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Abstract: Carbon-based composites have been proven to be strong candidates for microwave ab-
sorbers in recent years. However, as an important member, magnetic hard carbon (HC)-based
composites have rarely been studied in the field of microwave absorption. In this study, HC em-
bedded with FeSiAl (FeSiAl@HC) was synthesized by pyrolyzing a mixture of FeSiAl flakes and
phenolic resin (PR). The as-synthesized HC-FeSiAl exhibited a layered structure, and the detailed
microstructures were modified by changing the mass ratio of FeSiAl flakes and PR. Thus, the as-
synthesized HC-FeSiAl exhibited tunable magnetic properties, wealthy functional groups, excellent
thermal stability, and enhanced microwave absorption properties. The optimal minimum reflection
loss is lower up to −36.1 dB, and the effective absorption bandwidth is wider up to 11.7 GHz. These
results indicated that HC-FeSiAl should be a strong candidate for practical applications of microwave
absorption, which may provide new insight into the synthesis of magnetic HC-based composites.

Keywords: FeSiAl; hard carbon; layered structure; microwave absorption; impedance matching

1. Introduction

With the coming of 5G communication and the artificial intelligence era, the increase in
electromagnetic (EM) pollution has become a serious problem for human health and electrical
equipment reliability [1]. Hence, microwave absorption materials (MAMs) have been widely
studied in many countries. The ideal MAMs should not only be strong, wide, light, and thin
but also meet the technical requirements of environmental friendliness, low-cost approaches,
and plentiful availability [2]. Carbon-based materials [1,3–5], ceramics [6–10], and magnetic
alloy powders [3,11–14] represent typical potential microwave absorption materials.

Hard carbon (HC), with a nanolayered microstructure and many defect sites as the cen-
ters of polarization losses, has exhibited outstanding absorption abilities by encapsulating
FeCoNi nanoparticles [3] or being embedded with ZnO nanoparticles [15]. However, the
nanoparticle aggregate properties and high cost hinder their practical application. Hence,
suitable micron-sized particles are challenging to obtain. FeSiAl powder material is a typical
magnetic alloy microwave absorber due to its excellent magnetic properties, high thermal
stability, and low cost [11,16–23]. To reduce the Snoek limit and modify the permeability
and permittivity of FeSiAl powders, balling, surface oxidation, and coatings are widely
used to enhance the microwave absorption properties of FeSiAl materials [11,16,18,19,21,24].
The combination of HC and FeSiAl should be an important strategy to obtain improved
microwave absorption properties. However, there are limited reports on the HC-FeSiAl
composite as a MAM.

In this work, magnetic HC-FeSiAl composites, which were composed of layered HC
and FeSiAl flakes, were synthesized by pyrolyzing mixtures of FeSiAl flakes and phenolic
resin (PR). The as-synthesized HC-FeSiAl exhibited a layered structure, and the detailed
microstructures were modified by changing the mass ratio of FeSiAl flakes and PR. The mi-
cromorphology, microstructure, static magnetic property, thermal stability, and microwave
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absorption properties of HC-FeSiAl composites were systematically studied to obtain new
insight into the design of related magnetic HC-based composites microwave absorbers.

2. Materials and Methods

Commercially available micron-sized FeSiAl flakes (Si 9.8 wt%, Al 5.6 wt%, and Fe
84.6 wt%, Jiangsu Baona Electromagnetic New Material Co., Ltd., Zhenjiang, China) with
a purity of 99% were used in this study. The other materials included phenolic resin
(Shanghai Macklin Biochemical Co., Ltd., Shanghai, China, 99.8%) and ethanol (Shanghai
Titan Chemical Co., Shanghai, China, 99.7%). FeSiAl powders and phenolic resin (mass
ratio of 1:1, labeled as S1) were stirred with a magnetic stirrer for 0.5 h with 8 mL of ethanol.
The mixture in the quartz boat was placed in vacuum for 0.5 h, then annealed at 800 ◦C
for 3 h in a flowing hydrogen atmosphere, and finally cooled down to room temperature.
The synthesized hard carbon embedded with FeSiAl composites (FeSiAl@HC) displayed
dark products with a glossy surface. For comparison, FeSiAl flakes to phenolic resin mass
ratios of 1:2, 1:3, and 1;4, labeled as S2, S3, and S4, respectively, were prepared following
the same procedure. The raw FeSiAl flakes were named as S0. The synthesis of FeSiAl@HC
composites is outlined in Figure 1.
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Figure 1. Schematic of the fabrication of the FeSiAl@HC composites.

