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There are three things extremely hard: steel, a diamond and to 

know one’s self. 

---- Benjamin Franklin 
  



Table of Contents 
1. Abstract ............................................................................................................................................... 1 

2. Introduction ........................................................................................................................................ 5 

2.1 Definition, synthesis and structure of hard carbons ..................................................................... 9 

2.1.1 Definition and terminology related to hard carbons ............................................................. 9 

2.1.2. Hard carbon formation: The carbonization process ........................................................... 10 

2.1.3. Structure of hard carbons ................................................................................................... 14 

2.2. Analysis of hard carbons ............................................................................................................ 18 

2.2.1. Gas-adsorption/desorption................................................................................................. 19 

2.2.2. High-resolution Transmission Electron Microscopy (HR-TEM) ........................................... 20 

2.2.3. X-ray diffraction related measurement .............................................................................. 22 

2.2.4. Ex-situ, in-situ and operando XRD and SAXS: ..................................................................... 28 

2.2.5. Raman Spectroscopy ........................................................................................................... 30 

2.3. Sustainability .............................................................................................................................. 33 

2.4. Electrochemistry of hard carbons in SIBs: mechanism and challenges ..................................... 36 

2.5. Aim and tasks of this thesis ........................................................................................................ 41 

3. Impact of biomass waste based precursors on hard carbon anodes for SIBs .................................. 43 

3.1. Introduction ............................................................................................................................... 43 

3.2. Experimental section ................................................................................................................. 45 

3.2.1 Synthesis of biowaste-derived hard carbon ........................................................................ 45 

3.2.2 Material characterization ..................................................................................................... 45 

3.2.3. Electrode preparation and cell assembly ............................................................................ 46 

3.2.4. Electrochemical characterization ........................................................................................ 47 

3.3. Results and discussion ............................................................................................................... 47 

3.3.1. Synthesis, structural and morphological characterization of biomass derived hard 

carbons. ......................................................................................................................................... 48 

3.3.2 Electrochemical characterization of L-HC and H-HC ............................................................ 56 

3.3.3 Impact of biomass source on the electrochemical properties ............................................ 59 

3.4. Summary .................................................................................................................................... 62 

4. Impact of closed pores on hard carbon anodes for SIBs .................................................................. 64 

4.1. Introduction ............................................................................................................................... 64 

4.2. Experimental section ................................................................................................................. 65 

4.2.1. Synthesis of biowaste-derived hard carbon ....................................................................... 65 

4.2.2. Material characterization .................................................................................................... 65 

4.2.3. Electrode preparation and cell assembly ............................................................................ 66 

4.2.4. Electrochemical characterization ........................................................................................ 66 



4.3. Results and discussion ............................................................................................................... 67 

4.4. Summary .................................................................................................................................... 72 

4.5. Calculation of closed and open pore ratio ................................................................................. 73 

5. Impact of acid treatment on hard carbons for SIBs .......................................................................... 74 

5.1 Introduction: ............................................................................................................................... 74 

5.2 Experimental section: ................................................................................................................. 76 

5.2.1. Synthesis of biomass-derived hard carbon ......................................................................... 76 

5.2.2. Material characterization .................................................................................................... 77 

5.2.3. Electrode preparation and cell assembly ............................................................................ 77 

5.2.4 Electrochemical characterization ......................................................................................... 78 

5.3. Results and discussions .............................................................................................................. 79 

5.4. Summary .................................................................................................................................... 92 

6. Conclusion ......................................................................................................................................... 94 

7. Acknowledgement ............................................................................................................................ 96 

8. Bibliography ...................................................................................................................................... 98 

 
 



P a g e  | 1 

 

 

 

1. Abstract 

Lithium-ion batteries (LIBs) are one of the most important innovations within the last 

30 years. Their success accelerated the development in many other industrial fields, 

such as mobile communication, personal computers, and electric vehicles. However, 

the massive demand of LIBs exerts high pressure on raw material supplies resulting 

in the price of lithium rapidly increasing. Thus, sodium, a much cheaper and more 

abundant element, becomes a reasonable and sustainable alternative to lithium for 

the large deployment of batteries for large-scale storage applications. Meanwhile, 

sodium ion batteries (SIBs) and LIBs share the same working principle, which makes 

the production of SIBs easy to scale-up to large volumes using the well-established 

LIB production technology. 

One of the remaining challenges for the SIBs commercialization is the lack of suitable 

materials for the negative electrode. Graphite, the most commonly used anode 

material in LIBs, shows poor electrochemical performance in SIBs. Hard carbon (non-

graphizatible carbon) - especially the one derived from biomass waste - due to the 

relatively low cost and good electrochemical performance is the most promising anode 

material in SIBs. However, there are still challenges to be overcome for 

commercialization of hard carbon as anode in SIBs, including both the structural 

understanding and the Na+ storage mechanism.  

In this thesis, three activities lines are pursued to understand the electrochemical 

performance of hard carbons in SIBs. First, the impact of the biomass precursors on 

the formed hard carbon is investigated to correlate the nature of the biomass waste 
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with the performance of the resulting hard carbon as anode in SIBs. Second, the 

impact of porosity is investigated to reveal the importance and the correlation of the 

closed porosity on the electrochemical performance of hard carbons. Finally, the 

impact of the acid treatment, i.e., the biomass pre-treatment method, is studied to 

further understand the correlation between hard carbon structure and sodium storage 

mechanism. These studies aim to allow the synthesis of sustainable and low-cost hard 

carbon anode materials with good electrochemical performance for SIBs. 
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Zusammenfassung 

Die Entwicklung der Lithium-Ionen-Batterie (LIBs) zählt zu den bedeutendsten 

Errungenschaften der vergangenen 30 Jahre und Ihre Erfolgsgeschichte spiegelt sich 

vor allem bei Mobilfunkgeräten, Notebooks und in der Elektromobilität wieder. 

Aufgrund der stetig wachsenden Nachfrage an LIBs kann es in Zukunft jedoch zu 

Engpässen bei der Lieferung der Rohmaterialien kommen, welche beispielsweise den 

Preis für Lithium treiben. Im Gegensatz dazu ist Natrium häufiger in der Erdkruste 

vorhanden und dementsprechend günstig, wodurch Batterien basierend auf Natrium 

(Sodium-ion batteries, SIBs) als Ladungsträger zu den nachhaltigen und preiswerten 

Alternativen gelten. Da beide Technologien auf dem gleichen Funktionsprinzip 

basieren könnten SIBs in bereits vorhandener Infrastruktur produziert werden, was 

eine Kommerzialisierung zusätzlich erleichtert. 

Eine der größten Herausforderungen für eine erfolgreiche Kommerzialisierung von 

SIBs ist jedoch, geeignete Aktivmaterialien für die negative Elektrode zu identifizieren.  

Graphit, das Standard Aktivmaterial in LIBs, kann aufgrund seines niedrigen Potentials 

und der Größe des Natrium Ions nicht verwendet werden. Hard Carbons (Nicht 

graphitierte Hartkohlenstoffe), speziell jene gewonnen aus Bioabfällen, sind aufgrund 

ihrer geringen Anschaffungskosten und der guten elektrochemischen 

Leistungsfähigkeit die vielversprechendsten Kandidaten für Anodenmaterialien in 

SIBs. Dennoch müssen für eine kommerzielle Anwendung zunächst verbleibende 

Herausforderungen wie beispielsweise das genaue Verständnis der Struktur oder der 

elektrochemische Na+ Speichermechanismus überwunden werden.  

Im Rahmen dieser Arbeit werden Hard Carbons im Hinblick auf ein besseres 

elektrochemisches Verständnis mit dem Fokus auf drei Parameter untersucht. 
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Zunächst werden unterschiedliche Hard Carbons, gewonnen aus diversen Bioabfällen, 

charakterisiert, um den geeignetsten Kandidaten zu identifizieren. In einem zweiten 

Schritt wird der Einfluss der Porosität des Materials im Ganzen, und speziell der 

Zusammenhang zwischen geschlossenen Poren und der elektrochemischen 

Leistungsfähigkeit untersucht. Im letzten Teil wird der Einfluss der Säurebehandlung, 

einem Vorbehandlungsschritt bei der Synthese von Hard Carbons, im Hinblick auf das 

bessere Verständnis des Zusammenhangs zwischen Struktur des Materials und 

seinem Na+ Speichermechanismus untersucht. Alle drei Studien zielen darauf ab, in 

Zukunft nachhaltige, kostengünstige und vor allem leistungsfähige Hard Carbons als 

Anodenmaterialien für kommerzielle Natrium-Ionen Batterien zu entwickeln.  

 

  



P a g e  | 5 

 

 

2. Introduction 

Table of Content: Hysterical development of hard carbons. 

 

Rechargeable alkali metal-ion batteries, such as lithium-ion batteries (LIBs) 1, sodium-

ion batteries (SIBs) 2 and potassium-ion batteries (PIBs) 3, are widely regarded as the 

most promising and efficient electrochemical energy storage systems. Particularly, 

LIBs are considered as one of the most successful innovations in the last thirty years 

4–7. However, the rapidly increasing cost of the raw materials employed in LIBs, i.e. 

cobalt, copper and lithium 8, recently motivated researchers’ interest toward 

technologies using cheaper, abundant as well as evenly distributed resources, i.e. 

SIBs 9–11 and PIBs 12,13.  All three technologies share the same working principle, 

involving the reversible shuttle of alkali ions between two host electrodes through an 

electrolyte medium conducting the alkali ions. Such a similarity enabled the direct 

transfer of the broad experience and knowledge gained on LIBs within the past thirty 

years, to SIBs and PIBs technologies 12,14,15. While PIBs are presently at a very early 

stage of research, there is now substantial evidence that SIBs may represent the 

future electrochemical energy storage system of choice for large-scale stationary 
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applications where cost and availability of materials are critical parameters to take into 

account. Indeed, some pioneering companies and research networks such as the 

Japanese Sumitomo 16, the English Faradion 17 and the French RS2E network 18 

started to demonstrate the feasibility of the technology by producing non-aqueous, 

large-scale SIBs.   

Recently, significant advances have been made in the development of advanced 

materials for application in SIBs, as highlighted by the increasingly growing number of 

scientific publications in the research field. A relevant number of suitable materials 

have been identified including cathodes 19–24, anodes 9,25–28 and electrolytes 29–32.  

At the negative electrode, carbon based materials always play a fundamental role for 

alkali ion batteries. Carbon and its allotropes represent an intriguing class of 

compounds, characterized by low cost, large abundance and uniquely tunable 

electronic and structural properties. The implementation of graphite as anode material 

in LIBs represented the turning point for the LIB technology, which represents one of 

the greatest successes in the field of electrochemical energy storage devices. In 1980 

J. Goodenough filed his patent on LiCoO2 as a lithium intercalation cathode material 

33, while only one year after, in 1981 at Sanyo, H. Ikeda, was the first to patent the use 

of graphite as a lithium intercalation material in organic solvent-based electrolytes 34. 

The golden combination was close to be achieved and in 1991 Sony Energytec Inc. 

began to produce commercial cells based on the Asahi patents 35.   

Nowadays LIBs are regularly produced with graphite as negative electrode active 

material, characterized by low toxicity, acceptable price and high abundance. In 

contrast, the use of graphite as anode in SIBs has been so far inhibited by the inability 

of sodium (Na) ions to form binary graphite intercalation graphite (b-GICs). The higher 

ionic radius of Na when compared to lithium (Li) does not represent an obstacle for 
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intercalation, indeed larger alkali ions such as potassium (K), cesium (Cs) and 

rubidium (Rb) have demonstrated the ability to form b-GICs 36–38. Na is being an 

exception 39,40, most likely due to the lower energetic stability of Na-GICs and 

formation potentials calculated to be below that of sodium metal 36,41–43.   

It has been reported that only the formation of stage eight Na-GICs (NaC64) is 

occurring by applying extreme conditions, while lower stages were prepared by 

controlling the amount of impurities in graphite, the temperature and pressure applied. 

However, only low electrochemical activity in Na cells has been reported44–46.  More 

recently, it has been found that graphite can be used in Na cells by employing glyme-

based electrolytes, enabling the formation of ternary GICs via the co-intercalation of 

solvated Na ions, exhibiting excellent reversibility at low overpotentials and superior 

power performance 39,40,47, but limited capacity. In search of high energy density anode 

materials, alloying, conversion and mixed alloying-conversion type electrodes have 

been proposed 9,25,26,48.  

Among them, silicon represents the next generation anode of choice of LIBs in view 

of the low-cost and high specific gravimetric and volumetric capacity 49,50.  However, 

the few reports on the use of silicon in SIBs indicate that silicon exhibit poor 

electrochemical performance 51,52.  

For the above mentioned reasons, the anode of choice in the most common 

configuration of SIBs is represented by non-graphitizable carbon, generally called 

“hard carbon” 27,53–56. Hard carbon was successfully studied also for application in LIBs, 

indeed the Sony Corporation‘s second generation LIBs included hard carbon at the 

negative electrode to be later replaced by graphite in the third generation LIBs 7,57.   

In the past, numerous studies have been performed to investigate the interactions 

between carbon materials and sodium. The primary goal was to understand the 
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behaviour of carbon cathodes in the aluminium smelting process 58. Indeed, the ability 

of carbon to store sodium ions was originally investigated as the process occurs during 

the standard industrial method for aluminium smelting employing the Hall-Heroult 

reduction cell. In fact, it was observed that sodium could interact with carbon causing 

carbon-electrode blocking, eventually leading to electrode swelling. This unwanted 

process, known as tap-out, constituted one of the major safety issues during operation. 

Thus, a more fundamental understanding of the interaction between carbon and 

sodium was of primary importance to avoid production inefficiency, costs increase and 

safety concerns. 58–60 

In the recent years, hard carbon has drawn great attention for application as anode 

material in SIBs, which is demonstrated by the numerous research articles and review 

papers published 56,61–69. Up to date, hard carbon represents the most promising 

negative electrode for SIBs due to its high storage capacity and cycling stability. 

Besides, hard carbon can be obtained from environmentally friendly, cheap and 

renewable bio-sources 70–72, which represents a great advantage in terms of costs as 

well as large scale production and commercialization.  

Despite several promising materials being proposed and tested, a basic 

comprehension of the sodium storage mechanism, the ion transfer processes and the 

SEI stability combined with the electrolyte interaction is still missing. The driving force 

of the vivid ongoing scientific discussion is certainly linked to the uncertainties about 

the hard carbon’s structure, which extend to the interaction between sodium ions and 

carbon.  

Several models have been proposed trying to link the structural and morphological 

properties of hard carbons with the observed electrochemical behaviour. However, 

despite the great efforts done toward a more fundamental understanding, still a 
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universal storage mechanism has to be proposed. The difficulty in developing such a 

universal model originates from the discrepant observations made by researchers, 

using different characterization tools to investigate carbon structures, which led to 

different interpretations of the gained knowledge. The introduction part is a 

comprehensive overview on the basic definition and structural models of hard carbons 

proposed so far as well as the most useful state-of-the-art characterization techniques 

available. The interpretation and limits of the analysis are discussed in relation to the 

structural analysis and electrochemical behaviour in sodium cells. In addition, the 

sustainability of hard carbon materials is examined as a fundamental parameter for 

the future large scale production of hard carbons. Finally, an overview of the remaining 

challenges and associated perspectives is given in the conclusion part.  

 

2.1 Definition, synthesis and structure of hard carbons 

2.1.1 Definition and terminology related to hard carbons 
 

Hard carbon received its popular name due to its mechanical hardness compared with 

soft carbon, leading to the common use of these expression in early academic and 

patent literature 73. Rosalind Franklin’s made one of the greatest scientific 

contributions toward the understanding of carbon structures. In 1942 she joined the 

British Coal Utilisation Research Association, being involved in a research program 

aimed at understanding the structure of coal through density and porosity studies 74. 

In 1950 she began the X-ray diffraction (XRD) studies on the graphitization process of 

carbons being the first one to study the process at temperatures up to 3000 °C 75,76. 

Franklin’s contribution to the definition and nomenclature of carbons was among the 

most influential without any doubt. Her studies led to the demonstration that carbon 
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materials prepared by pyrolysis of organic compounds can be generally classified into 

two main categories, namely, graphitizable and non-graphitizable carbons 77.  

Nowadays, the terminology “hard” carbon is used to describe carbonaceous materials 

which do not transform into graphite even at temperatures higher than 3000 °C. The 

definition of “non-graphitizable carbon” is generally used synonymously 78. It is worth 

noting that carbons with high mechanical hardness can be graphitizable while non-

graphitizable carbons may also be very soft. For example, the carbon electrode used 

in aluminium production cells is an extremely hard material, but still graphitizable.79 

Besides “hard-” and “non-graphitizable-” carbons, several alternative terms are 

commonly used in literature to describe these materials, such as amorphous-, 

disordered-, non-organized and non-graphitic carbon. The rich terminology employed, 

according to the different research fields in which they are employed, has generated 

in the years mismatching definitions with respect to the related carbon structures. For 

instance, despite non-graphitizable carbons do not reveal a long range ordered 

structure, the term “amorphous” carbon cannot be used to describe non-graphitizable 

carbons, as the term amorphous is restricted to carbon materials which comprise 

localized π-electrons according to the description of the Nobel laureate Philip Warren 

Anderson 79,80. An example of amorphous carbons are diamond-like carbon films 

(DLC), which are also named “hard amorphous carbons”. The term “non-graphitic” has 

a broader meaning than “non-graphitizable” since graphitizable carbons are, as a 

matter of fact, non-graphitic before graphitization. Thus, this term should be avoided 

for describing specific non-graphitizable carbons/hard carbons.  

 

2.1.2. Hard carbon formation: The carbonization process 
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Figure 2-1. Hard-carbon formation scheme in relation to temperature. Idea and illustration 

is strongly based on and derived from Marsh et al. 79. The circle-like placeholders in the 

polymeric-structure schemes represent moieties like functional groups and side chains. 

 

In the electrochemical energy storage systems research field, hard carbons are mainly 

obtained by a thermal 81 or chemical 82 process of pure organic compounds or biomass 

derived precursors. Precursors such as macromolecular polymeric structures (natural 

or synthetic) decompose under increased annealing temperatures. This process is 

generally defined carbonization since it involves an increased relative carbon content 

in the material. Upon carbonization of the precursors, small molecules such as H2O, 

CO2 and N2 among others are released 83,84 (see Figure. 2-1), often leading to 

materials characterized by high porosity (1,000 m2 g-1) 84, low true density (mass over 

the bulk volume including open and closed pores 85)  of about 2.0 g cm-3 71,77,86 and 

low bulk density (mass of a solid particle divided by its volume excluding open and 
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close pores85) of about 1.5 g cm-3 87, alongside with the retention of the original 

polymeric structure. It is important to consider that the nature of the pores created 

upon carbonization is not necessarily open, especially if the process is conducted at 

high temperatures (>1200 °C), which leads to decreased BET (Brunauer, Emmett and 

Teller) surface areas (<<50 m2 g-1) 83,88. The carbonization is a complex process with 

several concurrent reactions such as dehydrogenation, condensation, hydrogen 

transfer and isomerization (see Fig. 1). Moreover, the macromolecular and partially 

polymeric structure of the precursor for non-graphitizable carbons persists and does 

not convert into a fluid phase upon heat treatment as in the case of graphitizable 

carbons 84. Consequently, the structure of the derived hard carbon has more or less 

the same morphology of the parent material, but with lower bulk density. A reported 

example interestingly shows the morphology replication of hard carbon obtained by 

pyrolysis of walnut shells (see Fig. 2) 89. 
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Figure 2-2. (a) Walnut shell used as a precursor for hard carbon and related cross 

sectional morphological image. (b) Derived hard carbon after pyrolysis at 1000 °C with 

retained morphological features. Adapted from Ref. 89 and reproduced with permission 

of Copyright © 2017 from American Chemical Society.  

 

The solid-phase carbonization process, which finally produces hard carbons, ceases 

when the heat treatment is stopped. Increasing heat treatment temperature (HTT) 

generally results in the formation of progressively more stable internal structures. The 

structure of a carbon obtained at a defined HTT can be considered as “frozen” at that 

HTT 79. Thus, very different carbon materials can be obtained from the same precursor, 

which gives a valid reason to explore different carbonization conditions for the 

obtainment of carbon materials with specific structural and morphological properties 

83,90,91.  

Upon carbonization, i.e., during the decomposition process of the macromolecular 

structure of the precursors, some carbon atoms present a degree of mobility (< 1 nm), 

which enables atomic reorganization (e.g., formation of six-membered ring systems) 

in turns conferring greater stability to the overall carbon network. The obtained atomic 

configuration, which also include the presence of eventual heteroatoms such as 

hydrogen and oxygen, constitutes the new carbon network, which constitutes the 

structure of the obtained carbons. The latter one is certainly dependent on the initial 

precursor. Every different precursor decomposes in a different way by reaching a more 

stable energetic configuration through carbon migration, co-bondings creation and 

vacancies formation by heteroatoms evolution. The new spaces (of atomic dimensions) 

created by the aforementioned phenomena constitute the porosity of the new carbon 

network. The commonly accepted nomenclature to define porosity is related to the 
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dimension of the pores. The latter ones are defined microspores and mesopores when 

their dimensions are respectively < 2.0 nm and < 50.0 nm. However, recently, 

particularly in the alkali-ion battery research field, the type of porosity created in non-

graphitizable carbons is generally referred as nanoporosity, which is characterized by 

pore size < 1.0 nm and is responsible of the activated diffusion processes of alkali ions 

79. 

Differently from porous non-graphitizable carbons, mainly produced by solid-phase 

carbonization, graphitizable carbons are produced by gas or liquid-phase 

carbonization of aromatic compounds or polymers generally leading to essentially non-

porous carbons. As a result, graphite has a significantly higher true density (e.g., 2.25 

g cm-3) than non-graphitizable carbons. 

 

2.1.3. Structure of hard carbons 
 

Hard carbons, as already indicated by the name, present a significantly high degree 

of mechanical hardness. The reason is found in the structural properties of these 

materials, generally retaining the precursor morphology to a high degree 84.  

Hard carbons are indeed generally obtained by precursors presenting a strongly cross-

linked structure, which even after high temperature treatment will not allow the 

formation of graphitic structure, conferring isotropic structure to the final product. The 

degree of crosslinking depends on the state of aggregation of the intermediate phase 

during pyrolysis.  After the carbonization step, involving the graphenic layer formation 

and successive stacking, (see Figure. 2-1) the graphenic sheets cannot be unfolded 

or flattened to increase the stacking of graphenic lamellae84,86. Stevens and Dahn 

described these regions as aromatic fragments with lateral dimensions of 40 Å stacked 

with multiple layers (2 to 3) parallel to each other56, while Liu et al. proposed the 
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presence of 3 to 5 layers of small graphene sheets stacked randomly 92. In 1951, R. 

