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L INTRODUCTION

The basis of our theoretical understanding of statistical mechanics of dilute
gases dates back to the nineteenth century. The atomistic description of
crystalline solids originated in the first half of the twenticth century. But
the theoretical description of simple liquids in the framework of statistical
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mechanics is of a much more recent origin. A possible reason for the
slow development of a molecular theory of liquids is the following. The
theory of dilute gases could be developed starting from the ideal gas,
the properties of which could be evaluated analytically. Similarly, the
theory of solids could be constructed starting from the harmonic crystal.
But, for liguids, there is no corresponding ideal liquid model that can be
solved exactly. As a consequence, much of the progress in the construction
of a molecular theory of liquids had to await the advent of electronic
computers that could generate essentially exact results for simple model
liguids. During the past four decades, the numerical data on the hard-
sphere fluid have provided us with a substitute for exact results on the
ideal liquid. Much of the subsequent development of the theory of liquids,
as described for instance in the book by Hansen and McDonald, [1] relies
heavily on the insight gained from the numerical study of hard-sphere
fluids.

The hard-sphere model is, however, not a good reference system for the
description of molecular fluids consisting of nonspherical particles. This
is particularly clear if one considers the possible phases of such molecular
systems. Whereas hard spheres can only form an (isotropic) liquid phase
and a crystalline solid phase, there are many nonspherical molecules in
nature that can form so-called liquid crystalline phases, that is, phases
that have a degree of order that is intermediate between the isotropic
fluid and the crystalline solid (see, e.g., Ref. [2]). In fact, several dozens
of distinct liquid-crystalline phases have been observed expereimentally.
However, in the present review, we focus on the main classes of liguid
crystals, i.e. the nematic phase, the smectic-A phase, the columnar phase
and the cholesteric phase. Schematic drawings of the orientational and
translational order characteristic of these phases are shown in Fig 1.1,

In order to exiend the theory of simple atomic liquids to the more
complex molecular liquids and. a fortiori, to liquid crystals, there is much
need for ‘exact’ results on simple molecular reference fluids. Surprisingly,
although there exists no exactly solvable model for atomic liquids, there
does, in fact, exist an exactly solvable model for a (nematic) liquid crys-
tal, viz. the Onsager model. [3] In the Onsager model, the liquid-crystal
forming molecules are assumed to be infinitely thin, hard spherocylinders.
The problem with the Onsager model is that, whereas many simple lig-
uids are, to a first approximation, well described as an assembly of hard
spheres, there are only a few liquid-crystal forming molecules with very
long, thin hard rods. Once we try to extend our theoretical description of
liquid-crystal forming fluids to molecules with less extreme shapes or, for
that matter, to liquid-crystalline phases other than the nematic phase, we
are again in need of numerical data on molecular “reference fluids” as a
substitute for cxact results.
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Figure 1.1.  Snapshots of a typical molecular arrangement in the nemalic (a}, smectic-A
(b). columnar {(c} and cholesteric (d) phase.

Unfortunately, the choice of the appropriate molecular reference fluid
is not unique. Even if we restrict our attention to rigid, nonspherical
molecules, there are clearly many model systems that could be selected.
However, our reference models should satisfy two important criteria; first,
they should be sufficiently nontrivial to reproduce the most important
classes of liquid crystals known to date, yet they should be sufficiently
simple to ensure that they can be easily studied, both theoretically and
numerically.

In this review, we discuss in considerable detail a particular class of




6 M. P. ALLEN, G. T. EVANS, D. FRENKEL AND B. M. MULDER

molecular “reference” systems that meet these criteria, namely convex,
hard-body fluids. A body is convex if any line-segment connecting two
points on the surface of that body is completely contained within that
body. During the past decade there has been much progress both in the
theoretical description and the numerical simulation of convex hard-body
fluids. It is not our aim to give an exhaustive review of progress in this
field of research. Rather, we wish to present a coherent overview of the
theoretical and numerical techniques that are most widely used in this
area of research. The choice of specific examples is, to a large extent,
dictated by our own bias. Yet, we have tried as much as possible to
refer to related work by other authors. We realize, however, that our
review of the relevant literature will contain serious gaps and omissions.
We apologize to all those whose contributions we have discussed either
inadequately, or not at all.

The material presented in this review is organized in a way that empha-
sizes the complementary character of theory and simulation. This implies
that on every topic we first have a section that discusses the relevant theory
and then a section that deals with the appropriate simulation techniques.
The latter section will typically contain a few numerical results that are
of special interest in the context of the preceding discussion. In this way,
we discuss first the static and dynamic properties of hard-core fluids in the
isotropic phase, next phase transitions to (liquid)-crystalline phases, and fi-
nally some static and transport properties of the nematic liquid-crystalline
phase. We do not discuss the dynamical properties of liquid-crystalline
phases other than nematic, in view of the paucity of numerical data on
such systems.

In this introduction, we give a brief preview of things to come, and ex-
plain the philosophy underlying much of the work presented in subsequent
sections. For the benefit of the reader who is unfamiliar with computer
simulations, we present a brief description of the role of numerical simula-
tion in the study of liquids and liquid crystals. Next, we briefly preview the
kind of hard-particle models that we are going to consider, the numerical
techniques needed to study such systems and the theories that are used
to describe them.

A. Simulations

Computer simulations sit midway between experimental measurements
and theories of condensed matter. Typically, the aim of a theory is to
predict the properties of a system in terms of the interactions between
molecules. However, these molecular interactions are themselves known
only imperfectly, and must be modelled in some way. To test the accuracy
of the molecular models separately from that of the theories, it is necessary
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to obtain reliable “experimental” information about the models. This is
accomplished using computer simulation. In recent years, progress has
been made using both accurate, “realistic” models of specific molecular
systems, and idealized models of wide applicability. In this review, we
discuss recent work using models that fall into the latter category.

1. Simulation Strategies

The aim of a computer simulation of a (classical) many-body system is to
compute “exactly” the static and dynamic equilibrium properties of the
model system. In this context, “exactly” means “to any desired accuracy”.
There are twao distinct factors that limit the accuracy of a simulation. First,
simulations of models for bulk liquids or solids are usually performed on
rather small systems (({10>-10°} particles). Even though periodic bound-
ary conditions are usually employed to minimize finite size effects, the
properties of such relatively small systems do differ systematically from
those of a truly macroscopic sample. In addition to this systematic error
introduced in the numerical simulation, we are also faced with statistical
fluctuations in the resuits of our numerical “measurements”. In principle,
the errors due to finite size effects can be suppressed by going to very large
systems, while the statistical fluctuations can be suppressed by performing
very long simulations. Clearly, if one is interested in the properties of a
“family” of mode! systems over a wide range of densities, one should not
invest all available computing time in one long simulation of one¢ large
system. It is even less advisable to plan short simulations of a very large
system, in which case the statistical errors would be very much larger. than
the systematic errors. In general, one should select the model, the system
size and the length of the simulations such that a reasonably complete set
of simulations of acceptable accuracy can be performed within the avail-
able computing budget. In its generality, the preceding statement is vague
to the extent of being almost meaningiess. However, in the context of sim-
ulations of nonspherical, liguid-crystal forming molecules, we can be more
precise. Typically, in order to map a phase diagram, one should study the
equation of state of several model systems that belong to the same fam-
ily. In addition, one or more free energy calculation may be required for
every model system. As a result, one should expect to perform some 30
runs per model system. For a determination of a complete phase diagram,
several hundred simulations will be required. Clearly, with this number of
simulations, it is imperative that the individual simulations are “cheap”.
Again, “cheap” can only be used in the relative sense that any individual
run should not consume more than, say. 1% of the available computing
budget. As the power of computers continues to grow, much of what is
not feasible today will most likely be feasible in a few years time. Yet, it is
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fair to say that during the period covered by this review, systematic stud-
ies of the phase diagram were necessarily limited to rather simple model
systems. We should stress, however, that most of the numerical techniques
discussed below can be applied to more complex model systems.

B. Hard Particles

Stnce the 1950s, when computer simulation showed that the hard-sphere
model provided a firm base for the study of the statistical mechanics of
simple atomic liquids, [4,1}, interest has steadily grown in the application
of similar techniques to molecular fluids. The wealth of fluid phases found
in nature has stimulated attempts to relate phase stability and properties
to simple aspects of molecules and their interactions, beginning with ele-
mentary considerations of molecular size and shape. It has been known
since the time of Onsager [3] that hard nonspherical particles can form
an oriented fluid phase if the isotropic liquid is compressed, and that for
sufficicnt clongation, this transition will occur before the system freezes.
It is therefore surprising that significant progress in computer simulations
of these phases has only been made in the last decade (although serious
attempts have been made since the early 1970s [5,6]). The spherocylinder
{see Fig. 1.2.a) was probably the first nonspherical hard shape to attract
significant interest. This is a cylinder of length L, diameter D, with hemi-
spherical caps of diameter D at each end. As we shall see, this model
exhibits an isotropic fluid phase and a solid; for suitable values of L/D
nematic and smectic-A liquid crystals can be seen.

A second shape of interest is the spheroid, with perpendicular semi-axes

"a, b and ¢, Most intensively studied have been hard ellipsoids of revolu-
tion, for which two of the axes are equal, but different in general from the
third: a # b = ¢. This system forms isotropic fluid and fully ordered solid
phases, and, for suitable values of the elongation ¢ = a/b, also shows a
nematic liquid crystal. Both rod-like (prolate, e > | see Fig. 1.2.b) and
disk-like {oblate, ¢ < 1 see Fig. 1.2.¢) shapes are possible, and the ne-
matic phases correspond to alignment of the long or short symmetry axes,
respectively. An additional, biaxial phase may be exhibited by molecules

_having unequal axes @ # b # ¢, thus being intermediate in shape between
rods and disks.

Different oblate, or tablet-like, shapes can be obtained by slicing the
top and bottom off a sphere using two parallel cuts. These “truncated
sphere” (see Fig. 1.2.d) shapes may form nematic phases, and addition-
ally can line up to give columnar phases. A further phase having cubic
orientational symmetry has also been observed for these shapes. The re-
lation between this “cubatic” phase and the cubatic phases that have been
observed experimentally (7] is at this stage uncertain.
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Figure 1.2. A few well-known hard convex bodies: {a} spherocylinder: (b) prolate ellip-
soid of revolution: (¢) oblate ellipsoid of revolution; (d) truncated sphere

C. Simulation Methods

Two classes of simulation are in commeon use: Monte Carlo and molecular
dynamics.

In hard-particie Monte Carlo, trial moves are selected using a random
number generator, accepted if they do not lead to particle overlap, and
rejected if they do. This requires efficient evaluation of a pair overlap
function: most usefully a function F(r;;, {};, {},} of the orientations {}; and
1; and the relative. position vector r; of a pair of molecules, which takes
values F < 1 if they overlap, F > 1 if they do not, and F =} at contact.
Efficient prescriptions exist [5,6,8,9] to determine F for both spherocylin-
ders and spheroids, and we return to this in Section I1.D.1.

The simple prescription of moving particles generates states sampled
from the constant NV T ensemble where N is the number of particles,
V the sample volume and T the temperature. For particles interacting
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via infinite repulsive potentials, the configurational integral and all static
configurational properties are independent of the temperature 7. Exten-
sions of the sampling prescription can be used to generate states from
other ensembies, for example constant NPT, where P, the pressure, is
prescribed. Again, in the special case of hard particles, configurational
properties depend on the ratio P /T rather than on P and T separately.

In hard-particle molecular dynamics, Newton’s equations are solved; the
aim is to locate the next time of collision between a pair of particles. Be-
tween collisions, the configuration is advanced using free flight dynamics;
each molecule moves with constant linear and angular momenta. At the
point of collision, impulsive forces determined by the conservation laws
and the contact condition (i.e., whether the colliding surfaces are rough
or smooth) determine the postcollisiona! momenta. Both free flight and
collision dynamics also depend on the choice of molecular masses and mo-
ments of inertia. The technique requires efficient evaluation of the pair
overlap function F and its time derivative F, 5o as to locate the exact time
of collision by standard root-finding methods.. Typically the constant NV E
ensemble is probed, where E is the energy. For hard particles, kinetic en-
ergy and total energy are the same, and static configurational properties
are independent of E. They also do not depend on the chosen mass and
moment-of-inertia distribution. The dynamical properties, however, do
depend on these values; the masses, moments of inertia and total energy
determine translational and rotational time scales. It is possible to adapt
the molecular dynamics algorithm to probe other ensembles. Intermittent
velocity randomization can be inctuded to give constant NV T sampling. A
constant pressure form of dynamics has been described for hard particles
[10] but a simpler procedure for sampling the constant NPT ensemble is
to carry out intermittent volume changes according to the standard Monte
Carlo prescription, in between periods of normal dynamics.

Further details of simulation techniques may be found elsewhere. [4,11]
In all simulations of bulk phases, periodic boundary conditions are used to
eliminate the effects of surfaces. There have been few systematic studies
of the effects of periodic box size and shape on the stability and proper-
ties of phases, and this is of some concern when simulating systems that
exhibit long-range correlations. The general rule seems to be to choose a
box as large as possible, given the constraints of limited computer time,
and for translationally disordered fluid phases to adopt one of the more
nearly spherical geometries: truncated coctahedral or rthombic dodecahe-
dral shapes.” For solids, or smectic liquid crystals, this may not be ap-
propriate, and cuboidal boxes may be more suitable. In the simulations
reported here, both cuboidal and truncated octahedral periodic boundary
conditions have been employed. Typical system sizes are in the range
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N =100-1000. In molecutar dynamics simulations, typical production run
lengths are (0.5-1.6)x10° collisions in total, depending on density; this
corresponds to run times tyy, ~ 2000-15,000¢., where f is the mean time
between collisions per molecule. In Monte Carlo work, run lengths are of
the order of 10°*-10° moves per particle. These parameters are modest by
today’s standards; a typical run at one state point might take a few hours
on a fast desktop workstation, or a few minutes on a supercompuler.

