
HARAQ: Congestion-Aware Learning Model for Highly
Adaptive Routing Algorithm in On-Chip Networks

Masoumeh Ebrahimi1, Masoud Daneshtalab1, Fahimeh Farahnakian1,
Juha Plosila1, Pasi Liljeberg1, Maurizio Palesi2, Hannu Tenhunen1

1University of Turku, Finland, 2University of Kore, Italy

Abstract— the occurrence of congestion in on-chip networks can
severely degrade the performance due to increased message
latency. In mesh topology, minimal methods can propagate
messages over two directions at each switch. When shortest paths
are congested, sending more messages through them can
deteriorate the congestion condition considerably. In this paper,
we present an adaptive routing algorithm for on-chip networks
that provide a wide range of alternative paths between each pair
of source and destination switches. Initially, the algorithm
determines all permitted turns in the network including 180-
degree turns on a single channel without creating cycles. The
implementation of the algorithm provides the best usage of all
allowable turns to route messages more adaptively in the
network. On top of that, for selecting a less congested path, an
optimized and scalable learning method is utilized. The learning
method is based on local and global congestion information and
can estimate the latency from each output channel to the
destination region.

I. INTRODUCTION
Networks-on-Chip (NoC) has emerged as a solution to

address the communication demands of future multicore
architectures due to its reusability, scalability, and parallelism
in communication infrastructure [1]. The performance and
efficiency of NoCs largely depend on the underlying routing
model which establishes a connection between input and output
channels in a switch.

In minimal adaptive routing algorithms, shortest paths are
used for transmitting messages between switches. In low traffic
loads, minimal methods can achieve optimized performance,
while they are very inefficient in avoiding hotspots when the
network load increases. The reason is that they can deliver
messages through at most two minimal directions and thereby
they cannot reroute messages around congested areas. The
routing policy (output selection) of minimal methods can be
based on local, non-local, or mix of local and non-local
congestion of the network. However, minimal routing
algorithms suffer from a low degree of adaptiveness, which are
inefficient in distributing the traffic over the network even if
they have accurate knowledge of the network condition.

In wormhole routings, messages are divided into small flits
traveling through the network in a pipelined fashion. This
approach eliminates the need to allocate large buffers in
intermediate switches along the path. However, a message
waiting to be allocated to an outgoing channel may prohibit
other messages from using the channels and buffers and
thereby wasting channel bandwidth and increasing latency.
Adding virtual channels can alleviate this problem, but it is an
expensive solution. Non-minimal methods can partially
overcome this blocking problem and reduce the waiting time of
messages by delivering them via alternative paths. In contrast,
performance can severely deteriorate in non-minimal methods
due to the uncertainty in finding an optimal path as they may
choose longer paths and meanwhile delivering messages

through congested regions. Moreover, non-minimal methods
can suggest minimal and non-minimal paths between a source
and destination but this flexibility is at the cost of a more
complex switch structure or additional virtual channels. On the
other hand, an output selection should choose a single channel
from a set of predetermined channels to forward a message to
the next hop. This becomes one of the main challenges
involved in designing an efficient non-minimal method to
select a less congested path from a set of alternative paths. The
decision for an output channel should not be based on local
information as it may route messages through paths which are
not only longer but also highly congested. On the other hand,
even if a global knowledge of the network is provided, due to a
large number of alternative paths, finding a less congested path
is questionable which demands an intelligent method to cope
with.

Reinforcement learning has attracted considerable attention
in industry and academia because it provides an effective
model for problems where optimal solutions are analytically
unavailable or difficult to obtain. The learning methodology is
based on the common-sense idea that if an action is followed
by a satisfactory state, or by an improvement, then the
tendency to produce that action is strengthened, i.e., reinforced.
On the other hand, if the state becomes unsatisfactory, then that
particular action should be suitably punished [2][3]. Q-
Learning [4] is one of the algorithms in the reinforcement
learning family of machine learning. In the Q-Learning
approach, the learning agent first learns a model of the
environment on-line and then utilizes this knowledge to find an
effective control policy for the given task. Q-Routing [5] is a
network routing method based on Q-Learning models which
learn a routing policy to minimize the delivery time of
messages to reach their destinations [6]. Q-Routing methods
are implemented by having each switch maintains a table of Q-
values, where each value is an estimate of how long it takes for
a message to be delivered to a destination, if sends via a
neighboring switch [4]. The method requires a switch to update
its routing table whenever a message is delivered to the next
switch and the congestion information is returned. Q-Routing
methods allow a network to be continuously adopted to load
changes. Although these schemes make the most optimal
routing decisions, due to employing large tables, they are not
cost-efficient approaches for Networks-on-Chip.

In this paper, we proposed a novel routing algorithm,
named Highly Adaptive Routing Algorithm using Q-Learning
(HARAQ) where the main contributions of the paper are
summarized as follow:
1. A low-restrictive non-minimal algorithm to provide several
alternative paths between each pair of source and destination
switches.

The algorithm uses only an extra virtual channel in the Y
dimension and provides a large number of paths for routing
messages. Different turns are defined on each virtual channel,

2012 Sixth IEEE/ACM International Symposium on Networks-on-Chip

978-0-7695-4677-3/12 $26.00 © 2012 IEEE

DOI 10.1109/NOCS.2012.10

19

such that the prohibited turns in one virtual channel are
permitted in the other one. Another subtle point of the
presented method is its ability to enable 180-degree turns on a
single channel (i.e. a message can arrive through a channel that
is previously used to deliver it) without creating cycles.