The crystal structures of FeSiAl and FeSiAl@HC composites were determined by
powder X-ray diffraction (XRD) using Cu-Kα radiation (Bruker D8). Micromorphology
and chemical composition were determined on a scanning electron microscope (SEM,
Hitachi SU3500) and using energy-dispersive spectroscopy (EDS, IXRF Systems). The
static magnetic measurements were examined using a vibrating sample magnetometer
(VSM, Lake Shore 7404). The chemical composites and states were tested by Fourier
transform infrared spectrometer (FTIR; Nicolet iS 5 FT-IR). The thermal stability was tested
by thermogravimetric and differential scanning calorimetry (TG-DSC) with a NETZSCH
STA 449 F3. The electromagnetic parameters from 2.0 to 18.0 GHz were tested by a vector
Network Analyzer (Agilent N5224B). The powders were uniformly dispersed in paraffin in
a mass ratio of 2:1. The powders-paraffin composites were toroidal with an inner diameter
of 3.04 mm, an outer diameter of 7.0 mm, and a thickness of 2.0 mm.

3. Results and Discussion
3.1. Micromorphology and Microstructure

The structure and morphology of the samples were examined by SEM. As shown
in Figure 2a, FeSiAl flakes could be observed with a thickness of ∼1 µm and diameters
of 20–90 µm. After being embedded into HC, these flakes exhibited a layered structure
(Figure 2b). The high-resolution image of S1 (Figure 2b) indicates that the orientation of
FeSiAl flakes was largely irregular. We also found a space between the FeSiAl flakes. This
is possibly because a higher content of FeSiAl flakes facilitates dividing the HC into species.
As the content of HC increased, the space enlarged, as shown in Figure 2d. This is because
HC easily forms a solid entirety, leading to the further separation of the FeSiAl flakes. As
the content of HC increased, FeSiAl flakes were completely embedded into large solid HC.
Single FeSiAl flakes were difficult to observe. As shown in Figure 2e,f, the surfaces of S3
and S4 were almost HC, with several pieces of FeSiAl flakes. These results suggested the
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formation of FeSiAl@HC composites, which was also confirmed by the analyses of TEM
images (Figure S2).
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Figure 2. (a) SEM image of FeSiAl; SEM images of FeSiAl@HC: (b,c) S1, (d) S2, (e) S3, and (f) S4.

Figure 3 depicts the XRD patterns of the FeSiAl and FeSiAl@HC samples. For S0
to S4 in Figure 3, the diffraction peaks located at 27.1◦, 31.4◦, 45.0◦, 65.5◦, and 83.0◦ can
be categorized as the (111), (200), (220), (400), and (422) planes of FeSiAl (PDF# 45-1206),
respectively. Neither the two diffraction peaks located at approximately 23.7◦ and 43.6◦ of
hard carbon [15], nor the peak at approximately 26◦ for graphitized [18] or amorphous [25]
can be found in Figure 3. The reason may come from two aspects: first, hard carbon
belongs to non-graphitizable carbon with a very low degree of crystallinity; second, the
micron-sized flaked-FeSiAl devastates the crystallization process of hard carbon (as shown
in Figure 2).

Figure 4 displays the FTIR spectra of the FeSiAl@HC samples. The FTIR analyses
showed that four samples (S1–S4) had similar spectra. The strongest absorption peaks at
around 3441 cm−1 for all five samples corresponded to the hydroxyl stretching band of the
O-H [15,26]. The second strongest absorption peaks at approximately 1096 cm−1 for S1 to
S4 samples were assigned to the stretching band of C-O. The other bands were associated
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with C-H, C=C, and C-H vibrations [15,26]. The functional groups in FeSiAl@HC can act as
the polarization centers, resulting in the enhancement in the dielectric loss [15].
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Figure 5 presents the magnetic hysteresis loops of the FeSiAl and FeSiAl@HC samples
at room temperature. The five samples exhibited the typical S-shape characteristic of soft
magnetic alloys. The values of saturation magnetization (Mr) of the five samples were
116.0, 64.4, 58.1, 50.2, and 40.3 emu/g for S0–S4, respecitvely. They correspond well to the
contents of the flake-shaped FeSiAl alloy powders (Table 1). A similar phenomenon was
found for other FeSiAl composites [24].
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Figure 5. VSM patterns of the FeSiAl and FeSiAl@HC S0−S5 samples.

Table 1. Calculated mass ratio values of saturation magnetization (Mr) of the FeSiAl and FeS-
iAl@HC samples.