D. Theories

With such simple models, we are clearly going to be interested in compar-
ing with theoretical predictions rather than experiment. Two major classes
of theory are especially powerful when applied to hard-particle systems.
Kinetic theories make specific predictions for transport coefficients and
other dynamical properties in terms of collisional averages. Density func-
tional theories, of which the approaches of van der Waals and Onsager
may be considered special cases, are used to predict phase stability and
properties, given an approximation scheme for the direct correlation func-
tion. Both methods have been extensively tested on the hard-sphere fluid,
and their advantages and limitations in this area are well known. Their
extension to nonspherical systems, however, has been very limited. In the
following sections we attempt to give a perspective view of these theories,
and the role of simulation in testing them out.

PART ONE: THE ISOTROPIC PHASE

II. STATIC PROPERTIES

A. Static Properties in the Isotropic Phase

Convexity is the central characteristic that makes hard convex body (HCB)
fluids amenable to analysis. It is this property that allows a unique deter-
mination of the distance between two such particles. This in turn enables
a relative simple description of the hard-core interactions in such systems.
The simplest example of a HCB is of course the hard sphere and it should
come as no surprise that most calculations of equilibrium thermodynamic
properties of HCB systems such as free energies and pressures rest on the
foundation provided by earlier analyses of hard spheres. [12] There are,
however, features in the HCB systems that have no analog in hard-sphere
{HS) systems and these pertain to the orientational degrees of freedom
and their canonical momenta. Having said this, it should come as no sur-
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prise that most of the successes in the analysis of fluids of HCBs have been
obtained in studies of those properties that have a hard-sphere counter-
part, such as pressure, chemical potential or the isotropic part of the pair
correlation function at contact. Furthermore, most of the stumbling blocks
have arisen in the calculation of properties that depend explicitly on the
mutual orientation of HCBs, such as pair and direct correlation functions
and structure factors. In this section, we summarize some of the progress
made in the analysis of scalar properties (pressures, chemical potentials)
and vector properlies {orientational pair and direct correlation functions)
in the theory of isotropic fluids of HCBs.

B. Theory
1. The System

We consider a system consisting of N HCBs in a container of volume
V (at a number density p = N/V) and at a temperature 7. The ith
particle in the system has a mass m, a center of mass position vector, 1;,
a moment of inertia /, an orientation vector #; (for unaxial rotors) and
Euler angles (}; (for biaxial or asymmetric tops). a center-of-mass velocity
v;, linear momentum p,, angular velocity w; and angular momentum L;.
Using conventional notation, one obtains a Helmholiz free energy

Fy(V,T)=—kgT In On(V,T) (2.1)

with Qn{V, T) the canonical partition function
Op(V, TYy=(N)! /dle...a'N exp(—BH) (2.2)
and H the system Hamiltonian

1
szzlmv?+1w?]+ZU(rl]1QHQJ) (23)

>

Here r;; denotes the vector emanating from the mass center of particle i
and extending to the mass center of particle |

=1 —T (24)
The phase space volume di is taken to be
di = dr,; dp, d€}; dL; (2.5)

and spans the translational and rotational degrees of freedom.
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The hard-body potential energy U(r;;, {);,€};) is given by

o, if I'r'j S Vex(ﬂiaﬂj)

U(rij’ﬂ"’ﬂ") - { 0, otherwise (2.6)
where V. (£}, ;) is the volume excluded to particle i because of particle
j (and vice versa). .

Classical dynamics described by Egs. (2.3) and (2.6) allow the particles
to move freely subject to the constraint that particle overlap is forbidden.
Since the Hamiltonian is separable into position and momentum compo-
nents and the momentum is described by a homogeneous guadratic form,
then Qx(T, V) reduces to

On(V,T) = Zu(T, V)V V/N! (2.7)

where V7 is the de Broglie volume as discussed in Appendix A.A, Zx(T. V)
is the configurational integral

Z(T, V) = /Hdr,- dQy; exp(—BUY) (2.8)

and UV is the N particle potential energy. The microscopic structure of a
fiuid and the thermodynamic properties can also be expressed in terms of
the pair correlation function (pcf), g(1,2),

2(1,2) = v?fdr3 dQ .. dry dQy exp(—=BUNY/Zy(T,V)  (2.9)

where 1 and 2 as arguments of g(1,2) now pertain to the positional coor-
dinates.

C. Thermodynamic Properties

The thermodynamic properties which characterize the HCB system are
the internal encrgy (E = (%)N kgT(3 +r), for a system with r rotational
degrees of freedom), the pressure £ and the chemical potential . The
derivation of the pressure and the chemical potential from the canonical
ensemble is standard [13] and we merely present the results with a few
words of clarification. The pressure can be given in a virial form

BP =p+(3V)' Y (r, -Fy) (2.10)
. iy

where F;; is the force on particle / due to particle j. For a system comprised
of hard smooth particles, the force can be replaced by [14]
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BFy; = §8(s — 0°) (2.11)

where § is the outward surface normal from particle 1 to particle 2 and
s is the surface-to-surface separation measured along §. Accordingly, Eq
(2.10) becomes

BP = p+(1/6)p /dr,zdm dyry; - 86(s — 07)g(1,2) (2.12)

All of the transport and most of the equilibrium properties to be discussed
will involve the pcf at a distance infinitesimally removed (0*) from the
contact surface. We can take advantage of the ubiquitous presence of
the contact surface by adopting a convex body coordinate system with
coordinates s and § in place of r; and to this we now turn,

To change coordinates from the vector ry; to the unit vector § and the
surface-to-surface separation s, we begin by representing the center-to-
center vector by '

ria(8,5) = &(8) — £&,(-8) + 58 (2.13)
where £,(8) and £,(—8) emanate from the mass center of particles 1 and
2, respectively. The radius vector ¢; for a general convex body can be
written in terms of the support function [15]

i =%-£,8) | (2.14)

and by means of the support function, all the geometric properties of
the convex body can be derived (see Appendices A.B, A.C and A.D for
details). The geometry of the situation is illustrated in Fig, 2.1

B N
)

Figure 2.1. The geometry of two convex bodies. The symbols are explained in the text.
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The Jacobian for the transformation from ry; to § and 5 is

driz = | (8r12/8s) (Or12/80) x (8r2/3) | dsdbdd
= | §-(O12/80) x (8r12/80) | dsd8 d
= §12(s,0,,Q,) sin 6 dsdfd¢ = 57(s, Q. ) ds  (2.15)

where 6 and ¢ are the polar and azimuthal angles that $ (s = s§) makes
with respect to a fixed but otherwise arbitrary coordinate system. The
abbreviated notation ds denotes ds ds. Equation {2.15) is a crucial result
as it relates the volume element dry; on a spherical contour to the contours
appropriate for a general convex body. If we now return to Eq. (2.12) we
can write directly

8P = p+ 2/ [ dOdfahaGls =0.00,0)  216)

with
h]z = h] + hz (217)

and
G(s, 4, 0) = §'%(s, 0y, Q2)g(s, ), () (2.18)

An exact expression for the chemical potential of HCBs can be derived
by considering the reversible work required to insert a particle in a hard-
body fluid {13,16,17] and the result 1s

i
Bup =n pVr+4mp dq dQy dQahy Gyls = 0,8, ) (2.19)
Jrmin
where 12(8, ) = g£,(8) — £,(—8) +58. Note that G, depends on the scaling
parameter, g, of particle 1 through g(1,2) and S;z. The lower bound to
the scaling variable corresponds to the ratio of axes lengths for the scaled
particle: gmin = -long axis/short axis. Both Egs. (2.16) and (2.19) reduce
to the hard- sphere (HS) limit when we take h;; = @ (the HS diameter)
and §'2 = ¢, To proceed further with our analysis of FICBs, we need to
be more explicit about the pef.

1. Relationship of Pair Correlation Functions to Thermodynamic
Properties

15

In 1963, Steele [18] suggested that g(1,2) be expressed as a spherical har- -

monic expansion
g(1,2) =47 Y gipm(N)Yjm(Q1}Y ) _m(Eha) (2.20)
jg

where r=|r2| and with £, (}; being measured with respect to rj2. Equa-
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tion {2.20) can also be expressed as an invariant or scalar product of r
and the orientations @, and ii;, as suggested by Blum. [19-21) For hard-
body systems, the expansion coefficients g;;(r) of Eq. (2.20) have been
determined by integral equation methods [22,23] and by computer simula-
tion [24,25-27]. Although the direct approach afforded by Eq. (2.20) has
the advantage of clarity, the convergence characteristic are particularly
poor [26,28] as the short range correlations are explicit functions of the
surface-to-surface separation and not the center-to-center distance. To
improve the convergence properties of the expansion of g(1,2), several
modifications have been made.

In an application to the Gaussian overlap approximation for hard ellip-
soids, Kabadi and Steele [29,30] represented g(1,2) with a distance vari-
able scaled by the orientation dependent ellipsoid diameter. For fluids
of hard spherocylinders Kabadi and Steele [31] devised a center-to-center
separation coordinate which reflected the mutual orientation of a pair of
molecules. Ghazi and Rigby [32] continued this line of inquiry and found
that the convergence of the Kabadi expansion for hard spherocylinders
was greatly accelerated from that achieved by Eq. (2.20) when another
orientation dependent coordinate was used. ' '

For a system comprised of a hard ellipse in 2 fluid of hard disk, Kumar
et al. [33] expanded the ellipse-disk pcf as

g(1,2) = > gils)Py(it - 8) (2.21)
i

where P;(ii - 8}, the Legendre polynomials, were a function of the ori-
entation of ellipse (i) with respect to the surface normal (§). However,
the Legendre polynomials, P;(ii - §) were nonorthogonal as the surface
integrations were taken over the convex surfaces described by the addi-
tion of a disc to an ellipse and the weight function which accompanies
this integration was $'2(s,@ - §). When one orthogonalizes the Legendre
polynomials with respect to the weight function, one finds that the first
anisotropic contribution to g(1,2) vanishes at zero density and is directly
proportional to the particle nonsphericity: the desired properties. But the
set of orthogonalized polynomials representing g(1,2) depend explicitly
on § (since the integrations are taken over nonspherical surfaces whose
nonsphericity changes with §). The selection of §-dependent orthogonal
basis functions was a possibility for simple systems such as an infinitely
dilute solution of a single HCB, but it is not practical for the case where
several orientation angles are required.

To avoid these complications, Kumar et al. [33] and Talbot et al. [34] fol-
lowed the suggestion of Kabadi and Steele [31] and expressed §'%(s, £, (%)
§(1,2) {(or G of Eq. (2.18)) in a set of spherical harmonics, Y,,(Q),
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G5, ). 0) = 47 Y Gipm($)Y; Q1) Y - (€22) (222)

jJ'm

For simplicity we have restricted attention to C., molecules (with two
rotational degrees of freedom). The orientation angles in Eq. (2.22) are
expressed with respect to the surface normal directed along the minimum
surface-to-surface separation. A disadvantage of the method of Eq. (2.22)
is that G is anisotropic even in the limit of zero density, but to its credit,
the expansion functions are the familiar spherical harmonics and are in-
dependent of 8

The motivation for the orthogonal function expansion of G{s,{};,(})
is in part subjective. Both Egs. (2.16) and (2.19) suggest that to determine
structural properties for HCB systems, surface integrals of the pef are
required. But in the case of the pressure, the integral of & is weighted
by the excluded volume Jacobian A S 12 50 that the pressure is related to
the excluded volume average of g. This. in turn, suggests that perhaps
“one should expand A;G(1,2) in spherical harmonics rather than G(1.2)
alone. To this we counter that in the theory of transport properties, the
prefactor of h,G(1,2) does not generally arise and it is G(1,2) that is
common to most transport coefficient integrands. [35] As our concerns
are with both thermodynamic and dynamic properties, the expression of
the pef will reflect our subjective choice toward surface area averaging as
opposed 1o volume averaging.

By means of Eq. (2.22) and the remarks of the previous paragraph, one
defines the isotropic surface-averaged pef [33]

(4R d0G(s,0,Q)  Gawls)

8isol®) = T a0, a0, 57205, 0, 0)  S(5) @23)

and as a result. one can express any surface average as

< B3(5—5") >= 417/d0.1 dOLG (s, 0, ) B = 47gia(s*)S'H(s™) < B >
(2.24)

i.e., the product of the isotropically averaged pef giso(5*), the isotropically
averaged surface area $'>(s*) and a conditional average < B >,- on the
convex surface s = s, thus,

[ d9d0:G(s,Q0,0:)B(s, Q)

B >,= .
<8 Tan, dLGs, 0, ;) (225)

The pressure, Eq. (_2.16). can be expressed in these terms
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BP/p=1+Q2u/3)p < hyz > gS: (2.26)

where the subscript “c” on < hy; >80 (= giso(s = 0)) and S, denotes the
average on the contact 5 = 0 surface.

in contrast, certain equilibrium properties such as the isothermal com-
pressibility, x7, and the static orientational correlation factor gy (i.e., the
parameter that determines the integrated intensity of depolarized light
scattering due to collective orientational fluctutaions), are expressed in
terms of the full pcf rather than its contact value. Starting from the famil-
iar relationships [13,36]

PkB TKT =1+ [ /dl’dﬂ] dﬂz [g(l'., ﬂ] ,nz) — 1] (227)

g2=14p / drdf, 40l Pyl - i)[g(r, 0, ) — 1] (2.28)

one can apply the convex body coordinates to convert these two equations
1o

pkpTkr = 1+4wp/d!11 dﬂzf dsS%[g(1,2) — 1]
0

—(417/3)p/ d0, d,S5% (s = 0,04, W)k, (2.29)

g = l+41'rp/dﬂl d().z/ dsP, (i - 8;)5%[g(1,2) - 1]
Q

—(477/3)#3/491 dQy Po (i - 8)S" (s = 0,9, Mok (2.30)

Both Egs. (2.29) and (2.30) consist of two parts: a long range term re-
flecting the decay of the s-dependent pcf and a short range contact term
arising from excluded volume considerations. The isothermal compress-
ibility simplifies further to represent this explicit separation

phsTrr = 1-pViz+dmp [ dsS™o)lgwls) =11 23)
[ dss?

where V5 is the excluded volume for a pair of HCBs.

