S1) and Northern analysis revealed that the

transcriptional up-regulation of AspF1 during iron starvation is

strictly dependent on HapX (Fig. 1B) and not affected by SreA as

shown previously [22]. AspF1 is cytotoxic and was shown to induce

apoptosis of human immature dendritic cells, which indicates that it is

involved in immune evasion of A. fumigatus [28]. However, AspF1 was

previously shown to be dispensable for virulence of A. fumigatus in a

murine model of aspergillosis [29]. A possible explanation for this

discrepancy is that the immunosuppressive regimen used in the

murine model interferes with the ability of the immune system to

preferentially identify the mutant strains. As AspF1-activity is neither

iron-dependent nor directly involved in iron acquisition, iron

starvation might serve in this case as a signal for expression of a

general virulence determinant not related to iron uptake. On the

other hand, AspF1might indirectly increase iron supply of A. fumigatus
during the interaction with predators and hosts via cellular iron

release due its cytotoxicity.

To further investigate the link between HapX and SreA activities

we aimed to generate an A. fumigatusmutant lacking both regulators.

However, several approaches to generate a DsreADhapX double

mutant failed indicating that deletion of sreA and hapX is

synthetically lethal as shown previously in A. nidulans (Hortschansky

et al., 2007), which underlines the importance of iron regulation.

Genomic organization of the genes affected by HapX
Genes involved in common pathways tend to be genomically

clustered in filamentous fungi. Therefore it is interesting to note that

among the genes affected by HapX, 41 are organized in gene clusters

(Tables S3 and S4 in Supporting Information S1). Interestingly, the

AspF1-encoding gene is neighboured by a co-regulated gene encoding

a hypothetical protein (Afu5g02320) and this gene organization is

conserved in various fungal species, e.g., Neosartorya fischeri, Aspergillus

clavatus, Microsporum canis, and Arthroderma benhamiae (data not shown).

The acetyl transferase-encoding gene Afu5g00720, one of the

clustered genes, was subjected to deletion analysis. Due to its

expression pattern it appeared to be a good candidate for the still

unidentified acetyl transferase required for FC biosynthesis (Fig. S1).

However, the deletion did not reveal any phenotype (data not shown).

HapX inactivation decreases production of TAFC and FC
A. fumigatus excretes the siderophores FsC and TAFC in roughly

equal amounts (Fig S2). Inactivation of HapX did not substantially

alter FsC production but reduced TAFC production to 18% of the

wt (Fig. 3A). TAFC is derived from FsC by SidG-catalyzed N2-

acetylation [22]. (Fig. S1). Consistent with the reduction of TAFC

production, the sidG (Afu3g03650) transcript level was drastically

reduced in DhapX as shown by Northern and microarray analyses

(Fig. 1, Table S2 in Supporting Information S1). Blocking TAFC

synthesis by inactivation of SidG has previously been shown to

result in increased FsC production [22]. As FsC production was

not increased in DhapX, it appears unlikely that SidG is the only

siderophore biosynthetic activity affected in DhapX. In agreement,

the microarray analyses (Table S2 in Supporting Information S1

and Table 2) revealed transcriptional down-regulation of other

FsC biosynthetic enzymes such as SidF (Afu3g03400) and SidI

(Afu1g17190). Moreover, supply of the siderophore precursor Orn

might play a role in siderophore production (see below).

The transcriptional profiling (Table S2 in Supporting Informa-

tion S1) also revealed down-regulation in DhapX of the NRPS SidC

(Afu1g17200), which is essential for FC biosynthesis. Consistently,

the FC content of DhapX was decreased to 68% of the wt.

In A. nidulans, HapX inactivation also decreased TAFC pro-

duction but increased FC production [20]. Despite the general

similarity of iron homeostasis-maintaining mechanisms of these

two Aspergillus species, these data reveal differences.

HapX inactivation results in excessive cellular
accumulation of the iron-free heme precursor
protoporphyrin IX (PpIX)
In contrast to wt, DhapX mycelia displayed a reddish pigmenta-

tion concomitant with red autofluorescence during iron depleted

but not iron-replete conditions (Fig. 2D and data not shown), which

is characteristic for accumulation of PpIX, the iron free precursor of

heme [20]. Accordingly, the PpIX content of DhapX resembled the

wt during iron-replete conditions but was 17-fold increased during

iron starvation (Fig. 3B). These data indicate derepression of heme

biosynthesis during iron starvation in DhapX, consistent with the

expression profile of genes encoding 5-aminolevulinate synthase

(Afu5g07750), ferrochelatase (Afu5g07750) and a putative heme

transporter (Afu4g11400) revealed by the microarray analysis Table

S1 in Supporting Information S1 and Table 1A).