2. An efficient output selection strategy for finding a low-
latency path from a source to a destination.

The presented routing scheme utilizes an optimized Q-
Learning model for the output selection function. In this way,
the output selection can efficiently estimate the latency of a
message to reach its destination through each of the possible
output channels. This information is extracted from a Q-Table
available at each switch. Unlike typical Q-Routing methods,
our proposed model is scalable and the size of Q-Tables is
relatively small.

The rest of this paper is organized as follows: Section II
reviews the related work. The minimal mad-y method and the
proposed highly adaptive routing algorithm along with the
presented optimal Q-Routing model are explained in Section
III. The results are given in Section IV while we summarize
and conclude in the last section.

II. RELATED WORK
Most common implementations of minimal routing

algorithms, e.g. FRA [7], NoP [8], RCA [9], and DBAR [10],
have focused on collecting local or non-local congestion
information to get an estimation of the congested areas in the
network. However, due to a low degree of adaptiveness (i.e. at
most two directions per switch in fully adaptive minimal
methods), minimal routing algorithms cannot distribute the
traffic over the network efficiently even if they have accurate
knowledge of the network condition. Virtual channels can be
used to avoid deadlock and increase adaptiveness. DyXY [11]
and mad-y [12] are the methods using only two virtual
channels along one of the two physical channels. Although
they are fully adaptive in minimal paths, messages are limited
in terms of routing options and thus the traffic load cannot be
efficiently balanced over the network. Generally, non-minimal
routing schemes have been proposed for tolerating faults rather
than avoiding congestion [13][14][15]. Most of these models
are proposed to support special cases of faults, such as one-
faulty switches, convex or concave regions, which require a
large number of virtual channels to avoid deadlock. In fact,
adding virtual channels is expensive because of additional
buffers and complex control logics. There are other fault-
tolerant approaches [16][17][18] which do not require any
virtual channels. However, these algorithms are partially
adaptive and very limited in supporting faults. A highly
resilient routing algorithm is proposed in [19] to tolerate a large
number of faults without exploiting any virtual channel, but
only one path can be selected between each pair of source and
destination nodes. In general, each method defines a new
tradeoff between the number of virtual channels, the ability to
handle different fault models, and the degree of adaptiveness.

Fault-tolerant methods cannot be efficiently employed as
non-minimal models to alleviate congestion in NoCs for
several reasons. If congestion occurs in multiple disjoint
concave/convex regions at the same time, the fault-tolerant
models with a small number of virtual channels are either
deterministic or unable to handle different hotspot (fault)
models while using a large number of virtual channels is not
cost efficient for on-chip networks. In addition fault-tolerant

algorithms are relatively complex due to considering different
fault models in order to find a path between a source and
destination. The complexity added to the algorithms is
unnecessary for congestion-aware methods because congestion
does not disconnect a path and in some cases highly congested
paths might be selected. Most of the proposed fault-tolerant
algorithms support only static faults and a few of those take
dynamic faults into consideration. If hotspots changes
dynamically, the algorithms should be reconfigured for new
hotspots and handle a transition phase whenever a location of
hotspot changes. To overcome this, some fault-tolerant
algorithms allow dropping messages in the transition phase and
other approaches use relatively complex models which are not
appropriate solutions for on-chip networks. In sum, the goal of
our approach is to present a low-restrictive method using both
minimal and non-minimal paths. The method utilizes only one
virtual channel along the Y dimension while does not have the
above mentioned restrictions of fault-tolerant models.

Q-Routing based models have been studied in several
literatures such as [20] and [21], but they have rarely been
investigated in the context of on-chip networks. The algorithm
in [6] is proposed to handle communication among modules
which are dynamically placed on a reconfigurable NoCs. This
algorithm is inspired by the method in [21] for a general case
of message switching networks. FTDR-H [22] utilizes Q-
Routing methods to tolerate faults and find a path between each
pair of switches as long as a path exists. Moreover, the size of
Q-Tables is reduced by taking advantages of the clustering
model. This clustering model is also extensively discussed in
the C-Routing method [23].

III. HIGHLY ADAPTIVE ROUTING ALGORITHM USING Q-
LEARNING MODEL

The proposed mesh-based routing scheme is based on the
mad-y method which has been introduced by Glass and Ni in
[12]. The mad-y and the presented routing methods utilize a
double-Y network where the X and Y dimensions have one and
two virtual channels, respectively (Fig. 1(a)). Each switch in
the double-Y network has seven pairs of channels, i.e. East(E),
West(W), North-vc1(N1), North-vc2(N2), South-vc1(S1),
South-vc2(S2), and Local(L). In 2D mesh-based network, three
types of turns can be taken: 0-degree, 90-degree, and 180-
degree turns (U turns) [24]. By taking a 0-degree turn, a
message transmits in a same direction with a possibility of
switching between virtual channels. The turn is called 0-
degree-ch if in a turn neither the direction nor the virtual
channel changes (Fig. 1(b)) while it is a 0-degree-vc turn if the
virtual channel changes (Fig. 1(c)). By taking a 90-degree turn,
a message transmits between the switches in perpendicular
directions (Fig. 1(d)). By taking a 180-degree turn, a message
is transferred to a channel in the opposite direction [24]. If the
virtual channel is changed, the turn is called 180-degree-vc
(Fig. 1(e)); otherwise, it is represented as 180-degree-ch (Fig.
1(f)). Note that, in all figures, the vc1 and vc2 are differentiated
by – and = respectively.