The general remarks made so far do not bring us appreciably closer to
the calculation of equilibrium properties of the systems of HCBs. Analyt-
. ical techniques have had little success in providing the full angle depen-
dence of the pef for a fluid of HCBs as only the contact orientational pcf
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for a single HCB in a HS fluid has been determined to date. [17] Most of
the work to date on HCB systems in the isotropic phase has focussed on
the scalar properties (such as virial coefficients) and the contact properties
(such as the pressure and the isotropic pef) [12] rather than the anisotropic
pet.

2. Scalar Properties

a. Virial Coefficients. The virial coefficients of HCB systems, even of sin-
gle component fluids, increase rapidly in complexity as the number of
particles in each cluster increases. Whereas B, is particularly straightfor-
ward,

B, = (2m/3) /dQ] dQsh xS (5 = 0,0,,8)
= (1/2)V12 ' (2.32)

B; is more complicated and numerical procedures are needed for its eval-
uation. [37-41jFor example,

B; = [Asznzdndﬂl df), dQ;
x h128"2(s12 = 0, { QDA (s13 = 0, {O}x(2,3)  (2.33)

where by = Ar2(812) — 913(813) is the center-to-center separation for the
A -scaled 1.2 surface and the n -scaled 13 surface. x(2,3) is unity if
bodies 2 and 3 overlap and zero otherwise. Evaluation of By and Bs
requires numerical methods. [37,38,40| For elongated prolate ellipsoids, 84
is negative. In contrast, the first seven virial coefficients of hard spheres
are known to be positive. Values of B, for various ellipsoids have been
collected by Boublik. (12] Certainty the most important property of the
virial coefficients of prolate HCBs is

lim B,/(Biy—0 (2.34)

shape anisotropy — oo

This point is discussed in more detail in Section I1.D.4.

b. Eguations of State. Approximate equations of state have been derived
on the basis of Scaled Particle Theory (SPT) [12,14,42-45} and re-summed
virial expansions [46-48]. Both of these approaches begin with an as-
sumption as to how the solution should behave. In SPT one guesses how
the pecf depends on the scaling length whereas in the virial expansion re-
summations, one guesses at the density dependence of the pressure or the
contact pcf. Exact constraints, such as virial coefficients or other limiting
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behaviors, fix the constants in the assumed equation of state (or isotropic
contact g). The philosophy behind the scaled-particle theory is explained
in more detail in the context of phase transitions in hard-core fluids (Sec-
tion IVA2). A reasonably up to date account of scaled-particle theory in
the context of isotropic hard-core fluids can be found in Ref. [12]. Boub-
lik and Nezbeda have played a significant role in the development of the
equations of state of HCBs and their work has been complemented by
Wojcik and Gubbins, [46] Naumann et al. {47] and Song and Mason. [48]
From the standpoint of accommodating data on many systems, the ap-
proach of Song and Mason appears to be most successful. However, none
of the “phenomenological” approaches provides insight into the nature of
a first order isotropic to nematic transition and, in that sense, no “first
principles” equation of state is available.

The studies of pressures (by analytical approximate means) have also
led to theories of the contact pef and in particular. its volume average

Bvol = (477/3) /dﬂ] dQZG(S = 0, Q;,(lz)hlz/VQ (235)

rather than the surface averaged pcf of Eq. (2.23). For the purpose of
forming a perspective on the basic algebraic forms of the isotropic pcfs,
we sketch the SPT approach used by Boublik, [14] who found the pressure
and gy, to be

BP/p=[1+3ay+ 3azy2]~l——:1—-'5: (2.36)

3ay +3a2y2 1
T+3a¢ 1+3a)l-p-

gvol = 1+ {2.37)

Here y is the Barboy-Gelbart [49-51] density variable

y=p'/(0-p") (2.38)

which is discussed in more detail in Section IV.A.2, and « the nonsphericity
parameter

where R, and §; are, respectively, 1/4 times the mean curvature and the
surface area of a single body and V) is the volume. (For spheres o = 1.)

The goal of Boublik’s SPT was to determine the contact pef, which was
related to the reversible work (i.c., the chemical potential) for the inser-
tion of a g-scaled particle in a fluid. For a point particles, the PV work
is related to the probability of finding a point cavity and this, in turn, is
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related to the free volume (= V — NV, = V(1 — p*)). By means of the
exact relationships between the contact pef and the work to insert a point
particle in a fluid, exact conditions are placed on the volume average of
both g(g = 0) and dg(q)/dq)ly=0- A third exact condition follows from
the work necessary to increase the volume of a macroscopic HCB from
Vy o V, + dV,. This third condition links the pressure to g{g = oc).
When these three conditions are incorporated into an assumed functional
of the scaling parameter, Boublik obtained Eqs. (2.36) and {2.37). Equa-
tion (2.36) reduces to the Percus—Yevick [52] (PY) result (i.e., obtained via
the compressibility relation) [13] when o = 1, viz.,

_ (L+pt+pT)
(BP(HS)/plev—c = = (2.40)

For small anisotropies (a ~ 1) and low densities. Eqs. (2.36) and {2.37)
are useful. Heuristic modifications of Boublik’s results for highly nonspher-

ical HCBs (5:1 particles), based on the Carnahan-Starling hard sphere .

limiting result [53], improved the accuracy but the HCB equations of state
and contact pefs prove to be less accurate than their HS analogues. [38-40)
At present, the most accurate equation of state and contact pef are due
to Song and Mason [48] who found that

1 wp + e :
vol — 41
8ol DS (2.41)
where
1 +6a +3a?
=3 4
n=3 1+ 3a (2.42)
and
1 +2.635 Taf
=3 + 2o+ Ta (2.43)

1+ 3

Although the isotropic contact pefs of fluids of HCBs can be estimated
with some accuracy using the Song and Mason result, this area of research
is by no means closed, as systematic and accurate first principle results are
not at hand.

3. Vector Properties

a. Virial Coefficients. Ordinarily, the virial coefficients are not considered
to be vector properties. However., in the context of the liquid crystal
work to be presented in the following sections, we can anticipate some
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reinterpretations. B;, By as well as all the higher virial coefficients depend
on the mutual orientation of the bodies. This dependence could have been
anticipated from Eq. (2.32) since we expressed B, as an integral over an
orientation dependent integrand,

B = / d), d0B (0, () (2.44)
with
Ba(8y,s) = (27/3)h128"%(s = 0,0, Q) {(2.45)

The angle dependence of B, was first derived by Onsager [3] for sphe-
rocylinders and by Isihara [S4] for ellipsoids. Mulder [55] determined
B2({),(1;} analytically for spheroplatelets (a biaxial spherocylinder).
Tjipto-Margo and Evans used orthogonal function expansions to express
By(Qy, () and B4({};,Q;,{};) for uniaxial ellipsoids [41] and B,({},,(;)
for biaxial ellipsoids. [56]

b. Contact Orientational Correlations. She et al. [17,57] employed SPT to
find the dependence of the contact pcf on the orientation of the solvent
(taken to be a HS of radius a) with respect to a solute (a single but arbitrary
HCB). The contact pcf for a fully scaled {q = 1) HCB was found to be
function of § (the HCB-atom contact surface normal), the solvent packing
fraction and various measures of the geometry of the HCB. Specifically,

3
gls=0,x) = I+4p'gus + »_ a;(x) /(1 + h(x)/ay (2.46)

j=
where

x=1i-8§ (2.47)

and the a;(x) coefficients are given elsewhere. [57] Equation (2.46) was
derived using a SPT with four exact conditions: g(s = 0,§,q = 0}, (dg(s =
0.3,9)/dg)lg-0, (d°g(s = 0,8,9)/dg*)|,—0 and g(s = 0,8,9 = o). Only
the second derivative term introduces orientation dependence into g(s =
0.8,q). All theories based on constraints for g(s,g = 0) and dg(s,q =
0)/dq will predict the pcf to be isotropic on the contact surface.

When the scaled particle is allowed to become spherical, the contact
pef and the pressure can be derived for the HS fluid within the context of
the four-condition SPT described above, thus [33,57]
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1 (/4 ¢ (2 = (1/8)p -
845 = T (1 = Bjdpr + (172D (2.48)

and
(BPus/p)spr = 1+ 4p”gus (2.49)

This four-condition SPT provides the exact isotropic and anisotropic sec-
ond viral coefficient and at low density gys has the expansion

grs ~ 1+2.5p" +4.3755p" (2.50)

Equation (2.50) is in disagreement with the findings of Tully-Smith and
Reiss, [38] who find that a similar four-condition SPT predicts incorrect
second and third virial coefficients, The resulting contact properties of
the four-condition SPT are close to but not identical to that derived from
the PY theory using the pressure equation [13]

1+2p" +3p*

GRrs: 230

(BPus/p)set = (BPus/plpy-p =

Basically, an n-condition SPT and the PY theory have no formal equiv-
alence; although the calculated equations of state are similar, this is more
fortuitous than substantive. SPT in itself does not suggest any particular
method of closure of the hierarchy (say by means of the choice of an ap-
propriate length scaling functional) and so to this exent there is no unique
SPT. Clearly the exact conditions are unique, however. At present, SPT
has vet to provide a theory for the direct correlation function or for that
matter, for a simple theory of the pcf. Reiss and Casberg [59] have cal-
culated the HS pef using the ideas of SPT but this version of SPT bears
little resemblance to the original SPT, Certainly much remains to be done
in the utilization of SPT to understand the properties of fluids of HCBs.

4. Integral Equation Methods

The pef g(1,2) and its companion, the total correlation function A(1,2)

W1,2)=g(1,2) -1 (2.52)

(not be confused with the support function. h>) can be approximated as
a solution to an integral equation. The integral equations and the approx-
imations for g(1,2) are succinctly stated in terms of the direct correlation
function ¢{1,2), defined by the Ornstein-Zernike equation
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h(1,2) =c(1,2) + p/dSh(l,3)C(2, 3) {2.53)

For fluids of HCBs, the PY approximation is
c(1,2) = y(1,2)x(1,2) (2.54)
and this is to be compared with the HNC approximation
1,2y = y(1,2)f(1,2) +y(1,2) -1 -1n y(1,2) (2.55)
where we have iniroduced y(1,2}, the background correlation function
y(1,2) = exp(+BU(1,2))g(1,2) (2.56)
and f(1,2) the Mayer f-bond
f(1,2) = exp(—BU(1,2)) -1 (2.57)

In the HS system, ¢(1,2) has been found to have a small positive tail
outside the hard core for the HNC theory whereas ¢(1,2) vanishes outside
the hard core for the PY theory. :

Methods of solution of the integral equations for the anisotropic pctf
of nonspherical molecules are given by Gray and Gubbins. [60] Stemming
from the work of Chen and Steele, [22] a considerable literature is now
developing regarding the spherical harmonic expansion of g(1,2). No re-
ported calculations of g(1,2) take advantage of the explicitly convex nature
of the particles and hence the techniques presented in the preceding pages.
That which is known about the expansion properties of g(1,2) and ¢(1,2)
prior to 1988 is summarized by Nezbeda et al. [61] More recently Labik
et al. [62] compared the g;rn{r) expansion functions for hard dumbbells
obtained from integral equation theories (PY, HNC and Bridge function
methods). Talbot et al. [24] also compared the results of HNC and PY clo-
sures on the g,y (r) for hard ellipsoids. Generally all the integral equation
predictions of g;m(r) are in basic agreement with each other and with MD
simulations. Although the PY theory was less accurate than the HNC and
Bridge function theories, one might argue that the selection amongst the-
ories could be based on practicality, which would, in turn, would always
favor the use of the PY theory.

A more sensitive measure of orientational correlations than the g (r)
is required to discriminate between the growing assortment of integral
equations. One such measure involves the expansion coefficients ¢;jm(r)
of ¢(1,2)
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(1,2) = Y cipm(NCim( ) Cy —m{th) (2.58)

jdam

Perera et al. [25] calculated the volume integral of the Legendre polyno-
mial parts of ¢(1,2)

Cijo = 471'[ - drr? di, dﬁng(ﬁl -12)c(1,2)
(G
= 477/ drricii(r) (2.59)
0

In the PY approximation for 3:1 hard ellipsoids, Perera [25] found that
con(r) behaved like the corresponding HS function; for j 2 2, ¢jjo was
nearly density independent and in marked contrast with the strong density
dependence from the HNC findings. Furthermore, the PY predictions for
cjo (j = 2) displayed less density dependence than that derived from the
two term virial expansion for ¢(1,2). {63] This decided difference between
the anisotropies in ¢(1,2) has a profound influence on the issue of liquid
crystal formation in the context of PY and HNC theories. The anisotropy
in ¢(1,2), derived by the PY theory, is so weak that the PY theory fails to
predict a liquid crystal transition at any realizable density. Thus. the PY
theory, broadly accepted as a good indicator of radial correlations in the
HS fluids [12,60] shows a serious breakdown in the analysis of orientational
correlations in fluids of HCBs.