HapX is involved in remodeling of the cellular free amino
acid pool in response to iron-starvation
The transcription profiling indicated changes in iron-dependent

and -independent steps of the amino acid metabolism in response

Figure 3. HapX-deficiency decreases production of TAFC and
FC but increases cellular accumulation of PpIX. (A) Quantification
of siderophore production after growth for 24 hours at 37uC under2Fe
conditions normalized to that of wt. (B) Quantification of the PpIX
content after growth for 24h at 37uC under iron-replete (+Fe) and
depleted (2Fe) conditions. The data represent the mean 6 standard
deviation of three individually performed experiments.
doi:10.1371/journal.ppat.1001124.g003
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to HapX inactivation (Tables S1 and S2 in Supporting Information

S1, Table 1). To gain further insight, we measured the relative

composition of the free amino acid pool in wt, DhapX, DsreA, and

DsidA during iron sufficiency and starvation (Table 2 and Table S5

in Supporting Information S1). In wt, iron starvation caused a

dramatic remodeling of the composition of free amino acid pool: the

relative amounts of nine amino acids (Arg, Asn, Gln, His, Lys, Met,

Orn, Phe, and Trp) increased whereas that of three amino acids

(Ala, Glu and Val) decreased.1.5-fold. DhapX and DsidA displayed

differences compared to wt mainly during iron starvation, whereas

DsreA showed differences mainly during iron sufficiency. This is in

line with the expression pattern of the deleted genes: hapX and sidA

are repressed while sreA is induced by iron (Fig. 1).

During iron starvation, siderophore production reaches up to

10% of the biomass and the major amino acid precursor for

siderophore biosynthesis is Orn. The 6.9-fold increase of the Orn

pool during iron starvation compared to iron sufficiency in wt

indicates that the enormous Orn demand for siderophore

biosynthesis is matched by active up-regulation of Orn biosynthe-

sis during iron starvation and not by de-repression of Orn

biosynthesis via its consumption, which could be expected to

decrease the Orn pool. Consistently, blocking Orn consumption

for siderophore biosynthesis by inactivation of the Orn hydrox-

ylase SidA (DsidA) caused a further 2.9-fold increase of the Orn

pool during iron starvation compared to wt. Orn is synthesized

from glutamate or from Orn-derived Arg (Fig. 4). Consistent with

the amino acid analysis, Northern analysis confirmed transcrip-

tional up-regulation of several key enzymes of the Orn/Arg

biosynthetic pathway not only in wt but also in DsidA, which does

not consume Orn for siderophore biosynthesis (Fig. 4). Strikingly,

the Orn pool was 12.5-fold decreased in DhapX, while Arg was 2.0-

fold increased (Table 2). Consequently, the Arg:Orn ratio changed

from 1.5 in wt to 49.9 in DhapX. Northern analysis demonstrated

wt-like transcriptional up-regulation of most key enzymes of the

Orn/Arg pathway in DhapX (Fig. 4). In perfect agreement with the

microarray data (Tables S1 and S2 in Supporting Information S1),

however, transcript levels of four involved enzymes were changed

in DhapX during iron starvation (Fig. 4). Consistent with the

increased Arg:Orn ratio in DhapX, transcriptional up-regulation of

the carbamoyl-phosphate-synthetase (Afu5g06780) and transcrip-

tional down-regulation of the mitochondrial ornithine exporter

AmcA (Afu8g02760) in DhapX during iron starvation is expected to

promote production of Arg relative to Orn; up-regulation of

ornithine aminotransferase: (Afu4g09140), ornithine decarboxyl-

ase (Afu4g08010), and proline oxidase (Afu6g98760) indicates

increased consumption of ornithine for purposes other than

biosynthesis of siderophores. Taken together, these data indicate

that HapX is required for the up-regulation of the Orn pool to fuel

siderophore biosynthesis. Therefore, the largely decreased Orn

pool of DhapX might be in part responsible for the reduced

production of TAFC and FC in addition to the transcriptional

down-regulation of siderophore biosynthetic enzymes (see above).