Franklin 77 reported that the number of layers may range between 2 and 4, which 

further increases up to 11 at pyrolisis temperatures higher than 3000 °C. The layers 

are characterized by an extensive interlayer cross-linking, with the links already being 

created at temperatures lower than 1000 °C 77. Although the precise nature of the 

cross-linking has not been identified in depth yet 93, it is assumed that covalent C-O-

C bonds are playing a major role and are responsible of the hardness and inability to 

graphitize.84 

Macroscopically, the structure of hard carbon can be described by discrete fragments 

93 of non-planar84 curved 86,93,94 bent84 buckled87 twisted84,93 and rumpled 86 graphenic 

sheets. It has been reported that the average radius of curvature for graphene sheets 

is about 16 Å 95. The graphene layers cannot be unfolded or flattened 86, but are 

partially stacked due to the existence of van der Waals forces 93. The orientation of 

the graphene layers is therefore, despite the partial stacking, rather randomic56 and 

turbostratic86, resulting in voids 86 and pores 84 in a wide range of size and forms84. 

Further attempts to describe the structure of hard carbons proposed that the carbon 

lamellae could be potentially better described as fullerene-like structures96 consisting 

of sp2-hybridized  carbon84 in a network of hexagons, partially disrupted by pentagons 

and heptagons93 as well as defects.  J.M. Stratford et al. reported a relatively small 

concentration of these features95 while the presence of a high concentration of sp3-

hybridized carbons in the inter-layer bonding region is still under discussion96. 

Furthermore, the graphenic/fullerenic sheets may also present other types of defects 

and distortions like single anddouble vacancies, (inverse) Stone-Thrower-Wales 

defects and adatoms97–100 as well as (interstitial) heteroatoms (e.g., H, B, N, O, S, P) 

84,86,99,101,102 and empty sites103, destroying the regularity of the graphenic sheets 
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84,86,97,99,100,102,104. It is worth mentioning that despite the existence of these defective 

features, which are responsible of structural inhomogeneity when compared to 

graphitic like structure, the lamellae are smaller in size, ranging from 5 to 500 nm, 

making hard carbon more anisotropic than soft carbon. Moreover, graphenic layers 

might be additionally linked over short distance by chains and “bridges” as a results of 

interlayer double vacancy (Wigner defects) 98,100,105, which may further contribute to 

the non-graphitizable behaviour84.  

Having in mind the structural complexity of these materials, hard carbons have been 

described as “carbon-carbon composites”106, “carbon alloys”107 or carbon allotropes86 

with nanodomains (<500 nm) of small ordered volumes (pseudo-graphitic, high degree 

of anisotropy), alongside with larger disordered (isotropic) regions84. In addition, hard 

carbons also exhibit a complex “crystalline” nature, texture (influencing the material’s 

processability and density), micro/meso/macro structure (resulting in numerous 

variants for stacking degree and pores), and overall morphology.107 

 

 



P a g e  | 17 

 

 

Figure 2-3. A selection of models/schemes/illustration of the (atomic) structure of hard 

carbon with the year of publication. (a) Franklin 77, reproduced with permission of 

Copyright © 2017 The Royal Society. (b) Ban et al. 108, reproduced with permission of 

Copyright © 2007, John Wiley and Sons.  (c) Townsend et al.  109 reproduced with 

permission of Copyright © 1992 The American Physical Society, d) Terzyk et al.110 

reproduced with permission of Copyright © 2007 Royal Society of Chemistry. 

 

Attempts to graphically represent the structural features of hard carbon have been 

made by R. Franklin since 1951 (see Figure. 2-3a)77. However, the complex structures 

more recently observed are insufficiently represented by this 2D depiction of planar 

sheets. More advanced 3D models have been presented showing the nature of 

fullerenic/graphenic-lamellae ordering more properly (see Figure. 2-3(b-d))74,96,111. It 

is worth mentioning that during the years several other structural models have been 

proposed112,113, each of them emphasizing different properties. One of the key 

properties of these structures is without any doubt the porosity, however, the definition 

of a structural model taking into account the complex nature of porosity in hard carbon 

is still under discussion.  

Until today, one of the greatest mainstay in this regard, is the “house of cards” (or 

“falling cards”) model, which has been developed by Dahn et al.56,62,78,112 to describe 

the lithium and sodium storage mechanism into hard carbons. The “house of cards” 

model is actually based on two aspects. The first deals with the development of a 

conceptual model to describe the structure of carbons112. The second aspect concerns 

the description of the Li/Na storage mechanism in these hard carbons, when serving 

as electrode material for LIBs or SIBs56,78,114. With respect to the first aspect, the 

“house of cards” model states that hard carbons are comprised of a combination of 
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graphite-like micro-crystallites (i.e., parallel graphene layers; sp2-hybridized) and 

amorphous regions (edges, defects of the graphene layers; sp3-hybridized). However, 

it is worth mentioning, that nowadays uuncertainties and open discussions are related 

to the presence of graphitic crystallite domains within the hard carbon structure. For 

instance, D. M. Ruthven 115 described these domains as elementary crystallites of 

graphite stacked in random orientation creating spaces defined as porosity. On the 

other hand, H. Marsh suggested that, despite the model proposed by Dahn et al. 

makes a link between porosity and structure, its assumptions have to be 

reconsidered79.   

Indeed, Marsh suggests that the theory involving the existence of graphitic crystallites 

is more suitable for the description of graphitic carbons such as carbon black rather 

than non-graphitizable carbons (hard carbons). Marsh suggested that non-

graphitizable carbon should be defined as carbons that never exhibit three 

dimensional XRD lines (hkl) at any carbonization temperature. According to his 

definition, the theory of graphitic crystallites is inert to explain the structure of carbons 

obtained at low carbonization temperature. Indeed, as an example, carbons obtained 

at low heat treatment temperature (HTT) such as 500 °C, show similar broad XRD 

peaks as carbons obtained at 1000 °C. However considering that at 500 °C graphitic 

structure cannot be formed, he proposes that broad XRD peak of hard carbons is 

caused by the curvature and imperfect layering of the highly defective micro-graphene 

layers.   

  

2.2. Analysis of hard carbons  

The structural and morphological features of carbon-based materials for application in 

electrochemical energy storage systems has been investigated using several 
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analytical techniques 116. For the specific case of hard carbons used in SIBs, one of 

the greatest challenge is the fundamental understanding of the sodium storage 

mechanism and the associated structural changes 117.  Both ex-situ and in-situ bulk 

and surface sensitive characterization techniques have been largely reported for the 

characterization of the sodiation process. However, controversial interpretations (or 

misinterpretations) of the several characterization methods, most frequently offering 

complementary information gained under different experimental conditions, persists, 

making very difficult the definition of a universally accepted reaction mechanism. 

Accordingly, in the following section an overview on the most powerful techniques is 

given with a focus on the main information delivered by their application as well as a 

guideline for the interpretation of their results.  

 

2.2.1. Gas-adsorption/desorption 
 

Gas adsorption/desorption is a classical method to investigate two key materials’ 

properties, i.e., porosity and surface area. However, it is worth mentioning that there 

is not a clear model for the porosity in hard carbons thus, there is no direct method to 

measure their porosity and surface area 79, since the analysis based on gas 

sorption/desorption isotherms uses simulations. Therefore it is very important to 

exercise some care while using a model or a theory to describe the investigated 

system, indeed every theory has some limitations and specific boundary conditions 

which have to be taken into account when investigating specific individual materials 

115,118. The BET method is widely used for analyzing the surface area of carbonaceous 

materials. However, two carbon materials with the same BET surface area could show 

different adsorption isotherms. For this reason, in a comparative study, it is important 

to always present the adsorption isotherms alongside with the BET values.  
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The porosity values obtained from gas adsorption isotherms are generated by the 

adsorption of gas molecules on the material’s surface. Different gas molecules show 

different adsorption behaviors and some pores may be inaccessible for nitrogen (N2) 

but “open” for helium (He). Ionic species (Li or Na ions) can diffuse through the solid 

phase of hard carbon and accumulate into “closed pores”. As a matter of the fact, a 

patent from the Panasonic Corporation reveals that the “closed pores” in gas 

adsorption/desorption measurement have a strong effect on the sodium storage 

performance at low potentials119. A study on pectin-free apple pomace derived carbon 

as SIB anode confirmed the trend120. Consequently, the porosity values from gas 

adsorption measurements should be transferred with care into the electrochemical 

studies.  

 

2.2.2. High-resolution Transmission Electron Microscopy (HR-TEM)  
 

HRTEM is a very powerful tool for the investigation of nanoscale features of hard 

carbon’s structure. Figure 2-4a displays a HRTEM micrograph of a typical hard carbon 

obtained by carbonizing peanut shells at 1100 °C70,121. The HRTEM micrograph 

reveals an assembly of curved lines, randomly intertwined together. These are 

frequently interpreted as curved edges of randomly oriented, but stacked graphene 

layers.122–126 Accordingly, in many studies the interlayer spacing between the 

graphene layers is derived from the distance between these curved lines, which 

represents the edges of the graphene layers. However, a rough mental exercise 

illustrates nicely that this information may be misleading. Let us consider a graphene 

layer of about 100 hexagonal honeycomb rings, for which the carbon-carbon bond is 

0.142 nm. Consequently, the area of one hexagonal ring is about 0.05 nm2 and the 

area of the whole layer is approximately 5 nm2. With respect to the given scale, the 
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HRTEM micrograph shown in Figure 2-4a should provide a clear evidence for the 

presence of such layer beneath the observed curved lines – but it does not. As a matter 

of fact, it has been reported that the graphene-like structure is the least 

thermodynamically stable phase until arrangements of about 6,000 carbon atoms127, 

which directly translates in approximatively 1,000 hexagonal rings with an overall area 

of 50 nm2. Consequently, the curved lines observed cannot be assigned to the edges 

of randomly oriented graphene layers, but instead reveal the surface of (highly 

defective) graphene-like layers, as already stated more than three decades ago128. 

This is further highlighted by lower resolution TEM micrographs, as displayed in 

Figure 2-4b and 2-4c, for which the presence of sufficiently large layers is very evident. 

In addition, Figure 2-4c, shows that these layers are partially overlapping and may be 

curved. However, no perpendicularly oriented layers are observed – even on this 

larger scale. 

We may thus conclude that these layers are highly defective and disordered structures, 

as earlier proposed by Marsh and colleagues128. Such a highly defective structure is 

illustrated in Figure 2-4d (inspired by Shinn.129). The model suggests that the curved 

lines observed in HRTEM micrographs are chains of cyclic carbons rather than the 

edges of graphene layers. 
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Figure 2-4. (a) HRTEM micrograph of a peanut-derived hard carbon, highlighting the 

“curved lines”, frequently referred to as the edges of perpendicularly oriented 

graphene layers. (b) and (c) TEM micrographs of the same sample at lower 

magnifications. (d) Schematic illustration of a highly defective 2D graphene-like layer 

in hard carbons.  Idea and illustration is strongly based on and derived from Shinn.129 

Adapted and reproduced from 129 with permission of Copyright © 1984 Butterworth & 

Co. (Publishers) Ltd. 

 

2.2.3. X-ray diffraction related measurement 
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X-ray diffraction (XRD) is the technique of choice to study the structure of crystalline 

materials. The X-rays focused on the materials are scattered by the atomic lattice. 

Positive and negative interferences lead to a pattern of diffraction, which can be used 

as a projection of the reciprocal space in the plane or axis of the detector, with peaks 

corresponding to crystalline periodicity according to Bragg’s law 130,131. Semi 

crystalline as well as amorphous materials can be studied by XRD, giving information 

at local scale, although the amount of accessible information decreases analogously 

to crystallinity. This technique allows to easily differentiate the various types of sp2 and 

sp3 carbons, such as diamond, graphite, hard carbon, soft carbon or graphene. It also 

enables researchers to study the graphitizability, i.e., the ability of turbostratic carbon 

materials to evolve toward a graphite structure at high temperature77. As mentioned 

earlier, this is fundamental piece of information as it is the property that separates soft 

carbons from hard carbons.  

 

 

Figure 2-5. a) Angular-dependent factors influencing the intensity in a typical powder 

X-ray diffraction experiment. b) Typical powder X-ray diffraction pattern of a hard 

carbon, with (grey) and without (black) correction by the factors presented in (a). The 

arrows indicate the apparent (002) peak position.  
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The local structure of hard carbon can be described as highly turbostratic and 

disordered 2H graphite75,132. As a consequence, the typical XRD pattern of hard 

carbon (see, e.g., Figure 2-5b) presents broad features referring only to the (00l) and 

(hk0) reflections due to the loss of layer-to-layer crystalline coherency132,133. Moreover, 

a raising background is typically present at low angle owing to the presence of a large 

amount of fine structure microporosity, which overlays the main interlayer’s reflection 

(002) 75. The traditional geometry used for lab-scale XRD diffraction induces an 

angular dependency of the detected intensity as the product of three factors: the 

Lorentz factor, related to the solid angle of detection, the illuminated sample volume 

which varies with the source-sample angle, and the polarization factor (see Figure. 2-

5a) 134. For highly crystalline materials these factors affect the relative reflections 

intensity and are usually taken into account in the refinement methods based on the 

Rietveld theory. In the case of poorly crystalline materials, such as hard carbon, these 

factors may additionally distort the peak’s profiles and induce a shifting of the apparent 

peaks’ center positions. The shift is more pronounced when the reflections are broad 

and observed at low angle. This can be clearly seen in Figure-5b, in which the 

uncorrected (002) reflection position is observed at 22.3º, corresponding to an 

apparent interlayer distance d002 of 4.0 A. After correction, however, the reflection is 

observed at 24.8º, corresponding to an interlayer distance of 3.6 A. 

Since carbon is a light element, carbon based materials tend to be relatively 

transparent to X-rays. In the case of hard carbon, due to the very large width of its 

diffraction features, XRD measurement are also very sensitive to the background, as 

an angle dependent background can change the apparent shape of the diffraction 

features, including their apparent positions. Most of the plastic materials, such as 
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poly(methyl methacrylate), Kapton, Mylar, etc., currently used by XRD sample holders 

manufacturers present a broad diffraction peak at low angle overlapping the (002) 

reflection of hard carbons. The choice of the sample holder is thus of primary 

importance. A deep sample holder may avoid background contribution, but will induce 

an extra broadening of the diffraction features due to the deep penetration depth of 

the XRD in carbons. A shallow sample holder avoids the latter issue, but it requires to 

be made of a material that generates zero background, such as single crystal silicon. 

Compared to crystalline materials, the characterization of hard carbon by powder X-

ray diffraction (PXRD) is thus more critically dependent on the choice of the sample 

holder and the proper application of the relevant angular dependent intensity 

corrections in relation with the chosen instrument geometry. 

 

2.2.3.1. Pair Distribution Function (PDF) analysis of PXRD data 

 
The analysis of PXRD patterns from hard carbon is usually only qualitative due to the 

absence of adapted refinement programs for such highly disordered and locally 

anisotropic structures. An alternative method consist in the reverse Fourier 

transformation of diffracted data in order to extract the PDF, which consists in the 

radial distribution function of the structure in the real space in terms of radial density. 

This requires high-quality data, recorded over a broad angular range and corrected for 

any background, parasitic signal or angle dependent intensity factors. It allows for 

instance to verify assumptions on the structural model, the origin of low crystallinity 

(strains, disorder, defects, crystallite size, etc.) or the range of the crystalline order, 

being a powerful analysis method for low-crystallinity materials. One of the earliest 

examples of such analysis are found in Rosalind Franklin’s work from 1950 on non-
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graphitic carbon material75. More recently, the use of PDF analysis of PXRD data 

allowed reaching important advances in the description of the structure and 

microstructure of hard carbon as well as its mechanism of sodium uptake 86,95,135.  

 

2.2.3.2. Small-angle X-ray scattering (SAXS) 

 
The raising background typically observed at low angle in the XRD patterns of hard 

carbon ( seen e.g. in inset of Figure 2-6b) was soon demonstrated to be due to fine 

structure microporosity 75, which is a typical feature of hard carbons closely related to 

their inability to graphitize 69,77,113,136 as well as of their larger specific capacity 

compared to other sp2 carbons 62,137. In order to properly study the low angle scattering, 

the range needs to be extended toward low angles, which requires a specifically 

designed geometry. For this purpose, as presented in Figure 2-6a, the SAXS 

technique uses transmission geometry, collimated incident beam path, a 2D detector 

centered in the incident beam axis, and a beam stop avoiding the direct beam to 

saturate the detector. Evacuated beam path down to at least secondary vacuum is 

also of prime importance in order to avoid background and intensity loss from the 

scattering and absorption by the air. The typical SAXS pattern obtained for hard 

carbon after integration of the 2D detector image is represented in Figure 2-6b as a 

function of the scattering vector (Q = 4π sin(θ) /λ), together with a schematic 

representation of the microstructure of a hard carbon at various scales. The smaller 

the Q values, the larger the size of the features (pores, particles) that scatter X-ray 

intensity. As can be seen in Figure 2-6b, at lowest Q values the intensity drops as Q-

4, which is typical behavior for sharp interfaces of large objects 138,139. In the case of 

hard carbon this can be ascribed to the macroscopic surface area of the particles (in 
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brown in the schematics of Figure 2-6b) 91,140,141.[ At intermediate Q values (1-10 nm-

1) the intensity evolution shows a plateau followed by a kink, which is typical of the 

presence of micropores (in blue in the schematics of Figure 2-6b)91,114,140,142.  Finally, 

at large Q values the first diffraction peaks ((002), (100) and (004)) can be observed, 

which are related to the carbon structure at molecular scale.   

SAXS is a powerful complementary analysis to gas adsorption techniques as it allows 

the detection of the total porosity, i.e., the surface (open) porosity as well as the bulk 

(closed) porosity69,91,143. A well performing hard carbon is required to exhibit a low 

external surface area to minimize the first cycle irreversible charge loss related to the 

SEI formation, and a high concentration of internal (closed) microporosity to maximize 

the specific charge storage69. Gas adsorption only probes the open surface porosity, 

thus not being sensitive to the internal, closed porosity. The earlier models for the 

microstructure of hard carbon were established by R. Franklin in early 50’s based on 

the combination of PXRD and SAXS 75,77. Later on, the group of J. Dahn intensively 

used SAXS for the study of hard carbons for application in LIBs and SIBs62,137,140,144,145, 

as well as S. Komaba in their seminal paper of 2011 146. Since then, several 

publications focusing on the study of hard carbon for SIBs include SAXS analysis91,147–

149, although only a few present quantitative analyses of the amount of porosity91. This 

requires an intensity-calibrated instrument, which is rarely the case for lab-scale 

instruments.  
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Figure 2-6. (a) Typical transmission geometry used for SAXS experiments. (b) Main 

panel: Full range plot of scattering pattern from SAXS to PXRD, represented as 

absolute intensity versus scattering vector Q in log-log scale; the schemes represent 

the structure and microstructure at various scales, from macroscopic surface area 

(left), to micropores (center) to atomic structure (right). Inset: Typical PXRD pattern of 

hard carbon, with main reflections indexed according to the 2H graphite structure; the 

grey discontinuous line indicates the SAXS background signal. 

 

2.2.4. Ex-situ, in-situ and operando XRD and SAXS: 
 

Intercalation of alkali metals typically induces structural changes in the host electrode 

material, which generate a signature in their XRD patterns, thus making XRD a 

fundamental tool to study the storage mechanism 150. Such measurements can be 
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performed with (ex-situ) or without (in-situ) extracting the material from the cell after 

electrochemical reaction. The measurements can also be performed in operando 

conditions, i.e., while the electrochemical reaction is occurring. Many examples can 

be found of such studies on cathodes and anodes of LIBs and SIBs, including graphite 

and soft carbon anodes 62,150,151. In the case of hard carbon, however, the width of the 

diffraction peaks, the weakness of the intensity and the poor intensity/background ratio 

make such measurements very intricate 83,152. A few reports can be found with 

operando measurement of XRD in hard carbon, see e.g. 62,83,92, with Stevens and 

Dahn reporting a significant change of intensity suggesting sodium intercalation. 

However, no changes of the peaks positions have been found by these authors, 

possibly due to the width of the peaks and the poor signal over noise ratio induced by 

the diffusion diffraction pattern of hard carbon. Ex-situ measurements, which do not 

present restriction on the acquisition time, have allowed a clearer observation of actual 

changes in the (002) reflection position71,135,146 although the strong background signal 

due to the sample holder (typically Kapton film or tape to avoid contact with the air) 

and the other electrode components (binder, metal foil) could hardly be avoided. 

The use of in-situ SAXS is far from common, probably due to the scarcity of lab-scale 

SAXS instruments. A notable in-situ SAXS experiment is that of Stevens and Dahn 

reported in 200062,137, reporting operando SAXS in sugar-derived hard carbon using a 

standard PXRD configured in transmission mode. They observed a clear change in 

the intensity of the SAXS signal, which led them to propose the historical model of 

sodium insertion into the micropores as origin of the low-voltage plateau typically 

observed in galvanostatic cycling measurements of hard carbon electrodes.  
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Figure 2-7. (a) Typical Raman spectra of carbon based materials and nanostructures, 

(b) Raman spectra of graphene-based materials. 153 (c) Raman spectra of lignin-based 

carbonaceous materials and (d) proposed spectra deconvolution. 154. References 

153,154 are licensed under a Creative Commons Attribution-Non Commercial 3.0 

Unported Licence. 

 

 

2.2.5. Raman Spectroscopy 
 

Over the years, Raman spectroscopy has become a key technique for the 

characterization of various carbon allotropes and disordered structures (see Figure. 

2-7 (a, b)) 155–157. Raman is a non-destructive technique and, due to the sensitivity to 
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the local changes in the carbon structure and the high resolution, is a powerful tool for 

the investigation of the ordering of the carbon-based electrode materials as well as the 

understanding of the structural changes occurring on carbon electrodes employed in 

rechargeable batteries 66,69. 

The large variety of carbon structures and the derived different physical properties is 

directly related to the ratio of sp3 and sp2 bonds. Among the sp2-bonded carbons, 

several materials with various degrees of graphitic ordering can be obtained going 

from microcrystalline graphite to glassy carbon. The Raman spectra reported in most 

of the studies of carbon based materials are dominated by sp2 contributes 156,157. 

Indeed, the commonly used excitation in Raman spectroscopy is visible light (633 nm 

or 514 nm), which always resonates with the π states. As a consequence, even for 

amorphous carbon structures dominated by sp3 contributes, the visible Raman spectra 

are due to sp2 vibrations. The cross section for the amorphous sp3 C-C vibrations is 

negligible for visible excitation, thus its Raman signature can only be seen using UV 

excitation156,157. 

For this reason, amorphous and nanocrystalline carbons, even the ones containing 

small domains of graphitic ordering, present Raman spectra mainly dominated by two 

features, i.e., the G and the D band. The G band is related to the bond stretching of 

all pairs of sp2 atoms in both rings and chains while the D band is related to the 

breathing modes of sp2 atoms in ring.158 The presence of the D band is often assigned 

to structural edges defects, indeed highly-oriented pyrolytic graphite (HOPG), which 

presents the highest degree of three-dimensional ordering, does not exhibit the D band. 

Accordingly, the intensity ratio between the G and the D band (IG/ID) is generally used 

to define the degree of defectiveness and disorder in the investigated carbons. In 

addition, the IG/ID is also used to calculate the average lateral graphene domain size, 



P a g e  | 32 

 

 

using an equation firstly proposed empirically by Knight and White 159 for a specific 

excitation of 514.5 nm and later generalized by Cançado160 for any excitation laser 

energy in the visible range as follows:  𝐿𝑎 = 2.4 ∙ 10−10λ𝑛𝑚4 (𝐼𝐺𝐼𝐷) 

It is worth mentioning, that other techniques are also employed to calculate the 

crystallite size, such as XRD and TEM. However, the values observed are slightly 

different. The values obtained by XRD by using the Scherrer equation, are generally 

smaller than those obtained by Raman and TEM, most likely due to the different 

physical basis of the three techniques.161 

It is important to point out also that the IG/ID ratio appears not the best parameter to 

evaluate the amorphous nature of the investigated carbons as it is not directly linked 

to the presence of sp3 domain. However it can be indirectly related to the fraction of 

sp3 sites as exhaustively described by Ferrari 157. 