Fig. 1. (a) A switch in a double-Y network (b) 0-degree-vc (c) 0-degree-ch (d)

90-degree (e) 180-degree-vc (f) 180-degree-ch

20

A. The mad-y Method
In order to avoid deadlock, the mad-y method [12],

prohibits several turns in the double-Y network. In mad-y, the
0-degree-vc turns from vc1 to vc2 are permitted, also all 0-
degree-ch turns are allowable, however 0-degree-vc turns from
vc2 to vc1 may cause deadlock in the network and are
prohibited (Fig. 2(c) and Fig. 2(d)). As illustrated in Fig. 2(a)
and Fig. 2(b), out of sixteen 90-degree turns that can be
potentially taken in a network, four of them cannot be taken in
mad-y. Finally, 180-degree turns are not allowed in mad-y. To
prove the deadlock freeness in mad-y, a two-digit number (a, b)
is assigned to each output channel of a switch in n×m mesh
network. According to the numbering mechanism, a turn
connecting the input channel (aic, bic) to the output channel (aoc,
boc) is called an ascending turn when (aoc>aic) or ((aoc=aic) and
(boc>bic)). Fig. 3 shows how the channels of a switch at the
position (x,y) are numbered. Since this numbering mechanism
causes the messages to take the permitted turns in strictly
increasing order, so that mad-y is deadlock-free.

Fig. 2. 90-degree turns in (a) vc1 (b) vc2 (c) 0-degree-ch (d) 0-degree-vc

Fig. 3. Channel numbering in the mad-y method

B. Highly Adaptive Routing Algorithm
As mad-y is a minimal adaptive routing method, it cannot

fully utilize the eligible turns to route messages through less-
congested areas. The aim of the proposed routing algorithm,
named Highly Adaptive Routing Algorithm (HARA), is to
enhance the capability of the existing virtual channels in mad-y
to reroute messages around congested areas and hotspots. Since

the mad-y and HARA methods combine two virtual channels
with different prohibited turns, they diminish the drawbacks of
turn models prohibiting certain turns at all locations. In
minimal routings, (e.g. mad-y), 180-degree turns are prohibited
but can be incorporated in non-minimal routings. One way to
incorporate 180-degree turns is to examine the turns one by one
to see whether the turn causes any cycle. After determining all
allowable turns, in order to prove deadlock freeness, the
numbering mechanism is utilized. At first we use the
numbering mechanism of the mad-y method to learn all 180-
degree turns that can be taken in ascending order, and then
modify the numbering mechanism to meet our requirements.
According to the numbering mechanism in Fig. 3, among 180-
degree-vc turns, those from vc1 to vc2 are taken in ascending
order (Fig. 4(a), Fig. 4(b)), so that it is safe to employ them in
the network. As all 180-degree-vc turns from vc2 to vc1 take
place in descending order, so they cannot be used in the
network (Fig. 4(c), Fig. 4(d)). Now, let us examine a 180-
degree-ch turn when a message uses it in vc1 of the north
direction (Fig. 4(e)). As shown in Fig. 3, the label on the output
vc1 of the north direction is (m-1-x,1+y) and the label on the
input vc1 of the north direction is (m-1-x,n-1-y). The turn takes
place in ascending order if and only if n-1-y is greater than
1+y. Therefore, this turn can be safely added to a set of
allowable turns if the y coordinate of a switch is less than (n-
2)/2. Similarly, in Fig. 4(f), 180-degree-ch turn on the vc2 of
the north direction is permitted if the y value of a switch is less
than (n-2)/2. 180-degree-ch turns on the vc1 and vc2 of the
south direction are permitted (Fig. 4(g) and Fig. 4(h)) if and
only if the y coordinate of a switch is greater than n/2. Finally,
180-degree-ch turn on the west direction is always permitted
(Fig. 4(i)) while 180-degree-ch turn on the east direction is
prohibited in the network (Fig. 4(j)).

Fig. 4. Allowable 180-degree turns in the HARA method

As shown in Fig. 4, there are four conditional 180-degree
turns. Two of those are allowable only in the northern part of
the network and two others in the southern part of the network.
This not only increases the complexity of the routing function
but also imposes heterogeneous routing function for switches.
To overcome this issue, we modify the numbering mechanism
such that two turns are permitted in the whole network (Fig.
4(g) and Fig. 4(h)) and two other are prohibited (Fig. 4(e) and
Fig. 4(f)). The numbering mechanism of HARA along with all
permitted turns in the network is shown in Fig. 5. As can be
observed from this figure, all allowable turns are taken in
ascending order.

Fig. 5. The numbering mechanism of HARA along with all eligible turns in the network

21

Table 1. Potential output channels according to the input channel (InCh) and relative position of source and destination switches (Pos)

 Pos.
InCh N S E W NE NW SE SW

L N1, N2, S1, W N1, S1, S2, W N1, N2, S1, S2, E, W N1, S1, W N1, N2, S1, S2, E, W N1, S1, W N1, N2, S1, S2, E, W N1, S1, W
N1 N2, S1, W S1, S2, W N2, S1, S2, E, W S1, W N2, S1, S2, E, W S1, W N2, S1, S2, E, W S1, W
N2 - S2 S2, E - S2, E - S2, E -
S1 N1, N2, S1, W N1, S1, S2, W N1, N2, S1, S2, E, W N1, S1, W N1, N2, S1, S2, E, W N1, S1, W N1, N2, S1, S2, E, W N1, S1, W
S2 N2 - N2, E - N2, E - N2, E -
E N1, N2, S1, W N1, S1, S2, W N1, N2, S1, S2, E, W N1, S1, W N1, N2, S1, S2, E, W N1, S1, W N1, N2, S1, S2, E, W N1,S1, W
W N2 S2 N2, S2, E - N2, S2, E - N2, S2, E -