Consistently, derepression of siderophore biosynthesis during iron

sufficiency by deletion of sreA (DsreA), when HapX is inactive,

decreased the Orn pool to 38% of wt (Table 2).

The 4.9-fold increased lysine pool in DhapX compared to wt
during iron starvation is consistent with transcriptional up-

regulation of the lysine biosynthetic enzymes homoaconitase LysF

(Afu5g08890) and homocitrate synthase (Afu4g10460) (Table S1 in

Supporting Information S1). The iron-dependence of LysF might

explain the 0.7-fold decrease of the lysine pool in DsidA (Table 2)

because lack of siderophore biosynthesis in DsidA causes increased

iron starvation, which in turn down-regulates and inactivates iron-

dependent pathways.

In the first commited step of heme biosynthesis, 5-aminolevu-

linate is synthesized from glycine and succinyl-CoA by HemA.

As HemA expression and the heme biosynthetic pathway is

derepressed during iron starvation in DhapX (see above), the 7.5-

fold increase in the glycine pool might indicate synchronization of

heme biosynthesis and supply of its precursor glycine by HapX

(Table 2). Here, HapX would formally function as a repressor,

whereas it acts as an activator for biosynthesis of siderophores and

their precursor ornithine. We have previously shown that iron

starvation down-regulates heme biosynthesis [22]. Therefore, the

possibility of a regulatory link of glycine and heme biosynthesis is

underlined by the 0.7-fold decrease of the glycine pool during iron

starvation compared to iron sufficiency in wt and the further 0.5-

fold decrease in DsidA.

Recently, iron starvation was found to influence the compo-

sition of the free amino acid pool in S. cerevisiae only mildly [30]

with low concordance to A. fumigatus (Table S6 in Supporting

Information S1). The difference might be due to the different life

styles of A. fumigatus and S. cerevisiae and of course the inability of S.

cerevisiae to synthesize siderophores.

HapX inactivation increases the mitochondrial DNA
(mtDNA) content and decreases resistance to tetracycline
As mentioned above, 31% of the genes de-repressed during iron

starvation in DhapX encode mitochondrial-localized proteins and

66% (27 genes) of those are up-regulated in DsreA during iron

sufficiency (Table 1A and Table S1 in Supporting Information

S1), which indicates a major impact of iron de-regulation on

Table 2. Iron starvation remodels the free amino acid pool
composition in A. fumigatus.