A proper deconvolution and fitting procedure of the Raman spectra may offer insights 

in the sp3 content. For instance, the D and G bands can be generally deconvoluted in 

5 components, namely G, D1, D2, D3 and D4158,162 (see Figure. 2-7(c, d)). 

Interestingly, while the D1 and D2 bands are assigned to the vibration mode of 

microcrystalline graphite and disordered graphitic lattice respectively, the D3 and D4 

band are attributed to the presence of amorphous carbon. Specifically, the D3 band is 

associated to the presence of large amounts of amorphous carbon 158 while the D4 

band is related to C-H termination groups or, more in general, to adsorbed molecules 

or molecular fragments 163. Recently, the deconvolution process and the calculation of 

the peak areas ratio was applied by Marino et al.154 to lignin-derived hard carbon for 

application in SIBs (see Figure. 2-7(c, d)).  
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The second-order overtone and combinational Raman modes of graphitic-like 

structures are rarely reported and investigated in studies of hard carbons for 

application in SIBs are.71,164 At about 2700 cm-1, the G’ band typically appears for 

graphite containing carbons. The G’ band is the second order of the D band and thus 

also called 2D band.  

Interestingly, the 2D band presents shape, splitting and position changing according 

to the number of graphene layers along the hexagonal axis representing an optimal 

parameter to be investigated for the study of short or medium range ordered 

stacking156. Additionally, Raman analysis can successfully elucidate the presence of 

curved and folded graphene respect to flat graphene layers. Reported studies shows 

that for scrolled graphene, the D band is enhances and the G band splits into three 

distinct peaks.165. 

In light of the large amount of information that Raman spectroscopy can give, it is 

without any doubt considered as an invaluable tool for the investigation of the 

structural properties of hard carbon materials for application in electrochemical fields. 

Ex-situ and in-situ Raman applied to SIBs may enable the elucidation of the sodium 

storage mechanism by highlighting the structural domains involved upon sodiation, 

specifically disclosing the role of graphitic-like and amorphous carbon domains.  

 

2.3. Sustainability 

In line with the SIB philosophy, the sustainability of the employed materials represents 

a key parameter for the successful implementation of the developed materials in 

commercially viable SIB prototypes 166. Indeed, the use of biomass waste as hard 

carbon precursors could efficiently increase the sustainability of the final system. 

Figure 2-8a reveals that processing biomass (organic) waste offers reduced 
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environmental impact than other precursors, e.g., petroleum coke167. Meanwhile, 

around 730 Tg of biomass is burned in a typical year with about 250 Tg contributed by 

crop residues burned in the open fields 168,169. This results in the generation of CO2 

and other local pollutants, which are responsible for the high concentration of smog in 

many developing countries170.  As a consequence, biomass waste is not only an ideal 

precursor for hard carbon in SIBs, but it may allow an active CO2 removal from the 

atmosphere thus enabling a sustainable future120,148,171–180. Considering the large 

abundance, low cost, high carbon content, easy collectability and poor usability in 

conventional biomass recycling technologies181–185, lignocellulosic materials are the 

best candidate as hard carbon precursors. Furthermore it has been reported that 

lignocellulose-derived hard carbon exhibit improved electrochemical performance 

when compared to other types of biomass waste70,91,154,186,187. Lignocellulose is the 

main component of plant cell walls188 (Figure. 2-8 (c)), which is the most abundant 

bio-material. Besides the materials’ sustainability study, further works on the energy 

consumption of the bio-derived hard carbon pyrolysis process have been reported. 

Barelli and co-workers addressed the energy sustainability of pectin-free apple 

pomace-derived hard carbon materials used as SIB anodes 120,189. In their study, the 

components of the pyrogas was reported (see Figure. 2-8 (d)) and a pyrolysis 

efficiency of 79.5% was calculated according to the simulated equation for energy 

balance. A recent study of the impact of acid activation of hard carbons on sodium 

storage performance reported that applying long-time phosphoric acid treatment could 

clearly improve the sodium-storage behaviour at low potentials. The combination 

between long-time (2 weeks) acid treatment of lignocellulosic hard carbon precursors 

(peanut shells) and relatively low carbonization temperature (1000 °C) could lead to a 

hard carbon with improved rate capability as anode for SIBs121. Sustainability studies 
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around hard carbons are increasing, however, more comprehensive studies should be 

done on many interdisciplinary aspects of hard carbon materials production and cost 

analysis  

 

Figure 2-8. (a) Influence of the hard carbon precursor on the total environmental 

impacts associated with SIB production. GWP = global warming potential, FDP = fossil 

depletion potential, MEP = marine eutrophication potential, FEP = freshwater 

eutrophication potential, HTP = human toxicity potential, TAP = terrestrial acidification 

potential 167. Reproduced from  167 licensed under a Creative Commons Attribution-

Non Commercial 3.0 Unported Licence. (b) Burning agricultural residue in the fields in 

the developing world distributed on a grid of 1° latitude by 1° longitude with units Tg 

dry matter.169 Reproduced with permission from Copyright © 2003 John Wiley and 

Sons. (c) Structure of lignocellulosic biomass.188 Reproduced with permission of 

Copyright © 2012 The Royal Society of Chemistry. (d) Pyrogas components release 

as a function of process temperature: temperature-dependent volume flowrates of 

main gas components and gas release cumulate curve, pectin-free apple pomace as 
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hard carbon precursor.189 Reproduced with permission of Copyright © 2018 The Royal 

Society of Chemistry. 

 

2.4. Electrochemistry of hard carbons in SIBs: mechanism and challenges 

Several promising hard carbon materials have been proposed for application as anode 

for SIBs. Despite new material development represents a crucial research field in 

search of improved rechargeable batteries, it is worth mentioning that the fundamental 

understanding of the sodium storage mechanisms in the host structure represents the 

most important task for a rational development of high performance anode materials 

71,83,86,92,94,103,135,190–195. An in depth understanding of the sodium uptake upon cycling 

will enable the achievement of invaluable knowledge for the definition of the key 

properties characterizing advances electrode materials. Indeed, the uncertainties 

related to the detailed processes occurring in the hard carbon structures upon cycling 

so far hindered an efficient improvement of the materials’ electrochemical performance, 

additionally aggravated by the wide variety of factors influencing the electrochemical 

behavior, including the role of different precursors and temperature treatment 77,84,92. 

Several mechanism have been proposed over the years. Figure 2-9 reports some of 

the schematic models proposed so far toward the understanding of the sodium ions 

interaction with hard carbon upon cycling. 

Early works on the mechanism reported by Stevens and Dahn stated that both sodium 

and lithium exhibit a similar storage mechanism in hard carbon, mainly consisting of 

two steps. The first one related to intercalation of ions into graphitic regions at higher 

potential, resulting in a sloping potential curve, and he second one involving 

nanoplating in micropores formed by the graphitic domains, resulting in a voltage 

plateau at low potentials56,58,62,137. 
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This mechanism was explained taking into account R. Franklin’s structural model 77, 

and was actually aimed to explain sodium migration into carbon electrodes in the 

aluminum production, with a side focus on assisting research on lithium-storage 

mechanisms58. During the same period, also other lithium-storage mechanisms114,196–

199 were proposed, however, the “house of cards” model appeared to be able  to 

correlate both the Li and Na storage mechanism, thus, current reports mainly refer 

back to the “house of cards” model.  

 

Figure 2-9. Representative model proposed so far for the sodium storage mechanism 

in hard carbon. (a) Visual representation of the “house of card” model. The two distinct 

phases are reported in blue and red: i.e. intercalation inside turbostratic nanodomains 

and pore filling.135 Reproduced with permission of Copyright © 2015, American 

Chemical Society (b) Mechanistic model involving sodium ion storage at defect sites 
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in the sloping region, and intercalation between graphene sheets and minor 

phenomenon of Na-ion adsorption on pore surfaces in the low voltage region.135 

Reproduced with permission of Copyright © 2015, American Chemical Society. (c) 

Typical potential vs. capacity profile for hard carbon in sodium cells with associated 

parameters of interest such as irreversible capacity, IR drop, Na plating. The study 

proposes the well known insertion of sodium within the graphene layers followed by 

adsorption within the microsposity.68 Distributed under e Creative Commons 

Attribution 4.0 License. (d). Schematic illustration of the Na-ion storage in hard carbon 

according to the “adsorption-intercalation” mechanism200. Reproduced with 

permission of Copyright © 2017 ECS-The Electrochemical Society. 

 

Nowadays it is generally accepted that despite the similarities, the Li and Na 

chemistries may be very different, as already demonstrated with the case of graphite 

and silicon anodes, NaxCoO2 cathodes and the Na-O2 batteries among others 

14,25,47,201,202. The Li storage mechanism in hard carbons cannot be directly transferred 

to Na based systems, however, the knowledge gained in the Li field is certainly helpful 

and gives some insights on the multiple processes which play a fundamental role also 

in the Na storage mechanism in hard carbons. Below we report a list of the main 

factors and processes which may occur upon sodiation: 

 Na ions ad-/chemi-sorption at defects in the graphenic sheets. 

 Influence and role of heteroatoms. 

 Inter-lamellae Na-ion intercalation and the role of inter-layer d-spacing as well as the 

role of defects and heteroatoms in the graphenic sheets. 

 Nanopore filling, i.e. plating and deposition of sodium (metal) on pore walls. 

 Formation of sodium (metal) clusters at low potentials. 
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 Irreversible capacity and potential-curve hysteresis. 

The understanding of these processes and the definition of the potential dependence 

upon cycling is crucial and will enable a clever and rational design of advanced and 

high performance next generation hard carbon anodes for SIBs.   

It is known that the graphenic/fullerenic sheets in hard carbon include edges (mostly 

H-terminated) 78, functional groups 84, defects 95 and heteroatoms 84,86 in which Na 

ions are assumed to be reversibly ad-/chemisorbed, resulting in a sloping potential 

curve at potentials above 0.1 V vs. Na/Na+ 86,92,103. The sloping nature of the potential 

profile is explained considering  a continuous/homogenous 92 process at sites with a 

wide energy distribution 92. The heteroatoms act as electron donors toward the 

graphenic sheet 86, increasing the electron density at defect sites in the graphenic 

layer and thus creating favorable locations for Na bonding 86. However, the role of 

ordered/stacked vs. disordered/free graphenic sheets for not-intercalated Na ions is 

still unclear and under discussion. 

As already mentioned in the introduction section, graphite does not represent a 

feasible anode material in SIBs due to the energetically unfavorable formation of b-

GIC, which is thought to be a consequence of the mater of chemical potential of Na 

intercalated carbon vs. that of plating but not only the mismatch between the Na ions 

size and the graphitic structure.203 In hard carbons, the inter-layer (002) d-spacing is 

significantly increased, often around 360-400 pm, when compared to the one of 

graphite, i.e. 335 pm92. It is reported that an optimal interlayer distance for Na-ion 

storage lies within the 370–380 pm range 92, which would enable a facilitated access 

of Na ions to energetically stable sites near defects 204. Defects and heteroatoms 

reduce the planarity of the graphenic layers and therefore in some regions may 

enhance the space for Na ions to migrate in between the layers. In addition, as 
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previously mentioned in presence of heteroatoms and defect sites the electron density 

is enhanced and therefore can promote the intercalation and hosting of Na ions 84,86.  

The intercalation processes are observed as plateau-like regions in the voltage profile 

at potentials below 0.1 V vs. Na/Na+ 86. The nature of the plateau profile is associated 

to a two-phase reaction well matching with an intercalation process 92. 

Another Na ions storage process observed in hard carbons is the pore filling. Qiu et 

al. reported that calculated formation energies indicate that ad-/chemisorption near 

defects would generally occur at first, followed by intercalation and finally pore filling92. 

However, the occurrence of pore filling remains unclear and the potential dependence 

on the phenomena is still under discussion. Similarly to pore-filling, the evolution of 

pseudo-/quasi-metallic clusters upon sodiation has been proposed and discussed. In 

detail, pooling of Na-clusters of 2-3 atoms and coherence lengths >10 Å have been 

reported to occur at low potentials after adsorbing of Na ions into surface pores, 

defects and between graphenic layers95,103. This would inevitable affect the interlayer 

arrangements and generate new regions available for Na insertion 95. However, it is 

worth mentioning that other reports did not detect the presence of such features92. The 

latter reported results are a clear example on how challenging and still open for 

discussion is the understanding if the Na storage mechanism in hard carbons.  

In addition, another fundamental question still to be answered is the temporal evolution 

of these processes. Are these phenomena to be seen as individual storage processes 

occurring in a consecutive order or they should be regarded as concurrent features? 

In fact, the ad-/chemisorption at defect sites is in some cases described to occur 

simultaneously to intercalation into the graphenic sheets and in between stacked 

sheets103. Reported density functional theory (DFT) calculations have indicated that 

the sloping profile region could be explained by only considering intercalation 
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processes95. However, it is worth mentioning that  intercalation is sometimes further 

defined as intercalation with adsorption at defect sites and regular intercalation, simply 

enabled by the increased d-spacing86. 

At last, the irreversible capacity observed during the initial cycle has been widely 

attributed to the large surface area of mesoporous hard carbon, however, recent 

studies on hard carbons with extremely low surface areas (<1 m2 g-1) lead to the 

assumption that the irreversibility is correlated with bulk rather than surface processes 

71. Moreover, the irreversibility was identified to be related with the decomposition of 

sodium carbonate formed by the reaction of Na and oxidized sites on/in hard carbon 

rather than the solid electrolyte interphase formation103. 

 

2.5. Aim and tasks of this thesis 

Despite studied alongside with LIBs in the 80’s, SIBs were sidelined due to the lower 

electrochemical performances. However, recently, concerns related to the supply of 

lithium as well as the transition metals commonly used in cathode materials for LIBs, 

have triggered the research and industrial community to focus their interest also in 

alternative chemistries to lithium. The uneven and limited distribution of the raw 

materials employed in the LIB technology is often used as the main reason for the 

renewed interest in the Na chemistry, however, it should be mentioned that several 

studies and future projection predict that a lithium shortage supply should not occur in 

the next 50 years, which would be even delayed when optimizing the recycling process 

of LIBs. On the other hand, one pressing concerns is certainly related to the high cost 

of extraction of lithium supplies and the increasingly high demand of lithium which 

brings uncertainties related to the inability to face the high demand with consequent 

fluctuation of the price and market related risks. The latter ones does not represent 
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unfavorable factors for the SIB technology, which is characterized by the use of earth 

abundant and cheap raw materials. 

For these reasons, nowadays, SIBs are considered the next generation 

electrochemical energy storage system of choice. While from the sustainability and 

cost perspective SIBs are considered the most promising alternative to LIBs, further 

improvement and optimization in terms of electrochemical performance, mostly in 

terms of energy density, are needed. In this context, the development of high 

performance electrode materials is fundamental. At the anode side, hard carbon 

represents an excellent candidate. Several promising materials have been proposed 

with satisfactory results, however many issues still need to be addressed for the 

development of the next generation high performance SIBs. 

The obtainment of advanced hard carbon anodes relies on a comprehensive 

understanding of the sodium storage mechanism as well as the function-structure 

correlation. In this thesis, systemic studies focusing on impact of different parameters 

on hard carbon structure and electrochemical performance of SIBs are reported. 

Impact of biomass precursors, closed pore and acid treatment of hard carbons are 

discussed in detail in Chapter 3, Chapter 4 and Chapter 5, respectively. 

 

  



P a g e  | 43 

 

 

3. Impact of biomass waste based precursors on hard 

carbon anodes for SIBs 

 

3.1. Introduction 

Biomass appears to be a very appropriate source for hard carbon. A study168 

performed in 2003 revealed that around 730 Tg (1 Tg = 1012 g) biomass is burned in 

a typical year, with about 34% (i.e., ca. 250 Tg) contributed by crop residues burned 

in the fields. The open-air burning to dispose biowaste generates CO2 and other local 

pollutants, e.g., soot, VOCs (volatile organic compounds) and sulphur dioxide, which 

are responsible for the heavy smog in some Asian and South American countries.170 

Consequently, recycle and reuse of waste biomass is becoming a consensus 

worldwide. Biofuels draw substantial attention in both academic and industrial 

circles.205 However, the use of the cheapest and most abundant form of biomass, 

lignocellulose, is limited by the lack of low-cost processing technologies, which can 

efficiently convert lignocellulosic biomass into liquid fuels.206 Thus, technical 

processes involving the large-scale application of lignocellulosic materials are highly 

desirable and urgently needed. Additionally, biomass waste can be considered a 

reliable large-scale carbon source because the intensive “industrialization’ of 

agriculture, due to the ever-increasing world population and improved living standards, 

leads to huge amounts of well-defined biomass and food wastes. 207 

Besides the low price and environmental friendliness, some biomass materials have 

specific microstructures, which can be retained after carbonization. According to 

literature, hard carbon materials derived from different biomasses deliver specific 

capacities ranging from 100 mAh g-1 to 350 mAh g-1 at low current densities.71,208 
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Compared with commercial precursors such as glucose, sucrose and polymers,209 

biomass-waste may represent an ideal carbon source. As a matter of fact, several 

biomass wastes have been investigated, such as banana peels,71 pomelo peels,176  

rice husks,210 ox horn211 and peanut shell173. However, to the best of our knowledge, 

no studies have been performed to evaluate the impact of different biowaste on the 

structural properties and electrochemical behaviour of the derived hard carbons in 

order to establish a more rational material design. 

Of course, biomass waste is not a pure chemical. It is, in fact, composed of several 

components, but it is frequently free of charge if not subsidized (disposing industrial 

bio-waste disposal carries, frequently, additional costs). Generally, the major 

component of plant-derived biomass is cellulose. Cellulose molecules align to form 

microfibrils, which themselves are aligned and bound into macrofibrils by a matrix of 

hemicellulose, pectin or lignin.212 In consequence, cellulose based biomass, in a 

simplified manner, can be categorized into the three sub-classes belonging to pectin-, 

hemicellulose- and lignin-based materials. Table 3-1 reports a summary of different 

carbon sources according to the above-mentioned classification. 

Thus, a comparative study between hard carbons derived from waste materials 

belonging to the three different sub-classes, i.e., peanut shells (lignin-based), 

corncobs (hemicellulose-based) and apples (pectin-based). The impact of these 

carbon sources on the physical characteristics and the electrochemical performance 

of the derived hard carbon materials (namely P-HC (pectin-based), H-HC 

(hemicellulose-based) and L-HC (lignin-based)) is evaluated. It is shown that the 

carbon source strongly affects the structural characteristics and the electrochemical 

behavior of the hard carbons.  
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Table 3-1. Main binder component as well as amount of cellulose and main binder in 

the different dried carbon sources. 

Hard 

carbon 

Carbon 

source 

Main binder 

component 

Content of main binder 

component / %213–215 

Content of 

cellulose / % 

P-HC Apple waste Pectin 11.7 % 43.6% 

H-HC Corncob Hemicellulose 35 % 45 % 

L-HC Peanut shell Lignin 27-40 % 34-45 % 

 

3.2. Experimental section 

 

3.2.1 Synthesis of biowaste-derived hard carbon 
 

Peanut shells and corncobs were cut into pieces and dried at 80℃ for 72 hours. The 

resulting materials were manually ground into powders, then completely wetted with 

phosphoric acid (80 wt.%) and stored for 2 weeks under ambient atmosphere in a 

fume hood (for P-HC, apple biowastes were wet with phosphoric acid (80 wt.%) for 3 

days175). Afterwards, deionized water was added and the suspension was filtered. 

Subsequently, the solid fraction was rinsed with deionized water until the pH was close 

to 7.0, then dried at 80℃ overnight, transferred into a quartz tube and annealed at 

1100℃ under argon atmosphere for 1 hour (heating rate 1℃ min-1) and furnace cooled. 

 

3.2.2 Material characterization 
 

The structure and morphology of hard carbon materials were investigated by means 

of X-ray diffraction (XRD, Bruker D8 Advance diffractometer with CuK  radiation) and 

scanning electron microscopy (SEM, Zeiss Auriga®). The Brunauer-Emmett-Teller 
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(BET) surface area and pore width was determined by nitrogen adsorption 

measurements using an ASAP 2020 (Accelerated Surface Area and Porosimetry 

Analyzer, Micrometrics). CHN elemental analysis was performed with an Elementar 

vario MICRO cube. Raman measurements were performed with a confocal InVia 

Raman micro spectrometer with a 633 nm laser (Renishaw; each spectrum was taken 

as the average of three 10-second accumulations). The X-ray Photoelectron 

Spectroscopy (XPS) characterization was performed with a PHI 5800 MultiTechnique 

ESCA System, using monochromatized Al-K  (1486.6 eV) radiation. The 

measurements were performed with a detection angle of 45°, using pass energies at 

the analyser of 187.85 and 29.35 eV for survey and detail spectra, respectively. All XP 

spectra were calibrated to the signal of amorphous carbon (hard carbon) at 284.8 eV 

and processed using CasaXPS software. 

 

3.2.3. Electrode preparation and cell assembly 
 

Electrodes were prepared with a dry composition of 80 wt.% hard carbon, 10 wt.% 

conductive carbon (SuperC45®, Imerys) and 10 wt.% sodium carboxymethyl cellulose 

(CMC, WALOCEL®CRT 2000 PPA 12, Dow Wolff Cellulosics). CMC was first 

dissolved in deionized water to obtain a 5 wt.% solution. The conductive additive and 

hard carbon were added to the CMC solution and the resulting mixture was dispersed 

via ball milling for 2.5 h (70 min and 10 min rest; 1 repetition; speed main disk: 400 rpm; 

speed rotating planets: -800 rpm). The obtained slurry (solid content: 14.3 %; wet 

thickness of 150 µm) was casted with a doctor blade on a dendritic copper foil at room 

temperature. Afterwards the coated electrodes were dried at 80℃ for 10 minutes and 

then at room temperature overnight under ambient atmosphere. Disk electrodes (Ø = 

12 mm) were punched and dried for 2 h at 20℃ and 10 h at 150 ℃ under vacuum in a 
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glass oven. The average active material mass loading of the electrodes was around 

1.5 mg cm-2.  

 

3.2.4. Electrochemical characterization 
 

Three-electrode Swagelok® cells were assembled using the hard carbons as the 

working electrode (WE) and sodium metal (99.8%, Acros Organics) as the counter 

(CE) and reference (RE) electrodes. All potential values given in this manuscript refer 

to the Na/Na+ quasi-reference electrode. Whatman® glass fiber GF/D disks were used 

as separator and soaked with 240 μL of electrolyte (1M NaClO4 in EC: PC (1:1 wt.%)). 

Sodium perchlorate NaClO4 (98% Sigma Aldrich) propylene carbonate (PC, Sigma 

Aldrich), and ethylene carbonate (EC, UBE) were used as received. Electrolyte 

preparation and cell assembly were carried out in a glove box (MBraun) with oxygen 

and water contents below 0.1 ppm. 