S0 S1 S2 S3 S4

FeSiAl (wt%) 100 56.2 38.7 30.0 24.3
HC (wt%) 0 43.8 61.7 70.0 75.7

Mr (emu/g) 116.0 64.4 58.1 50.2 40.3

Figure 6 presents the TG-DSC curves of the samples heated in the ambient atmosphere
with a heating rate of 10 ◦C min−1. For S0, as shown in the inset in Figure 6, a slight
weight loss of 1.2% from 20 to 38 ◦C was observed due to evaporation of the physiosorbed
water, and then a small weight gain occurred because of the oxidation of FeSiAl. This
process released a large amount of heat, leading to the exothermic peak at 100 ◦C. As for
S1 to S4, the FeSiAl flakes were protected by the HC. This caused the oxidation process
to shift to a higher temperature. We observed that a steady weight loss below 5% from
30 to 400 ◦C due to the slow oxidation of HC was accompanied by an increase in heat.
A sharp weight loss at the higher temperature was observed, which we attributed to the
ignition of HC and FeSiAl, accompanied by strong exothermic peaks in the corresponding
temperature ranges. The weight losses for S1, S2, S3, and S4 were 57%, 62%, 65%, and
72%, respectively, suggesting an increased content of HC. These results suggested that the
as-fabricated FeSiAl@HC possesses excellent thermal stability and enables applications in
the microwave absorption field.
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3.2. Microwave Absorption Properties

To research the absorbing performance of the FeSiAl and FeSiAl@HC composites, the
reflection loss (RL) versus frequency and thickness were calculated using Formulas (1) and (2)
following the transmission line theory [27,28]:

Zin = Z0 (µr/εr) 1/2 tanh[j (2πfd/c)(µr/εr)1/2] (1)

RL = 20log/(Zin − Z0)/(Zin + Z0)/ (2)

Here, Zin and Z0 represent the input impedance at the interface of the absorber and the
impedance of free space, respectively; µr and εr are the parameters of complex permeability
and complex permittivity, respectively; f is the microwave frequency; d is the thickness of the
absorber; and c is the velocity of light in free space, respectively. Generally, RL values≤−10 dB
correspond to a more than 90% attenuation ability of the incident microwave. Therefore,
the effective absorption bandwidth (the frequency range for RL ≤ −10 dB) is abbreviated
as ∆f [29].

Figure 7 reveals the RL contours and RL-2D curves of five samples at 2–18 GHz. As
shown in Figure 7a,b, S0 (pure FeSiAl flakes) presented an RLmin of −32.16 dB (16.72 GHz)
and a ∆f of 2 GHz with a 5 mm thickness. However, with a large value of RL, the narrow ∆f
and large thickness of the S0 sample limit its practical application. The RLmin values with
located frequencies and corresponding optimal thicknesses were −22.28 dB (12.72 GHz) at
2.5 mm for the S1 sample, −21.21 dB (11.20 GHz) at 2.5 mm for the S2 sample, −36.10 dB
(11.12 GHz) at 3 mm for the S3 sample, and −18.7 dB (17.28 GHz) at 2 mm for the S4
sample. Moreover, a broader ∆f was achieved by the FeSiAl@HC composites (2.56 GHz for
S1, 12.32 GHz for S2, 11.76 GHz for S3, and 6.32 GHz for S4) by calculating the different
distances of the dotted line across RL ≤ −10 dB. The microwave absorption parameters
of FeSiAl and FeSiAl@HC composites are listed in Table 2, with the other results of the
FeSiAl carbon composites. For comparison, the FeSiAl@HC composites exhibited enhanced
microwave attenuation capacity, a broadened absorption bandwidth, reduced thickness,
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lightened weight, lower cost, and facile fabrication. Thus, FeSiAl@HC composites show
excellent potential as microwave absorption materials.
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Table 2. Microwave absorption parameters of related absorbers.

Absorber Content
(wt%)

Carbon
(wt%)

RLmin
(dB)

tm
(mm)

∆f (GHz)
(RL ≤ −10 dB) Reference

S0 25 0 −32.16 5 2 This work
S1 25 43.8 −22.28 2.5 2.56 This work
S2 25 61.7 −21.21 2.5 12.32 This work
S3 25 70 −36.10 3 11.7 This work
S4 25 75.7 −18.70 2 6.32 This work

FeSiAl/graphite 40 10 −14 4 6.5 [18]
FeSiAl/graphite 40 20 −23 3.5 13.3 [18]

FeSiAl@C −15.68 4 2 [11]

Figure 8 displays the real permittivity (ε′), imaginary permittivity (ε′′), dielectric
loss tangents (tanδε) from 2.0 to 18.0 GHz, and Cole–Cole semicircles (ε′′/ε′) for FeSiAl
and FeSiAl@HC composites. As shown in Figure 8a, the values of ε′ of S0, S1, and S2
fluctuated by approximately 7, 6, and 8 from 2 to 18 GHz, except having a small trough
at approximately 11.5, 12, and 13.5 GHz, respectively. However, S3 and S4 showed large
decreases from 11.5 at 2 GHz to 5 at 9.5 GHz, and from 14 at 2 GHz to 5.5 at 11.5 GHz, and
then fluctuated in the range of 5–8 to 18 GHz, respectively. As shown in Figure 8b, the ε′′