In the non-minimal routing, employing only eligible turns

at each switch is necessary but not sufficient to avoid blocking
in the network. The reason is that using the allowable turns
(Fig. 5), a message may not be able to find a path to the
destination from the next hop and is blocked. On the other
hand, one of the aims of HARA is to fully utilize all eligible
turns to present a low-restrictive adaptive method in the
double-Y network. To achieve the maximal adaptiveness along
with the blocking avoidance, for each combination of the input
channel and destination switch position, we examined all
eligible 0-degree, 90-degree, and 180-degree turns, separately.
The output channels are selected in a way that not only the turn
is allowable but also it is guaranteed that there is a path from
the next switch to the destination. When a message arrives
through one of the input channels, the routing unit determines
one or several potential output channels to deliver the message.
The routing decision is based on the relative position of the
current and destination switches (i.e. within one of the
following eight cases: North(N), South(S), East(E), West(W),
Northeast(NE), Northwest(NW), Southeast(SE), and
Southwest(SW)). All permissible output channels of HARA,
for each pair of the input channel (Inch) and destination
position (Pos) are shown in Table 1. As can be obtained from
the table, HARA offers a large degree of adaptiveness to route
messages. One of the drawbacks of non-minimal methods is
the complexity of determining eligible output channels.
However, as shown in Fig. 6 (i.e. that is extracted from Table
1), the implementation of HARA is relatively simple.

Fig. 6. Determining all eligible output channels by HARA

Theorem 1: HARA is deadlock-free.
Proof: If numbering mechanism ensures that all eligible turns
are ordered in ascending order (descending order), no cyclic
dependency can occur between channels. As can be observed
from Fig. 5, all connections between input channels and output
channels to form eligible turns in HARA take place in
ascending order and thus HARA is deadlock free.

Theorem 2: HARA is livelock-free
Proof: In HARA, whenever a message transmits in the east
direction, it can never be routed back in the west direction.
Therefore, in the worst case, the message may reach to the
leftmost column and then starts moving in the east direction
toward the destination column. Therefore, after a limited

number of hops, the message reaches the destination, and
Theorem 2 is proved.

Fig. 7 shows an example of the HARA method in a 5×5
mesh network in which the source switch at (2,1) sends a
message to the destination switch at (4,2). According to Table
1, the message arriving from the local channel and delivering
toward the destination in the northeast position has six
alternative choices (i.e. N1, N2, S1, S2, E, and W); among
them, the output channels N1, N2, and E introduce the minimal
paths and S1, S2, and W indicate the non-minimal paths. Since
the neighboring switches in the minimal paths are in the
congested area, the message is sent in a non-minimal direction
that is not congested. Again, at the switch (2,0), all the minimal
paths are congested, so the message is sent to switch (1,0)
which is not congested. The same strategy is used until the
message reaches the destination switch. This example shows
the ability of the HARA method to reroute messages around
congested areas.

0,3 1,3 3,3

0,2 1,2 3,2

0,1 1,1 3,1

0,0 1,0 3,0

2,3

2,2

2,1

2,0

S

4,3

4,2

4,1

4,0

D

0,4 1,4 3,42,4 4,4

Fig. 7. An example of HARA

C. Q-Learning-based Output Selection Function

As mentioned earlier, we utilize an optimized Q-Routing
model for the selection function of HARA to estimate the
latency of sending a message from each output channel to the
destination switch. Since the output selection function of
HARA is inspired by the Q-Routing model, the proposed
routing method is named HARAQ (HARA using Q-Routing).
Let us explain the idea of HARAQ using the example of Fig. 8
where a message is generated at the source switch S for the
destination D. According to HARA, when a message arrives
from the local input channel and destined for a destination
switch in the northeast position, six output channels can be
selected to forward the message (i.e. N1, N2, S1, S2, E, and
W). At Fig. 8(a), suppose that the colored entry of the Q-Table
indicates the estimated latencies of sending a message from
each possible output channel to the northeast region. Since
output channel N1 has the lowest estimated latency, the
message is delivered through this channel. At the switch X, the
message is received by the input channel S1 (Fig. 8(b)). Using

InCh: Input Channel; OutCh: Output Channel
Pos: Destination Position
--
IF Pos={L} THEN OutCh(L)<=’1’;
IF Pos={E or NE or SE} THEN OutCh(E)<=’1’;
IF InCh={L or N1 or S1 or E} THEN OutCh(W)<=’1’;
IF InCh={L or S1 or E} THEN OutCh(N1)<=’1’;
IF InCh={L or N1 or E or S1} THEN OutCh(S1)<=’1’;
IF (InCh/= {N2}) AND
 (Pos={N or E or NE or SE}) THEN OutCh(N2)<=’1’;
IF (InCh/={S2}) AND
 (Pos={S or E or NE or SE}) THEN OutCh(S2)<=’1’;