D. Simulations

In this section, we discuss numerical simulations of hard-body fluids in
the isotropic phase. The material in this section is organized as follows.
First, we discuss those aspects of simulation techniques that are peculiar
to hard-body systems, or otherwise not completely standard. We devote
considerable attention to a systematic description of the various tests that
can be used to detect a hard-core overlap of two (convex) bodies, mainly
because, in the existing literature, the discussion of this subject is quite
fragmented. Next, we briefly summarize the essential features of the com-
putation of the first few virial coefficients and the equation of state of
hard-body fluids. Following this technical introduction, we review the re-
sults that have been obtained using these techniques. In view of the large
amount of numerical data on hard-body fluids that have been reported in
the literature, we focus the discussion of the simulation results on those
features that are, in some sense, peculiar to hard-body fluids.

i. Overlap Criteria

The first step in a computer study of a model system for a liquid crystal
forming substance, is the selection of the actual model. As was explained
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in the Introduction, we prefer to study models that are computationally
“cheap”. At the same time, the model should be sufficiently rich to give
ris¢ to a nontrivial phase diagram. And finally, it is obviously attractive
if the model belongs to a “family” of models that includes, as special or
fimiting cases, systems about which much is already known. For example,
hard spheres can be considered as a special case of both hard ellipsoids
and of hard spherocylinders. Similarly, the exactly solvable Onsager model
of thin, hard rods, is again a limiting case of both models.

In this review, we consider several families of model systems, viz. hard
ellipsoids (both uni-axial and bi-axial), hard spherocylinders, hard platelets
(truncated spheres) and hard fused spheres. As we shall see below, all
these model systems exhibit interesting static or dynamic behavior. In this
section, we show that these models are all convenient from a computa-
tional point of view. As we are discussing hard-core models, the compu-
tation of the potential energy of the system can be reduced to a series of
tests for overlap between pairs of molecules i and j with orientations £;
and (¥, at a relative distance r;;.

Usually, the test for overlap between two particles can be reduced to a
test of the sign of one, or several, functions of the relative coordinates of
a pair of particles. The choice of these functions is, in general, not unique
but is dictated by computational convenience. For instance, we shall find
that for ellipsoids there are (at least) two, quite different tests for overlap
that are best used in combination. Below we discuss the overlap criteria -
that have been used for the model systems decribed in this review. In
addition, we briefly refer to some other model systems.

We should, however, first explain that we are really only discussing a
subclass of all possible hard-core interactions. In the most general case,
on¢ can construct a hard-core model by simply defining a pair potential-
energy function u(r;;, £2;, £);} to be infinite for some finite, connected do-
main of coordinate values and zero elsewhere. Once this function is spec-
ificd, we can construct the excluded volume of a pair of particles. In
general, this excluded volume will not be convex. More importantly, in
general it will not be meaningful to speak about the shape of the individ-
ual hard-core particles. In other words, although the excluded volume of a
pair of particles can be visualized as an object in space, the individual par-
ticles cannot. It should be stressed that the idea that individual particles
have a shape of their own, is a classical one that has little meaning at the
molecular level. Hence, there is nothing wrong with a hard-core model
that cannot be interpreted in terms of the overlap of two well-defined ge-
ometrical objects. In fact, a popular example of such a nondecomposable
model is the Gaussian hard-core model [39,64]. However, in this review,
we limit ourselves to hard-core models where the individual particles have
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a well defined shape. The reason for restricting ourselves to such models
is two-fold: first, it is easier to develop a mental picture of the factors that
determine the static and dynamic behavior of hard-body systems, if we
can visualize that system. Second, in nature, hard-core systems are most
closely approximated by colloidal particles. For these particles, that can
often be seen by electron microscopy, it is not unreasonable to attribute
a shape to individual particles. Finally, for most of the models that we
discuss, the shape of the individual particles is convex. This choice is mo-
tivated only by the fact that the theoretical description of both static and
dynamic properties is often much simpler for convex than for nonconvex
hard particles.

a. Spheres and Composite Particles. 1t is convenient to start our descrip-
tion of overlap criteria with the simplest case, namely hard spheres. Two
hard spheres of radius Ry and R», respectively overlap if the distance 11,
between the centers of these spheres is less than gy = Ri+R;. In a simula-
tion, we usually do notl compare ry; with oz, but r;’-z with a-fz, because the
latter test is computationally cheaper. For future reference, it is important
to note that the hard-sphere overlap test can be considered as a sequence
of tests for nonoverlap. The test could be broken down into three steps
namely A? = of — x3, < 0, A3 = A} -y}, < 0. and Al =4 -3, <0
Only if all three tests are not satisfled do we have overlap between the
two spheres. In fact, as any pair of particles that fails the final test must
also fail the previous two, it may be computationally cheaper to carry out
only the final test. However, that is not the issue here. What we wish
to show is that it is possible to break up our test into subtests that allow
us to decide, at an early stage, whether a given pair of particles does not
overlap. Later, on when we consider more complex overlap tests, we will
see that it is advisable to have a cheap test for nonoverlap as the first
“filter” in the test sequence.

As a specific example of such a screening, consider a composite particle
consisting of several hard spheres. Such fused hard sphere models have
been used to model rod-like mesogens. [65) Let us assume that we wish
to know if two molecules. both consisting of » identical hard spheres, arc
overlapping. Clearly, the test for overlap between these two composite
molecules can be broken down into n? hard-sphere tests (for convenience,
we assume that we do not have to worry about intra-molecular overlaps).
Now, we see that the nature of the subtests is different from the hard-
sphere case. As soon as we find overlap between any pair of hard spheres,
we know that the two molecules overlap and we can terminate the test
sequence. However, in order to make sure that the two molecules do
not overlap, we have to run through the complete sequence of n* tests.
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However, if the two molecules are sufficiently far apart, it is possible to teli
in advance that there can be no overlap. For instance, one could construct
for every molecule a circumscribed sphere that contains all spheres in
that molecule. Clearly, no overlap between the two molecules is possible
if the circumscribed spheres of these molecules do not overlap. Thus,
we can obviate #? overlap tests by one “nonoverlap™ test. This example
illustrates the respective role of overlap and nonoverlap tests. Nonoverlap
tests are used to ensure that we do not perform expensive overlap tests
on molecules that are far apart. But once we know that we really must
carry out the complete test, then it is better to have a series of overlap
tests, because this sequence can be terminated as soon as any such test is
satisfied.

In many cases, this combination of nonoverlap and overlap tests is not
applied to a single pair of molecules, but to all neighbors of a given moleu-
cle that has undergone a trial displacement. First, we “short-list” the possi-
ble overlap partners by using a nonoverlap test. Next, we apply the overlap
test on the short-listed neighbors. As soon as an overlap is detected, we
know that we can reject the trial move. In this sense, the construction of
the well-known Verlet neighborlist [66] is simply an example of a short-
list produced by a nonoverlap filter. For anisometric hard-core molecules,
the corresponding nonoverlap tests are used to construct a “nonspherical™
Verlet list,

b. Spherocylinders. Let us now consider a slightly more complex hard-
core model, namely the spherocylinder. Just as a sphere can be defined as
the set of points that are within a distance R from a given origin {namely
the center of the sphere), so the spherocylinder can be thought of as
the set of points that are within a distance R from a line segment of
length L. Clearly, we can draw around every point on this line segment
a sphere of radius R that contains all points that are within a distance
R from that point. Hence, a spherocylinder can be considered as the
union of all spheres around points on a line segment L. We can thus
consider a spherocylinder as the volume that is swept out by a sphere
of radius R that is moved along a line segment of length L. The test for
overlap between two spherocylinders can be constructed by computing the
shortest distance between the two line segments that form the “core” of
the spherocylinders, If this distance of closest approach is less than D, =
Ry +R;, the two spherocylinders overlap. This distance of closest approach
is therefore the central quantity to be computed in an overlap test for
spherocylinders. In fact, some of the steps needed to compute the distance
of closest approach between two spherocylinders, are also needed in the
construction of other overlap criteria to be discussed below. We therefore
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break down the construction of the overlap test for spherocylinders into
a number of elementary steps, namely:

1. the construction of the point of closest approach between two lines;

2. the construction of the perpendicular distance-vector between two
lines;

3. the determination of the distance of closest approach between two
line segments in a plane,

Although the overlap test for spherocylinders usually skips the second step,
it is useful to include it, both for future reference and because it makes
the whole procedure more transparent. Step 1 is sufficient to determine
the overlap of line segments in two dimensions. Combined with step 3,
it allows us to test for overlap between two-dimensional spherocylinders.
Steps 1 and 2 will turn out to be useful in the test for overlap between
hard platelets in three dimensions.

POINT OF CLOSEST APPROACH BETWEEN TWO LINES. Our aim is to determine
the minimum distance between two finite line-segments / and j, with ori-
entations #; and @, and centers r; and ;. Let us first consider the minimum
distance between these two segments, in the limit that their length is in-
tinite. In that case, we can describe any point on line i parametrically
as

(A) =1 + Al
while line j is given by
r(pe) =1+ piy;
The vector distance between these two points is given by
rilA ) = (1 — 1) + Ay, — pi, (2.60)

Next. we wish to determine those values of A and u for which the distance
r;j i minimal. A simple method to find these values of A and u is the
following. Construct the dot product of r;(A, 1) with both 6; and &;. The
shortest distance vector must be perpendicular to both i&; and #,. Hence,
we should solve the following simultaneous equations:

(]'j — l')‘) ' l‘i, = —l\ﬁt . fl,‘ + ﬂ.ﬁj, . il,'
(l"-,' — l‘f) . flj = 7)1]?1,‘ . ﬁ),‘ + p.ﬁj . ﬁf (261)

Solving these equations for A and w, we obtain
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( .\0) 1 (—ﬁ,- Jr o+ (0 - (8, -r,,-)) (2_62)_

po ) 1 — (@& -a;)? \ iy — (- 0;)08 1)

where we have used the shorthand notation r;; = r,;(A =0, = 0). We
have assumed that the line segments / and j are not parallel. In fact. the
parallel case is simpler, and is discussed separately. The above expression
for Ao and w allows us to carry out a testing for overlap between two line
segments of length L, and L; in two dimensions. In that case, we simply
have to verify that |Ay| < L;/2 and {ue| < L, /2.

PERPENDICULAR DIiSTANCE VECTOR BETWEEN TwO LINES. We wish to know
the shortest distance between two line-segments in three dimensions. We
can decompose this vector in a component perpendicular 1o w; and @
and a component in the plane of w; and @;. By varying A and u, we
can only change the latter distance. Hence, our problem reduces to the
computation of the fixed perpendicular distance between the lines / and j
and of the minimal in-plane distance between the two line segments. For
future reference, it is convenient to construct the perpendicular distance
vector as follows. From the unit vectors #; and §,;, we construct three
orthogonal unit vectors @,, _ and i, defined as

. 1 ﬁj+ﬁ'
b= AT G e 269
n _ l ’ ﬁ,’ — ﬁ
= AT T 26
i, =8, xi_ (2.63)

The perpendicular vector distance between lines i and | is then given by
l'i} = (l’,’j . l.l‘_)ﬁl (266)

DISTANCE OF CLOSEST APPROACH BETWEEN TWO LINE SEGMENTS [N A PLANE.
Finally, we must compute the distance of closest approach between two
line segments in a plane. Of course, if both |Ag| < L;/2 and |ue| < L;/2,
the two line segments intersect, and the in-plane distance is zero. In that
case, the total distance is given by |r[+j|. However, we have to consider the
more general case that the in-plane distance between the line segments is
nonzero. For this purpose, it is convenient to take as the origin of our
(two-dimensional) coordinate frame, the intersection point between the
lines i and j projected in a plane spanned by @; and &,. In this frame, the
center of segment { is located at —Agd; and the center of segmenty f is at
—pol;. The squared distance between two arbitrary points on the lines
given by vii; and 8id,, is

L]

-t
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() (7, 8)) = 77 + 8 + 2yB(0; - i) (2.67)
The curves of the constant in-plane distance are ellipses with major axes
along the lines y = & and y = —8&. Figure 2.2 shows a contour plot of
the (squared) in-plane distance in the (v, 8)-plane. When computing the
shortest distance between two line segments, we should search for the
minimum of the parabolic function shown in the figure, subject to the
conditions |y + Agj < L;/2 and |8 + ug| < L;/2. This constraint defines a
rectangle in the (v, §)-plane. The procedure to find the distance of closest
approach is now as follows.

1. If the origin is contained in the rectangle, the line segments intersect
and the in-plane distance is zero.

2. Otherwise, find the allowed values of y and & that are closest to the
origin: Ymin and 8min. As, in the present case, the origin does not
correspond to an allowed (y, 8)-combination, either |Ymin| OT [Sminl.
or both, are not equal to zero. Without loss of generality, we assume
that |Ymin| = |8min| {otherwise, we simply relabel v and 8). We now
fix v at the value yyi,. Next, we minimize (rt“f.(ymm, 8))? with respect
to 6. From Eq. (2.67) it follows that the minimum distance is reached

for & ., = —2¥min(l; - ;).

Figure 2.2. Contour lines of equal distance between two line segments of length L; and
L, in a plane. The geometrical interpretation of this figure is discussed in the text




32 M. P. ALLEN, G. T. EVANS, D. FRENKEL AND B. M. MULDER

3. We now test if |8, + mel < L;/2. If so, we have found the value
of & that minimizes the in-plane distance. Otherwise, we choose the

allowed value of & that is closest to 8, .

Using Eq. (2.67), we can now simply evaluate the squared, in-plane dis-
tance. As we have already computed the (squared) perpendicular distance,
we know the distance of closest approach of the two line segments / and
I-

¢.  Platelets. We can use many of the results obtained in the previous
section to construct a test for overlap between two infinitely thin platelets
with radii R; and R;. In what follows, we denote the coordinate of the
center of either disk by r; (or r;), while the unit vectors #; and a; give the
orientation of the symmetry axes of the disks.