aa wt DhapX/wt DsreA/wt DsidA/wt

+Fe 2Fe 2/+Fe +Fe 2Fe +Fe 2Fe +Fe 2Fe

Ala 34.1560.93 8.6361.29 0.25 1.07 0.41 0.98 1.12 0.92 0.78

Arg 1.2860.11 13.2061.75 10.31 1.24 1.59 0.84 1.13 1.22 1.13

Asn 0.8260.04 2.4660.29 3.01 1.05 1.43 1.30 1.03 0.89 0.84

Asp 3.6160.40 3.4760.33 0.96 1.14 1.16 1.30 1.05 0.90 0.65

Gln 7.0360.25 37.0162.75 5.26 0.90 0.58 0.73 0.91 1.05 0.84

Glu 42.1461.46 18.2960.54 0.43 0.87 0.93 0.98 1.02 1.05 0.79

Gly 1.5360.10 1.0360.02 0.67 1.18 7.41 0.99 1.10 1.01 0.50

His 0.1860.06 1.6960.10 9.17 1.78 1.96 1.33 1.01 1.11 0.85

Ile 0.3460.01 0.3360.07 1.00 1.26 1.21 1.21 1.03 0.85 0.64

Leu 0.3860.05 0.5060.06 1.33 1.39 1.60 1.32 0.90 1.03 0.64

Lys 1.5560.20 3.4560.32 2.23 1.2 3.14 0.96 1.04 1.01 0.70

Met 0.0660.01 0.0960.02 1.68 1.17 0.78 1.00 1.11 1.00 0.67

Orn 0.7660.01 5.2460.49 6.91 1.88 0.08 0.38 0.98 1.87 3.83

Phe 0.1160.03 0.1860.03 1.63 1.36 1.67 1.18 0.89 1.00 0.83

Ser 1.9260.04 1.6560.09 0.86 1.10 1.42 1.10 0.98 1.09 0.71

Thr 1.4460.06 1.5160.09 1.05 1.23 1.19 1.46 1.09 0.93 0.81

Trp 0.0360.02 0.0460.02 1.55 1.33 2.75 1.00 1.00 0.67 1.00

Tyr 0.2560.07 0.3760.04 1.47 1.36 1.43 1.36 0.95 1.00 1.22

Val 2.4460.03 0.8560.22 0.35 1.25 1.27 1.57 0.94 0.90 0.56

Individual amino acid pools are given in % of the total free amino acids. Amino
acid pools up-regulated .1.5- and .3-fold in mutant strain versus wt are in
bold and bold, respectively; amino acid pools down-regulated .1.5- and .3-
fold is marked in bold and bold, respectively.
doi:10.1371/journal.ppat.1001124.t002

Adaption to Iron Starvation in Aspergillus

PLoS Pathogens | www.plospathogens.org 7 September 2010 | Volume 6 | Issue 9 | e1001124



mitochondrial metabolism. Live cell imaging by laser scanning

confocal microscopy of the mitotracker-stained mitochondrial

network revealed no differences between wt, DhapX, and DsreA

neither during iron-replete nor iron-depleted conditions (data not

shown). Next we analyzed the mtDNA content of wt, DhapX and

DsreA by qPCR normalized against the content of nuclear DNA

(Table S7 in Supporting Information S1). Concomitant with

derepression of genes encoding mitochondrial proteins, HapX

deficiency increased the mtDNA content during iron starvation

1.9-fold but had no effect during iron sufficiency. Vice versa, SreA-

deficiency increased the mtDNA content during iron sufficiency

2.3-fold but had no effect during iron starvation. Little is known

about the molecular mechanisms coordinating replication of

nuclear DNA and mtDNA in Aspergilli. Inactivation of SreA and

HapX, respectively, may disturb this coordination by deregulation

of either the general mitochondrial metabolism (proteins and/or

metabolites) and/or of a specific regulator. Notably, DhapX and

DsreA display decreased growth rates under the conditions, in

which they have increased mtDNA contents (see above and [22]).

Formally, it is therefore also possible that toxic effects caused

by deficiency in SreA and HapX slow down nuclear DNA

replication, whereby the deregulation of nuclear-encoded mito-

chondrial proteins disturbs the coordination with mitochondrial

replication. HapX-deficiency also decreased resistance to tetracy-

cline, an inhibitor of bacterial and mitochondrial protein synthesis

[31], during iron-depleted but not iron-replete conditions (Fig. 2A),

which underlines that HapX-deficiency affects mitochondrial

metabolism.

HapX inactivation increases zinc sensitivity
We have previously shown that there is a close connection

between zinc and iron metabolism [32]. In order to avoid zinc

excess and zinc toxicity, iron starvation down-regulates expression

of genes encoding plasma membrane zinc transporters such as zrfB
(Afu2g03860) and the respective transcription activator zafA

(Afu1g10080) and concomitantly up-regulates the vacuolar zinc/

cadmium transporters zrcA (Afu7g06570) and cotA (Afu2g14570).

The expression profiling indicated increased expression of zrfB and

Figure 4. Iron starvation transcriptionally up-regulates biosynthesis of ornithine in a HapX-dependent manner. (A) Schematic
representation of ornithine/arginine metabolism in A. fumigatus. Ornithine biosynthesis takes place in mitochondria (mito). Ornithine and citrulline
are shuttled to the cytoplasm (cyto) and serve as precursors for arginine, siderophores and polyamines. Enzymatic steps within the pathways are
numbered and corresponding to the Northern analysis in (B): 1, acetylglutamate synthetase (Afu2g11490) 2, acetylglutamate kinase and glutamate-5-
semialdehyde dehydrogenase (Afu6g02910); 3, acetylornithine aminotransferase (Afu2g12470); 4, arginine biosynthesis bifunctional enzyme
(Afu5g08120); 5, carbamoylphosphate synthase(Afu5g06780); 6, ornithine carbamoyltransferase (Afu4g07190); 7, arginase (Afu3g11430); 8, ornithine
aminotransferase (Afu4g09140); 9, ornithine decarboxylase (Afu4g08010); 10, pyrroline carboxylate dehydrogenase (Afu6g08750); 11, ornithine
transporter (Afu8g02760). Red and green arrows mark enzymatic steps transcriptionally up and down-regulated, respectively, by iron starvation in the
wt as shown in (B); Red and green circles mark genes, which are transcriptionally up- and down-regulated, respectively, in a DhapX strain as shown in
(B). (B) For Northern analysis, wt, DsidA and DhapX strains were grown for 24h at 37uC in under iron-replete (+Fe) and depleted (2Fe) conditions,
respectively.
doi:10.1371/journal.ppat.1001124.g004