22

the information in Table 1 or Fig. 6, multiple output channels
can be used to forward the message (i.e. N1, N2, S1, S2, E, and
W). Among eligible output channels, the output channel E has
the lowest latency, and thus it is selected for sending the
message to the switch Y. At this time, the local and global
congestion values should be returned to the switch S. The time
the message waited in the input buffer of the switch X before
transmission to the switch Y is counted as the local information
(i.e. BX=1). The minimum estimated latency of routing
messages from the switch X to the destination region via the
neighboring switch Y is considered as the global latency and is
extracted from the Q-Table of the switch X (i.e.
minQX(D,Y)=4). The summed value of the local and global
information provides a new latency estimation of the path from
the switch S to the destination D. Finally, the corresponding
entry of the Q-Table at switch S (i.e. row: NE; column: N1)
should be updated with the new value. This is done taking the
average of the old and new latency estimation (Fig. 8(a)). At
switch Y, the message is received via the west input channel
(Fig. 8(c)). The output channel with the lowest latency is
selected among the three possible output channels (i.e. N2, S2,
and E). Upon connecting the input channel to the output
channel of the switch Y, local and global information are
returned to the switch X. The local congestion shows the
waiting time of the message at the input buffer of switch Y (i.e.
BY=3) while the global congestion indicates the estimated
latency from the switch Y to the destination switch D via the
neighboring switch Z (i.e. minQY(D,Z)=5). The sum of the
local and global values is new latency estimation from the
switch X to the destination switch. As shown in Fig. 8(b), the
corresponding entry of the Q-Table at the switch X is updated
taking an average of the new estimated value (i.e.
BY+minQY(D,Z)) and an existing estimation (QX(D,Y)).
Finally, the message arrives at the switch Z from the input
channel S2 (Fig. 8(d)). This message can reach the destination
by delivering it through N2 or E output channels. The output
channel E has the lowest value and selected for routing the
message. The local latency, the waiting period at the input

buffer of the switch Z, is 3 while the global latency to the
destination is equal to 0 as the message reaches the destination
in the next hop. Similarly, the latency values are returned to
switch Y and update the Q-table (Fig. 8(c)). Hence, as
messages are propagated inside the network, Q-Tables
gradually incorporate more global information [20].
Q-Table format: Q-Routing models learn the network
condition at run time and based on the obtained information
sends a message through the path that has the lowest estimated
latency to the destination switch [6]. Generally, each switch
maintains a Q-Table to store the estimated latency of routing
messages to a destination switch via each output channel. Two
typical types of Q-Table, named Q-Routing and C-Routing
tables, are investigated in [23]. The size of a Q-Routing table is
n×m×k where n is the number of switches in the network, m is
the number of output channels per switch, and k is the size of
each entry in the Q-Table. The required area of Q-Routing
tables not only is very large but also increases as the network
size enlarges. C-Routing tables can decrease the size of tables
by taking advantages of the clustering approach. The size of C-
Routing tables is (l+c)×m×k consisting of two parts: the
cluster part having a size of c×m×k where c is the number of
clusters , and the local part having a size of l×m×k where l is
the number of switches within each cluster. The size of Q-
Tables can be reduced by using C-Routing tables, but this
model still suffers from the scalability issue since the size of C-
Routing tables can become rather high as the network scales
up. There are some other issues regarding the clustering model
such as determining the size of each cluster for different
network sizes or partitioning the network when the network
size is not a multiple of the cluster size. The Q-Table in our
model is named Region-based Routing (R-Routing); each row
of this table corresponds to one of the eight different positions
of the destination switch (i.e. N, S, E, W, NE, NW, SE, and
SW) and each column indicates output channels (i.e. N1, N2,

Fig. 8. The process of updating the Q-Tables

23

S1, S2, E, and W). Regardless of the network size, the size of
R-Routing tables is 8×6×k that is considerably smaller than C-
Routing and Q-Routing tables. The required size for each
approach is given in Table 2 where l=4 and k=4. Note that the
reported areas for Q-Routing and C-Routing tables are based
on using no virtual channel in the network while R-Routing
tables are based on utilizing an extra virtual channel. While our
approach reduces the size of Q-Tables such that they can be
applicable in NoCs, someone might think that the accuracy of
the estimated latency toward each destination diminishes by
our model. In fact, under real traffic conditions, each entry of
the R-Routing table is inherently influenced by the switches
which are in more communication with them at that period.
Therefore, it is not necessary to allocate a row for each specific
switch in the network. Moreover, R-Routing tables are updated
more occasionally than C-Routing and Q-Routing tables since
messages designated for the same regions can be used to
update R-Routing tables while in two other models each entry
is updated only by the messages for the same destination.

Table 2. the area overhead

Size\method Q-Routing C-Routing R-Routing
8×8 128 bytes 40 bytes 24 bytes
16×16 512 bytes 64 bytes 24 bytes
32×32 2048 bytes 160 bytes 24 bytes

Transferring Local and Global Information: Q-Routing
models are explored in on-chip networks but it is not obvious
how the congestion is defined for local and global information
and how many bits are considered for them. The congestion
statuses are delivered over the channel whenever a message is
transferred between two neighboring switches, which reduce
the power consumption. In this work, a 4-bit congestion wire is
used between each two neighboring switches to propagate local
and global congestion information. The local congestion
information is a 2-bit value indicating the waiting time of a
message from when the header flit is accommodated in an
input buffer until an output channel is dedicated to it. The
pseudo code of Fig. 9 is used to encode the waiting time in 2-
bit value. For example, if the waiting time of a message is less
than the average size of three messages (i.e. waited for the
service time of three messages), the local congestion can be
encoded in “00”. The global congestion information is a 4-bit
value giving a global view of the latency from the output
channel of the current switch to the destination switch region.
This global information is extracted from the corresponding
entry of R-Routing table. The Q-Values are updated whenever
a message is propagated between two neighboring switches.
Suppose that a message is sent from the switch X toward the
destination switch D through the neighboring switch Y and
then switch Z with the lowest estimated latencies. At the switch
Y, upon connecting the input channel to the output channel, 2-
bit local and 4-bit global values are aggregated into a 4-bit
value (with the maximum value of “1111”) and then transfer to
the switch X. This value is a new estimation of the latency
from the selected output channel of the switch X to the
destination D. The corresponding entry of the Q-Table at the
switch X is updated taking an average of the new estimated
value (i.e. BY+minQY(D,Z)) and an existing estimation
(QX(D,Y)). Commonly, in Q-Routing models, the following
formula is used:

����� �� 	 �
�������� ��� ��� �������� ���

In this formula, � represents the learning rate at which
newer information overwrites the older one. A factor of 0 will
make no learning while a factor of 1 would consider only the
most recent information [22]. In our simulation, a 50-50 weight
is assigned to old and new information so that �=0.5.

Fig. 9. Encoding the waiting time into 2-bit

Table Initialization: Q-Routing models have an initial learning
period during which it performs worse than minimal schemes.
The reason is that there is a possibility of choosing non-
minimal paths even if the network is not congested. To cope
with this problem in the initialization phase, all entries of Q-
Tables are initialized such that minimal output channels are set
to “0000” and non-minimal output channels are set to “1000”
and never can be less than it. Accordingly, in a low traffic
condition, only minimal paths are selected while non-minimal
paths are used to distribute traffic when the network gets
congested.

IV. RESULTS AND DISCUSSION
To evaluate the efficiency of the proposed routing scheme,

DBAR and C-Routing schemes are also implemented. The
former is an adaptive routing using local and non-local
congestion information, while the latter is an adaptive and
cluster-based routing using the Q-Learning technique. For
fairness, DBAR and C-Routing utilize a fully adaptive routing
function based on mad-y [12]. A wormhole-based NoC
simulator is developed with VHDL to model all major
components of the on-chip network and simulations are carried
out to determine the latency characteristic of each network
[25]. The message length is uniformly distributed between 1
and 5 flits. For all switches, the data width is set to 64 bits (the
maximum bandwidth at each link is 1 flit per cycle) and each
input channel has the buffer (FIFO) size of 8 flits. The request
rate is defined as the ratio of the successful message injections
into the network interface over the total number of injection
attempts. The simulator is warmed up for 12,000 cycles and
then the average performance is measured over another
200,000 cycles. Two synthetic traffic profiles including
uniform random and hotspot, along with SPLASH-2 [26]
application traces are used.

A. Performance Evaluation under Uniform Traffic Profile
In the uniform traffic profile, a switch sends a message to

other switches with a uniform distribution. In Fig. 10, the
average communication delay as a function of the average
message injection rate is plotted for both mesh sizes. As
observed from the results, in low loads, the Q-Routing schemes
(HARAQ and C-Routing) behave as efficiently as DBAR. As
load increases, DBAR is unable to tolerate the high load
condition, while the Q-Routing schemes learn an efficient
routing policy. HARAQ leads to the lowest latency due to the

AMS: Average Message Size
LCV: Local Congestion Value
WT: Waiting Time

IF (WT � 3×AMS) Then
 LCV<=”00”; END IF;
ELSIF (WT � 9×AMS) Then
 LCV<=”01”; END IF;
ELSIF (WT � 27×AMS) Then
 LCV<=”10”; END IF;
ELSE LCV<=”11”; END IF;
END IF;

24

fact that it can distribute traffic more efficiently than the other
two schemes. In fact, in DBAR and C-Routing, messages use
minimal paths so that under this traffic they are routed through
the very center of the network which creates large permanent
hotspots in the network. Correspondingly, messages traveling
through the center of the network will be delayed much more
than they would use any non-minimal paths. Due to the fact
that the HARAQ method can reroute messages, it alleviates the
congested areas and performs considerably better than other
schemes. Using minimal and non-minimal routes along with
the intelligent selection policy reduces the average network
latency of HARAQ in the 8×8 network (near the saturation
point, 0.3) about 18% and 37%, compared with C-Routing and
DBAR, respectively.

B. Performance Evaluation under Hotspot Traffic Profile
Under the hotspot traffic profile, one or more switches are

chosen as hotspots receiving an extra portion of the traffic in
addition to the regular uniform traffic. In simulations, given a
hotspot percentage of H, a newly generated message is directed
to each hotspot switch with an additional H percent probability.
We simulate the hotspot traffic with a single hotspot switch at
(4, 4) and (7, 7) in the 8×8 and 14×14 2D-meshes, respectively.
The performance of each network with H = 10% is illustrated
in Fig. 11. As observed from the figure, the proposed routing
scheme achieves better performance compared with the other
schemes. In the 8×8 network, the performance gain near the
saturation point (0.18) is about 31% and 42%, compared with
C-Routing and DBAR, respectively. In addition, the impact of
using non-minimal paths on the link utilization for the hotspot
traffic profile is summarized in Table 3. We observe a
reduction as large as 25% in the 8×8 network compared with
DBAR. The results reveal that using the non-minimal scheme
along with the Q-Learning policy can distribute the traffic
efficiently.