Galvanostatic cycling tests, between 0.02 V and 2.0 V (vs Na/Na+), were carried out 

with a battery tester (Maccor series 4000, U.S.A). The specific current of 200 mA g-1 

is defined as 1 C. Cyclic voltammetry was performed between 0.02 V-3.0 V (vs Na/Na+) 

using a multi-channel potentiostat-galvanostat (VMP3, Biologic Science Instruments). 

All electrochemical tests were performed in climatic chambers at 20 ± 1℃.  

 

3.3. Results and discussion 
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3.3.1. Synthesis, structural and morphological characterization of biomass derived 
hard carbons. 

 

Figure 3-1 : Synthesis scheme for the different biowaste-derived hard carbons. 

 

 

The synthesis route of corncob and peanut shell biomass derived hard carbons is 

schematically reported in Figure 3-1, while that for waste apple has been reported 

previously.175 It should be noted, however, that the synthesis of P-HC (from waste 

apples) involved the phosphoric acid treatment for only three days, since longer 

treatments resulted in very low yields (below ≤ 0.5% for two weeks treatment). 

Phosphoric acid is used as activating agent, playing a key role in the process as 

described later.176,216 It is observed that the suspensions containing apple biowaste 

and corncob turned black and jelly-like after one day, while the suspension of peanut 

shells remained transparent and liquid-like. This difference is explained considering 

that apples contain pectin, besides glucose and fructose, and corncob contains 

hemicellulose. Both these chemicals contain α-connected units (i.e., connecting 

oxygen in axial position), which are known to be prone to hydrolysis in aqueous 
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solutions.217 Consequently, the treatment in concentrated phosphoric acid leads to the 

destruction of the polysaccharides and, hence, of the fibril structure of the biomass, 

which explains the formation of jelly-like suspensions. In contrast, lignin (peanut shells) 

is more stable against hydrolysis or protonation in acids. As a matter of fact, no black 

colloids are formed upon acid treatment of peanut shells, resulting in a large fraction 

of the compact fibril structure retained.217 The water-rinsing step is performed to 

remove the black colloids and other water-soluble impurities. The subsequent thermal 

treatment leads to the carbonization of the acid treated biomass, involving the release 

of H2O, CO2 and other gaseous species. As a consequence, the carbonization step 

leads to different yields of 38.2%, 24.7% and 33.2%, respectively, for L-HC, H-HC and 

H-HC, reflecting the stability of the biomass in acid and its heteroatoms content. The 

yields have been calculated with respect to the dried acid treated and water rinsed 

biomass.  

The structural properties of L-HC and H-HC have been investigated by XRD (Figure 

3-2 a and b) and Raman spectroscopy (Figure 3-2 c and d) while the morphology has 

been investigated by SEM analysis (Figure 3-2 e and f).  
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Figure 3-2: Structural and morphological characterization of L-HC and H-HC hard 

carbons. X-ray diffraction patterns (a and b), Raman spectra (c and d) and SEM 

images (e and f). 

 

Figures 3-2 a and b show the characteristic (002) and (101) reflections of hard 

carbons, respectively, at 22° and 43° (2θ). The calculated average interlayer spacing 

(d002) of L-HC and H-HC, obtained from the (002) reflection via the Bragg equation, is 

rather similar (about 0.408 nm and 0.406 nm, respectively). The additional reflection 
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at 26.5° (2θ) in the diffraction pattern of the L-HC material is attributed to the (002) 

reflection of graphitic carbon. Interestingly, this is not observed in H-HC. 78 This may 

be due to the higher acid stability of the lignin-based precursor, leading to the large 

extent of the macrofibrillar structure being retained. The presence of graphitic carbon 

might be beneficial for the electrochemical performance due to the enhanced 

electronic conductivity. The Raman spectra (Figure 2 c and d) of L-HC and H-HC 

exhibit a broad D-band (around 1340 cm-1), ascribed to a defect-induced mode, and 

G-bands (around 1580 cm-1), ascribed to the E2g graphitic mode. The intensity ratio of 

these bands (R=ID/IG) is commonly used as an index of the carbon materials 

disorder.218 The intensity ratio of L-HC is 0.98, i.e., lower than that of H-HC (1.01), 

indicating a more ordered structure of the former material 219,220. The SEM images 

reveal that L-HC (Figure 2e) still contains a fibril-like structure, while H-HC (Figure 2f) 

is composed of inhomogeneous particles.175 Summarizing, the morphological and the 

structural results presented above confirm the highest stability of the lignin-based 

biomass against hydrolysis.  

Characteristics of L-HC, H-HC and P-HC are summarized in Table 3-2. P-HC shows 

a lower calculated average interlayer spacing (about 0.385 nm) and higher structural 

disorder (ID/IG = 1.26) than L-HC and H-HC. On the other hand, nitrogen 

adsorption/desorption measurements (BET) reveal the surface area of H-HC and P-

HC to be rather similar and substantially higher than that of L-HC, reflecting the higher 

acid stability of lignin-based biomass. The comparison of the elemental composition 

of L-HC and H-HC proves higher nitrogen and carbon contents in the former material, 

but a higher residual content, typically considered as good indicator for the oxygen 

content, in H-HC. On the other hand, P-HC contains more hydrogen and carbon and 
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less residual elements than L-HC and H-HC. This can be explained by the shortest 

storage time in phosphoric acid (i.e., 3 days vs two weeks). 

Table 3-2. Characteristics of L-HC, H-HC and P-HC. 

 L-HC H-HC P-HC 

 

Elemental Analysis 

C,H,N content / wt.% 

C: 89.57 

H: 0.48 

N: 1.24 

Residual: 8.71 

C: 85.37 

H: 0.53 

N: 0.61 

Residual: 13.49 

C: 94.50 

H: 1.57 

N: 0.53 

Residual: 3.40 

Raman Spectroscopy 

R=ID/IG 

 

0.98 

 

1.01 

 

1.26 

X-Ray Diffraction 

 calculated average interlayer 

spacing d002 / nm 

 

0.408 

 

0.406 

 

0.385 

BET 

Surface Area/ m2 g-1 

 

29.8 

 

222.6 

 

187.3 

 

 

 

Figure 3-3: (a) Nitrogen adsorption–desorption isotherms and (b) DFT pore size 

distribution for L-HC, H-HC and P-HC. 

 

The porosity of the as-prepared hard carbons was investigated via nitrogen 

adsorption-desorption measurements (Figure 3-3a). The DFT pore size distribution 

(Figure 3-3b) shows the existence of small mesopores with an average pore width of 
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about 2.7 nm in all hard carbons. However, the lowest fraction is observed for P-HC, 

while H-HC and L-HC show a similar pore volume. Interestingly, a significant fraction 

of slightly larger mesopores (3.7 nm) is observed for L-HC. Instead, P-HC and H-HC 

show, respectively, a low fraction and nearly no mesopores of this width. A recent work 

by Tarascon and coworkers83 demonstrated the meso-porosity, rather than the micro-

porosity, to be crucial for the reversible Na-ion storage in hard carbons along the 

plateau (0.02-0.1 V). Based on these finding a different electrochemical behavior can 

be anticipated for the different biowaste derived hard carbons. 

 

Figure 3-4: XP spectra of L-HC, H-HC and P-HC. (a – c) C 1s core level spectra; (d – 

f) O 1s core level spectra. 

 

In order to further understand the impact of the various biomasses on the resulting 

hard carbon, XPS analysis of L-HC, H-HC and P-HC was performed in the carbon and 

oxygen regions (Figure 3-4).  

Figures 3-4 a-c and d-f show the C 1s and O 1s core level spectra, respectively. In 

the C 1s region, four peaks are observed at binding energies of 284.6 eV, 285.1 eV, 
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286.5 eV and 290.0 eV, which are associated to C=C, C-H, C-O and C=O groups, 

respectively. In the O 1s region, three peaks are seen at binding energies of 530.8 eV, 

532.3 eV and 533.2 eV respectively associated to O-H, C=O and C-O containing 

species.221–223  

The percentage share of the various carbons is summarized in Table 3-2. However, it 

should be noted that the binding energy of the C-C (sp3) bond falls in between that of 

C=C (sp2) and  that of C-H (sp3), which makes the fitting of their C 1s core level spectra 

not possible. Thus, the quantitative determination of the C-C (sp3) carbon species was 

not performed. Instead, their contribution was considered together with either C-H (sp3) 

(C-H + C-C) or C=C (sp2) (C=C + C-C) species (see Table 3-2). 

In general, the XPS elemental analysis (Table 3-2) is in good accordance with the 

results obtained from CHN analysis. The slight differences can be attributed to the fact 

that XPS is limited to the surface region, while the elemental analysis probes the bulk 

composition. The difference in the amount of carbon detected employing the two 

techniques is negligible for L-HC and P-HC. However, for H-HC rather different values 

are obtained, in accordance with the higher amount of impurities, as indicated by the 

high residual content in CHN analysis, in this material. The lower nitrogen and higher 

residual contents found by CHN analysis can be explained via the higher content of 

adsorbed impurities224 and is in good accordance with the higher surface area of H-

HC compared to L-HC. The impurities, of course, affect the electrochemical properties 

like, e.g., the irreversible capacity, as it will be shown later on. 

Consequently, L-HC and H-HC contain similar amounts of sp2- and sp3- hybridized 

carbons, but H-HC contains more impurities and P-HC more sp3- hybridized carbons. 

These results are in good agreement with the data reported in Table 3-3. Summarizing, 

it can be stated that the nature of the biomass (and the main binder component therein) 
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has a strong impact on the composition and structural characteristics of the resulting 

hard carbons. 

 

Table 3-3. Atomic percentage of carbon and oxygen as well as the relative amount 

(in percent) of C=C/C-C, C-H/C-C, C-O and C=O containing species as obtained 

from the XPS analysis of the C 1s and O 1s core level spectra. 

Spectra  L-HC H-HC P-HC 

C 1s Overall carbon content 88.7 at. % 89.2 at. % 93.6 at. % 

C=C + C-C 57.7 % 60.1 % 53.7 

C-H + C-C 21.4 % 17.0 % 32.0 

C-O 14.2 % 14.2 % 8.6 

C=O 6.7 % 8.3 % 5.8 

O 1s Overall oxygen content 10.6 at. % 10.3 at. % 6.1 at. % 

O-H 15.6 % 11.9 % 7.3 % 

O=C 39.9 % 19.4 % 32.3 % 

O-C 54.5 % 68.2 % 60.4 % 

N 1s Overall nitrogen content 0.7 at. % 0.5 at. % 0.3 at. % 
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3.3.2 Electrochemical characterization of L-HC and H-HC 

 

Figure 3-5: Electrochemical performance of L-HC and H-HC. (a, b) cyclic 

voltammograms (1st, 5th, 10th cycle) of L-HC and H-HC at a scan rate of 0.1 mV s-1 in 

a potential range from 0.02 V to 3.0 V (vs Na/Na+); (c, d) Galvanostatic long-term 

cycling at 0.1 C. 

 

 

In order to understand the impact of composition and structural characteristics on the 

electrochemical performance, L-HC and H-HC were investigated via cyclic 
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voltammetry (CV) performed at a scan rate of 0.1 mV s-1 within the 0.02-3.00 V (vs 

Na/Na+) potential range (Figures 3-5 a and b).  

Generically, i.e., after the 1st cycle, the peak couple below 0.3 V in the cathodic and 

anodic scans is attributed to the charge accumulation occurring in the pores, although, 

as mentioned in the Introduction, this interpretation of the voltammetric features is still 

debated.177 The current observed between 0.2-1.5 V is associated to the storage of 

sodium at defect sites and between disordered graphene sheets.62,83,135,225 

The cathodic scans of the first cyclic sweep reveal that almost no electrochemical 

reaction occurs from open circuit voltage (OCV) until 1.0 V. The current increase 

between 1.0 V and 0.1 V is associated to both the sodium storage mechanism and the 

SEI formation.62,83,135,225 In contrast, the current peaks at 0.3 V and 0.6 V for L-HC and 

at 0.35 V for H-HC were not observed in the first cathodic scan of P-HC in our previous 

study.175 They are probably related to the sodiation of impurities, which are present in 

L-HC and H-HC to a higher extent than in P-HC, as evidenced by elemental analysis. 

During the first anodic scan, a broad current peak is observed for both L-HC and H-

HC between 0.02 V and 0.20 V, which increases upon consecutive sweeps, 

suggesting progressive structural changes of the hard carbon upon sodium 

uptake/release.71  

In order to investigate the electrochemical behaviour of the developed materials, 

galvanostatic cycling tests were performed in sodium metal cells. Figures 3-5 (c 

through f) report the electrochemical cycling performance of L-HC and H-HC. In the 

first cycle, a rather low current (0.02C) was used to activate (SEI formation) the 

electrodes. Panel c and d depict the electrochemical behaviour of L-HC and H-HC, 

respectively, upon long-term cycling at 0.1 C. During the 1st cycle, the coulombic 

efficiency for L-HC and H-HC is 68% and 57%, respectively, while the initial coulombic 
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efficiency for P-HC in our previous study was 61%.175 The low first cycle efficiency is 

usually related to electrolyte decomposition, leading to SEI formation, and irreversible 

sodium uptake by heteroatoms, such as oxygen. The coulombic efficiency results are, 

overall, in good agreement with the differences in BET surface area and elemental 

composition of the hard carbon materials. Indeed, L-HC presents the highest 1st cycle 

coulombic efficiency and the lowest BET surface area. P-HC and H-HC have similar 

surface area, but H-HC contains more heteroatoms than P-HC, showing, in fact, the 

lowest 1st cycle coulombic efficiency. Nevertheless, both L-HC and H-HC show good 

coulombic efficiencies, up to 99%, already after 5 cycles. In terms of sodium storage 

performance (at 0.1C) a neat difference is observed between L-HC, which delivers a 

capacity of 298 mAh g-1, and H-HC, exhibiting a capacity of only 257 mAh g-1. 

Additionally, L-HC showed an excellent capacity retention (98%) after 300 cycles. 

Figures 3-5 e and f compare the rate capability of L-HC and H-HC. L-HC delivers a 

capacity of around 299, 287, 266, 236, 175, 104, 77 mAh g-1 and H-HC a capacity of 

254, 242, 218.6, 191, 151, 103, 83 mAh g-1, respectively, at 0.1 C, 0.2 C, 0.5 C, 1 C, 

2 C, 5 C and 10 C. When the current rate is decreased back to 0.1 C, i.e., after the 

rate test, the specific capacity of L-HC and H-HC turned back to 297 mAh g-1 and 254 

mAh g-1, respectively. The almost complete capacity retention demonstrates the good 

stability of the materials towards high rates. Figure 3-6 a and b shows selected 

potential profiles of L-HC and H-HC measured during the C-rate test at different 

current rates (from 0.1 C to 10 C). Considering the previous results reported for P-

HC,175 it is worth noting that all hard carbons deliver very similar capacities at high 

current rate such as 5 C and 10 C. Their potential profiles show that the plateau at 

about 0.1 V shifts below the lower cut-off potential at high currents, resulting in the 

slope region to contribute to the delivered capacity. 175 
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Figure 3-6. Selected potential profiles of L-HC (a) and H-HC (b) obtained during 

the C-rate test at different current rates (from 0.1 C to 10 C). 

 

 

3.3.3 Impact of biomass source on the electrochemical properties 

 

Figure 3-7: Comparison of the electrochemical performance of L-HC, H-HC and P-

HC with charge/discharge profiles at 0.1 C in the 5th cycle. 
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To further link the electrochemical performance of the different hard carbons to their 

structural characteristics, the charge/discharge voltage profiles recorded in the 5th 

cycle of L-HC, H-HC, and P-HC are compared (Figure 3-7). All hard carbon electrodes 

show the typical sodium storage behavior with a sloping potential profile between 1.0-

0.12 V and a subsequent plateau below 0.12 V. The sloped part of all hard carbons is 

practically overlapping, however, the low voltage plateau (i.e., below 0.12 V) of L-HC 

is more extended than that of H-HC and, especially, P-HC. The specific capacities 

between 1.0-0.12 V (slope) and 0.12-0.02 V (plateau) during the 5th discharge are 

shown in Table 3-4. The electrochemical behaviour of the different hard carbons can 

be understood comparing their capacities and connecting these with the measured 

structural properties. The slope region (1.0 V-0.12 V) is most frequently explained by 

the reaction of sodium with O and N heteroatoms as well as further sodium uptake via 

insertion into and adsorption on graphene-like sheets.62,83 The capacity 

delivered/consumed within this voltage range (1.0-0.12 V) only slightly decreases 

upon going from L-HC to P-HC. L-HC shows the highest capacity in this voltage range, 

most likely because it has a higher interlayer spacing (XRD), a higher amount of O 

and N heteroatoms (CHN, XPS), and a better electronic conductivity, due to the 

presence of graphite (XRD), and finally a higher structural order (Raman ID/IG). H-HC 

shows a slightly lower capacity, which fits well to the slightly lower structural order 

(Raman) and the absence of graphitic carbon (see XRD), but similar average interlayer 

spacing and content of heteroatoms on the surface (XPS), and finally a higher content 

of impurities (high residual content in CHN). Finally, P-HC offers the lowest capacity 

due to the smallest average interlayer spacing (XRD), lowest content of heteroatoms 
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O and N (CHN, XPS), and, additionally, the most disordered structure (i.e., high 

amount of sp3- hybridized carbon and no graphitic carbon Raman, XPS). 

The plateau region (0.12 V- 0.02 V) is commonly explained by charge accumulation in 

the pores.62,226 Recent work demonstrated that the extent of this region strongly 

depends on the hard carbon’s mesoporosity. The formation of small mesopores 

significantly occurs at carbonization temperatures above 950°C.227 Actually, the 

amount of mesopores goes along that of graphitic carbon upon increasing 

carbonization temperature. Note that at carbonization temperatures of 2800°C, mostly 

mesopores are present in hard carbons.83 Thus, a higher content of graphitic carbon, 

i.e., sp2- hybridized carbon, points to a higher amount of available mesopores and, 

hence, a larger extent of the low voltage plateau upon (de-)sodiation.83 This is the case 

for L-HC, which, in fact, shows higher structural order (Raman), higher content of sp2- 

hybridized carbon (XPS) and the presence of graphite (XRD). Indeed, nitrogen 

adsorption-desorption measurements revealed the highest intensity of small 

mesopores (i.e., those between 2.7 nm and 3.7 nm) in L-HC. H-HC has a similar 

structural order (amount of sp2- hybridized carbon), but does not contain graphitic 

carbon, has a higher amount of impurities and a much lower fraction of small 

mesopores of 3.7 nm, all resulting in the lower capacity delivered/consumed by such 

a material in the low potential range. Finally, P-HC contains the largest amount of sp3- 

hybridized carbon, shows the largest structural disorder and the lowest intensity of 

mesopores, which agrees well with the low capacity in this range. 

Summarizing, these results show that a stable and reproducible electrochemical 

performance can be obtained for biowaste derived hard carbons. Moreover, our 

investigation strongly indicates that the mesoporosity of hard carbons determines the 

extent of the plateau below 0.12 V, whereas the sloping part (1.0-0.12 V) of the 
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potential profile mainly depends on the amount of heteroatoms and interlayer spacing. 

All those parameter depend on the composition and structure of the biomass source 

as shown via typical representatives of hemicellulose-, lignin- and pectin- rich biomass. 

 

Table 3-4. Specific capacities consumed upon sodiation in the sloping region (1.0-

0.12 V) and the plateau (0.12 V- 0.02 V) of L-HC, H-HC and P-HC. 

 Capacity (1.0V-0.12V) Capacity (0.12V-0.02V) 

L-HC 131.79 mAh g-1  158.81 mAh g-1  

H-HC 119.58 mAh g-1  144.11 mAh g-1  

P-HC 111.76 mAh g-1  108.24 mAh g-1  

 

3.4. Summary  

 

Different waste biomasses, distinguished with respect to their main binder component, 

i.e., lignin, hemicellulose or pectin, have been investigated as precursor for the 

synthesis of hard carbons. In particular, peanut shells and corncobs, respectively 

containing lignin and hemicellulose, were successfully transformed into hard carbons. 

Their characteristics and electrochemical performance have been compared with 

those of apple (pectin) derived hard carbon.  

The acid treatment has been identified as an important step in the synthesis, as the 

various binder components are differently sensitive towards hydrolysis, which strongly 

affects the characteristics of the derived hard carbons. The composition and structure 

of the various biomasses crucially influences the process yield, surface area, 

elemental composition (bulk and surface), structural disorder and impurity content of 

the resulting hard carbons.  
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In this work, the electrochemical behaviour of the various hard carbons, in terms of 

reversible and irreversible capacities, shape of the potential profile upon sodiation and 

desodiation, and cyclability, could be clearly linked to characteristic properties of the 

waste biomass precursors. Among the investigated materials, that derived from 

peanut shells, i.e., L-HC, shows the best specific capacity (298 mAh g-1), highest 

capacity retention (98% after 300 cycles at low current rate (0.1 C)) and highest 1st 

cycle coulombic efficiency (68%) among all materials. The results reported herein 

demonstrate that biowaste not only represents an appealing renewable resource for 

carbonaceous materials, but may yield also high-performance anodes for sodium-ion 

batteries. In particular, the good electrochemical performance of hard carbons derived 

from peanut shells needs to be highlighted as lignocellulosic biomass waste cannot 

simply be used for the generation of bio fuel. 
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4. Impact of closed pores on hard carbon anodes for SIBs 

 

4.1. Introduction 

 

The use of waste as hard carbon precursor attracts wide attention. Various raw 

materials were investigated such as pomelo peels176, corn cobs228 and ox horns211 for 

hard carbons. The use of industrial waste such as tires90 has been reported but is still 

relatively unexplored although its use is certainly beneficial with respect to cost, 

availability (e.g. megaton-scale), quality (composition, homogeneity) and logistic 

efforts (collection, processing and transport). In our recent study we showed that the 

use of waste for the synthesis of hard carbons can decrease the environmental 

impacts that are associated with their production which finally results in more 

environmental-friendly batteries.167 In another of our works we could show that waste-

apple derived hard carbon, in fact, can be used as anode material in SIBs.175 

Furthermore, we recently determined the influence of the biomass waste composition, 

e.g. the content of pectin, lignin and hemicellulose, on the electrochemical 

performance and behavior of the corresponding hard carbons.70  

Herein, we report the use of industrial biowaste, i.e. pectin-free apple pomace, as 

raw material for the synthesis of hard carbons with high electrochemical performance. 

The pectin-free apple pomace derived hard carbon (AP-HC) is thoroughly 

characterized and results are compared with our previous work on waste-apple 

derived hard carbon. 
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4.2. Experimental section 

 

4.2.1. Synthesis of biowaste-derived hard carbon 
 

Apple pomace was transferred into a quartz tube and annealed at 1100℃ under argon 

atmosphere for 1 hour (heating rate 1℃ min-1) and furnace cooled. The apple pomace derived 

hard carbon (AP-HC) was then manually ground and used without any further purification for 

the electrode preparation.  