Adaption to Iron Starvation in Aspergillus

PLoS Pathogens | www.plospathogens.org 8 September 2010 | Volume 6 | Issue 9 | e1001124



zafA (Fig. S1) and decreased expression of zrcA and cotA (Fig. S2) in

DhapX during iron starvation suggesting increased zinc uptake and

decreased vacuolar zinc storage. In agreement, DhapX displayed

increased sensitivity to zinc (Fig 2E), which indicates a role of

HapX in coordination of iron and zinc homeostasis.

HapX is crucial for virulence in a murine model of
invasive aspergillosis
To determine whether HapX-mediated regulation is relevant

for growth of A. fumigatus in the environment of the host, we

compared the virulence of the DhapX strain with that of the

complemented DhapX c strain and the wt strain in two different

mouse models of pulmonary invasive aspergillosis: (i) a leucopenic

mouse model using immunosuppression with both cortisone

acetate and cyclophosphamide [33,34], and (ii) a non-leucopenic

model with immunosuppression by cortisone acetate [35,36]. In

the leucopenic host, a cellular immune response is virtually absent

and development of invasive aspergillosis is characterized by

extensive invasive growth of the fungus [37]. Thus, this model

allows assessing whether fungal factors are required for survival

and growth on lung tissue in general. In contrast, the cortisone

acetate model allows recruitment of neutrophils and monocytes,

which, despite partially impaired phagocytosis, attack fungal cells

and prevent rapid fungal dissemination [38]. Mice were infected

with 16105 conidia in the leucopenic mouse model and 16106

conidia in the cortisone acetate mouse model to account for the

decreased killing rate; survival was monitored over a period of 14

days, followed by histological analyses of the lungs.

As shown in the survival curves in Fig. 5A both wt and DhapX c

caused high mortality rates in the leucopenic mouse model, which

were statistically not significantly different (p = 0.29) by Kaplan-

Meyer estimation and log rank tests. The DhapX mutant displayed

attenuation in virulence, which was however statistically significant

only compared to DhapX c (p = 0.033) but not compared to wt

(p = 0.28). At necropsy, the reduced virulence of DhapX was

reflected in the incidence of macroscopic lung alterations in

comparison to both DhapX c and wt (Fig. 5C): eight of ten mice

infected with DhapX c, seven of ten mice infected with wt, but only

one of ten mice infected with DhapX displayed lung alterations.

The presence of invasive mycelia could be confirmed in the

majority of mice infected with DhapX c and wt but no mycelium

could be found in any mouse infected with DhapX (Fig. 5C).

In the cortison acetate mouse model, no statistically significant

difference in survival were detected between mice infected with

either wt or DhapX c (p = 0.67). In contrast, DhapX was completely

attenuated compared to both wt and DhapX c (p = 0.004).

Consistently, the lungs of all 10 mice infected with DhapX were

unaltered whereas the lungs of six of ten mice infected with DhapX c

showed clear symptoms of inflammation (data not shown).

The expression of hapX is repressed by iron (see above), and,

consistently, deleterious effects of hapX-inactivation are limited to

iron-starved conditions (see above). Therefore, the attenuated

Figure 5. HapX-deficiency results in attenuation of A. fumigatus virulence. Survival of leucopenic mice (A) and mice immunosuppressed
with cortisone acetate (B) after infection with DhapX, the complemented strain DhapXC, or wt. (C) Histopathology using PAS staining (hyphae stain
pink) of leucopenic mice infected with DhapX, DhapXC, or wt.
doi:10.1371/journal.ppat.1001124.g005
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virulence of DhapX is in agreement with A. fumigatus facing iron-

limited conditions in the host and the requirement of HapX for

virulence. This is also in accordance with the importance of the

iron-repressed siderophore system and the dispensability of the

iron-induced iron regulator SreA for pathogenicity [5,10,22].