As in the previous section, we define @, the unit vector perpendicular
to both #; and #;. If we project both disks on a plane normal to &., all
points in the plane of disk { project onto a line with direction

v, =i x @
Similarly, the plane of disk j projects onto a line with direction
¥ = fl_L X ﬁj

The projections of disks i and j are line segments with a length 2R, and 2R,
respectively. Clearly, a necessary (but not sufficient) condition for overlap
of the two disks is that these line segments cross. But the problem of
the intersection of two line segments in a plane was already discussed in
Section I1.D.1 above. In the present case, it is more convenient to express
A (u), the distance between the center of disk / {j) and the intersection-
line of the planes of disk i and J, in terms of the unit vectors @; and a,,
rather than the auxiliary vectors v; and v; , defined above. It is easy to

show that y 1 ) )2
n-T,
(“Z) T Iy ((f-ﬁ .r,.j)z) (2.68)

If either A% > R? or p? > R?, no overlap is possible. Otherwise, the plane
of disk j intersects disk i over a line segment of tength

A = /R -2

and
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Clearly. in order to have overlap between disks ¢ and j, we must satisfy
the following condition: :

A + .‘3} < |l't'j lAlLt (2.69)

This concludes our test for overlap between two infinitely thin hard plate-
lets. In practice, this overlap criterion is rewritten in such a way that
the “expensive” computation of square roots is avoided. For details, see
Ref. [67].

d. Truncated Spheres. A convenient convex hard-core model for plate-
like molecules with a finite thickness is obtained by taking a sphere of
diameter D and slicing off the top and the bottom at a distance +L/2
from the equatorial plane. In the limit L/D — 0. the truncated sphere
reduces to an infinitely thin, hard platelet whereas, in the limit L — D,
we obtain a hard sphere. At first sight, the truncated sphere would appear
to be a needlessly complex model for a disk-like molecule. It would seem
more natural to model such particles by short cylinders. However, from
a computational point of view, truncated spheres are more convenient
because the test for overlap between two such particles can be decomposed
into a finite sequence of simple subtests. For cylinders the corresponding
tests appear to be less simple, except when the cylinders are parallel. This
may explain why only approximate simulations of freely rotating, hard
cylinders have been reported in the literature. [68]

Although the test for overlap between truncated spheres consists of
simple steps, the test as a whole is rather elaborate. The reason is that
different tests are needed to detect overlap of the two spherical rims, of
the two flat circular faces, and of a flat face and a circular rim. Below,
we discuss all these tests in succession. In addition, the procedure also
includes a few tests that allow us to ascertain, at an early stage, either that
i and j cannor overlap, or that they must overlap.

As before, we consider two particles { and j. at positions r;, and r;
and with orientations i; and @,. For convenience, we assume that the
truncated spheres have the same diameter D and the same thickness L.
The generalization of the overlap tests to dissimilar truncated spheres is
straightforward. Below, we go through the sequence of overlap tests, step
by step.

1. Sphere test. We first test if particles i and j are close enough to
overlap. A necessary conditions is

r;‘;<D2

Only if this test is satisfied do we proceed with further overlap tests.
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2. Rim-rim test. Next, we consider the cosine of the angle that r; makes
with @;. If the absolute value of this cosine is less than L/D, the 1;; must
intersect the spherical rim of particle i. Similarly, if the abolute value of
the cosine of the angle that r;; makes with i; is less than L/D, then r;; must
intersect the spherical rim of particle j. If both conditions are satisfied,
the test for overlap between the truncated spheres / and j reduces to a
test for overlap between two spheres of diameter d. However, this test
was already performed in the previous step. Hence, if

Max|(r,;.0,), (r;.8;)°] < rZ(L/DY

then i and j must overlap

3. Too close or too far? Next, we consider cos 6; = b;.m;. We distin-
guish between the case |cos ;| < (L/D) and |cos 6;| > (L/D). We can
easily compute ryin(6;), the shortest possible distance that { and j can
approach one another without overlapping. If |cos 6, < (L/D), then
rmin(8;) = L/2+ D /2. Hence if [r;;| is less than rpip(6;;), then the particles
must overlap. Conversely, if the distance between the center of one parti-
cle and the equatorial plane of the other is larger than rmin(8;). then the
particles cannot overlap. Next, consider the case where |cos 6;] > (L/D).
In that case, the smallest possible distance between two nonoverlapping
particles is

rmin(87) = L/2(1+ | cos 6;]) + /D2 — L2/2|sin 6!
Again, the particles must overlap if
|ri;| < 7min(6;5)
and they cannot overlap if
Max|([ri;.i)], |(ri;- @)1} > Fmin(6;)

4. Circular faces overlap? If we have passed all the tests thus far, two
tests remain. The first is a test for overlap between one of the {circular)
faces of particle / with one of the faces of patticle j. As we have already
discussed the test for overlap between two infinitely thin disks, we do not
repeat the criteria that have been derived in Section ILD.1.

5. Face-rim overlap? The oniy kind of overlap that we have not yet
excluded is between the circular face of one platelet and the spherical rim
of the other. To derive the criterion for such an overlap, let us first consider
the intersection of a sphere of diameter D around r; with a circular disk

of radius Ry = +/D? — L?/2 that constitutes the nearest face of particle
j. The distance between r; and the plane of this face is d, = |r; - u| —
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L/2. The sphere around j intersects the plane in a circle of radius R,
1 - - .
= \/ (D/2)F - d%. The distance between the center of this circle and the

axis of particle j is v rlzj — (r;.n;)°. Overlap between the sphere and the
circular disk is only possible if the latter distance is less than Ry + R.. Now
we take into account that particle { is a truncated sphere rather than a full
sphere. This imposes an additional constraint on the overlap criterion,
namely that at least some points of the intersection between the sphere
around r; and the nearest circular face of j must be within a distance L /2
from the equatorial plane of i. In fact, this test can be simplified because
we have already eliminated overlap between the circular faces of ¢ and
j. This means that if any point in the intersection of the sphere and the
platelet is contained between the top and bottom faces of i, then all points
in the intersection must satisfy the same criterion, because otherwise the
circular faces of i and j must intersect. The choice of the point on which
to apply the test is then merely a matter of convenience. In practice, we
take the projection of r; on the plane of j, unless this point is outside the
radius of the circular face of j. In the latter case, we take the point where
the perimeter of the circular face of particle j intersects the projection of
r;; in the plane of this face. This test is performed to test if the rim of
intersects the face of j or vice versa.

This completes our description of the test for overlap between (wo trun-
cated spheres. This test demonstrates how tests for overlap and for non-
overlap can be combined in a systematic manner.

e. Ellipsoids. We discuss two different approaches towards the determi-
nation of overlap between ellipsoidal hard particies. The first is due to
Vieillard-Baron. [5.69] The second is due to Perram and Wertheim. [9] The
reason for including both techniques is the fact that it is computationally
attractive to use them in combination as explained below.

THE VieiLLarD-BaroN criTeERION.  The starting point of the Vieillard-Baron
criterion {VB) is the equation describing the locus of points on the surface
of an ellipsoid

Faty=(@-1)-A (r—r4) 1=0 (2.70)

where 1, is the location of the center of the ellipsoid A, and A is the matrix
A= Z}L, R%a;@4#;, where R; is half the length of the ith axis and {8;},.1 21
is a set of unit vectors along the axes. Introducing so-called homogeneous
projective coordinates x, u =0,1,2,3, through r, = x,./xg, v =1,2,3,
the ellipsoid equation can be written as
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3 3
3N Apxux, =0 (2.71)

=l p=()

where the 4 x 4 matrix A is defined by

Ap = —1—rs A" 1y

Ay = (ra- A7), j=1,23

272
A = (A7 na);, i=1,2,3 (272)
Ay = AL ij=123

Given two ellipsoids A and B in the above-mentioned representation, we
can construct the so-called pencil of conics passing through them, defined
by the equation

3 3
3D (A +ABu)x,x, =0, A€C (2.73)

=) ¥=0

This pencil contains four (possibly multiply) degenerate conics, for those
A such that '

P(A)=det(4A+AB)=10 {2.74)

The properties of these degenerate conics determine whether A and B
have any real points in common. These properties in turn follow from the
roots of P(A), We can now state the relevant rule: A and 8 do not have
any real points in common (i.e., do not intersect) if and only if all roots of
F(A) are real and nor all are negative.

We thus need a root determination scheme. There are several choices
available but we prefer the one given in the classical algebra text by Weber.
[70] Given a normalized fourth degree polynomial,

N = A e md + A’ + A +ng (2.75)

we can convert into the canonical form by the substitution A = 7 — in;,
yielding

Cni=r+ar?+ar+a (2.76)
with
_ 2

Cr = *g N3+
1 1

¢ = §n§ = 3+ (2.77)

3 1 1
Cy = 4 + — n%nz — = i + Hy

~356 7 16 3
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The discriminant D of the canonical polynomial is given by

3 A2
27D = 4 (c + 12(:[]) - (2c§ — T2escy + 27;:;) - (2.78)
The necessary conditions for the reality of the roots are
i) >0
(i) 2 <0

(iil) & —4deg >0
while the condition that not all roots are negative is met when
(iv} at feast one of the coefficients {ns,ny,m} < 0

The only input needed for the application of the overlap criterion are
thus the coefficients {#n, } of the normalized charcateristic polynomial P(A)
for the specific ellipsoidal particles in question. Here we will give the
explicit results for two cases:(i) nonisomorphic ellipsoids of revolution;
(ii) isomorphic general ellipsoids.

(1} Nonisomorphic ellipsoids of revolution. For ellipsoids of revolution,
it is useful to define the matrices

Al =al+ya®a, B '=p1+8bxh (2.79)
where " ,
a = R.%, vy =R} -R?
o A ’_“2' (2.80)
B = Ry7, 8 = Ry — Ry

and & and b are unit vectors along the major symmetry axis of the two
particles, '
Definingr=rg —r,, A4 = det A 'and Ag = det B™! and introducing
the auxiliary terms
P, = —2aB6 — Byd+ Byd(a-h)? - 3ap?
—B%y + algr’ — Ag + yAg(r-a)
Py = 208y — ayd+ayd(d-b)? — 3a’8
—a?8+ BAArY — B4+ 8A,(r-b)?
Pip = affys {r2 ~r*(@-b)? + 2(r-a)r-b)a- B)}

+aBiyrt + afy(r a)° — adgr’

+a’B8r + a’B8(r-b) — BAF

+Ax +Ag +2a% 87 — yAg(r-a)? — Au(r-B)  (281)
The coefficients of the normalized characteristic polynomial are then given
by
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ny = —Ps/Ap

ny = —(Pgq+Pg+ Pap)/Ap (2.82)
= —PB/AB

ng = A4/Ap

(i) Isomorphic general ellipsoids. For the isomorphic, but general (i.e.,
R, # R; # R;) ellipsoids, the results can be given in a more compact
form. Defining /; = R; 2, &« the totally antisymmetric three-tensor and
assuming summation over repeated Cartesian indices, we get

ny = —hizh

ny = Wb L - b)Y — Ll - %z,-z,—zk(ﬁi - A )

ny = bl | €u | (v & A + %lflf | €5 | (x4 Abg)?
~%I,-ijk(ﬁ,- B, A By Y - %z,-z,-z,((ﬁ,- A AR

ny = hbh (e 8% — hibl — %Igiftk (4 - b; Ay)* (2.83)

where the primed coefficients are related to the normalized ones through
the relation
n =n/ng, k=123 (2.84)

THE PERRAM—WERTHEIM CRITERION. Given two ellipsoids A and B, we
form the family of interpolating functions
Fle, Ay = AF4(r}+ (1 = M) Fg(r) +1 (2.85)

using the definition (2.70) for the equations defining the surface of an
ellipsoid. Introduce

F(A,B)= {2[%?]{] min Fir,A) {2.86)

The following property of the quantity F(A, 8) is now proposed to hold

1, A and B are ¢xteriorly tangent (2.87)

{>1, A and B are nonoverlapping
“F(A,B) =
<1, A and B overlap

A sketch of the proof of this, at first sight remarkable property runs as
follows. The minimum over all space of F(r,A) is found by solving

IVFILA) =AA (r—r)+ (1 —AB ' - (r—r5) =0 (2.88)

We can easily solve for this minimum, which we denote by r(A)

4
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r(A) —ty ={1—A)A - C-rag or r(A)—rg = -AB-C-rqp (2.89)
where r45 = rg — T4 and
C=(AB+(1-A)A)™ (2.90)
We can now climinate r{A} to find
mrin F(e,A) = F(r(A),A) = A(1 — A)rap - C-rap (2.91)

Consider the path p(A) = {r(A) | A € [0,1]}. This path runs from rp =
rg to ry = ry (cf. 2.89), the interpolating function vanishing at these
endpoints, that is, F(rg,0) = F(rs,1) = 0. The following cases can now
be distinguished:

s If A and B do not overlap, the path o passes through the region
outside both A and B, where F, and Fg are both > 0. Since F is a
convex combination of F, and Fy it follows that F(r(A),A) > 1 in
this region and hence F(A, B) > 1, as proposed.

e If A and B overlap then, inside the region of overlap ANB, F(r, A) <
1 independent of A, since both F4 and Fp are less than zero there.
This implies that F{r(i},A) < 1 for all A and hence F(A,B) <1.

e Finally, if A and B touch exteriorly at r*, we have that F(r, Ay=1
for all A as F4(r') = Fg(r*) = 0, so F(r(A},A) < 1. This precludes
the path from going outside both A and B and hence there must be
a A* such that r(A*) =r* so that F(A,B) =F(r",A") =1

The only implicit assumption we still have to prove is that F(A, B) is
in fact unique. This is easily accomplished by twice differentiating

2
H%F(r(;\),)t) — 2145 C- ()LA’] +(1- /\)B") Corap <0 (2.92)
The inequality follows because all the matrices in the expression are posi-
tive definite. We have now shown that F(r(A)A) is indeed concave on the
interval [0, 1} hence the maximum F{A, B) is unique.