 

4.2.2. Material characterization 
 

The structure and morphology of hard carbon materials were investigated by means of X-ray 

diffraction (XRD, Bruker D8 Advance diffractometer with CuK  radiation) and scanning 

electron microscopy (SEM, Zeiss Auriga®). N2 absorption-desorption isotherms of samples 

were determined and analyzed by the Brunauer-Emmette-Teller (BET) method (Autosorb-iQ, 

Quantachrome). Raman measurements were performed with a confocal InVia Raman micro 

spectrometer with a 633 nm laser (Renishaw; each spectrum was taken as the average of three 

10-second accumulations). The X-ray Photoelectron Spectroscopy (XPS) characterization was 

performed with a PHI 5800 MultiTechnique ESCA System, using monochromatized Al-K  

(1486.6 eV) radiation. The measurements were performed with a detection angle of 45°, using 

pass energies at the analyser of 187.85 and 29.35 eV for survey and detail spectra, respectively. 

All XP spectra were calibrated to the signal of amorphous carbon (hard carbon) at 284.8 eV 

and processed using CasaXPS software. 
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4.2.3. Electrode preparation and cell assembly 
 

Electrodes were prepared with a dry composition of 80 wt.% hard carbon, 10 wt.% conductive 

carbon (SuperC45®, Imerys) and 10 wt.% sodium carboxymethyl cellulose (CMC, 

WALOCEL®CRT 2000 PPA 12, Dow Wolff Cellulosics). CMC was first dissolved in 

deionized water to obtain a 5 wt.% solution. The conductive additive and hard carbon were 

added to the CMC solution and the resulting mixture was dispersed via ball milling for 2.5 h 

(70 min and 10 min rest; 1 repetition; speed main disk: 400 rpm; speed rotating planets: -

800 rpm). The obtained slurry (solid content: 14.3 %; wet thickness of 150 µm) was casted 

with a doctor blade on a dendritic copper foil at room temperature. Afterwards the coated 

electrodes were dried at 80℃ for 10 minutes and then at room temperature overnight under 

ambient atmosphere. Disk electrodes (Ø = 12 mm) were punched and dried for 2 h at 20℃ and 

10 h at 150 ℃ under vacuum in a glass oven. The average active material mass loading of the 

electrodes was around 1.5 mg cm-2.  

 

4.2.4. Electrochemical characterization 
 

Three-electrode Swagelok® cells were assembled using the hard carbons as the working 

electrode (WE) and sodium metal (99.8%, Acros Organics) as the counter (CE) and reference 

(RE) electrodes. All potential values given in this manuscript refer to the Na/Na+ quasi-

reference electrode. Whatman® glass fiber GF/D disks were used as separator and soaked with 

240 μL of electrolyte (1M NaClO4 in EC: PC (1:1 wt.%)). Sodium perchlorate NaClO4 (98% 

Sigma Aldrich) propylene carbonate (PC, Sigma Aldrich), and ethylene carbonate (EC, UBE) 

were used as received. Electrolyte preparation and cell assembly were carried out in a glove 

box (MBraun) with oxygen and water contents below 0.1 ppm. 



P a g e  | 67 

 

 

Galvanostatic cycling tests, between 0.02 V and 2.0 V (vs Na/Na+), were carried out with a 

battery tester (Maccor series 4000, U.S.A). The specific current of 200 mA g-1 is defined as 

1 C. All electrochemical tests were performed in climatic chambers at 20 ± 1℃. 

4.3. Results and discussion 

 

The hard carbon was synthesized via a facile synthesis route that is schematically 

illustrated in Figure 4-1a. Compared to our previous works on waste apples70,175, no 

phosphoric acid treatment of the industrial-waste was performed because during the 

pectin extraction process acid treatment has been applied.229  

The morphology of AP-HC is shown in Figure. 4-1b and c. Interestingly, SEM reveals 

unique spherical bubble-like structures on the surface of the hard carbon particles. 

TEM measurement and EDX mapping are used to further understand the structure 

and component of this unique bubble-like morphology (Figure. 4-1d and e). The 

transmission picture reveals the bubble-like structure are empty inside and EDX 

mapping shows the surface is very homogenous. So far, similar structures have not 

been observed for other biomass derived hard carbons and also have not been 

observed in our previous study on waste–apple derived hard carbon. Consequently, 

this special structure should be related to the particular pectin-free composition of the 

biomass. A possible explanation is that the absence of pectin as cross-linking 

component facilitates the formation of a semifluid.78 The decomposition of the biomass 

and resulting gas formation then leads to this particular surface morphology.   
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Figure 4-1. a) Schematic synthesis of pectin-free apple pomace derived hard carbon 

and images of educt and product. SEM morphology of AP-HC at a magnification of (b) 

10kx and (c) 70kx. (d) TEM morphology of AP-HC and (e) EDX mapping of bubble-

like surface. 
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The structural properties of AP-HC were characterized by Raman spectroscopy, X-ray 

diffraction (XRD), N2-adsorption measurements and X-ray photoelectron spectroscopy 

(XPS). Results are displayed in Figure 4-2.  

 

Figure. 4-2. (a) Raman spectrum; (b) X-ray diffraction pattern; (c) N2 adsorption-

desorption isotherm and (d) XP C1s core level spectra of AP-HC.  

 

The structural properties of AP-HC are quite different from those of the apple waste 

derived hard carbon of our previous work in which the biomass contained pectin (A-

HC)175. This observation is in accordance with the particular particle morphology 

observed via SEM in Figure 4-1b and c. The intensity ratio of the D and G bands (ID/IG 

= 1.08), calculated average interlayer spacing (d002 = 0.377 nm) and BET surface area 
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(1.54 m2 g-1) are decreased compared to A-HC material with ID/IG = 1.26, 

d002 = 0.385 nm and surface area of 187.3 m2 g-1.70,175 Once more, the different 

structural properties can be explained with the very low content of pectin inside AP-

HC. This facilitates the formation of a semifluid during carbonization which finally yields 

hard carbons with more graphitic character.78 The reflections at about 31.4 °2θ and 

34.1 °2θ in the XRD diffraction pattern of AP-HC (Figure. 4-2b) are originating from 

alkali impurities that have not been removed from the biomass.230 The nitrogen 

adsorption desorption isotherm of AP-HC (Figure. 4-2c) can be classified as Type III, 

i.e. to a non-porous material.231 The pore size distribution, indeed, confirms that AP-

HC only contains few open pores. Considering the very low BET surface area and 

TEM images, results instead suggest that AP-HC contains substantial amount of 

closed pores. Additional pycnometry measurements and calculations were performed 

to determine the volume ratio of closed and open pores according to a published 

patent (detailed calculation in the end of the chapter).120 The calculated volume ratio 

of closed and open pore for AP-HC is 22.8 % and 0.7 %, respectively, which once 

more confirms the substantial presence of closed pores. The XP C 1s core level 

spectra in Fig. 2d can be fitted with five peaks at binding energies of 286.6 eV, 285.1 

eV, 286.7 eV, 290.5 eV and 293.5 eV, which are associated to C=C/C-C, C-C/C-H, C-

O, C=O and K 2p3/2, respectively. Compared with A-HC,70 AP-HC contains about 8% 

less C=C/C-C (45.4% vs. 53.7%) and 6% more C-C/C-H (38.3% vs. 32.0%) on the 

surface. The ID/IG ratio of AP-HC is lower than that of A-HC, which shows that AP-HC 

contains more sp2-carbon. The presence of the K 2p3/2 peak in XPS is in accordance 

with the additional reflection in XRD and once more suggests the presence of alkali 

impurities. 

The electrochemical performance of AP-HC is shown in Figure. 4-3. 
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Figure. 4-3. Electrochemical performance of AP-HC. a) Long-term cycling 

performance at 0.1C and b) potential profile of the 5th cycle. 

 

Figure. 4-3a shows that AP-HC delivers a good overall performance during the 

galvanostatic long-term cycling at 0.1C. In detail, AP-HC still delivers a specific 

capacity of 285 mAh g-1 after 230 cycles, which corresponds to a capacity retention of 

96% (vs. 2nd cycle). Interestingly, the capacity is also about 50 mAh g-1 higher than 

that delivered by A-HC.70,175 

AP-HC also shows a bit higher initial coulombic efficiency (65.6%) than A-HC (61.2%). 

However, the irreversible capacity is still too high considering the rather low BET 

surface area and open porosity. This may indicate that the irreversible capacity is 

mostly related to processes occurring in the bulk of the material rather than at the 

surface, indicating that closed pores and impurities have a strong impact. 

AP-HC potential profile upon sodiation (Figure. 4-3b) is the one typical for hard 

carbons, exhibiting a slope between 2.00 V - 0.12 V (110 mAh g-1) and a plateau 

between 0.12 V - 0.02 V (175 mAh g-1). Interestingly, AP-HC delivers very similar 

capacities within the slope-like region but a much larger capacity within the plateau as 
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compared to A-HC (111 mAh g-1, 108 mAh g-1, respectively).70 The similar extent of 

the sloping potential profile suggests that the particular surface morphology and lower 

BET surface area of AP-HC do not strongly affect the Na storage between 2.00 V - 

0.12 V. Instead, the amount and nature of hetero atoms might play a more important 

role.  

However, the different electrochemical behaviour at low potentials can provide some 

insights in the sodium storage mechanism in hard carbons, which is still controversially 

discussed.62,83,86,92 The sodium storage along the plateau is commonly explained with 

charge accumulation in the hard carbon’s porosity. AP-HC interestingly delivers much 

more capacity along the plateau than A-HC although it contains very little open 

porosity that is measurable by N2 adsorption measurements. This indicates that open 

porosity does not play a major role for the sodium storage in this region. Instead, the 

amount of closed pores and their characteristics (inner surface, shape, and size) as 

well as the average interlayer spacing appear to have stronger impact. In any case, 

the Na- storage mechanism deserves to be investigated in greater detail in a future 

work.  

 

4.4. Summary 

 

Summarizing, we have synthesized a hard carbon from industrial waste, i.e. pectin-

free apple pomace, via a very facile carbonization method. The hard carbon delivers 

a very competitive electrochemical performance with respect to the state-of-the-art 

despite being synthesized from very cheap and abundant waste.117 Most importantly, 

the hard carbon exhibits a unique morphology and very interesting structural 
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properties, resulting in high sodium storage capacity and good retention upon cycling. 

Finally, the investigations enlightened the role of surface area and porosity on the 

sodium storage mechanism. 

 

4.5. Calculation of closed and open pore ratio  

 

Equation 1 and 2 were used to calculate the ratio of closed and open pore, 

respectively. 

R CP (%)=(1/d He−1/2.26 g/cm3)/(V OP+1/d He)×100                         (1); 

R OP (%)=V OP/(V OP+1/d He)×100                                                    (2); 

where d He is the bulk density measured via pycnometry with He, V OP is the open pore 

volume obtained from N2 absorption-desorption measurements.  

For AP-HC, d He is 1.740 g/cm3, and V OP is 0.0040 cm3/g. Accordingly, R CP is 22.8% 

and R OP is 0.7%. 
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5. Impact of acid treatment on hard carbons for SIBs 

 

5.1 Introduction 

 

Efficient electrochemical energy storage systems, such as rechargeable batteries and 

supercapacitors, are among the most compelling targets for a sustainable energy 

future.232–234 Carbonaceous materials are considered appealing electrode candidates 

for alkali metal-ion batteries such as lithium-ion batteries (LIBs)235, sodium-ion 

batteries (SIBs)67 and potassium-ion batteries (KIBs)236, and super capacitors237. A 

great deal of studies focus on designing carbon materials for these energy storage 

systems. Among them, particular interest is dedicated to carbon materials derived from 

bio-waste because of their sustainability.238 In fact, about 40 million tonnes of unusable 

lignocellulosic biomass is produced every year, however, most of this material is 

thrown away,239,240 or evern worse, burn in open air leading to air pollution and global 

warming169. Thus, the conversion of lignocellulosic biomass into valuable products is 

an important challenge towards a sustainable future.183,239 Hence, approaches to 

increase the use of lignocellulosic biomass are highly desirable and urgently 

needed.183,241 Considering its relatively high carbon content compared to other bio-

waste materials, lignocellulosic biomass is an ideal precursor for the production of high 

added value carbon materials,182,242 in alternative to biofuels, polymers and fine 

chemicals. 

Most of the biomass-derived carbons are assemblies of highly defective graphene 

layers, which can be generally classified as non-graphitable activated carbons, or hard 

carbons in the battery field.77,78 Several studies reported the implementation of 
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biomass-derived carbons in supercapacitors243,244 and batteries69,72,245,246, however, 

the establishment of a low-cost and sustainable synthesis method is still needed, 

especially for lignocellulosic biomass-derived carbons, but only a few studies are 

available.  

Among the alkali-metal ion batteries, SIBs can employ only hard carbons as anode 

material. Indeed, although SIBs have the same working principle of LIBs14,25, the full 

capacity of graphite cannot be achieved in SIBs because Na+ ions do not intercalate 

into its structure except when co-intercalation of solvent molecules occurs as, for 

example, using glyme-based electrolytes47,247. However, in line with the low-cost and 

sustainability issues,227,248 biomass-derived hard carbons play a key role in the 

development of SIBs.10,69 As a result, several biomass derived materials have been 

reported as SIB anodes71,175,211,228, among which, lignocellulosic precursors have 

drawn more and more attention173,186,249–251. Nonetheless, current studies on hard 

carbon anodes mainly focus on morphology control252, heteroatom-doping86,253 and 

annealing temperature regulation83. However, few studies focused on the chemical 

activation process although it may be a crucial step for hard carbon formation,254 also 

impacting its electrochemical performance in SIBs.  

Our recent studies revealed that using bio-wasted hard carbon for SIBs can efficiently 

decrease the environmental impact,167,189 while exhibiting promising electrochemical 

performance70,120. It has been reported recently that the poor rate capability, which is 

considered as one of the main drawbacks in the implementation of hard carbon as 

anodes in SIBs,255 may be improved by using ether-based electrolyte256, introducing 

an artificial SEI257 or doping foreign-heteroatoms into hard carbon materials123,126. 

However, up to date, a cost-effective and sustainable method to improve the hard 

carbon properties is still required. 69 In this context resides the motivation to find a 
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suitable strategy for the production of high performance and sustainable lignocellulosic 

(peanut shells)-derived hard carbon as anode for SIBs. In this work, the impact of the 

acid activation is studied, revealing a direct correlation between the acid treatment 

time and the electrochemical performance as anode in SIBs. Additionally, a long acid 

treatment enables the use of lower synthesis temperature, thus making the hard 

carbon production greener and more sustainable. Based on this new knowledge, a 

carbon anode is designed with an optimized synthesis procedure and a very promising 

rate capability of 122 mAh g-1 at 10 C (2 A g-1), which is an excellent performance 

compared with other methods123,227,256. 

 

5.2 Experimental section 

 

5.2.1. Synthesis of biomass-derived hard carbon 
 

Grinded and dried (60°C) peanut shells (lignocellulosic precursor) were used as 

collected or subjected to acid treatment using phosphoric acid (85%) for 1 day, 6 days 

and 3 months. The peanut shell/phosphoric acid weight ratio was 14% (25g peanut 

shells in 100 mL phosphoric acid). The resulting materials were grinded with mortar 

and pestle and dried at 60°C. Following the precursors were carbonized at 1100℃ 

(heating rate 1℃ min-1) under Argon flow for one hour in a Nabertherm P330 tube 

furnace with a rated power of 1.2 kW. Accordingly, the obtained materials are named 

LHC_0D, LHC_1D, LHC_6D and LHC_3M.  

The LHC_2W800 material was obtained following the same procedure, but with a 

thermal treatment at 800 ℃.  
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5.2.2. Material characterization 
 

The structure and morphology of the hard carbon materials were investigated by 

means of X-ray diffraction (XRD, Bruker D8 Advance diffractometer with Cu Kɑ 

radiation) and scanning electron microscopy (SEM, Zeiss Auriga®). The materials 

surface area and pore width were determined by nitrogen adsorption measurements 

accordinng to the Brunauer-Emmett-Teller (BET) method, using an ASAP 2020 

(Accelerated Surface Area and Porosimetry Analyzer, Micrometrics). N2 absorption-

desorption isotherms of samples were determined and analyzed by Autosorb-iQ, 

Quantachrome. Raman measurements were performed with a confocal InVia Raman 

micro spectrometer with a 633 nm laser (Renishaw; each spectrum was taken as the 

average of three 10-second accumulations). Thermo Gravimetric Analysis (TG) was 

performed with a NETZSCH Libra® TG 209 F1 coupled with a mass spectrometer 

NETZSCH QMS 403D Aëolos®. 

2D WAXS measurements were performed at a sample to detector distance of 6 cm 

using a Bruker Nanostar Small Angle Scattering (SAXS) instrument with evacuated 

beam path, Cu tube source (K-α1 + K-α2), and equipped with a 2048*2048 pixels 2D 

Vantec 2000 detector. WAXS data were corrected for flat field and spatial distortion. 

 

5.2.3. Electrode preparation and cell assembly 
 

Electrodes were prepared with a dry composition of 80 wt.% hard carbon, 10 wt.% 

conductive carbon (SuperC65®, Imerys) and 10 wt.% sodium carboxymethyl cellulose 

(CMC, WALOCEL®CRT 2000 PPA 12, Dow Wolff Cellulosics). LHC_2W800 electrodes 

were also made with a larger conductive carbon content (i.e., 70 wt.% hard carbon, 20 

wt.% conductive carbon and 10 wt.%. CMC) and are named LHC_opt.  
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First, CMC was dissolved in deionized water to obtain a 5 wt.% solution. The 

conductive additive and hard carbon were added into the solution and the resulting 

mixture was dispersed via ball milling for 2.5 h (70 min and 10 min rest; 1 repetition; 

speed main disk: 400 rpm; speed rotating planets: -800 rpm). The obtained slurries 

(solid content: 14.3 %; wet thickness of 150 µm) were casted with a doctor blade on 

dendritic copper foil at room temperature. Afterwards the coated electrodes were dried 

at 80℃ for 10 minutes and then at room temperature overnight under ambient 

atmosphere. Disk electrodes (Ø = 12 mm) were punched and dried for 2 h at 20℃ and 

10 h at 150 ℃ under vacuum in a glass oven. The average active material mass 

loading of the electrodes is around 1.5 mg cm-2.  

 

5.2.4 Electrochemical characterization 
 

Three-electrode Swagelok® cells were assembled using each of the various hard 

carbon electrodes as the working electrode (WE) and sodium metal (99.8%, Acros 

Organics) as the counter (CE) and reference (RE) electrodes. All potential values 

given in this manuscript refer to the Na/Na+ quasi-reference electrode. Whatman® 

glass fiber GF/D disks were used as separator and soaked with 240 μL of electrolyte 

(1M NaClO4 in EC: PC (1:1 wt.%)). Sodium perchlorate NaClO4 (98% Sigma Aldrich) 

propylene carbonate (PC, Sigma Aldrich), and ethylene carbonate (EC, UBE) were 

used as received. Electrolyte preparation and cell assembly were carried out in a glove 

box (MBraun) with oxygen and water contents below 0.1 ppm. 

Galvanostatic cycling tests, between 0.02 V and 2.0 V (vs Na/Na+), were carried out 

with a battery tester (Maccor series 4000, U.S.A). The specific current of 200 mA g-1 

is defined as 1 C. All electrochemical tests were performed in climatic chambers at 20 

± 1 °C.  
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5.3. Results and discussions 

 

Figure 5-1. (a) Schematic of the synthesis method for hard carbons derived from 

peanut shells. See experimental section for further details. SEM images of b) LHC_0D, 

c) LHC_1D and d) LHC_6D. 

 

Hard carbons were synthesized from peanut shells following the synthesis route 

shown in Figure 5-1. The peanut shells were either used as collected or soaked in 

phosphoric acid for 1 day and 6 days. The carbonization was performed at 1100 °C 

under Ar. Accordingly, the samples are named LHC_0D, LHC_1D, and LHC_6D, 

respectively. For comparison purposes, the earlier reported results obtained from 

peanut shells soaked for two weeks (LHC_2W) are also used in this manuscript70.  

The SEM images in Figure 5-1 reveal the acid treatment impact on the morphology of 

the resulting hard carbon. LHC_0D (see Figure 5-1b), shows large particles still 

reflecting the original flake-like structure of the biomass precursor. The short term acid 

treatment, 1 day, strongly influences the morphology, as reported in Figure 5-1c. 

Indeed, the former structure characterizing the precursor is lost while several small 
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particles adhering to carbonized fibers are detected. A 6-days acid treatment leads to 

the disappearance of the small particles, still detected in LHC_1D (see Figure 5-1d), 

resembling the morphology of the 2 weeks acid treated sample (SEM images of 

LHC_2W are reported elsewhere). 70  

The different morphologies resulting from the various acid treatments, can be 

explained considering that peanut shells are composed of different polymer 

components including lignin (27-40 wt.%), cellulose (34-45 wt.%), and hemicellulose, 

and other components including proteins, inorganic salts, among others.213,258 These 

components have different chemical stability towards phosphoric acid, which results 

in a step-wise components decomposition upon treatment time.259 In particular, short 

process times mainly lead to disaggregation of the bio-structure (characterized by low 

acid stability) into small particles while prolonged treatments cause the removal and/or 

dissolution of more stable components.  

 

Figure 5-2. Structural characterization of LHC_0D, LHC_1D and LHC_6D compared 

with LHC_2W70. Comparison of Raman spectra (a), X-ray diffraction patterns (b) and 

normalized XRD patterns between a 2θ ranges from 10° to 35° (c). 2D plot for the 
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WAXS measurement (d) and XRD assignment (e) for LHC_2W. Comparison of DFT 

pore size distribution (f). 

 

The synthesised hard carbons were characterized by Raman spectroscopy, XRD and 

DFT pore size analysis (Figure 5-2 a-c). The gained information is summarized in 

Table 5-1.  

 

Table 5-1. Characteristics of LHC_0D, LHC_1D, LHC_6D and compered with 

LHC_2W70 

 LHC_0D LHC_1D LHC_6D LHC_2W 

ID/IG 1.30 1.41 1.20 0.98 

BET surface 

area (m2 g-1) 

806 1127 445 29 

 

 

By comparing the Raman spectra of the carbonized materials (see Figure 5-2a), it is 

seen that the ID/IG ratio increased from 1.30 to 1.41, which indicates for a higher 

disorder degree most likely related to structural edges defects induced by the acid 

treatment. However, with longer acid treatments prior carbonisation, the ID/IG ratio 

decreased to 1.20 (LHC_6D) and 0.98 (LHC_2W). This interesting finding indicates 

that long acid treatments improve the structural order of the carbonized material in a 

similar manner high annealing temperatures do, leading to a change of the structure 

from highly disordered to planar pseudo-graphitic microlites (higher pseudo-graphitic 

content)157,174,228. Thus, the acid treatment constitutes a valid alternative to the use of 

high carbonisation temperatures. The XRD analysis performed on the investigated 
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hard carbons (Figure 5-2b), enables the identification of impurities. As a matter of the 

fact, the XRD pattern of LHC_0D presents several peaks attributable to the presence 

of impurities such as CaCO3 and KCO3230. Similarly, LHC_1D shows detectable traces 

of inorganic impurities, while for the other hard carbons no impurities are detected, 

suggesting that the acid treatment process also induces a purification of the bio-

derived hard carbon.  