Notably, supplementation with iron-free TAFC or FsC to a final

concentration of 10 mM did neither cure the growth defect nor

inhibit the PpIX accumulation of DhapX during iron starvation in

liquid flask cultures (data not shown) indicating that the reduced

TAFC production does not account for the full extent of the DhapX

phenotype. Together with the fact that HapX-deficiency causes

decreased production of TAFC but not FsC (see above) and the

previous finding that the A. fumigatus DsidG mutant strain, which

produces FsC but not TAFC, displays unaltered virulence in a

mouse model for pulmonary aspergillosis [10], these data suggest

that the reduced virulence of DhapX is not caused, at least not

solely, by the decreased TAFC production. Therefore, the

attenuated virulence of DhapX might be caused by the general

deregulation of gene expression (i.e. the missing metabolic

adaption to iron starvation), the accumulation of toxic metabolites

such as PpIX, and/or the down-regulation of possible virulence

determinants such as AspF1 (see above).

The DhapX mutant appeared to be slightly more virulent in the

leucopenic mouse model compared to the cortisone-acetate model

(Fig. 5A and B). As HapX-deficiency results in sensitivity to iron

starvation, these data indicate that the attack of neutrophils and

monocytes, which is absent in the leucopenic model, increases

extracellular iron starvation or imposes iron starvation by inter-

nalization. In this respect it is interesting to note that the

siderophore system was recently shown to play a crucial role in

intracellular growth and survival in murine alveolar macrophages

demonstrating that A. fumigatus faces iron starvation after

phagocytosis [39]. In agreement, the siderophore system was

shown to be essential to alter immune effector pathways and iron

homeostasis of murine macrophages [40].

Apart from A. fumigatus HapX, only one fungal iron regulator

has been shown to be required for virulence so far: C. neoformans

Cir1, the ortholog of A. fumigatus SreA [41]. Similar to SreA-

deficiency in A. fumigatus, Cir1-deficiency impairs growth during

iron-replete but not depleted conditions, which does not implicate

a crucial role in virulence at first sight. But in contrast to A.

fumigatus SreA, which is not required for virulence [22], C.

neoformans Cir1 functions also as an activator for growth at 37uC

(host temperature) and capsule formation, which are both

important virulence traits.

Conclusions
This study demonstrates that the metabolic reprogramming

required for adaption to iron starvation depends on HapX and

that this adaption is essential for virulence of A. fumigatus. The

identification of numerous HapX-affected genes with yet unchar-

acterized link to iron or starvation will aid in the further

characterization of the metabolic pathways required for adaption

to iron starvation and consequently virulence traits of A. fumigatus.

This study appears to be exemplary for the iron metabolism and

virulence of most fungal species as HapX is widely conserved with

exception of species closely related to S. cerevisiae.

Methods

Fungal strains, growth conditions
Fungal strains used were A. fumigatus wild-type ATCC46645

(American Type Culture Collection ), DsreA (ATCC46645,

DsreA::hph), DsidA (ATCC46645, DsidA::hph), DhapX (ATCC46645,

DhapX::hph), and DhapXC (DhapX, (p)::hapX). DsreA and DsidA were

described previously [5,22]; generation of DhapX and DhapXC is

described below. Generally, A. fumigatus strains were grown at

37uC in Aspergillus minimal medium according to Pontecorvo et al.

[42] containing 1% glucose as the carbon source and 20 mM

glutamine as the nitrogen source. Iron-replete media contained

30 mM FeSO4. For iron depleted conditions, iron was omitted.

The BPS and tetracycline concentrations used were 200 mM and

2 mg ml21 respectively. For growth assays, 104 and 108 conidia

were used for point-inoculation on plates or inoculation of 100 ml

liquid media, respectivly.

Northern analysis and DNA manipulations
RNA was isolated using TRI Reagent (Sigma). For Northern

analysis, 10 mg of total RNA was analyzed as described previously

[43]. Hybridization probes and Primers used are listed in Table S7

in Supporting Information S1. For extraction of genomic DNA,

mycelia were homogenized and DNA was isolated according to

Sambrook et al. [44]. For general DNA propagations Escherichia

coli DH5a strain was used as a host.