Table 3. The impact of using non-minimal paths on the link utilization
 8×8 14×14

Maximum
link

utilization
(flits/cycle)

DBAR 0.365 0.263
C-Routing 0.352 0.256
HARAQ 0.274 0.202

Reduction over
DBAR 25% 23%

Reduction over CR 22% 21%

C. Application Traffic Profile
Application traces are obtained from the GEMS simulator

[27] using some application benchmark suites selected from
SPLASH-2. We use a 64-switch network configuration: 20
processors and 44 L2-cache memory modules. For the CPU,
we assume a core similar to Sun Niagara and use SPARC ISA.
Each L2 cache core is 512KB, and thus, the total shared L2
cache is 22MB. The memory hierarchy implemented is
governed by a two-level directory cache coherence protocol.
Each processor has a private write-back L1 cache (split L1 I
and D cache, 64 KB, 2-way, 3-cycle access). The L2 cache is
shared among all processors and split into banks (44 banks, 512
KB each for a total of 22 MB, 6-cycle bank access), connected
via on-chip switches. The L1/L2 block size is 64B. Our
coherence model includes a MESI-based protocol with
distributed directories, with each L2 bank maintaining its own
local directory. The simulated memory hierarchy mimics
SNUCA [28] while the off-chip memory is a 4 GB DRAM
with a 220-cycle access time. Fig. 12 shows the average

message latency across four benchmark traces, normalized to
DBAR. HARAQ provides lower latency than other schemes
and it shows the greatest performance gain in Radix with 27%
reduction in latency (vs. C-Routing). The average performance
gain of HARAQ across all benchmarks is up to 22% vs. C-
Routing and 33% vs. DBAR.
D. Hardware Analysis

To assess the area overhead and power consumption of the
proposed scheme, the whole platform of each scheme is
synthesized by Synopsys Design Compiler. Each scheme
includes switches, communication channels, and congestion
wires. For synthesis, we use the UMC 90nm technology at the
operating frequency of 1GHz and supply voltage of 1V. We
perform place-and-route, using Cadence Encounter, to have
precise power and area estimations. The power dissipation of
each scheme is calculated under the hotspot traffic profile near
the saturation point (0.18) using Synopsys PrimePower in a
8×8 2D mesh. The layout area and power consumption of each
platform are shown in Table 4. Comparing the area cost of the
platform using HARAQ with the platforms using C-Routing
and DBAR indicates that the C-Routing platform consumes
more power and has a higher area overhead while the overhead
of HARAQ platform compared with DBAR is less than 1% but
with a significant performance gain. The HARAQ platform
consumes more average power because of rerouting messages
around the congestion areas which increases the hop counts. To
illustrate how the presented approach reduces the network
hotspots, the maximum power value of each platform is also
reported in the table. The results indicate that the maximum
power of the presented approach is 8% and 12% less than that
of the DBAR and C-Routing platforms, respectively. This is
achieved by smoothly distributing the power consumption over
the network using the highly adaptive routing scheme which
reduces the number of the hotspots. In fact, the maximum
power values, reported in the table, belong to the switch
designated as the hotspot one, (4, 4).

Table 4. Hardware implementation details

Network
platforms

Area
(mm2)

Avg. Power (W)
dynamic & static

Max. Power (W)
dynamic & static

DBAR 6.791 2.41 3.33
C-Routing 6.954 2.52 3.46
HARAQ 6.822 2.81 3.06

V. SUMMARY AND CONCLUSION
In this paper, we proposed a highly adaptive routing

algorithm based on minimal and non-minimal paths for on-chip
networks. The presented algorithm provides a large number of
paths for routing messages using only an extra virtual channel
in the Y dimension. In the proposed method, messages can
temporarily move away from the destination and be routed
around congested regions. Moreover, the use of some 180-
degree turns on a single channel is also permitted in the
algorithm. To choose a less congested path, we have utilized an
optimized and scalable learning model to estimate the latency
from each output channel to the destination switch. In the
learning model, switches maintain distributed tables to store the
global congestion information from different regions of the
network. This congestion information is collected via a fully
distributed approach requiring a small number of bits per link.
Finally, a less congested output channel is chosen by the
selection function.

25

Fig. 10. Performance under different loads in (a) 8×8 2D-mesh and (b) 14×14 2D-mesh under the uniform traffic model

Fig. 11. Performance under different loads in (a) 8×8 2D-mesh and (b) 14×14 2D-mesh under hotspot traffic model with H=10%

Fig. 12. Performance under different application benchmarks normalized to DBAR

References
[1] M. Daneshtalab, et al., “Memory-Efficient On-Chip Network with

Adaptive Interfaces”, IEEE Transaction on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 31, No. 1, pp. 146-159, Jan 2012.

[2] X. Dai, et al., “An approach to tune fuzzy controllers based on
reinforcement learning for autonomous vehicle control”, In Proc. IEEE
Transactions on Intelligent Transportation Systems, pp. 285-293, 2005.

[3] R.S. Sutton and A.G. Barto, “Reinforcement Learning. An
Introduction”, MIT Press, Cambridge, MA, 2000.

[4] C.J.C.H. Watkins and P. Dayan, “Q-Learning”, in Proc. Machine
Learning, pp.279-292, 1992.

[5] J.A.Boyan, M. L .Littman, “Packet routing in dynamically changing
networks: A reinforcement learning approach”, In Proc. Advances in
Neural Information Processing Systems 6., pp. 671-678,1994.

[6] M. Majer, et al., “Packet Routing in Dynamically Changing Networks
on Chip”, in Proc. IPDPS, pp. 154b- 154b, 2005.

[7] M. Dehyadegari, et al., “An Adaptive Fuzzy Logic-based Routing
Algorithm for Networks-on-Chip,” in Proceedings of 13th IEEE/NASA-
ESA International Conference on Adaptive Hardware and Systems
(AHS), pp. 208-214, 2011.