We now turn to the explicit calculation of F(r(A)A) which involves the
computation of the matrix C. Define

r=C'=xA+uB (2.93)

where we have introduced the shorthand g =1 — A. We make use of the
fact that I" is a root of its own characteristic equation

Q) =det T — 1= =& + w& - wif+wy (2.94)

allowing us to find
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c=r" :l{rz—wznw,l} (2.95)
Wi

The algebra involved in computing the coefficients w; is much simpler than

in the Vieillard-Baron case and we can give the result for two arbitray

ellipsoids. Writing A; = Rf” and B; = R}, ;» we have

wy = A°B BBy + X (%B,-B,-Ak(ﬁ,- A by -ék)z)

1 .
+/\},€2 (EA.!A}Bk(ﬁr A ﬁj ' hk)z) + [.L3A1A2A3

wy) = a\z(Bl Bz + B]B3 + BzB'_},) (296)
FAp {(Al + Ay + A3)(B) + By + B3) — AB,(4; - 13,-)2}

+,LL2(A1A3 +A]A3 +A2A3)
Wi = );(B[ +Bg +BJ).+ P-(Al +A; +A3)

Using Eq. (2.91), F(r{A), A) is now easily calculated. Its maximization still
has to be carried out numerically, but given the concavity of this function,
an ultrafast routine like the Brent method [71] can be used.

OPTIMIZING THE OVERLAP TEST. It turns out to be computationally efficient
to mix the two overlap criteria in such a manner that nonoverlaps are
detected as economically as possibly. The following three-stage process is
designed to do just this,

1. Test for overlap of the circumscribed spheres. If these do not overlap
accept the move. Else

2. Evaluate the function F (r(%), %) from the Perram-Wertheim crite-
rion. If this is larger than unity we know that the ellipsoids do not
overlap and can accept the move. Else

3. Perform the Vieillard-Baron test, which with its four subcriteria is
the most involved.

The first two tests are “nonoverlap” tests, while the third is an “overlap”
test.

/. Parallel Hard Particles. In a number of cases, it is of interest to study
the properties of model systems with restricted orientations. Most com-
mon among these restricted orientation models are systems of parallel
{hard) particles. Such model systems can be thought of as a limiting case
of a system of freely rotating particles in a strong aligning field. The main
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reason to study systems of parallel particles is that both the theoretical
analysis and the numerical simulation of such systems s usually simpler
than that of their freely rotating counterparts. This is particularly clear in
the case of aligned ellipsoids. Any configuration of a system of aligned
ellipsoids can be transformed into a configuration of hard spheres via a
simple affine transformation. For instance, spheroids with an axial ratio o
that are aligned along the z-axis, can be transformed to the correspond-
ing hard-sphere system via the affine transformation z — 7/ = z/a. All
systems of aligned ellipsoids (both uni-axial and bi-axial) are therefore
equivalent to the hard-sphere system. Hence, the behavior of any system
of aligned ellipsoids can be deduced from the behavior of the hard-sphere
system at the same packing fraction.

However, for hard particles with other shapes, the aligned system is not
trivially related to some known reference system. Here, we briefty review
the overlap criteria for two model systems consisting of aligned particles.

ALIGNED SPHEROCYLINDERS, Consider a system of sphero-cylinders aligned
along the z-axis. For convenience, we assume that all particles have the
same diameter [J, while the cylindrical part has a length L. In order to test
whether two particles 7 and j overlap, we first compute z,;, their distance
in the z-direction, and r;}, their distance in the xy-plane. Overlap between
i and j is only possible if the following conditions are both satisfied:

zy<L+D and rj<D
Let us assume that these conditions are indeed satisfied. Then, if
i < L

the cylindrical parts must overlap. In fact, if we study hard, parallel right
eylinders (i.e., cylinders without a hemi-spherical cap), this is our final
test. For spherocylinders, however, if z;; > L, then we must test if the
hemi-spherical caps overlap. The corresponding test is

(r5)* + (ziy — LY < D?

Clearly. the test for overlap between aligned spherocylinders is consider-
ably simpler than the corresponding test for freely oriented spherocylin-
ders.

ALIGNED TRUNCATED SPHERES. Next, consider truncated spheres with di-
ameter D and thickness L. aligned along the z-axis. The test for overlap
is extremely simple. If

Zij > L
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ne overlap is possible. Otherwise, we simply apply the test for overlap
between two spheres, that is,

rl—zj < D?

g Other Shapes. Finally, we briefly review a few other convex hard-core
models that have been discussed in the literature. Although some of these
bodies appear to have a simpler shape than the models discussed above,
the test for overlap may be more involved.

RIGHT CYLINDERS. A case in point is a model consisting of right cylinders
of length L and diameter D. The test for overlap between two such parti-
cles can be decomposed into several subtests. The first test is similar to the
computation of the distance of closest approach between two spherocylin-
ders. However, we can only use this test if the shortest vector between the
axes of the two cylinders intersects both cylinders. Otherwise, we must
test if the flat faces of the cylinders overlap (see Section. ILD.1). In the
final test, we check if the flat face of one cylinder intersects the cylindri-
cal part of the other. This test can be reduced to an overlap between
coplanar ellipses (see Section. ILD.1). Clearly, this sequence of tests is
feasible. However, it is more complex than the test for overlap between
two spherocylinders.

OBLATE SPHEROCYLINDERS. An oblate model that could serve as an alter-
native to the truncated sphere is the so-called oblate spherocylinder. [46]
This shape is obtained by moving the center of a sphere with diameter L
over a circular disk with diameter D. In this case, the time-consuming step
in the overlap test is the computation of the distance of closest approach
between the toroidal rims of two oblate spherocylinders. Wojcik and Gub-
bins solve this problem by using an iterative minimization scheme. [46]
Although such a scheme may be quite efficient in practice, we have lim-
ited ourselves to test schemes that are guaranteed to terminate in a finite
number of steps.

“UFOs”. Siders and co-workers [72,73] have considered an alternative
mode! for an oblate molecule, namely the intersection volume of two
equal hard spheres at a distance r < D {where D is the diameter of the
spheres). This object, called UFO by Siders et al., might, in some cases,
serve as an alternative for oblate spheroids. The tests for overlap between
UFOQs are fairly straightforward.

GaussiaN core. Thus far, we have only considered models in which the
individual particles have a well-defined geometry. However, as mentioned
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earlier, this is a subclass of all hard-core interactions, The use of hard-core
interaction that cannot be interpreted in terms of the “shape” of the indi-
vidual particles has advantages and disadvantages. The advantage is that it
is often possible to write very simple expressions for the potential energy
function. The disadvantage is that much of our intuitive understanding of
local packing effects is lost if we use a model in which individual particles
do not have a “shape”. Best known among these nongeometrical hard-
core models is the so-called Gaussian-core model. [39,64] In this model,
the form of the potential energy function is similar to that of hard spheres,

that is,
0, rm>o
u(f’lz) - { oC 2 < 0p

But, unlike the hard-sphere case, oy now depends on the orientations (i,
and ;) of the molecules, and the orientation of the vector ry; joining the
centers of mass of the molecules:

X [(i'lz by + g i)’ N (F12 - @y —f12'ﬁ2)2])

-1/2
2,7, 1) = 1-= -~ o i i
a(r;, 0y, i) = gy ( Gl 1+ yiy @y -y -y

(2.97)

where y is a measure of the nonsphericity of the molecule. For two parallel
molecules lying side by side, o, = ay. If the same molecules are positioned
endto end, oy = ay(1 + x)/(1 — )()]'/ 2, Conversely, if we define the aspect
ratio of the molecule as « = o /o, then

K2 -1

k2+1

For two parallel Gaussian hard-core molecules, the excluded volume is
identical to that of parallel ellipsoids with the same aspect ratioc. How-
ever, the Gaussian hard-core interaction and the hard ellipsoid interaction
are not identical for nonparallel molecules. In fact, Perram et al. [74]
have shown that the Gaussian hard-core model has a simple interpreta-
tion in terms of the function F(r, A) defined in Eq. (2.85). Namely, that
the overlap criterion in the Gaussian hard-core model corresponds to the
criterion F(r,1/2) = 1. We recall that the latter criterion is the “quick”
Perram-Wertheim test described in Section ILD.1. From the analysis be-
low Eq. (2.85), it then follows immediately that the Gaussian overlap crite-
rion is always an upper bound to the eilipsoid overlap criterion. Moreover,
Perram et al. show that the difference between the two models becomes
more pronounced with increasing nonsphericity of the molecules or, in the
case of unlike molecules, when the molecules become more dissimilar. In
fact, the available simulation data on hard-ellispoids and hard Gaussian-
overlap models [39,64,75] appear to pass this test.

X:
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2. Virial Coefficients

Once the criterion for hard-core overlap between two convex hard bod-
ies has been specified, we are in a position to study the properties of the
model under consideration by computer simulation. Such simulations (ei-
ther MC or MD) are usually performed on a model consisting of several
hundreds to several thousands of particles. First, however, we briefly dis-
cuss a few-body calculation, namely the numerical evaluation of the virial
coefficients of the system. The virial coefficients B, withn =1,2,3, .., are
the expansion coefficients of the compressibility factor Z = PV /NkgT in
powers of the number density p = N/V:

Z=1+Byp+Byp*+-- (2.98)

where we have used the fact that Bi=1. Clearly, knowledge of the first
few virial coefficients would allow us to predict the equation of state of
the model system at moderately low densities. This is important, because
it provides an independent test of our MC or MD calculations, in which
the equation of state is computed in a completely different fashion. The
virial coefficients can be expressed in terms of sums of (multidimensional)
integrals of the Mayer f-functions (see, e.g. Ref. [1]). Ree and Hoover [76]
have shown that, for hard-core particles, the number of “diagrams™ can
be greatly reduced and that the resulting expressions lend themselves (o
numerical (Monte Carlo) evaluation. Although we do not discuss the
Ree-Hoover scheme in any detail, we wish to point out that different
implementations of the MC scheme are possible. In order to clarify this
point, we need to know only one thing about thé Ree-Hoover scheme to
compute B,, namely that the quantity that must be sampled is a function
of the coordinates of # molecules and that a necessary (although not suf-
ficient) condition for this function to be nonzero is that particle { overlaps
with j, j with & , ... and ! with {, where {,j, &, ...,/ is any permutation of
{1,2,3,...,n}. The schemes to compute the B, are based on an algorithm
_to generate, in an unbiased way, configurations where 1 overlaps with 2.2
with 3, ..., n — 1 with n. The contribution of this configuration to the nth
virial coefficient can then be evaluated by a series of tests for overlap (e.g.,
between » and 1) and nonoverlap, that are described in Ref. [76]. We only
wish to point out that there are two distinct ways of generating the “open
chain” configuration 1 — 2 — - -- — n. The simplest {and most common) is
a dynamic scheme in which normal “Metropolis” sampling is performed
on the coordinates of all » particles. Whenever a trial move “breaks” the
chain from 1 to #, it is rejected. Although this scheme is simple. it has the
disadvantage that there is appreciable correlation between successive con-
figurations and, more importantly, the sampling becomes less efficient as
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the molecules become more anisometric. The second scheme, which does
not suffer form these drawbacks, is the “static” scheme. Here, a new, ran-
dom chain conformation is generated from scratch at every step. In order
to achieve this, one must be able to generate, with the correct probability,
all configurations of molecule & that overlap with & — 1. For extremely
elongated molecules, the static scheme is, to our knowledge, the only fea-
sible method to compute the higher virial coefficients. In order to explain
the difference between the static and the dynamic schemes, consider the
computation of the third virial coefficient of line segments in two dimen-
sions. The third virial coefficient can be computed from the probability
that line segment 3 overlaps with 1, given that 1 overlaps with 2 and 2 with
3. In the dynamic scheme, we would prepare the three lines such that the
pairs 1-2 and 2-3 overlap. Next, we would perform a random trial dis-
placement or rotation of one of the particles. If that trial moves maintains
the 1-2 and the 2-3 overlap, it is accepted. Otherwise it is rejected. Of
course, subsequent configurations are rather strongly correlated. Hence,
there is not much point in testing for overlap between 3 and 1 after every
trial move. In the static scheme, we fix particle 1. Next, we generate a
trial orientation for particle 2 with a probability that is proportional to the
pair-excluded volume of 1 and 2 for that particular orientation. Finally,
we place the center of mass of 2 anywhere in this excluded volume. This
procedure guarantees that 1 and 2 overlap and also that all overlapping
configurations are generated with the correct statistical weight. We repeat
the same procedure to insert particle 3 in such a way that it overlaps with
2. Finally, we test for overlap between | and 3. In this static scheme, there
are no correlations between subsequent configurations. When comparing
the static and dynamic schemes, we should bear in mind that the dynamic
scheme is easier to implement than the static scheme. In particular, care
should be taken in the static scheme that all trial configurations are gener-
ated with the correct weight. In contrast, in the dynamic scheme. a simple
test for overlap suffices to accept or reject a trial configuration.