Deletion of hapX and complementation of the DhapX
strain
For generating the DhapX mutant strain, the bipartite marker

technique was used [45]. Briefly, A. fumigatus was co-transformed

with two DNA fragments, each containing overlapping but

incomplete fragments of the pyrithiamine resistance-conferring

ptrA gene fused to 1.2-kb hapX 59- and 39-flanking sequences,

respectively. The hapX 59-flanking region (1207bp) was PCR-

amplified from genomic DNA using primers ohapX-1 and ohapX-

4. For amplification of the 39flanking region (1156bp) primers

ohapX-2 and ohapX-3 were employed. Subsequent to gel-

purification, these fragments were digested with SacI (59flanking

region) and XhoI (39flanking region), respectively. The ptrA

selection marker was released from plasmid pSK275 by digestion

with SmaI and XhoI, respectively, and ligated with the 59- and 39-

flanking region, respectively. The transformation construct A

(2558bp, fusion of the hapX 59-flanking region and the prtA split

marker) was amplified from the ligation product using primers

ohapX-5 and optrA-2. For amplification of the transformation

construct B (2166bp, fusion of the hapX 39-flanking region and the

supplementary prtA split marker) primers ohapX-6 and optrA-1

were employed. For transformation of A. fumigatus ATCC46645

both constructs A and B were simultaneously used. This strategy

deleted the sequence 2228 to 1383 bp relative to the translation

start site in hapX.

For the reconstitution of the DhapX strain with a functional hapX

copy, a 3615bp PCR fragment generated with primers ohapX-5

and ohapX-6 was subcloned into pGEM-T (Promega) according

to the supplier’s manual, resulting in pHapX. A 2410bp SphI

fragment from pAN7-1 containing the hygromycine B resistance-

conferring hph gene was inserted into the SphI site of pHapX

resulting in pHapXhph. The resulting 9.0-kb plasmid pHapXhph

was linearized with EcoRV and used to transform A. fumigatus

DhapX.

Transformation of A. fumigatus was carried out as described

previously [10]. For selection of transformants 0.1 mg ml21

pyrithiamine (Sigma) or 0.2 mg ml21 hygromycin B (Calbiochem)

was used. Screening of transformants was performed by PCR and

confirmed by Southern blot analysis. The hybridization probes for

Southern blot analysis of DhapX and DhapXc strains were generated

by PCR using the primers ohapX-5 and ohapX-4 (Table S8 in

Supporting Information S1).
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Analysis of siderophores, PpIX, and free amino acids
Analysis of siderophore, PpIX and free amino acids was carried

out by reversed phase HPLC as described previously [20,43,46].

To quantify extracellular or intracellular siderophores, culture

supernatants or cellular extracts were saturated with FeSO4 and

siderophores were extracted with 0.2 volumes of phenol. The

phenol phase was separated and subsequent to addition of 5

volumes of diethylether and 1 volume of water, the siderophore

concentration of the aqueous phase was measured photometrically

using a molar extinction factor of 2996/440nm (M21cm21).

Determination of mtDNA content
A. fumigatus total DNA was isolated with the QIAamp kit

(Qiagen). MtDNA compared to nuclear DNA content was

determined by quantitative real-time PCR (qPCR) with CYBR

green I (ABI; ABI 2400 Applied Biosystems, USA) by PCR

amplification of a fragment of the mitochondrial apocytochrome B

gene (BAA34151, 73.t00020) using primers oAfcytB-1 and

oAfcytB-2, and a fragment of the nuclear mirD gene (Afu3G03440)

gene, using primers oAfmirD-1 and oAfmirD-2. The PCR

reactions cycle used (Applied Biosystems standard conditions)

was 40 cycles at 95uC 150, 60uC 19. PCR assays were performed in

biological triplicates and technical duplicates for each DNA

sample. The expression of mtDNA copy number relative to

nuclear DNA was determined using the 22DCT method.

Transcriptional profiling
The A. fumigatus Af293 DNA amplicon microarray containing

9,516 genes [47] was used in this study. To profile the genome-

wide expression responses to the shift from iron depleted to iron-

replete conditions and to identify the genes influenced by HapX,

we conducted microarray analysis with the wt and DhapX strains

grown for 16 h at 37uC in iron-depleted (2Fe) medium (0 h time

point). Subsequently iron was added to a final concentration of

30 mM and growth was continued for 1 hour (sFe). Labelling

reactions with RNA, and hybridization were conducted as

described in the PFGRC standard operating procedures (PFGRC

SOP’s) found at http://pfgrc.tigr.org/protocols/protocols.shtml.