Figure 5-2c compares the 002 reflections of all materials showing that their intensity 

increases with increasing acid activation time. This indicates a higher crystallization in 

a similar fashion to that reported for increasing carbonization temperatures of hard 

carbons.260 All three hard carbons show a peak at about 26.5° which is also observed 

for LHC_2W. Previous studies on carbon derived from peanut shells70,261 and banana 

peels71 also report a peak occurring in the same position, and assigned it to graphite. 

However, the 2D plots of SAXS (small-angle X-ray scattering) reported in Figure 5-

2d, reveal clear individual impurity diffraction spots, thus indicating that the sharp peak 

at about 26.5° is related to small crystalline particles rather than the carbon structure 

(graphitic structure). As a matter of the fact, the assignment of the XRD reflections 

shown in Figure 5-2e clearly indicates that such a peak matches quartz (PDF 89-8487) 

very well, but not graphite (PDF 70-3755). 
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Figure 5-3. Nitrogen adsorption–desorption isotherms of LHC_0D, LHC_1D and 

LHC_6D 

 

The nitrogen adsorption-desorption isotherms of the as-prepared hard carbons (see 

Figure 5-3) show isotherms assignable to a mix between type I and type IV231, 

indicating that the three hard carbons are mostly characterized by a microporous 

character, but with the presence of mesopores. The resulting BET surface area is 

reported in Table 5-1. It is interestingly found that after one day of acid activation 

(LHC_1D), the surface area is increasing when compared with the untreated sample 

(LHC_0D), while with longer acid treatment (LHC_6D and LHC_2W) the surface area 

decreases with the treatment time. Figure 5-2f compares the DFT pore size 

distribution of LHC_0D, LHC_1D, LHC_6D with that of the LHC_2W70. LHC_0D shows 

a similar pore size distribution to LHC_2W, exhibiting two main contributions with pore 

size diameter at around 2.5 nm and 3.5 nm. After one day acid treatment (LHC_1D), 
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the content of pores with diameter ranging from 1.5 nm to 2.5 nm strongly increases, 

which is in good agreement with the well-known ability of phosphoric acid to generate 

microporosity.262 When the acid treatment is prolonged to 6 days, the balance between 

micropores and mesopores changes, with the former decreasing as the later increases, 

and the trend persists also after 2 weeks of acid treatment (LCH_2W)70. To summarize, 

short term acid activation leads to highly microporous hard carbons, while longer acid 

activations tend to induce micropore closure, as reported by early studies via 

increasing carbonization temperature88,263,264. It is worth noting that the phosphoric 

acid activation is reported to increase the pore size from micropore to mesopore in 

lignocellulosic biomass derived carbons.262,265,266 Hence, longer acid activation 

treatments can induce more mesopore but less micropore via pore closure and/or pore 

expansion, which is a similar effect on the porosity as it is reported for increasing 

carbonization temperatures.     

 

 

Figure 5-4. Comparison of the electrochemical performance of LHC_0D, LHC_1D, 

LHC_6D and compared with LHC_2W.70 (a) Long-term cycling performance at various 

C-rates, (b) sodiation and desodiation profiles versus specific capacity and (c) 

sodiation profiles versus relative capacity. The last two panels refer to the 5th cycle in 

panel a (0.1 C-rate). 
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The long-term cycling performance at various C-rates of the investigated hard carbons 

is shown in Figure 5-4a. The associated coulombic efficiencies are shown in Figure 

5-5. While the low rate (0.1C) capacity delivered by LHC_0D overlaps that of LHC_1D, 

a neat increase is observed with the materials exposed to longer acid treatments. In 

fact, LHC_6D and LHC_2W delivered twice and three time the capacity of the 

untreated (LHC_0D) and shortly acid treated (LHC-1D) materials.  Such a large 

performance difference decreased, however, upon increasing C-rates. In fact, at 10 C 

rate all materials delivered the same, but rather low, capacity.  

 

 

Figure 5-5. Long-term cycling performance at various C-rates of (a) LHC_0D, (b) 

LHC_1D and (c) LHC_6D. 

 

Thus, longer acid treatment times substantially improve the specific capacity at low 

and intermediate current rates, but with limited benefit at high rates. The potential 

profiles of all materials at the 5th cycle (see Figure 5-4b) clearly evidence the 

occurrence of the low voltage plateau only in the materials subjected to longer acid 

treatments. On the other hand, LHC_0D and LHC_1D show almost overlapping 

potential profiles with a clear lack of the typical low voltage plateau typically observed 

in hard carbons, as better evidenced in Figure 5-5c where the sodiation profile of the 

materials are reported versus the relative capacity. The longer acid treatment leads to 

a substantial change in the voltage profile versus capacity plot, which is dominated by 
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the low voltage plateau for the materials exposed to the longest acid treatment 

(LHC_2W). On the other hand, only a slight capacity difference is observed in the 

sloping voltage profile region, indicating that the acid treatment does not strongly affect 

the sodium storage capacity in such a region. Indeed, the four carbon anodes present 

comparable potential profile in the sloping region.  

 

 

Figure 5-6. Electrochemical performance of LHC_3M. (a) Long-term cycling 

performance at constant C-rate (0.1C); (b) Delivered capacity at various C-rates; 

sodiation potential profile during the 150th cycle at 0.1 C-rate versus (c) specific 

capacity and (d) relative capacity. 

 

Interestingly, when the acid treatment is prolonged to three months, the resulting hard 

carbon material showed a slightly higher specific capacity at 150th cycle than LHC_2W 
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(308 mAh g-1 versus 298 mAh g-1) when cycled at 0.1 C, however, with inferior rate 

capability and capacity retention (see Figure 5-6). This confirms that, in general, a 

prolonged acid treatment of the peanut shells precursor strongly affects the low rate 

delivered capacity, but not the high rate performance. Also, the limited additional 

capacity gained with the three months exposure to acid suggests two weeks as the 

optimal time for the activation process to occur. 

Several studies investigated correlation between the carbonisation temperature of 

hard carbons from bio-waste and their electrochemical performance as anodes in SIBs. 

The general trend observed implies a linear correlation between the carbonisation 

temperature and the amount of Na+ ions uptake in the low voltage region, which is the 

higher the temperature the longer is the low voltage plateau.67,83,90,228 Interestingly, the 

acid treatment appears to exert the same effect, making feasible the synthesis of hard 

carbon materials for SIBs’ anodes from lignocellulosic bio-waste at lower temperatures.   
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Figure 5-7. TGA (RT-1000 °C, 10 K min-1, nitrogen medium) of the peanut shell 

precursor soaked in acid for 2 weeks. 

 

 

Figure 5-8. Structural characterization of LHC_2W800: (a) Raman spectra, (b) X-ray 

diffraction pattern and (c) DFT pore size distribution. 

 

To identify a suitable annealing temperature, TGA analysis coupled with mass 

spectrometry was performed on the precursor treated in phosphoric acid for two weeks. 

The results (see Figure 5-7) evidence a rather minor weight loss above 800 °C. Based 

on this observations, the carbonisation temperature was selected at 800 °C. The 

derived hard carbon material is named LHC_2W800. Its physical characterization is 

reported in Figure 5-8. LHC_2W800 shows similar ID/IG ratio and position and intensity 

of the (002) reflection, but higher BET surface area and different DFT pore size 

distribution (i.e. smaller pores) like LHC_2W70. Interestingly, LHC_2W800 has similar 

pore size and surface area like LHC_6D, which was synthesized at higher 

carbonization temperature of 1100°C, but subjected to shorter acid treatment. 

Altogether, these evidences suggest that carbonization temperature and acid 

treatment time can have a similar effect on the porosity and the surface area of hard 

carbons.  
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Figure 5-9. Rate capability (a) and sodiation potential profiles at selected current rate 

(b) of LHC_2W800.  Sodiation potential profiles (c) and relative potential profiles (d) of 

10th and 120th cycle at 0.1C. 

 

The electrochemical performance of LHC_2W800 as anode material for SIBS is shown 

in Figure 5-9. Most of the reported studies on hard carbons annealed at temperature 

below or equal to 800 °C show limited electrochemical performance mostly deriving 

from the negligible low voltage plateau capacity67,267. The performance of LHC_2W800 

is, however, rather interesting due to the effects of the acid treatment. In fact, 

LHC_2W800 shows specific capacities of 348 mAh g-1, 306 mAh g-1, 253 mAh g-1, 221 

mAh g-1, 188 mAh g-1, 140 mAh g-1 and 110 mAh g-1 at 0.1C, 0.2C, 0.5C, 1C, 2C, 5C 

and 10C, respectively. Additionally, its defective structure enables for a larger extent 

of the voltage slope region86,135 leading to a better specific capacity at high current 
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rate67,255. At 10 C-rate, LHC_2W800 uptakes Na+ ions up to 110 mAh g-1 against the 77 

mAh g-1 of LHC_2W. However, LHC_2W800 shows a poor cycling stability due to the 

lower annealing temperature. In fact, after 120 cycles the specific capacity fades to 

only 283 mAh g-1 (at 0.1C). The poor capacity retention upon cycling might have 

several reasons such as the relatively lower electronic conductive network, which is 

revealed by the steadily increasing IR-drop upon cycling (see Figure 5-9c), and/or the 

electrolyte decomposition caused by impurities68,268–270. To address the first issue, 

optimized electrodes (named LHC_opt) were made using 20 wt. % of conductive 

carbon additive. The related electrochemical performance of the LHC_opt electrodes 

is displayed in Figure 5-10. 
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Figure 5-10. Gavanostatic cycling performance of LHC_opt: (a) long-cycling 

performance at 1C; (b) rate capability. Potential profiles of LHC_opt at selected current 

rates: (c) 1C; (d) 2C; (e) 5C and (f) 10C, compared with LHC-2W70.  

 

In particular, Figure 5-10a shows the long cycling performance at 1 C rate. In sharp 

contrast to the quick capacity fading of LHC_2W800, LHC_opt shows an outstanding 

capacity retention (even an initial increase) up to 500 cycles, suggesting that the poor 

electronic conductivity is the reason for the poor cycling performance observed with 
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LHC_2W800. Figure 5-10b illustrates the rate capability of LHC_opt, which is also 

compared to that of LHC_2W in Figure 5-10(c-f). The sodiation capacity at 1C, 2C, 

5C and 10C is 225 mAh g-1, 193 mAh g-1, 153 mAh g-1 and 122 mAh g-1 respectively. 

The comparison with the material carbonised at 1000°C (LHC_2W) shows that, with 

the exception of the lowest rate (1C), LHC_opt offers better Na+ ion uptake 

performance. At the highest rate (10C), LHC_opt exhibits an uptake specific capacity 

of 122 mAh g-1, which is 50% higher than that of LHC_2W (80 mAh g-1). Also, the hard 

carbon annealed at 800 °C (LHC_opt) displayed a larger Na+ ion uptake in the voltage 

slope region at all current densities, which results in its intrinsic safety towards the 

occurrence of Na metal plating on the electrode surface. Thus, the combination of long 

(two weeks) acid treatment and low temperature (800°C) carbonisation represents a 

valid strategy to synthesise high rate performance hard carbons for application as 

anode in SIBs. Although LHC_opt contains 20 wt.% of conductive carbon (see 

Experimental), however, it offers a better performance than LHC_2W even considering 

all carbonaceous material (i.e., hard carbon + carbon additive), which is 95 mAh g-1 

versus 65 mAh g-1.  

Since the cost of hard carbon from lignocellulosic precursors is mainly originating from 

the pyrolysis process, using a lower carbonisation temperature is greatly beneficial for 

the overall cost and sustainability189. Thus, in light of the reported results, the proposed 

synthesis represents a step further the sustainable and efficient production of hard 

carbon anodes for SIBs. 

 

5.4. Summary 
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In this study, a suitable synthesis procedure to convert peanut shell bio-waste, i.e., a 

lignocellulosic biomass precursor, into hard carbons for application as high 

performance and sustainable anode materials in SIBs is reported. In particular, the 

impact of the acid treatment on the performance of the resulting hard carbons has 

been investigated in depth for the first time showing the existence of a strong 

correlation between the acid treatment’s time and the Na+ ion uptake characteristics. 

Hence, the acid treatment of the bio-waste precursor may be considered as an 

additional parameter to tailor the properties of hard carbons. In addition, it allows for 

lower carbonization temperatures, i.e., lower production cost, while yielding safer and 

better rate-performing anode materials, which uptake larger fractions of Na+ ions in 

the voltage slope than in the low voltage plateau.  

With this new knowledge, a more sustainable synthesis route (employing a long acid 

treatment, but lower annealing temperature with respect to that used for the untreated 

precursor) is proposed for the production of biomass-derived, high-rate hard carbon.  
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6. Conclusion  

 

This thesis focused on the understanding and designing of sustainable hard carbon 

materials offering good electrochemical performance as anodes in sodium ion 

batteries.  

Three important aspects of hard carbon anode materials were studied in detail.  

The impact of different biomass waste sources on the structural properties and 

electrochemical performance of hard carbons is clarified in Chapter 3, unravelling and 

interlinking the properties of hard carbons with respect to the composition and 

structure of the biomass waste from which they are derived. In detail, a systematic 

structural and electrochemical investigation of hard carbons derived from three typical 

representatives of cellulosic biomass waste, namely corncobs (hemicellulose-linked), 

peanut shells (lignocellulose-linked) and waste apples (pectin-linked) is presented. 

The results show that a stable and reproducible electrochemical performance can be 

obtained for biowaste derived hard carbons. In particular, the hard carbon derived from 

peanut shells shows the best electrochemical performance with high specific 

capacities (298 mAh g-1) and very high capacity retention (98% after 300 cycles). This 

performance is of great interest as lignocellulosic biomass waste cannot be recycled 

easily, e.g., it cannot be used for the generation of bio fuel. 

The use of another industrial waste, pectin-free apple pomace, for the production of 

hard carbon was also pursued, finding that. it shows good electrochemical 

performance with high specific capacities (285 mAh g-1) and high capacity retention 

(96% after 230 cycles). These results were far superior to those already reported in 
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the literature. The pectin-free apple pomace-derived hard carbon delivers a very 

competitive electrochemical performance with respect to the state-of-the-art anode 

material despite being synthesized from very cheap and abundant waste. Most 

importantly, the hard carbon exhibits a unique morphology and very interesting 

structural properties, which provided some insights in the sodium storage mechanism, 

i.e. the key roles of surface area and porosity. 

Finally, the activation step (pre-treatment) of hard carbon precursors, which has a 

crucial effect on the electrochemical performance of the resulting material, was 

investigated. In particular, this study, dealing with the treatment of lignocellulosic 

materials in phosphoric acid, clarifies the impact of such a treatment on the structural 

properties and electrochemical performance of hard carbons, unravelling and 

interlinking the properties of the hard carbons to the structure of peanut shells for the 

first time. Hence, the acid treatment of the bio-waste precursor is identified as a key 

parameter to tailor the properties of hard carbons, allowing for lower carbonization 

temperatures, i.e., lower production cost, while yielding safer and better rate-

performing anode materials compared with other recent results reported in the 

literature (122 mAh g-1 vs. 76 mAh g-1 at 10C). 
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(64)  Alcántara, R.; Lavela, P.; Ortiz, G. F.; Tirado, J. L. Carbon Microspheres 
Obtained from Resorcinol-Formaldehyde as High-Capacity Electrodes for 
Sodium-Ion Batteries. Electrochem. Solid-State Lett. 2005, 8 (4), A222. 

(65)  Balogun, M. S.; Luo, Y.; Qiu, W.; Liu, P.; Tong, Y. A Review of Carbon 
Materials and Their Composites with Alloy Metals for Sodium Ion Battery 
Anodes. Carbon N. Y. 2016, 98, 162–178. 

(66)  Bommier, C.; Mitlin, D.; Ji, X. Internal Structure – Na Storage Mechanisms – 
Electrochemical Performance Relations in Carbons. Prog. Mater. Sci. 2018, 
97, 170–203. 

(67)  Wahid, M.; Puthusseri, D.; Gawli, Y.; Sharma, N.; Ogale, S. Hard Carbons for 
Sodium-Ion Battery Anodes: Synthetic Strategies, Material Properties, and 
Storage Mechanisms. ChemSusChem 2018, 11 (3), 506–526. 

(68)  Irisarri, E.; Ponrouch, A.; Palacin, M. R. Review—Hard Carbon Negative 
Electrode Materials for Sodium-Ion Batteries. J. Electrochem. Soc. 2015, 162 
(14), A2476–A2482. 

(69)  Saurel, D.; Orayech, B.; Xiao, B.; Carriazo, D.; Li, X.; Rojo, T. From Charge 
Storage Mechanism to Performance: A Roadmap toward High Specific Energy 
Sodium-Ion Batteries through Carbon Anode Optimization. Adv. Energy Mater. 
2018, 1703268, 1–33. 

(70)  Dou, X.; Hasa, I.; Hekmatfar, M.; Diemant, T.; Behm, R. J.; Buchholz, D.; 
Passerini, S. Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source 
on the Performance of Hard Carbons for Sodium-Ion Batteries. 
ChemSusChem 2017, 10 (12), 2668–2676. 

(71)  Memarzadeh Lotfabad, E.; Ding, J.; Cui, K.; Kohandehghan, A.; Kalisvaart, W. 
P.; Hazelton, M.; Mitlin, D.; Lotfabad, E. M.; Ding, J.; Cui, K.; Kohandehghan, 
A.; Kalisvaart, W. P.; Hazelton, M.; Mitlin, D. High Density Sodium and Lithium 
Ion Battery Anodes from Banana Peels. ACS Nano 2014, 8 (7), 7115–7129. 

(72)  Hou, H.; Qiu, X.; Wei, W.; Zhang, Y.; Ji, X. Carbon Anode Materials for 
Advanced Sodium-Ion Batteries. Adv. Energy Mater. 2017, 7 (24), 1–30. 

(73)  James J. McTighe. Manufacture of Hard Carbon. 338542, 1886. 

(74)  Harris, P. J. F. Rosalind Franklin’s Work on Coal, Carbon, and Graphite. 
Interdiscip. Sci. Rev. 2001, 3, 204–210. 

(75)  Franklin, R. E. The Interpretation of Diffuse X-Ray Diagrams of Carbon. Acta 
Crystallogr. 1950, 3 (2), 107–121. 

(76)  Franklin, R. E. The Structure of Graphitic Carbons. Acta Crystallogr. 1951, 4 
(3), 253–261. 

(77)  Franklin, R. E. Crystallite Growth in Graphitizing and Non-Graphitizing 
Carbons. Proc. R. Soc. A Math. Phys. Eng. Sci. 1951, 209 (1097), 196–218. 

(78)  Dahn, J. R.; Zheng, T.; Liu, Y.; Xue, J. S. Mechanisms for Lithium Insertion in 
Carbonaceous Materials. Science (80-. ). 1995, 270 (5236), 590–593. 

(79)  Marsh, H.; Rodríguez-Reinoso, F. Active Carbon; Elsevier, 2006; Vol. 44. 



P a g e  | 103 

 

 

(80)  Anderson, P. W. Absence of Diffusion in Certain Random Lattices. Phys. Rev. 
1958, 109 (5), 1492–1505. 

(81)  Hernndez-Montoya, V.; Garca-Servin, J.; José Iván Bueno-López. Thermal 
Treatments and Activation Procedures Used in the Preparation of Activated 
Carbons, Lignocellulosic Precursors Used in the Synthesis of Activated 
Carbon - Characterization Techniques and Applications in the Wastewater 
Treatment; Dr. Virginia Hernández Montoya, Ed.; InTech, 2012. 

(82)  Derbyshire, E. J.; Jagtoyen, M.; McEnaney, B.; Sethuraman, A. R.; Stencel, J. 
M.; Taulbee, D.; Thwaites, M. . W. The Production of Activated Carbons from 
Coals by Chemical Activation. Fuel Div. Prepr. Am. Chem. Soc. 1991, 36, 
1072–1080. 

(83)  Zhang, B.; Ghimbeu, C. M.; Laberty, C.; Vix-Guterl, C.; Tarascon, J.-M. 
Correlation Between Microstructure and Na Storage Behavior in Hard Carbon. 
Adv. Energy Mater. 2016, 6 (1), 1501588. 

(84)  Marsh, H. Introduction to Carbon Science, 1st ed.; Marsh, H., Ed.; 
Butterworths, 1989. 

(85)  Martynenko, A. True, Particle, and Bulk Density of Shrinkable Biomaterials: 
Evaluation from Drying Experiments. Dry. Technol. 2014, 32 (11), 1319–1325. 

(86)  Li, Z.; Bommier, C.; Chong, Z. Sen; Jian, Z.; Surta, T. W.; Wang, X.; Xing, Z.; 
Neuefeind, J. C.; Stickle, W. F.; Dolgos, M.; Greaney, P. A.; Ji, X. Mechanism 
of Na-Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping. 
Adv. Energy Mater. 2017, 7 (18), 1602894. 

(87)  van Schalkwijk, W. A.; Scrosati, B. Advances in Lithium-Ion Batteries; Kluwer 
Academic Publishers, 2002. 

(88)  Buiel, E. R.; George, A. E.; Dahn, J. R. Model of Micropore Closure in Hard 
Carbon Prepared from Sucrose. Carbon N. Y. 1999, 37 (9), 1399–1407. 

(89)  Wahid, M.; Gawli, Y.; Puthusseri, D.; Kumar, A.; Shelke, M. V.; Ogale, S. Nutty 
Carbon: Morphology Replicating Hard Carbon from Walnut Shell for Na Ion 
Battery Anode. ACS Omega 2017, 2 (7), 3601–3609. 

(90)  Li, Y.; Paranthaman, M. P.; Akato, K.; Naskar, A. K.; Levine, A. M.; Lee, R. J.; 
Kim, S.-O.; Zhang, J.; Dai, S.; Manthiram, A. Tire-Derived Carbon Composite 
Anodes for Sodium-Ion Batteries. J. Power Sources 2016, 316, 232–238. 

(91)  Navarro-Suárez, A. M.; Saurel, D.; Sánchez-Fontecoba, P.; Castillo-Martínez, 
E.; Carretero-González, J.; Rojo, T. Temperature Effect on the Synthesis of 
Lignin-Derived Carbons for Electrochemical Energy Storage Applications. J. 
Power Sources 2018, 397, 296–306. 

(92)  Qiu, S.; Xiao, L.; Sushko, M. L.; Han, K. S.; Shao, Y.; Yan, M.; Liang, X.; Mai, 
L.; Feng, J.; Cao, Y.; Ai, X.; Yang, H.; Liu, J. Manipulating Adsorption-Insertion 
Mechanisms in Nanostructured Carbon Materials for High-Efficiency Sodium 
Ion Storage. Adv. Energy Mater. 2017, 7 (17), 1700403. 

(93)  Harris, P. J. F. New Perspectives on the Structure of Graphitic Carbons. Crit. 
Rev. Solid State Mater. Sci. 2005, 30 (4), 235–253. 



P a g e  | 104 

 

 

(94)  Li, Z.; Jian, Z.; Wang, X.; Rodríguez-Pérez, I. A.; Bommier, C.; Ji, X. Hard 
Carbon Anodes of Sodium-Ion Batteries: Undervalued Rate Capability. Chem. 
Commun. 2017, 53 (17), 2610–2613. 