[8] G. Ascia, et al., “Implementation and Analysis of a New Selection
Strategy for Adaptive Routing in Networks-on-Chip,” IEEE Transaction
on Computers, v.57, I.6, pp. 809-820, 2008.

[9] P. Gratz, et al., “Regional Congestion Awareness for Load Balance in
Networks-on-Chip,” in Proc. HPCA, pp. 203-214, 2008.

[10] S. Ma, et al., “DBAR: an efficient routing algorithm to support multiple
concurrent applications in networks-on-chip”, in Proc. of ISCA, 2011,
pp.413-424.

[11] M. Li, et al., “DyXY – a proximity congestion-aware deadlockfree
dynamic routing method for network on chip”, In Proc. of DAC, pp.
849-852, 2006.

[12] C. Glass and L. Ni, ”Maximally Fully Adaptive Routing in 2D Meshes,”
In Proc. of Parallel Processing, pp.101-104, 1992.

[13] S.P. Kim, T. Han, “Fault-tolerant adaptive wormhole routing in 2D
mesh,” In Proc. of IEICE Trans. Inform, pp. 1064-1072, 1998.

[14] F. Chaix, et al., “A fault-tolerant deadlock-free adaptive routing for On
Chip interconnects,” in Proc. of DATE, pp. 1-4, 2011.

[15] A.A. Chien and J.H. Kim, “Planar-adaptive routing: Low-cost adaptive
networks for multiprocessors”, in Proc. of Computer Architecture, pp.
268-277, 1992.

[16] Z. Zhang, et al., “A reconfigurable routing algorithm for a fault-tolerant
2d-mesh network-on-chip”, in Proc. of DAC, 2008.

[17] S. Jovanovic, C. Tanougast, et al., “A new deadlock-free fault-tolerant
routing algorithm for NoC interconnections”, in Proc. of FPLA, pp.326-
331, 2009.

[18] J. Wu and D. Wang, “Fault-tolerant and deadlock-free routing in 2-D
meshes using rectilinear-monotone polygonal fault blocks”, in Proc. of
Parallel Algorithms Appl., pp.99-111, 2005.

[19] D. Fick, A. DeOrio, et al., “A Highly Resilient Routing Algorithm for
FaultTolerant NoCs”, in Proc. of DATE, pp. 21-26, 2009.

[20] S. Kumar and R. Miikkulainen, ”Dual reinforcement Q-routing: An on-
line adaptive routing algorithm”, in Proc. of the Artificial Neural
Networks in Engineering Conference, pp. 231-238, 1997.

[21] J.A.Boyan, M. L .Littman, “Packet routing in dynamically changing
networks:A reinforcement learning approach”, in Proc. of Advances in
Neural Information, pp. 671-678, 1994.

[22] C. Feng, , et al. “A reconfigurable fault-tolerant deflection routing
algorithm based on reinforcement learning for network-on-chip”, in
Proc. of NoCArc, pp.11-16 , 2010.

[23] M.K. Puthal, et al., “C-Routing: An adaptive hierarchical NoC routing
methodology”, in Proc. of VLSI-SoC, pp. 392-397, 2011.

[24] K.P. Fan, C.T. King, “Turn Grouping for Multicast in Wormhole-Routed
Mesh Networks Supporting the Turn Model”, Journal of
Supercomputing, v.16, No.3, pp. 237-260, 2000.

[25] M. Daneshtalab, et al., “Adaptive Input-output Selection Based On-Chip
Router Architecture”, Journal of Low Power Electronics (JOLPE), Vol.
8, No. 1, pp. 11-29, 2012

[26] S.C. Woo, et al., “The splash-2 programs: Characterization and
methodological considerations”, in Proc. of Computer Architecture
(ISCA), pp. 24-36, 1995.

[27] M. K. Martin, et al. “Multifacet's general execution driven
multiprocessor simulator (GEMS) toolset”, SIGARCH Computer
Architecture News, v. 33, No. 4, pp.92-99. November 2005.

[28] B. M. Beckmann and D. A. Wood, “Managing wire delay in large chip-
multiprocessor caches”, in Proc. of the 37th annual IEEE/ACM
International Symposium on MICRO, pp. 319–330, 2004.

0
50

100
150
200
250
300
350

0 0.1 0.2 0.3 0.4 0.5

A
ve

ra
ge

 L
at

en
cy

(c

yc
le

)

Injection Rate (flits/switch/cycles)
(a)

HARAQ
CR
DBAR

0
50

100
150
200
250
300
350

0 0.05 0.1 0.15 0.2 0.25 0.3

A
ve

ra
ge

 L
at

en
cy

(c

yc
le

)

Injection Rate (flits/switch/cycles)
(b)

HARAQ
CR
DBAR

0
50

100
150
200
250
300
350

0 0.05 0.1 0.15 0.2 0.25

A
ve

ra
ge

 L
at

en
cy

(c

yc
le

)

Injection Rate (flits/switch/cycles)
(a)

HARAQ
CR
DBAR

0
50

100
150
200
250
300
350

0 0.05 0.1 0.15

A
ve

ra
ge

 L
at

en
cy

(c

yc
le

)

Injection Rate (flits/switch/cycles)
(b)

HARAQ
CR
DBAR

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Barnes cholesky FFT LU Ocean Radix Raytrace Water-Nsq

N
or

m
al

iz
ed

 a
ve

ra
ge

la

te
nc

y

DBAR C-Routing HARAQ

26