3. Egquation of State

There exist several techniques to compule the pressure in a hard-core sys-
tem. Although these techniques are, in principle, equivalent, they appear
rather different. In melecular dynamics simulations, the most convenient
starting point for computation of the pressure is based on the virtal. This
expression is based on the observation that, in a bounded N-particle sys-

tem,
N
2P
i=1
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is bounded, where p; is the momentum of particle i and r; denotes the
center of mass position of that particle. As the virial itself is bounded., its
average time derivative is zero. This condition yields an expression that
relates the average collisional momentum transfer along the line joining
the center of mass of two collision partners to the pressure in the system:

P/(pkBT) =1+ % < APU ~Tijp > (299)

where AP;; denotes the collisional momentum transfer between particles
i and j, while r;; denotes the vector joing the centers of mass of these
particles and d is the dimensionality of the system, The angular brackets
denote time averaging. In a hard-core molecular dynamics program, as
the collisional momentum transfer has to be computed anyway, the com-
putation of the pressure requires very little overhead. For more details,
see Ref. [77]. _

Clearly, the above method to measure the pressure cannot be used in
Monte Carlo simulations. A convenient technique to measure the pressure
in such simulations is based on the fact that pressure is equal to (minus)
the volume derivative of the Helmholtz free energy F

P=—(0F/dV)yr (2.100)
We can approximate the pressure by a ratio of finite differences:
P~ —(AF/AV)ys : (2.101)

Equation. (2.101) is a convenient starting point for a numerical scheme
to measure P. To this end, we must compute the free energy ditference
between a system at volume V and the same system at a smaller volume
V' =V + AV. The free energy of a system of N molecules at volume V
is givenby F = —kgT In Q(N,V,T), with

QN V,T) = "N(%if---f: ar¥ dQ” exp(-pU (Y, Q")
(2.102)

where Vi is the part of the partition funtion that results from integra-
tion over the momenta (see Appendix A.A). It is convenient to rewrite
Eq. (2.102) in a slightly different way. Let us assume that the system is
contained in a cubic box with diameter L = V'/3. We now define scaled
coordinates sV, by

r = LS“

"
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fori =1,2,...,N. if we now insert these scaled coordinates in Eq. {2.102)
we obtain
N f I ’
OIN,V,T) = —— / co | as¥ dQN exp(—BUGY, QN L)) (2.103)
VENI Jo 0

In Eq (2.103), we have written U(s”, Q"; L) to indicate that U depends
on the real rather than the scaled distances between the particles. The
expression for the Helmholtz free energy of the system is

F(N,V.T} = —kzT In Q
N

"
sTInSm

)

—kgT In ( / ds” 40" exp(—BU(s-",nN;L))) (2.104)

It is now straighforward to write down the expression for the pressure
given in Eq. (2.101):

AF  kgT

S5y = IMQV)/eV)
W J f N,y
_ kT n VN [ dsV exp(—BU(sV, Q" V")) (2.105)
AV VN [ds¥ exp(—BU(Y, QY V)
or
kgT N
P =Py- AV In < exp(—BAU(s™)) >, (2.106)

where AU = U{sV, QY V) - UY, QY. v"). Equation. (2.106) may be
interpreted as the acceptance probability of a virtual Monte Carlo move
in which the volume is decreased from V to V'. Equation. (2.106} is valid if
all nonoverlapping configurations of a system with volume V' correspond
te nonoverlapping configurations of the system with the larger volume
V. For convex hard bodies, this is indeed the case. For nonconvex hard
bodies, one should measure the acceptance ratio of virtual volume changes
from V to V’, and vice versa. For more details, see Ref. [67)].

An alternative scheme (0 determine the equation of state of a hard-
body fluid in a Monte Carlo simulation, is to perform such simulations at
constant pressure, [78,79] rather than at constant volume. If the pressure
of a system of N particles is fixed at P, then the probability density to find
that system in a particular configuration of the IV molecules {as specified
by sV, Q") and a given volume V is given by
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P(V;s¥ Q)
VN exp (~BPV) exp(—pU(sY, QV; L))
JdVI VN exp(—BPV) [ dsN dQY exp(-BU(sY, QY L))

We can carry out Metropolis sampling on the reduced coordinates s, "
and on the volume V', with a weight function p(s¥, V'} proportional to

exp(—B{UE", QY V) + PV - N8 In V})

In the constant N, P, T MC method, V is simply treated as an additional
coordinate, and trial moves in V must satisfy the same rules as trial moves
in r (in particular, we should maintain the symmetry of the underlying
Markov chain}. Let us assume that our trial moves consist of an attempted
change of the volume from V to V' = V + AV, where AV is a random
number uniformly distributed between over the interval [—AV pux, +AVimal.
In the Metropolis scheme, such a random, volume changing move will be
accepted if

exp(—B[U(sN,ﬂN;V})—U(SN,Q’\’;V)+P(V’—V)—NB" In(V/V))) >R
(2.107)

where R is a random number, uniformly distributed over the interval [0, 1].
4. Some Results

It is not our aim to review the large amount of numerical data that have
been gathered on the static properties of isotropic hard-body fluids. In fact,
several papers exist that discuss the comparison of the numerical results
for virial coefficients and for equations of state of such fluids with various
approximate theories. In particular, the excellent review by Boublik and
Nezbeda [12] contains a compilation of the first five virial coefficients of
prolate and oblate spherocylinders and ellipsoids, and of the first seven
virial coefficients of hard spheres. Subsequently, several papers have ap-
peared that discuss the equation of state or virial coefficients (of other
hard-body fluids [38,39,64,80,81]. There are fewer systematic studies of
the structure of hard-body fluids. However, a useful compilation of some
of the numerical data can be found in a paper by Nezbeda et al.[61]

a. Virial Coefficients of Spherocylinders. Onsager’s model plays a unique
role in the theory of liquid crystals, because it is the only exactly solv-
able model with full translational and orientational degrees of freedom
which exhibits a transition to the nematic phase. However, as explained
in Section IV.A.2, the Onsager theory is only valid in the limit L/D — oo,
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while most thermotropic liquid crystals have effective L /D ratios of 3 to
5. The reason why the Onsager theory cannot be used to describe molec-
ular systems with such “small” L/D values is the following: an essential
assumption in its derivation is that, in the expansion of the free energy in
powers of the density, all virial coefficients B, with n > 2 may be neglected.
This condition is satisfied if B,/B; ' < 1. Onsager gave a qualitative ar-
gument to show that for large L/D, By/B3 ~ (D/L) In{L/D). Hence, in
the limit L/D — oo, the reduced third virial coeffient does indeed vanish.
Onsager made the plausible assumption that the higher virial coefficients
can also be neglected in the same limit. Of course, the question arises if
this assumption about the higher virial coefficients is indeed correct, and if
so, how large L/D must be to observe this asymptotic behavior. Unfortu-
nately, the virial coefficients compiled in Ref. [12) are limited to particles
with a length to width ratio between 10 and 0.1. We therefore computed
the third through fifth virial coefficient of hard spherocylinders as a func-
tion of L/D, for L/D between 1 and 10°, {82,83] using the techniques
described in Section I1.D.2.

Figure 2.3 shows the L/D dependence of By/B3, By/B; and Bs/B}
for hard spherocylinders with Z/D between 1 and 10°. As can be seen
from Fig. 2.3, the computed virial coefficients do indeed become small for
large L/D. However, for B, and Bs this decrease only sets in at rather
large L/D values. This effect is seen more clearly by dividing the re-
duced virial coefficients by a factor proportional to the value that one
should expect if the asymptotic L/ dependence was valid for all L /D
that is, (D/L) In(L/D} for By and D/L for By and Bs. The resulting
“scaled” virial coefficients are shown in Fig. 2.4. Apparently, for B; the
asymptotic behavior already sets in for small L/D. Not so for B, and
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Bs. As can be seen from Fig. 2.4, the approach to the asymptotic behav-
ior is only observed beyond L/D =0(10?). The reason is that, whereas
only one (positive) cluster integral contributes to Bi, B, and Bs contain
several contributions from diagrams of different sign and different asymp-
totic L/D dependence. The partial cancellation of these contributions is
responsible for the behavior of B, and Bs for small L/D. In the limit
L/D — oo, only the leading diagram survives. This diagram is positive for
odd » and negative for even n. Almost identical behavior is observed for
the virial coefficients of hard ellipsoids. [84,85].

E. Siructure

The pair structure of the hard ellipsoid fluid has been examined by Tal-
bot and co-workers. [24,34] Here the interest lies in spherical harmonic
expansions of the orientation dependence of g(r,eq,e;), the success or
otherwise of theories in fitting to the simulation results, and the use of
alternative expansions, for example in the surface—surface distance. The
surface—surface distance is calculated by a procedure due to Wertheim and
Talbot. [86] For completeness we sketch it here.

1. Surface-Surface Distance for Ellipsoids

Consider two ellipsoids of revolution, with centre ‘of mass positions r; and
r; and with unit vectors along the symmetry axes e; and ;. Both ellipsoids
have semi-axes a and b. The surface of i is defined by

r-n)-A7 - r-r) =1

where

A; = b1+ (@ — PP)ee, (2.108)
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A =+t - b e (2.109)

At any point r on the surface, the outward unit normal n; lies in the
direction A;”' - (r — r;). The point on the surface having a prescribed
normal n; is given by

& :r—r,—:A,--ni/\/ll,*Ai‘“i

Similar expressions apply for j. The problem of finding the shortest
distance between two ellipsoids reduces to finding three vectors, &; =
r; + & — £.n; and —n; all parallel. These vectors are shown in Fig. 2.1.

This suggests several iterative schemes, all based on an initial guess &;
at the surface-surface vector. One simple approach is to calculate new
values of & and ¢ from

P Ai & and &' = Aj- &
&ij-Ai & Vi A&
that is, the surface points on each ellipsoid that would have &; as a normal.
Then a new estimate &' =r; + & — & would be mixed with the old §; in
some proportion for the next iteration. In other words, we are iteratively
solving the equation

(2.110)

C'f,'j:l‘,‘;‘ with C=1+ Ai + AI (2111)
VE -ACE VEAE
for &; given that r;, A, and A; are fixed. An alternative approach is to
write the equation as &; = C'r; and solve this by iteration, setting at
each stage § ,’ = C7!(¢&;) - r;;. This seems to be slow to converge.
Starting from an initial guess at ; j and the outward normals n; = —-R; =
—&;/\&;|, calculate rev:sed values &' and ¢ from Eq. (2 110). From this,
compute §,, =1 +& - §J and new values n,’ = —nj’ = —§; /[.f,, |. The
mixing factor for the next iteration is determined as follows. Construct
the matrix

R A-&& | A—§E
\/l'l,‘-A,-I'I,' \/l'lj-Aj'll}'

and from it the matrix

‘ ’ K — Tr(R)(1 —n;n;) — R
B Tr(Cof(R))
o where Tr stands for trace and Cof(R) is the matrix of cofactors of R. Then

the old and new normals are mixed together in proportion n; + xn,” where
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_ &' N&7 K&
§.‘;’r2 - (‘fijf . ﬂe‘)z

for the next iteration.

Talbot et al. [24] investigated the expansion of g(r, e, ;) in rotational
invariants, discussed in Section II.C.1, for a range of ellipsoid shapes and
densities. They compared their results with the standard theories of liquid
structure, hypernetted chain (HNC) and Percus-Yevick (PY). A general
result was that both these theories seem to give reasonable descriptions
of the first few expansion functions for prolate ellipsoids with ¢ = 2,3, 5,
with HNC being slightly superior. Moreover, the accuracy of the theocries
at a given packing fraction did not depend strongly on the elongation of
the molecules, an encouraging and perhaps surprising result. The most
stringent test is at high packing fraction, and for e = 2 the fld phase
extends at least up to p/pe, = 0.8, well above the freezing point for the
hard-sphere fluid. Indeed, at this density, solutions to the HNC equations
could not be obtained. Nonetheless, agreement with PY is still fair for
most of the expansion functions. The exception is the function gox(r),
which seems to be very sensitive to inaccuracies in the theory, especially
at short range.

For oblate ellipsoids with e = 1, at the single density studied, p/pe, =
0.5, the HNC theory is once more in reasonable agreement with simula-
tion results. PY, however, is rather poor for this case for several of the
expansion functions.

A disadvantage of expanding g(r, e, €7) is that the higher coefficients do
not decrease quickly in magnitude, that is, the expansion does not converge
very well. Talbot et al. [34] investigated the consequences of expanding
the function G(s, e;, e;) discussed in Section I1.C.1, where s is the surface—
surface distance. This seems to bring the expected benefits of more rapid
convergence. Moreover, once the (exactly calculable) effects of the surface
Jacobian S(s) are taken into account, the expansion functions seem to be
quite short-ranged in 5. This breakdown succeeds in highlighting certain
physical features of the packing in dense liquids, such as the preference for
prolate ellipsoids to pack side by side. Various properties characterizing
pairs in contact, such as the pressure and the collision rate, are easily
related to the appropriate functions in the limit s — 0. This approach also
leads to a description of the structure in terms of the isotropically averaged
pair distribution function gis,(s). which, at leasi at short distances, is very
similar to the hard-sphere pair distribution function for the same packing
fraction and molecular volume. Finally, in this study, the use of surface—
surface functions as a route to the orientational correlation parameter gz
was examined. It was shown that the function g;(s) can be separated into
a short-range excluded volume component and a longer rarge term. There




HARD CONVEX BODY FLUIDS 53

is a substantial contact contribution to g;. However, it was also evident
that, in both centre—centre and surface-surface decompositions, the longer
range component makes a significant contribution to the integrated value
g; measured, for example, in depolarized light scattering experiments. For
details, we refer the reader to Ref. [34].

L DYNAMICAL PROPERTIES

A. Transport Phenomena in Isotropic Phases

The time evolution of a dynamical quantity in a system comprised of HCBs
arises from the action of free streaming (uninterrupted translation and ro-
tation) and collisions. Free streaming is implemented into the dynamics
by operators akin to the infinitesimal generators of free translation and
rotation. In hard-particle systems, collisions are strictly two-body events
and for convex bodies. the colliding bodies touch at only one point at any
instant. The effect of a collision on a property is represented by binary
collision operators and owing to the nature of impulsive force laws, the
physical content of a binary collision operator is exceedingly simple. The
binary collision operator determines if two particles are approaching and
are at a contact separation. If these conditions are satisfied, then the in-
coming particle momenta are replaced by the restituting momenta, derived
on the basis of the conservation laws for linear and angular momentum
and kinetic energy. Since the colliding bodies are smooth and convex, the
collisional impulse is directed along the surface normal at the point of
impact.