(95)  Stratford, J. M.; Allan, P. K.; Pecher, O.; Chater, P. A.; Grey, C. P. Mechanistic 
Insights into Sodium Storage in Hard Carbon Anodes Using Local Structure 
Probes. Chem. Commun. 2016, 52 (84), 12430–12433. 

(96)  Harris, P. J. F. Fullerene-like Models for Microporous Carbon. J. Mater. Sci. 
2013, 48 (2), 565–577. 

(97)  Lusk, M. T.; Wu, D. T.; Carr, L. D. Graphene Nanoengineering and the Inverse 
Stone-Thrower-Wales Defect. Phys. Rev. B 2010, 81 (15), 155444. 

(98)  Robinson, J. T.; Zalalutdinov, M. K.; Cress, C. D.; Culbertson, J. C.; Friedman, 
A. L.; Merrill, A.; Landi, B. J. Graphene Strained by Defects. ACS Nano 2017, 
11 (5), 4745–4752. 

(99)  Wang, X.; Sun, G.; Routh, P.; Kim, D.-H.; Huang, W.; Chen, P. Heteroatom-
Doped Graphene Materials: Syntheses, Properties and Applications. Chem. 
Soc. Rev. 2014, 43 (20), 7067–7098. 

(100)  Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. Structural Defects in 
Graphene. ACS Nano 2011, 5 (1), 26–41. 

(101)  Wang, H.; Wang, H.; Chen, Y.; Liu, Y.; Zhao, J.; Cai, Q.; Wang, X. 
Phosphorus-Doped Graphene and (8, 0) Carbon Nanotube: Structural, 
Electronic, Magnetic Properties, and Chemical Reactivity. Appl. Surf. Sci. 
2013, 273 (2), 302–309. 

(102)  Yang, Z.; Yao, Z.; Li, G.; Fang, G.; Nie, H.; Liu, Z.; Zhou, X.; Chen, X.; Huang, 
S. Sulfur-Doped Graphene as an Efficient Metal-Free Cathode Catalyst for 
Oxygen Reduction. ACS Nano 2012, 6 (1), 205–211. 

(103)  Morita, R.; Gotoh, K.; Fukunishi, M.; Kubota, K.; Komaba, S.; Nishimura, N.; 
Yumura, T.; Deguchi, K.; Ohki, S.; Shimizu, T.; Ishida, H. Combination of Solid 
State NMR and DFT Calculation to Elucidate the State of Sodium in Hard 
Carbon Electrodes. J. Mater. Chem. A 2016, 4 (34), 13183–13193. 

(104)  Vicarelli, L.; Heerema, S. J.; Dekker, C.; Zandbergen, H. W. Controlling 
Defects in Graphene for Optimizing the Electrical Properties of Graphene 
Nanodevices. ACS Nano 2015, 9 (4), 3428–3435. 

(105)  Telling, R. H.; Ewels, C. P.; El-Barbary, A. A.; Heggie, M. I. Wigner Defects 
Bridge the Graphite Gap. Nat. Mater. 2003, 2 (5), 333–337. 

(106)  Savage, G. Carbon-Carbon Composites; Springer Netherlands: Dordrecht, 
1993. 

(107)  Nazri, G.-A.; Pistoia, G. Lithium Batteries: Science and Technology; 2009. 

(108)  Ban, L. L.; Crawford, D.; Marsh, H. Lattice-Resolution Electron Microscopy in 
Structural Studies of Non-Graphitizing Carbons from Polyvinylidene Chloride 
(PVDC). J. Appl. Crystallogr. 1975, 8 (4), 415–420. 



P a g e  | 105 

 

 

(109)  Townsend, S. J.; Lenosky, T. J.; Muller, D. A.; Nichols, C. S.; Elser, V. 
Negatively Curved Graphitic Sheet Model of Amorphous Carbon. Phys. Rev. 
Lett. 1992, 69 (6), 921–924. 

(110)  Terzyk, A. P.; Furmaniak, S.; Harris, P. J. F.; Gauden, P. A.; Włoch, J.; 
Kowalczyk, P.; Rychlicki, G. How Realistic Is the Pore Size Distribution 
Calculated from Adsorption Isotherms If Activated Carbon Is Composed of 
Fullerene-like Fragments? Phys. Chem. Chem. Phys. 2007, 9 (44), 5919. 

(111)  Harris, P. J. F.; Tsang, S. C. High-Resolution Electron Microscopy Studies of 
Non-Graphitizing Carbons. Philos. Mag. A 1997, 76 (3), 667–677. 

(112)  Dahn, J. R.; Xing, W.; Gao, Y. The “Falling Cards Model” for the Structure of 
Microporous Carbons. Carbon N. Y. 1997, 35 (6), 825–830. 

(113)  Harris, P. J. F. Structure of Non-Graphitising Carbons. Int. Mater. Rev. 1997, 
42 (5), 206–218. 

(114)  Xing, W.; Xue, J. S.; Zheng, T.; Gibaud, A.; Dahn, J. R. Correlation Between 
Lithium Intercalation Capacity and Microstructure in Hard Carbons. J. 
Electrochem. Soc. 1996, 143 (11), 3482. 

(115)  Ruthven, D. M. Principles of Adsorption and Adsorption Processes; 1984. 

(116)  Deng, Y.; Dong, S.; Li, Z.; Jiang, H.; Zhang, X.; Ji, X. Applications of 
Conventional Vibrational Spectroscopic Methods for Batteries Beyond Li-Ion. 
Small Methods 2018, 2 (8), 1700332. 

(117)  Zhao, C.; Lu, Y.; Li, Y.; Jiang, L.; Rong, X.; Hu, Y.-S.; Li, H.; Chen, L. Novel 
Methods for Sodium-Ion Battery Materials. Small Methods 2017, 1 (5), 
1600063. 

(118)  Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, 
F.; Rouquerol, J.; Sing, K. S. W. Physisorption of Gases, with Special 
Reference to the Evaluation of Surface Area and Pore Size Distribution 
(IUPAC Technical Report). Pure Appl. Chem. 2015, 87 (9–10), 1051–1069. 

(119)  Kano, A.; Hojo, N.; Fujimoto, M. Negative-Electrode Active Material for 
Sodium-Ion Secondary Battery, Method for Manufacturing Said Negative 
Material, and Sodium-Ion Secondary Battery. US009755237B2, 2017. 

(120)  Dou, X.; Geng, C.; Buchholz, D.; Passerini, S. Research Update : Hard Carbon 
with Closed Pores from Pectin-Free Apple Pomace Waste for Na-Ion Batteries. 
APL Mater. 2018, 6 (4), 047501. 

(121)  Dou, X.; Hasa, I.; Saurel, D.; Jauregui, M.; Buchholz, D.; Rojo, T.; Passerini, S. 
Impact of the Acid Treatment on Lignocellulosic Biomass Hard Carbon for 
Sodium-Ion Battery Anodes. ChemSusChem 2018. 

(122)  Zheng, F.; Yang, Y.; Chen, Q. High Lithium Anodic Performance of Highly 
Nitrogen-Doped Porous Carbon Prepared from a Metal-Organic Framework. 
Nat. Commun. 2014, 5 (May), 1–10. 

(123)  Xu, D.; Chen, C.; Xie, J.; Zhang, B.; Miao, L.; Cai, J.; Huang, Y.; Zhang, L. A 
Hierarchical N/S-Codoped Carbon Anode Fabricated Facilely from 



P a g e  | 106 

 

 

Cellulose/Polyaniline Microspheres for High-Performance Sodium-Ion 
Batteries. Adv. Energy Mater. 2016, 6 (6), 1–7. 

(124)  Zhang, S. W.; Lv, W.; Luo, C.; You, C. H.; Zhang, J.; Pan, Z. Z.; Kang, F. Y.; 
Yang, Q. H. Commercial Carbon Molecular Sieves as a High Performance 
Anode for Sodium-Ion Batteries. Energy Storage Mater. 2016, 3. 

(125)  Jian, Z.; Hwang, S.; Li, Z.; Hernandez, A. S.; Wang, X.; Xing, Z.; Su, D.; Ji, X. 
Hard–Soft Composite Carbon as a Long-Cycling and High-Rate Anode for 
Potassium-Ion Batteries. Adv. Funct. Mater. 2017, 27 (26), 1–6. 

(126)  Wang, M.; Yang, Y.; Yang, Z.; Gu, L.; Chen, Q.; Yu, Y. Sodium-Ion Batteries: 
Improving the Rate Capability of 3D Interconnected Carbon Nanofibers Thin 
Film by Boron, Nitrogen Dual-Doping. Adv. Sci. 2017, 4 (4). 

(127)  Shenderova, O. A.; Zhirnov, V. V.; Brenner, D. W. Carbon Nanostructures. 
Crit. Rev. Solid State Mater. Sci. 2002, 27 (3–4), 227–356. 

(128)  Marsh, H.; Crawford, D. Structure in Graphitizable Carbon from Coal-Tar Pitch 
HTT 750–1148 K. Studied Using High Resolution Electron Microscopy. Carbon 
N. Y. 1984, 22 (4–5), 413–422. 

(129)  Shinn, J. H. From Coal to Single-Stage and Two-Stage Products : A Reactive 
Model of Coal Structure. Fuel 1984, 63, 1187–1196. 

(130)  Kvick, Å. X-Ray Diffraction, Materials Science Applications. Encycl. Spectrosc. 
Spectrom. 2017, 648–655. 

(131)  Iwashita, N. X-Ray Powder Diffraction; Tsinghua University Press Limited., 
2016. 

(132)  Cowlard, F. C.; Lewis, J. C. Vitreous Carbon — A New Form of Carbon. J. 
Mater. Sci. 1967, 2 (6), 507–512. 

(133)  Warren, B. E. X-Ray Diffraction in Random Layer Lattices. Phys. Rev. 1941, 
59 (9), 693–698. 

(134)  Lipson, H.; Langford, J. I.; Hu, H.-C. Trigonometric Intensity Factors. In 
International Tables for Crystallography; Prince, E., Ed.; International Union of 
Crystallography: Chester, England, 2006; Vol. C, pp 596–598. 

(135)  Bommier, C.; Surta, T. W.; Dolgos, M.; Ji, X. New Mechanistic Insights on Na-
Ion Storage in Nongraphitizable Carbon. Nano Lett. 2015, 15 (9), 5888–5892. 

(136)  Kipling, J. J.; Sherwood, J. N.; Shooter, P. V.; Thompson, N. R. Factors 
Influencing the Graphitization of Polymer Carbons. Carbon N. Y. 1964, 1 (3), 
315–320. 

(137)  Stevens, D. A.; Dahn, J. R. An In Situ Small-Angle X-Ray Scattering Study of 
Sodium Insertion into a Nanoporous Carbon Anode Material within an 
Operating Electrochemical Cell. J. Electrochem. Soc. 2000, 147 (12), 4428–
4431. 

(138)  Glatter, V. O.; Kratky, O. Small Angle X-Ray Scattering. Small Angle X-ray 
Scatt. 1982, 36 (5), 1985. 



P a g e  | 107 

 

 

(139)  Porod, G. Die Roentgenkleinwinkelstreuung von Dichtgepackten Kolloiden 
Systemen - I. Teil. Kolloid-Zeitschrift 1951, 124 (2), 83–114. 

(140)  Gibaud, A.; Xue, J. S.; Dahn, J. R. A Small Angle X-Ray Scattering Study of 
Carbons Made from Pyrolyzed Sugar. Carbon N. Y. 1996, 34 (4), 499–503. 

(141)  Schroeder, M.; Menne, S.; Ségalini, J.; Saurel, D.; Casas-Cabanas, M.; 
Passerini, S.; Winter, M.; Balducci, A. Considerations about the Influence of 
the Structural and Electrochemical Properties of Carbonaceous Materials on 
the Behavior of Lithium-Ion Capacitors. J. Power Sources 2014, 266, 250–258. 

(142)  Prehal, C.; Weingarth, D.; Perre, E.; Lechner, R. T.; Amenitsch, H.; Paris, O.; 
Presser, V. Tracking the Structural Arrangement of Ions in Carbon 
Supercapacitor Nanopores Using in Situ Small-Angle X-Ray Scattering. 
Energy Environ. Sci. 2015, 8 (6), 1725–1735. 

(143)  Nishikawa, K. Pore Structure Analyses of Carbons by Small-Angle X-Ray 
Scattering. In Carbon Alloys; Elsevier, 2003; pp 175–188. 

(144)  Stevens, D. A.; Dahn, J. R. High Capacity Anode Materials for Rechargeable 
Sodium‐Ion Batteries. J. Electrochem. Soc. 2000, 147 (4), 1271–1273. 

(145)  Buiel, E.; Dahn, J. R. Reduction of the Irreversible Capacity in Hard‐Carbon 
Anode Materials Prepared from Sucrose for Li‐Ion Batteries. J. Electrochem. 
Soc. 1998, 145 (6), 1977–1981. 

(146)  Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; 
Ogata, A.; Gotoh, K.; Fujiwara, K. Electrochemical Na Insertion and Solid 
Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion 
Batteries. Adv. Funct. Mater. 2011, 21 (20), 3859–3867. 

(147)  Smith, A. J.; MacDonald, M. J.; Ellis, L. D.; Obrovac, M. N.; Dahn, J. R. A 
Small Angle X-Ray Scattering and Electrochemical Study of the 
Decomposition of Wood during Pyrolysis. Carbon N. Y. 2012, 50 (10), 3717–
3723. 

(148)  Dahbi, M.; Kiso, M.; Kubota, K.; Horiba, T.; Chafik, T.; Hida, K.; Matsuyama, 
T.; Komaba, S. Synthesis of Hard Carbon from Argan Shells for Na-Ion 
Batteries. J. Mater. Chem. A 2017, 5 (20), 9917–9928. 

(149)  Simone, V.; Boulineau, A.; de Geyer, A.; Rouchon, D.; Simonin, L.; Martinet, S. 
Hard Carbon Derived from Cellulose as Anode for Sodium Ion Batteries: 
Dependence of Electrochemical Properties on Structure. J. Energy Chem. 
2016, 25 (5), 761–768. 

(150)  Morcrette, M.; Chabre, Y.; Vaughan, G.; Amatucci, G.; Leriche, J.-B.; Patoux, 
S.; Masquelier, C.; Tarascon, J.-M. In Situ X-Ray Diffraction Techniques as a 
Powerful Tool to Study Battery Electrode Materials. Electrochim. Acta 2002, 47 
(19), 3137–3149. 

(151)  Sharma, N.; Pang, W. K.; Guo, Z.; Peterson, V. K. In Situ Powder Diffraction 
Studies of Electrode Materials in Rechargeable Batteries. ChemSusChem 
2015, 8 (17), 2826–2853. 



P a g e  | 108 

 

 

(152)  Luo, W.; Jian, Z.; Xing, Z.; Wang, W.; Bommier, C.; Lerner, M. M.; Ji, X. 
Electrochemically Expandable Soft Carbon as Anodes for Na-Ion Batteries. 
ACS Cent. Sci. 2015, 1 (9), 516–522. 

(153)  Wu, J.-B.; Lin, M.-L.; Cong, X.; Liu, H.-N.; Tan, P.-H. Raman Spectroscopy of 
Graphene-Based Materials and Its Applications in Related Devices. Chem. 
Soc. Rev. 2018, 1822–1873. 

(154)  Marino, C.; Cabanero, J.; Povia, M.; Villevieille, C. Biowaste Lignin-Based 
Carbonaceous Materials as Anodes for Na-Ion Batteries. J. Electrochem. Soc. 
2018, 165 (7), A1400–A1408. 

(155)  Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cançado, L. G.; Jorio, 
A.; Saito, R. Studying Disorder in Graphite-Based Systems by Raman 
Spectroscopy. Phys. Chem. Chem. Phys. 2007, 9 (11), 1276–1291. 

(156)  Ferrari, A. C. Raman Spectroscopy of Graphene and Graphite: Disorder, 
Electron–phonon Coupling, Doping and Nonadiabatic Effects. Solid State 
Commun. 2007, 143 (1–2), 47–57. 

(157)  Ferrari, A. C.; Robertson, J. Interpretation of Raman Spectra of Disordered 
and Amorphous Carbon. Phys. Rev. B 2000, 61 (20), 14095–14107. 

(158)  Bokobza, L.; Bruneel, J.-L.; Couzi, M. Raman Spectra of Carbon-Based 
Materials (from Graphite to Carbon Black) and of Some Silicone Composites. 
C 2015, 1 (1), 77–94. 

(159)  Knight, D. S.; White, W. B. Characterization of Crystalline Quality of Diamond 
Films by Raman Spectroscopy. J. Mater. Res. 1989, 4 (2), 385–393. 

(160)  Caņado, L. G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y. A.; Mizusaki, H.; Jorio, 
A.; Coelho, L. N.; Magalhães-Paniago, R.; Pimenta, M. A. General Equation 
for the Determination of the Crystallite Size La of Nanographite by Raman 
Spectroscopy. Appl. Phys. Lett. 2006, 88 (16), 2–5. 

(161)  Vázquez-Santos, M. B.; Geissler, E.; László, K.; Rouzaud, J. N.; Martínez-
Alonso, A.; Tascón, J. M. D. Comparative XRD, Raman, and TEM Study on 
Graphitization of PBO-Derived Carbon Fibers. J. Phys. Chem. C 2012, 116 (1), 
257–268. 

(162)  Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman 
Microspectroscopy of Soot and Related Carbonaceous Materials: Spectral 
Analysis and Structural Information. Carbon N. Y. 2005, 43 (8), 1731–1742. 

(163)  Herdman, J. D.; Connelly, B. C.; Smooke, M. D.; Long, M. B.; Miller, J. H. A 
Comparison of Raman Signatures and Laser-Induced Incandescence with 
Direct Numerical Simulation of Soot Growth in Non-Premixed Ethylene/Air 
Flames. Carbon N. Y. 2011, 49 (15), 5298–5311. 

(164)  Ding, J.; Wang, H.; Li, Z.; Kohandehghan, A.; Cui, K.; Xu, Z.; Zahiri, B.; Tan, 
X.; Lotfabad, E. M.; Olsen, B. C.; Mitlin, D. Carbon Nanosheet Frameworks 
Derived from Peat Moss as High Performance Sodium Ion Battery Anodes. 
ACS Nano 2013, 7 (12), 11004–11015. 



P a g e  | 109 

 

 

(165)  Gupta, A. K.; Nisoli, C.; Lammert, P. E.; Crespi, V. H.; Eklund, P. C. Curvature-
Induced D-Band Raman Scattering in Folded Graphene. J. Phys. Condens. 
Matter 2010, 22 (33). 

(166)  Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A Cost and Resource 
Analysis of Sodium-Ion Batteries. Nat. Rev. Mater. 2018, 3, 18013. 

(167)  Peters, J.; Buchholz, D.; Passerini, S.; Weil, M. Life Cycle Assessment of 
Sodium-Ion Batteries. Energy Environ. Sci. 2016, 9 (5), 1744–1751. 

(168)  Streets, D. G.; Yarber, K. F.; Woo, J.-H.; Carmichael, G. R. Biomass Burning 
in Asia: Annual and Seasonal Estimates and Atmospheric Emissions. Global 
Biogeochem. Cycles 2003, 17 (4), 1099. 

(169)  Yevich, R.; Logan, J. A. An Assessment of Biofuel Use and Burning of 
Agricultural Waste in the Developing World. Global Biogeochem. Cycles 2003, 
17 (4), 1–5. 

(170)  Huang, R. J.; Zhang, Y.; Bozzetti, C.; Ho, K. F.; Cao, J. J.; Han, Y.; 
Daellenbach, K. R.; Slowik, J. G.; Platt, S. M.; Canonaco, F.; Zotter, P.; Wolf, 
R.; Pieber, S. M.; Bruns, E. A.; Crippa, M.; Ciarelli, G.; Piazzalunga, A.; 
Schwikowski, M.; Abbaszade, G.; Schnelle-Kreis, J.; Zimmermann, R.; An, Z.; 
Szidat, S.; Baltensperger, U.; El Haddad, I.; Prevot, A. S. High Secondary 
Aerosol Contribution to Particulate Pollution during Haze Events in China. 
Nature 2014, 514 (7521), 218–222. 

(171)  Zhu, X.; Jiang, X.; Liu, X.; Xiao, L.; Cao, Y. A Green Route to Synthesize Low-
Cost and High-Performance Hard Carbon as Promising Sodium-Ion Battery 
Anodes from Sorghum Stalk Waste. Green Energy Environ. 2017, 2 (3), 310–
315. 

(172)  Górka, J.; Vix-Guterl, C.; Matei Ghimbeu, C. Recent Progress in Design of 
Biomass-Derived Hard Carbons for Sodium Ion Batteries. C 2016, 2 (4), 24. 

(173)  Lv, W.; Wen, F.; Xiang, J.; Zhao, J.; Li, L.; Wang, L.; Liu, Z.; Tian, Y. Peanut 
Shell Derived Hard Carbon as Ultralong Cycling Anodes for Lithium and 
Sodium Batteries. Electrochim. Acta 2015, 176, 533–541. 

(174)  Wang, K.; Jin, Y.; Sun, S.; Huang, Y.; Peng, J.; Luo, J.; Zhang, Q.; Qiu, Y.; 
Fang, C.; Han, J. Low-Cost and High-Performance Hard Carbon Anode 
Materials for Sodium-Ion Batteries. ACS Omega 2017, 2 (4), 1687–1695. 

(175)  Wu, L.; Buchholz, D.; Vaalma, C.; Giffin, G. A.; Passerini, S. Apple-Biowaste-
Derived Hard Carbon as a Powerful Anode Material for Na-Ion Batteries. 
ChemElectroChem 2016, 3 (2), 292–298. 

(176)  Hong, K.; Qie, L.; Zeng, R.; Yi, Z.; Zhang, W.; Wang, D.; Yin, W.; Wu, C.; Fan, 
Q.; Zhang, W.; Huang, Y. Biomass Derived Hard Carbon Used as a High 
Performance Anode Material for Sodium Ion Batteries. J. Mater. Chem. A 
2014, 2 (32), 12733. 

(177)  Gaddam, R. R.; Yang, D.; Narayan, R.; Raju, K. V. S. N.; Kumar, N. A.; Zhao, 
X. S. Biomass Derived Carbon Nanoparticle as Anodes for High Performance 
Sodium and Lithium Ion Batteries. Nano Energy 2016, 26, 346–352. 



P a g e  | 110 

 

 

(178)  Tang, W.; Zhang, Y.; Zhong, Y.; Shen, T.; Wang, X.; Xia, X.; Tu, J. Natural 
Biomass-Derived Carbons for Electrochemical Energy Storage. Mater. Res. 
Bull. 2017, 88, 234–241. 

(179)  Li, Y.; Xu, S.; Wu, X.; Yu, J.; Wang, Y.; Hu, Y.-S.; Li, H.; Chen, L.; Huang, X. 
Amorphous Monodispersed Hard Carbon Micro-Spherules Derived from 
Biomass as a High Performance Negative Electrode Material for Sodium-Ion 
Batteries. J. Mater. Chem. A 2015, 3 (1), 71–77. 

(180)  Zhang, N.; Liu, Q.; Chen, W.; Wan, M.; Li, X.; Wang, L.; Xue, L.; Zhang, W. 
High Capacity Hard Carbon Derived from Lotus Stem as Anode for Sodium Ion 
Batteries. J. Power Sources 2018, 378 (December 2017), 331–337. 