values of S0, S1, and S2 were almost constant until approximately 10 GHz, and then a small
peak appeared, and finally gradually increased to 18 GHz. However, just like the trend in
ε′, the ε′′ values of S3 and S4 were large and showed large changes. The ε′′ of S3 slightly
decreased from 8 to 6 until 8 GHz, then sharply decreased to 1 at about 13 GHz, and then
slowly increased to 3.5 until 18 GHz, while the ε′′ of S4 slowly dropped from 11.5 to 3.5
throughout the testing period. The tanδε of the five samples followed a similar change
trend to ε′′, except that there was a large peak from the S3 sample and two large peaks from
the S4 sample, as shown in Figure 8c.
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and (d) Cole–Cole semicircles.

The large difference in the dielectric parameters of the five samples followed the
mathematical expression (ε′′ = 1/(2πε0ρf )) based on the free electron theory (ρ is resistivity).
Generally, a low resistivity enlarges the ε′′ value. In this work, different contents of hard
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carbon with the FeSiAl composite resulted in different resistivities. In addition, the dielectric
loss mechanism can be understood by the Debye theory following Formula (3) [3,28]:(

ε′ − εs + ε∞

2

)
+ (ε′′ )2 = (

εs − ε∞

2
)

2
, (3)

where εs and ε∞ are the static permittivity and the relative permittivity at infinite frequency,
respectively. Therefore, the curve of ε′ vs. ε′′ is a semicircle named the Cole–Cole semicircle.
A larger radius and more semicircles indicate a stronger Debye dipolar and a stronger
dielectric loss [30,31]. The large Deby dipolar values of S3 and S4 were from the high
content of hard carbon. There were many defects and functional groups (Figure 4) in the
hard carbon matrix. They were the center of the dipoles and thus increased the Deby
relaxation [15]. Another reason may have been the optimized layered structure of the
S3 sample.

Figure 9 depicts the real permeability (µ′), imaginary permeability (µ′′), magnetic
loss tangent (tanδµ), and the impedance matching parameter (Zin/Z0) for the FeSiAl and
FeSiAl@HC composites. As shown in Figure 9a, the values of µ′ for five samples were
very close and rapidly decreased from approximately 1.4 to about 0.85 as the frequency
increased during the testing period, but a peak occurred at approximately 14 GHz for
S1. The changing trends in the values of µ” and tanδµ for the five samples were similar
to those of µ′, except for a broad peak from the S3 sample, as shown in in Figure 9b,
c. The real permeability (µ′), imaginary permeability (µ′′), and magnetic loss tangent
(tanδµ) of FeSiAl are affected by the carbon matrix, similar to FeSiAl/graphite [16,18] and
carbon-encapsulated FeSiAl hybrid fakes [11]. Figure 9d displays the dependences of the
normalized input impedance Zin/Z0 in the five samples. The value of Zin/Z0 from the S3
sample approached one across a wider frequency range than that of the other four samples.
A value of Zin/Z0 close to one indicates the best impedance matching and thus excellent
microwave absorption properties. Therefore, the excessively complex permittivity of the S4
sample is generally undesirable.
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4. Conclusions

Magnetic HC-FeSiAl composites, which were composed of layered HC and FeSiAl
flakes, were synthesized by pyrolyzing mixtures of FeSiAl flakes and phenolic resin (PR).
Their specific microstructures were tuned by changing the mass ratio of FeSiAl flakes
and PR. The results of comparative tests indicated that the as-synthesized HC-FeSiAl
composites exhibit tunable magnetic properties, wealthy functional groups, excellent
thermal stability, and enhanced microwave absorption property. The optimal RLmin is
lower up to −36.1 dB, and the corresponding ∆f is wider up to 11.7 GHz. The enhanced
microwave absorption property can be attributed to the optimal microstructure, which
thus improves the relaxation process, tunable dielectric and magnetic loss properties, and
optimal impedance matching property of FeSiAl@HC composites. This study proves
that magnetic HC-based composites should be strong candidates as microwave absorbers,
providing new insight into the design of related composites. The as-fabricated FeSiAl@HC
composites are expected to be a material used in applications of steeling technology and
microwave shielding. In addition, the facile method proposed in this study is expected to
be applied in the fabrication of other magnetic HC-based composites.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ma15176068/s1, Figure S1: EDX analysis of the FeSiAl@HC
sample (S3).; Figure S2: TEM image of S3 (a); high-resolution TEM image of the HC layer in region 1(b);
high-resolution TEM image of a FeSiAl flake in region 2(c).; Figure S3: Wide scan XPS spectra of
S3 (a); Fe2p spectrum (b), Si2p (c) and Al2p (d) spectrum of S3.; Table S1: Element composition of
FeSiAl flakes from EDS [32–34].
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