The sample from 0 h served as reference in all hybridizations with

the 1 h iron shift samples in order to identify genes exhibiting

altered transcription after the shift from iron depleted to iron

replete conditions in DhapX compared to wt. Additionally, the 16 h

iron starvation cultures of DhapX and wt were directly compared

with the wt serving as reference. (Fig. S1 and S2)

Hybridized slides were scanned using the Axon GenePix 4000B

microarray scanner and the TIFF images generated were analyzed

using the TM4 suite of microarray analysis tools (http://www.tm4.

org). Spotfinder was used to obtain relative transcript levels. Data

from Spotfinder were stored in MAD, a relational database

designed to effectively capture and store microarray data. Data

normalization was accomplished using a local regression technique

LOWESS (LOcally WEighted Scatterplot Smoothing) for hybrid-

izations using the TM4 MIDAS tool. The resulting data was

averaged from triplicate gene spots on each array and from

duplicate flip-dye arrays for each experiment, taking a total of 6

intensity data points for each gene. Differentially expressed genes

at the 95% confidence level were determined using intensity-

dependent Z-scores (with Z=1.96) as implemented in MIDAS and

the union of all genes identified at each time point from the wild-

type were considered significant in this experiment. Microarray

data are deposited in the GEO database (http://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?token=jhqbdcwiigqyypa&acc=GSE22052).

Virulence assay
Virulence assays in two murine models for pulmonary

aspergillosis were performed as described previously [33,34].

Infections were performed with two groups of five mice for each

tested strain. A control group remained uninfected (inhalation of

PBS) to monitor the influence of the immunosuppressive regime.

Survival data were plotted as Kaplan-Meyer curves and were

analyzed statistically by a log rank test using Graph Pad Prism

version 5.00 for Windows (GraphPad Software, San Diego, CA).

Lungs from euthanized animals were removed, fixed in formalin

and paraffin-embedded for histopathologic analyses according to

standard protocols. Sections were stained with Periodic acid-Schiff

(PAS) according to standard protocols and analyzed by bright field

microscopy using a Zeiss AxioImager.M1 microscope equipped

with a SPOT Flex Shifting Pixel Color Mosaic camera (Diagnostic

Instruments, Inc., Sterling Heights, USA).
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Mice were cared for in accordance with the principles outlined

by the European Convention for the Protection of Vertebrate

Animals Used for Experimental and Other Scientific Purposes

(European Treaty Series, no. 123; http://conventions.coe.int/

Treaty/en/Treaties/Html/123.htm). All animal experiments

were in compliance with the German animal protection law and

were approved (permit no. 03-001/08) by the responsible Federal

State authority (Thüringer Landesamt für Lebensmittelsicherheit

und Verbraucherschutz) and ethics committee (beratende Komis-

sion nach 1 15 Abs. 1 Tierschutzgesetz).

Supporting Information

Figure S1 Biosynthesis of both TAFC and FC starts with N5-

hydroxylation of ornithine. Subsequently, the hydroxamate group

is formed by the transfer of an acyl group from acyl-coenzyme A

(CoA) derivatives to N5-hydroxyornithine. Here the pathways for

biosynthesis of TAFC and FC split due to the choice of the acyl

group with acetyl for FC and anhydromevalonyl for TAFC.

Assembly of the cyclic siderophores fusarinine C and FC is

catalysed by different non-ribosomal peptide synthetases (NRPS).

TAFC and hydroxyferricrocin are formed by N2-acetylation of

fusarinine C and hydroxylation of FC respectively. With exception

of the acetyl transferase required for FC biosynthesis all A.

fumigatus genes encoding respective enzyme activities have been

identified and are indicated (Haas et al., 2008; Schrettl et al., 2004;

Schrettl et al., 2007).

Found at: doi:10.1371/journal.ppat.1001124.s001 (0.55 MB TIF)

Figure S2 A. fumigatus wt was grown for 24 h at 37uC in liquid

flask cultures and 10 ml of culture supernatant was analyzed by

reversed phase HPLC.

Found at: doi:10.1371/journal.ppat.1001124.s002 (0.10 MB TIF)

Supporting Information S1 Tables S1 to S8.

Found at: doi:10.1371/journal.ppat.1001124.s003 (6.06 MB

DOC)
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