(181)  Sen, S.; Patil, S.; Argyropoulos, D. S. Thermal Properties of Lignin in 
Copolymers, Blends, and Composites: A Review. Green Chem. 2015, 17 (11), 
4862–4887. 

(182)  Upton, B. M.; Kasko, A. M. Strategies for the Conversion of Lignin to High-
Value Polymeric Materials: Review and Perspective. Chem. Rev. 2016, 116 
(4), 2275–2306. 

(183)  Kai, D.; Tan, M. J.; Chee, P. L.; Chua, Y. K.; Yap, Y. L.; Loh, X. J. Towards 
Lignin-Based Functional Materials in a Sustainable World. Green Chem. 2016, 
18 (5), 1175–1200. 

(184)  Wang, S.; Dai, G.; Yang, H.; Luo, Z. Lignocellulosic Biomass Pyrolysis 
Mechanism: A State-of-the-Art Review. Prog. Energy Combust. Sci. 2017, 62, 
33–86. 

(185)  IOANNIDOU, O.; ZABANIOTOU, A. Agricultural Residues as Precursors for 
Activated Carbon Production—A Review. Renew. Sustain. Energy Rev. 2007, 
11 (9), 1966–2005. 

(186)  Zhang, H.; Zhang, W.; Ming, H.; Pang, J.; Zhang, H.; Cao, G.; Yang, Y. Design 
Advanced Carbon Materials from Lignin-Based Interpenetrating Polymer 
Networks for High Performance Sodium-Ion Batteries. Chem. Eng. J. 2018, 
341, 280–288. 

(187)  Saavedra Rios, C. del M.; Simone, V.; Simonin, L.; Martinet, S.; Dupont, C. 
Biochars from Various Biomass Types as Precursors for Hard Carbon Anodes 
in Sodium-Ion Batteries. Biomass and Bioenergy 2018, 117 (July), 32–37. 

(188)  Alonso, D. M.; Wettstein, S. G.; Dumesic, J. A. Bimetallic Catalysts for 
Upgrading of Biomass to Fuels and Chemicals. Chem. Soc. Rev. 2012, 41 
(24), 8075–8098. 

(189)  Baldinelli, A.; Dou, X.; Buchholz, D.; Marinaro, M.; Passerini, S.; Barelli, L. 
Addressing the Energy Sustainability of Biowaste-Derived Hard Carbon 
Materials for Battery Electrodes. Green Chem. 2018, 20 (7), 1527–1537. 

(190)  Jin, Y.; Sun, S.; Ou, M.; Liu, Y.; Fan, C.; Sun, X.; Peng, J.; Li, Y.; Qiu, Y.; Wei, 
P.; Deng, Z.; Xu, Y.; Han, J.; Huang, Y. High-Performance Hard Carbon 
Anode: Tunable Local Structures and Sodium Storage Mechanism. ACS Appl. 
Energy Mater. 2018, acsaem.8b00354. 



P a g e  | 111 

 

 

(191)  Bai, P.; He, Y.; Zou, X.; Zhao, X.; Xiong, P.; Xu, Y. Elucidation of the Sodium-
Storage Mechanism in Hard Carbons. Adv. Energy Mater. 2018, 1703217, 
1703217. 

(192)  Matei Ghimbeu, C.; Górka, J.; Simone, V.; Simonin, L.; Martinet, S.; Vix-Guterl, 
C. Insights on the Na+ion Storage Mechanism in Hard Carbon: Discrimination 
between the Porosity, Surface Functional Groups and Defects. Nano Energy 
2018, 44 (October 2017), 327–335. 

(193)  Wu, C. M.; Pan, P. I.; Cheng, Y. W.; Liu, C. P.; Chang, C. C.; Avdeev, M.; Lin, 
S. kang. The Mechanism of the Sodiation and Desodiation in Super P Carbon 
Electrode for Sodium-Ion Battery. J. Power Sources 2017, 340, 14–21. 

(194)  Qiao, Y.; Ma, M.; Liu, Y.; Li, S.; Lu, Z.; Yue, H.; Dong, H.; Cao, Z.; Yin, Y.; 
Yang, S. First-Principles and Experimental Study of Nitrogen/Sulfur Co-Doped 
Carbon Nanosheets as Anodes for Rechargeable Sodium Ion Batteries. J. 
Mater. Chem. A 2016, 4 (40), 15565–15574. 

(195)  Li, Z.; Ma, L.; Surta, T. W.; Bommier, C.; Jian, Z.; Xing, Z.; Stickle, W. F.; 
Dolgos, M.; Amine, K.; Lu, J.; Wu, T.; Ji, X. High Capacity of Hard Carbon 
Anode in Na-Ion Batteries Unlocked by PO  x  Doping. ACS Energy Lett. 2016, 
395–401. 

(196)  Wang, S.; Kakumoto, T.; Matsumura, Y. Mechanism of Lithium Insertion into 
Disordered Carbon. Synth. Met. 1999, 103, 2308–2309. 

(197)  Wu, Y.; Wan, C.; Jiang, C.; Fang, S.; Jiang, Y. Mechanism of Lithium Storage 
in Low Temperature Carbon. Carbon N. Y. 1999, 37, 1901–1908. 

(198)  Xiang, H.; Fang, S.; Jiang, Y. Mechanism of Lithium Insertion in Carbons 
Pyrolyzed at Low Temperature. Chinese Sci. Bull. 1999, 44 (5), 385–390. 

(199)  Sato, K.; Noguchi, M.; Demachi, A.; Oki, N.; Endo, M. A Mechanism of Lithium 
Storage in Disordered Carbons. Science (80-. ). 1994, 264 (5158), 556–558. 

(200)  Xiao, L.; Cao, Y. Delineating Adsorption-Insertion Mechanism in Hard Carbon 
Materials for Sodium Ion Storage. Meet. Abstr. 2017-02 486 2017. 

(201)  Elia, G. A.; Hasa, I.; Hassoun, J. Characterization of a Reversible, Low-
Polarization Sodium-Oxygen Battery. Electrochim. Acta 2016, 191, 516–520. 

(202)  Adelhelm, P.; Hartmann, P.; Bender, C. L.; Busche, M.; Eufinger, C.; Janek, J. 
From Lithium to Sodium: Cell Chemistry of Room Temperature Sodium–air 
and Sodium–sulfur Batteries. Beilstein J. Nanotechnol. 2015, 6, 1016–1055. 

(203)  Marsh, H.; Wynne-Jones, W. F. K. THE SURFACE PROPERTIES OF 
CARBON-I THE EFFECT OF ACTIVATED DIFFUSION. Carbon N. Y. 1964, 1, 
269–279. 

(204)  Tsai, P.; Chung, S.-C.; Lin, S.; Yamada, A. Ab Initio Study of Sodium 
Intercalation into Disordered Carbon. J. Mater. Chem. A 2015, 3 (18), 9763–
9768. 

(205)  Ragauskas, A. J.; Williams, C. K.; Davison, B. H.; Britovsek, G.; Cairney, J.; 
Eckert, C. A.; Frederick, W. J.; Hallett, J. P.; Leak, D. J.; Liotta, C. L.; Mielenz, 



P a g e  | 112 

 

 

J. R.; Murphy, R.; Templer, R.; Tschaplinski, T. The Path Forward for Biofuels 
and Biomaterials. Science 2006, 311 (5760), 484–489. 

(206)  Huber, G. W.; Iborra, S.; Corma, A. Synthesis of Transportation Fuels from 
Biomass: Chemistry, Catalysts, and Engineering. Chem. Rev. 2006, 106 (9), 
4044–4098. 

(207)  United Nations Environmental Programme. Converting Waste Agricultural 
Biomass into a Resource; 2009. 

(208)  Pan, H.; Hu, Y.-S.; Chen, L. Room-Temperature Stationary Sodium-Ion 
Batteries for Large-Scale Electric Energy Storage. Energy Environ. Sci. 2013, 
6 (8), 2338–2360. 

(209)  Irisarri, E.; Ponrouch, A.; Palacin, M. R. Review—Hard Carbon Negative 
Electrode Materials for Sodium-Ion Batteries. J. Electrochem. Soc. 2015, 162 
(14), A2476–A2482. 

(210)  Wang, L.; Schnepp, Z.; Titirici, M. M. Rice Husk-Derived Carbon Anodes for 
Lithium Ion Batteries. J. Mater. Chem. A 2013, 1 (17), 5269–5273. 

(211)  Ou, J.; Zhang, Y.; Chen, L.; Zhao, Q.; Meng, Y.; Guo, Y.; Xiao, D. Nitrogen-
Rich Porous Carbon Derived from Biomass as a High Performance Anode 
Material for Lithium Ion Batteries. J. Mater. Chem. A 2015, 3 (12), 6534–6541. 

(212)  Gibson, L. J. The Hierarchical Structure and Mechanics of Plant Materials. J. 
R. Soc. Interface 2012, 9 (76), 2749–2766. 

(213)  Sun, Y.; Cheng, J. Hydrolysis of Lignocellulosic Materials for Ethanol 
Production: A Review. Bioresour. Technol. 2002, 83 (1), 1–11. 

(214)  Nawirska, A.; Kwaśniewska, M. Dietary Fibre Fractions from Fruit and 
Vegetable Processing Waste. Food Chem. 2005, 91 (2), 221–225. 

(215)  Tanyildizi, M. Ş. Modeling of Adsorption Isotherms and Kinetics of Reactive 
Dye from Aqueous Solution by Peanut Hull. Chem. Eng. J. 2011, 168 (3), 
1234–1240. 

(216)  Shaukat, S. S. Progress in Biomass and Bioenergy Production; 2011. 

(217)  Qin, W.; Wu, L.; Zheng, Z.; Dong, C.; Yang, Y. Lignin Hydrolysis and 
Phosphorylation Mechanism during Phosphoric Acid-Acetone Pretreatment: A 
DFT Study. Molecules 2014, 19 (12), 21335–21349. 

(218)  Kim, C.; Yang, K. S.; Kojima, M.; Yoshida, K.; Kim, Y. J.; Kim, Y. A.; Endo, M. 
Fabrication of Electrospinning-Derived Carbon Nanofiber Webs for the Anode 
Material of Lithium-Ion Secondary Batteries. Adv. Funct. Mater. 2006, 16 (18), 
2393–2397. 

(219)  Gass, M. H.; Bangert, U.; Bleloch, A. L.; Wang, P.; Nair, R. R.; Geim,  a K. 
Free-Standing Graphene at Atomic Resolution. Nat. Nanotechnol. 2008, 3 
(11), 676–681. 

(220)  Li, W.; Zeng, L.; Yang, Z.; Gu, L.; Wang, J.; Liu, X.; Cheng, J.; Yu, Y. Free-
Standing and Binder-Free Sodium-Ion Electrodes with Ultralong Cycle Life and 



P a g e  | 113 

 

 

High Rate Performance Based on Porous Carbon Nanofibers. Nanoscale 
2014, 6 (2), 693–698. 

(221)  Eshetu, G. G.; Diemant, T.; Grugeon, S.; Behm, R. J.; Laruelle, S.; Armand, 
M.; Passerini, S. In-Depth Interfacial Chemistry and Reactivity Focused 
Investigation of Lithium-Imide- and Lithium-Imidazole-Based Electrolytes. ACS 
Appl. Mater. Interfaces 2016, 8 (25), 16087–16100. 

(222)  Qi, X.; Blizanac, B.; DuPasquier, A.; Lal, A.; Niehoff, P.; Placke, T.; Oljaca, M.; 
Li, J.; Winter, M. Influence of Thermal Treated Carbon Black Conductive 
Additive on the Performance of High Voltage Spinel Cr-Doped LiNi0.5Mn1.5O4 
Composite Cathode Electrode. J. Electrochem. Soc. 2015, 162 (3), A339–
A343. 

(223)  Mérel, P.; Tabbal, M.; Chaker, M.; Moisa, S.; Margot, J. Direct Evaluation of 
the Sp3 Content in Diamond-like-Carbon Films by XPS. Appl. Surf. Sci. 1998, 
136 (1–2), 105–110. 

(224)  Xing, W. Study of Irreversible Capacities for Li Insertion in Hard and Graphitic 
Carbons. J. Electrochem. Soc. 1997, 144 (4), 1195. 

(225)  Vogt, L. O.; El Kazzi, M.; Jämstorp Berg, E.; Pérez Villar, S.; Novák, P.; 
Villevieille, C. Understanding the Interaction of the Carbonates and Binder in 
Na-Ion Batteries: A Combined Bulk and Surface Study. Chem. Mater. 2015, 27 
(4), 1210–1216. 

(226)  Bakandritsos, A.; Steriotis, T.; Petridis, D. High Surface Area Montmorillonite - 
Carbon Composites and Derived Carbons. Chem. Mater 2004, 143 (10), 
1551–1559. 

(227)  Li, Y.; Hu, Y. S.; Qi, X.; Rong, X.; Li, H.; Huang, X.; Chen, L. Advanced 
Sodium-Ion Batteries Using Superior Low Cost Pyrolyzed Anthracite Anode: 
Towards Practical Applications. Energy Storage Mater. 2016, 5, 191–197. 

(228)  Liu, P.; Li, Y.; Hu, Y.-S.; Li, H.; Chen, L.; Huang, X. A Waste Biomass Derived 
Hard Carbon as a High-Performance Anode Material for Sodium-Ion Batteries. 
J. Mater. Chem. A 2016, 4 (34), 13046–13052. 

(229)  Canteri-Schemin, M. H.; Fertonani, H. C. R.; Waszczynskyj, N.; Wosiacki, G. 
Extraction of Pectin from Apple Pomace. Brazilian Arch. Biol. Technol. 2005, 
48 (2), 259–266. 

(230)  Du, S.; Yang, H.; Qian, K.; Wang, X.; Chen, H. Fusion and Transformation 
Properties of the Inorganic Components in Biomass Ash. Fuel 2014, 117 
(PARTB), 1281–1287. 

(231)  Sing, K. S. W. Reporting Physisorption Data for Gas/Solid Systems with 
Special Reference to the Determination of Surface Area and Porosity 
(Recommendations 1984). Pure Appl. Chem. 1985, 57 (4), 603–619. 

(232)  Chu, S.; Majumdar, A. Opportunities and Challenges for a Sustainable Energy 
Future. Nature 2012, 488 (7411), 294–303. 

(233)  Armand, M.; Tarascon, J.-M. Building Better Batteries. Nature 2008, 451 
(7179), 652–657. 



P a g e  | 114 

 

 

(234)  Tarascon, J. M.; Armand, M. Issues and Challenges Facing Rechargeable 
Lithium Batteries. Nature 2001, 414 (6861), 359–367. 

(235)  Yao, F.; Pham, D. T.; Lee, Y. H. Carbon-Based Materials for Lithium-Ion 
Batteries, Electrochemical Capacitors, and Their Hybrid Devices. 
ChemSusChem 2015, 8 (14), 2284–2311. 

(236)  Vaalma, C.; Giffin, G. A.; Buchholz, D.; Passerini, S. Non-Aqueous K-Ion 
Battery Based on Layered K 0.3 MnO 2 and Hard Carbon/Carbon Black. J. 
Electrochem. Soc. 2016, 163 (7), 1295–1299. 

(237)  Chen, X.; Paul, R.; Dai, L. Carbon-Based Supercapacitors for Efficient Energy 
Storage. Natl. Sci. Rev. 2017, 4 (3), 453–489. 

(238)  Lee, B.; Ko, Y.; Kwon, G.; Lee, S.; Ku, K.; Kim, J. Exploiting Biological 
Systems : Toward Eco-Friendly and High-Efficiency Rechargeable Batteries. 
Joule 2018, 2 (1), 61–75. 

(239)  Sanderson, K. Lignocellulose: A Chewy Problem. Nature 2011, 474 (7352 
SUPPL.). 

(240)  Himmel, M. E.; Ding, S.-Y.; Johnson, D. K.; Adney, W. S.; Nimlos, M. R.; 
Brady, J. W.; Foust, T. D. Biomass Recalcitrance: Engineering Plants and 
Enzymes for Biofuels Production. Science (80-. ). 2007, 315 (5813), 804–807. 

(241)  Alonso, D. M.; Hakim, S. H.; Zhou, S.; Won, W.; Hosseinaei, O.; Tao, J.; 
Garcia-Negron, V.; Motagamwala, A. H.; Mellmer, M. A.; Huang, K.; Houtman, 
C. J.; Labbé, N.; Harper, D. P.; Maravelias, C.; Runge, T.; Dumesic, J. A. 
Increasing the Revenue from Lignocellulosic Biomass: Maximizing Feedstock 
Utilization. Sci. Adv. 2017, 3 (5), e1603301. 

(242)  Mohamad Nor, N.; Lau, L. C.; Lee, K. T.; Mohamed, A. R. Synthesis of 
Activated Carbon from Lignocellulosic Biomass and Its Applications in Air 
Pollution Control—a Review. J. Environ. Chem. Eng. 2013, 1 (4), 658–666. 

(243)  Lu, H.; Zhao, X. S. Biomass-Derived Carbon Electrode Materials for 
Supercapacitors. Sustain. Energy Fuels 2017, 1, 1265–1281. 

(244)  Enock, T. K.; King’ondu, C. K.; Pogrebnoi, A.; Jande, Y. A. C. Status of 
Biomass Derived Carbon Materials for Supercapacitor Application. Int. J. 
Electrochem. 2017, 2017, 1–14. 

(245)  Wang, J.; Nie, P.; Ding, B.; Dong, S.; Hao, X.; Dou, H.; Zhang, X. Biomass 
Derived Carbon for Energy Storage Devices. J. Mater. Chem. A 2017, 5 (6), 
2411–2428. 

(246)  Gao, Z.; Zhang, Y.; Song, N.; Li, X. Biomass-Derived Renewable Carbon 
Materials for Electrochemical Energy Storage. Mater. Res. Lett. 2017, 5 (2), 
69–88. 

(247)  Kim, H.; Hong, J.; Yoon, G.; Kim, H.; Park, K.-Y.; Park, M.-S.; Yoon, W.-S.; 
Kang, K. Sodium Intercalation Chemistry in Graphite. Energy Environ. Sci. 
2015, 8 (10), 2963–2969. 

(248)  Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-Gonzalez, 
J.; Rojo, T. Na-Ion Batteries, Recent Advances and Present Challenges to 



P a g e  | 115 

 

 

Become Low Cost Energy Storage Systems. Energy Environ. Sci. 2012, 5 (3), 
5884–5901. 

(249)  Wang, H.; Yu, W.; Shi, J.; Mao, N.; Chen, S.; Liu, W. Biomass Derived 
Hierarchical Porous Carbons as High-Performance Anodes for Sodium-Ion 
Batteries. Electrochim. Acta 2016, 188, 103–110. 

(250)  Tenhaeff, W. E.; Rios, O.; More, K.; McGuire, M. A. Highly Robust Lithium Ion 
Battery Anodes from Lignin: An Abundant, Renewable, and Low-Cost Material. 
Adv. Funct. Mater. 2014, 24 (1), 86–94. 

(251)  Li, Y.; Hu, Y.-S.; Titirici, M.-M.; Chen, L.; Huang, X. Hard Carbon Microtubes 
Made from Renewable Cotton as High-Performance Anode Material for 
Sodium-Ion Batteries. Adv. Energy Mater. 2016, 6 (18), 1600659. 

(252)  Roberts, A. D.; Li, X.; Zhang, H. Porous Carbon Spheres and Monoliths: 
Morphology Control, Pore Size Tuning and Their Applications as Li-Ion Battery 
Anode Materials. Chem. Soc. Rev. 2014, 43 (13), 4341–4356. 

(253)  Li, Z.; Ma, L.; Surta, T. W.; Bommier, C.; Jian, Z.; Xing, Z.; Stickle, W. F.; 
Dolgos, M.; Amine, K.; Lu, J.; Wu, T.; Ji, X. High Capacity of Hard Carbon 
Anode in Na-Ion Batteries Unlocked by PO  x  Doping. ACS Energy Lett. 2016, 
1 (2), 395–401. 

(254)  Xing, Z.; Qi, Y.; Tian, Z.; Xu, J.; Yuan, Y.; Bommier, C.; Lu, J.; Tong, W.; Jiang, 
D. E.; Ji, X. Identify the Removable Substructure in Carbon Activation. Chem. 
Mater. 2017, 29 (17), 7288–7295. 

(255)  Li, Z.; Jian, Z.; Wang, X.; Rodríguez-Pérez, I. A.; Bommier, C.; Ji, X. Hard 
Carbon Anodes of Sodium-Ion Batteries: Undervalued Rate Capability. Chem. 
Commun. 2017, 53 (17), 2610–2613. 

(256)  Zhu, Y.-E.; Yang, L.; Zhou, X.; Li, F.; Wei, J.; Zhou, Z. Boosting the Rate 
Capability of Hard Carbon with an Ether-Based Electrolyte for Sodium Ion 
Batteries. J. Mater. Chem. A 2017, 5 (20), 9528–9532. 

(257)  Bai, P.; He, Y.; Xiong, P.; Zhao, X.; Xu, K.; Xu, Y. Long Cycle Life and High 
Rate Sodium-Ion Chemistry for Hard Carbon Anodes. Energy Storage Mater. 
2018. 

(258)  Brown, P.; Atly Jefcoat, I.; Parrish, D.; Gill, S.; Graham, E. Evaluation of the 
Adsorptive Capacity of Peanut Hull Pellets for Heavy Metals in Solution. Adv. 
Environ. Res. 2000, 4 (1), 19–29. 

(259)  Zhang, Y.-H. P.; Ding, S.-Y.; Mielenz, J. R.; Cui, J.-B.; Elander, R. T.; Laser, 
M.; Himmel, M. E.; McMillan, J. R.; Lynd, L. R. Fractionating Recalcitrant 
Lignocellulose at Modest Reaction Conditions. Biotechnol. Bioeng. 2007, 97 
(2), 214–223. 

(260)  Emmerich, F. G. Evolution with Heat Treatment of Crystallinity in Carbons. 
Carbon N. Y. 1995, 33 (12), 1709–1715. 

(261)  Ding, J.; Wang, H.; Li, Z.; Cui, K.; Karpuzov, D.; Tan, X.; Kohandehghan, A.; 
Mitlin, D. Peanut Shell Hybrid Sodium Ion Capacitor with Extreme Energy-
Power Rivals Lithium Ion Capacitors. Energy Environ. Sci. 2015, 8 (3), 941–
955. 



P a g e  | 116 

 

 

(262)  Baquero, M. C.; Giraldo, L.; Moreno, J. C.; Suárez-García, F.; Martínez-
Alonso, A.; Tascón, J. M. D. Activated Carbons by Pyrolysis of Coffee Bean 
Husks in Presence of Phosphoric Acid. J. Anal. Appl. Pyrolysis 2003, 70 (2), 
779–784. 

(263)  Buiel, E. On the Reduction of Lithium Insertion Capacity in Hard-Carbon 
Anode Materials with Increasing Heat-Treatment Temperature. J. Electrochem. 
Soc. 1998, 145 (7), 2252. 

(264)  Kipling, J. J.; Sherwood, J. N.; Shooter, P. V.; Thompson, N. R. The Pore 
Structure and Surface Area of High-Temperature Polymer Carbons. Carbon N. 
Y. 1964, 1 (3), 321–328. 
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