The development of a kinetic theory of rigid convex bodies was due to
Curtiss and his co-workers [87-96]. Equations of motion, BBGKY hierar-
chies and collision operators derived by the Curtiss school were natural ex-
tensions of the Chapman-Enskog hard-sphere kinetic theory. [97.98] Much
of the progress in the calculation of dynamical properties of HCB systems
has resulted from exploiting the analogies with hard-sphere systems. Even
the accommodation of the angular momentum and the orientational an-
gles appropriate to HCB collisions has been influenced by the techniques
developed for hard spheres. As a result of these efforts, transport coeffi-
cients and spectra of fluids of HCBs can be obtained nearly to the same
level of rigor as that for hard-sphere systems. The development of HCB
transport theory has not been greatly influenced by the adoption of special
coordinate systems which restrict analysis to a certain shape (e.g., an el-
lipsoid or a spherocylinder). Rather the techniques developed by Curtiss.
Dahler and Hoffman allow transport properties, for hard spheres and for
HCBs of arbitrary shape, to be treated on the same footing.

The HCB kinetic theory has several basic ingredients:
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1. the definition of the Liouville operator {hereafter called the pseudo-
Liouville operator since it will prove to be non self-adjoint); [99)

2. a systematic method for the derivation of formal [100] and at the
same time operational [101] expressions that permit the computation
of transport coefficients and time correlation functions;

3. an exact way to perform the collision integrals over the momentum
and orientational angles decribing the phase space for a two body
encounter. [95]

B. Time Evolution Operators

The time evolution of HCB systems was cast in a binary collision oper-
ator formalism by Cole et al. [99] and here we begin with a summary of
their findings. Consider the time evolution of an arbitrary dynamical vari-
able, A(T") where I' denotes the phase space coordinates of the NV particle
system. By Liouville’s theorem, A(T") evolves in time acgording to

A1) = exp(iLD) AT 0)
AlexpliLt)T) = A(T{1)) (3.1)

When the potentials are soft and differentiable, the operator iL is a linear
differential operator and Eq. (3.1} generates a series expansion in time.
However, when the forces are impulsive, there is no meaning to an ex-
pansion of Eq. (3.1) in terms of the spatial derivatives of delta function
forces. Instead one must reinterpret the formal time evolution operator
and separate /L into a free streaming, iLy, and an interaction (iL ~ iLg)
part. Likewise, the dynamics are to be treated using this same separation,

{
exp(iLt) = expl(iLyt) + / dr exp(iL7)}(iL — iLy) exp(iLo(t — 7)) (3.2)
0
where the streaming operator (for rotor and spherical tops) is given by

iLy =) (v-Vr+(wx) Vg); (3.3)

]

Next, we “coarse-grain” time, that is, we divide time into bins of width
€, and stipulate that it is during the interval e that a collision occurs. In
this view, one replaces the collection of terms in the (iL — (L) part of
Eq. (3.2) with three terms: first, a free propogation operator, exp(iLy{t —
7)), which places the system at the beginning of the desired time bin;
second, an operator which constructs the difference between the post-
and precollision values of the system during the time interval €; and third,
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an operator exp{iL+) which propagates the system under the influence of
the full Liouvillian. The explicit time evolution operator satisfying these
conditions is

exp(ile)t) = exp(z.'Lut) + /ﬂt dr exp(iL7)T(e) exp(iL{t — 1)} (3.4)

where
T(e)=26 (s - %]ds/drhs) |ds/de|H{—ds/dt)(b — 1) (3.5)

s is the surface-to-surface separation of two bodies measured along §, the
surface normal. ds/dr is the velocity along § (to be given explicitly later)
and b is an operator which converts precollision momenta to their post-
collision values and vice versa. The binary collision operator, T(e), reg-
isters a collision provided the particles are approaching (negative ds/dr)
and reside infinitestimally outside the contact surface. [102] The curious
%s in Eq. (3.5) arises as a consequence of the mean value theorem which
specifies that one locate the collision to be half-way through the coarse-
grained time period e. Finally, the Liouville operator is given by the e — 0
limit. We suppress € in all the equations to follow but note that the € limit
must be taken at the end of the calculation rather than at the outset.
Equation (3.4) defines an expansion of the system evolution operator
which allows one to evaiuate time correlation functions of the form

< BO)|A@H) »= / dTfY (T)B(T) exp(iLt)A(T) (3.6)

where f¥(I') is the N particle equilibrium distribution function. For soft
potentials, a parts integration of Eq. (3.6) yields

< B(O)A() >= /dFA(F) exp(—iL)f¥(MB(T) (3.7)

and both Egs. (3.6) and (3.7) are equivalent. To make hard particles
abide by Egs. {(3.6) and (3.7), some effort is needed and this issue has
been discussed on several occasions by Ernst et al. [102,103] for spherical
systems. The complication for hard-body systems arises because of the
combined effect of the streaming operators and the discontinuous nature
of f¥. When two particles overlap, f¥ = 0. whereas at a separation
infinitesimally exterior to the excluded volume surface, fV is nonzero.
The action of iLy on fV is to introduce delta functions that have the
appearance of terms in the collision operator. In other words, when we
derive a result equivalent to Eq. (3.7) for HCB systems, the binary collision
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operator will have to be altered. Provided that the f¥ function is to the
left of {L, no infinities are produced by the action of iL,. In order to
retain the property of Eq. (3.7). we must replace exp(—iLt)f¥(I') by its
Hermitian adjoint, (denoted by 1), defined through the relation

/ dTB(T)X(DA(T) = / dT (X (MB(M) A(D) (3.8)

where X{(T') is an arbitrary operator and A(T') and B(T) two arbirtrary
functions of the phase space coordinates.

To construct the adjoint of the hard body Liouville operator, consider
the < B|iL|A > matrix element. First we integrate the streaming operator,

_ / arN (DB LA
=/dF(—A(F)iLo(B(F)fN(I‘))+f""(F)B(F)TA(F)) (3.9)
and we néte that [99] |
/ dTf¥(MB(MTA(T) = / dTA(NYTTB(T) (T (3.10)

where
T' = (ds/d)8(s){(H{ds/dt)b + H(—ds/d)) (3.11)
Combining Egs. (3.9), (3.10) we find

/ dTf¥(TB(TLA(D) = / dTATYGL(N (MBI (3.12)

so that the adjoint of {L is given by

(LY = —iLlo+ T (3.13)
and accordingly
<BOWAW > = [dT¥BE) expLOAT)
= / dTA(T) exp((—iLo + THO)[f¥ (D) B(D)]! (3.14)

A consequence of Eq. (3.14) is that the time evolution of the distribution
function is described by a Liouville operator different from that used to

oy
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describe the time evolution of a dynamical variable and this difference is
reflected directly in the equations of motion for a dynamical variable

dA( ) /de = (iLy + THA(T: 1) (3.15)
and for the full ¥ particle distribution function f¥(T;¢)
(8/00)f¥(I51) = (=iLy + TfY([11) (3.16)

It then follows that the first member of the BBGKY hierarchy, f(1;¢), the
singlet distribution function obeys

(8180 f(1:8) = —iLof(152) + /O d2ThLF(1,2;0) (3.17)

where f(1,2;¢) is the pair distribution function. Here the reduced distri-
bution functions are defined by

f(1,2, ..ty = (NN —n)!)/d(n+ 1)..dNfY¥ ;1) (3.18)

This completes our analysis of the time evolution of an arbitrary dynamical
variable and the phase space distribution function.

€. Time Correlation Fanctions

There are several ways to calculate a general transport coefficient in the
Enskog (uncorrelated collision) approximation. Broadly, these procedures
are based on a linear response theory in which the “disturbance” is a
shear gradient, a temperature gradient or a concentration gradiznt and the
response is a momentum, energy or a diffusion current, respectively. [97,98]
For the specific case of a linear response theory for the shear viscosity, one
would calculate the stress tensor as a consequence of the imposed shear
gradient and the coetficient relating stress to strain is the shear viscosity.
The “Enskog” method for the calculation of a transport coefficient or
more generally those appproaches based on the use of the distribution
function were shown by Ernst et al. [102,104,105] to be equivalent to the
flux—flux time correlation function approaches. All of the usual facets of
Enskog kinetic theory (basis functions expansions, the factorization ansaiz
of the precollisional f(1,2;¢)) [106] also arise in the analysis of flux-flux
time correlation functions,

Some of the vestiges of distribution function Enskog kinetic theory
can be avoided and the resulting calculations simplified by the use of a
Mori projection operator. In this approach, practiced by Forster, [107]
Mazenko, [108] Mazenko and Yip, [109] Evans [1{11] and summarized suc-
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cinctly by Hansen and McDonald, |1} one applies the Mori method (with
one or two primary variables) to derive a generalized Langevin equation
for the flux-flux time correlation function. Apart from some simple ther-
modynamic functions, the decay rates for the flux-flux time correlation
function are the transport coefficients. We will illustrate this method by
the calculation of a few single particle properties, hydrodynamic collective
properties and purely position dependent orientational properties.

From the above paragraphs, it would appear that there are two distinct
schools of thought: those involved with the construction of BBKGY hi-
erarchies for the singlet and pair distribution function (motivated by the
desire to derive improved Boltzmann-Enskog equations of motion) and
those concerned with the derivation of generalized Langevin equations
for the flux time correlation functions. Sung and Dahler [110-112] have
taken a middle road and have derived generalized Langevin equations
for the tagged particle distribution function and the vntagged members of
the surrounding fluid. The Mori techniques used by Sung and Dahler are
precisely the same techniques that we use here. It seems to us that the
transport theory is both simpler to use and to understand if one takes a
limited description and focusses attention on the flux time correlation func-
tions rather than on the phase space distribution function. We illustrate
this method by the calculation of a few single particle properties, hydro-
dynamic collective properties and purely position dependent orientational
properties. :

1. Single Pariicle Properties

The simplest transport properties to understand for a fluid of nonspherical
molecules are the self diffusion coefficient D,

D, = (1/3) /m dt < v(0)-v¥(t) >= /00 dtCy(ty =kpT/(mf,) (3.19)
0 0
and the rotational diffusion coefficient D,
D, =1(1/2) /m di < w(()  wit) >= /oc arC,(t) = kaT/{If,) (3.20)
: 0 0

where C,{(¢) and C,(¢). are the linear and angular momentum time corre-
lation functions, respectively. Accompanying the diffusion coefficients are
the friction coefficients f, and f,, which are also used in the preceding two
equations.

We illustrate the Mori method by a calculation of f,. The choice of
fo rather than f, was made in order to demonstrate the role of non-
sphericity which clearly governs angular momentum relaxation but is only
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of secondary importance for linear momentum relaxation. The Mori
method allows one to derive an exact generalized Langevin equation for
Co(1) [113,114]

(8/80)C,(t) = —FEC,{1) - [01 drv,(TC, (t — 7) (321

In the parlance of Hansen and MacDonald, (1] f£ is the direct term,

fEe <o |Tlo>/ <o > (3.22)

also the single variable Enskog friction, and »,(7) is the indirect term
volt) = — < - |T exp(iQulQum)QuTiw > / < &* > (3.23)
with
Qo = 1w > [I/(28)] < | (3.24)

and is a measure of the correlations usually ignored in Enskog theory. By
means of Eqs. (3.21)—(3.24}, one can associate the total friction with the
sum of the direct and the indirect terms

fo=1rk+ [C dtv, () (3.25)

}

The Enskog (or direct) term f£ involves a single binary collision opera-
tor. whose matrix elements can be determined easily. This term measures
the uncorrelated impulses on the surface of the tagged particle as weighted
by the anisotropic pair correlation function of the system.

The indirect term, »,(r), is more complex as il contains both the di-
lute gas and the dense gas/liquid classes of correlations. The gas phase
correlations omitted from a single variable Enskog theory and contained
in v, (1) reflect two effects: (1) that w is not an exact eigenfunction of T
and T couples w (fortunately only weakly) to higher Sonine polynomials
of w and v (see Refs. [115,116]) and (2) that a colliding pair may suffer a
chattering collision. [99,117] A chattering collision arises when a particular
trajectory has more than one impulsive encounter. In the context of a
binary collision expansion, the chattering sequences arise from products
of T operators such as Ty exp(iLot) T2, that is, an initial 1.2 impact with
the hard core, free propagation for a time r, followed by another 1.2 im-
pact. It is precisely this class of collisions that are climinated from all
hard-sphere binary collision expansions [118,119] although these same col-




60 M. P. ALLEN, G. T. EVANS, D. FRENKEL AND B. M. MULDER

lision sequences are particularly important for rotational energy relaxation
cross sections. {117] Neither the Sonine nor the chattering corrections to
fo alters the density dependence from its Enskog value.

The liquid phase correlations present in v, (¢) reflect the role of solvent
induced recollisions of a specific pair of molecules [113,114,120] and this
process has a direct influence on the density dependence of f,. To incor-
porate some of the solvent induced correlated coilisions in v,,(¢), one must
represent the resolvent exp(iQ,,L 0,1} (alias the recoliision operator) with
basis functions having the same symmtery as Tw. One such function is

D
do = 12 x 8A(s) (3.26)

where the “deita” function has the property that

|1 if0<s<d
é(s) - {0, otherwise (3.27)

and d is a small (but noninfinitesimal) distance. ¢,, is square normalizable
function that behaves like a torque exerted by the solvent on the contact
surface of the tagged particle. Using the time reversal properties of 7,
one can show that

Vo) = [< - |ilidy > [ < (¢u) >]" < ¢u(0)- ¢u(r) > / <o’ > (328)

where all of the static matrix elements can be determingd exactly and
< ¢,{0) - ¢, (¢} > can be approximated using diffusional (Smoluchowski)
modelling. [113.114] Thus, the rotational friction follows from Eq. (3.25)
where ff is given by Eq. (3.22) and »,(7) from Eq. (3.28) The predic-
tions of Enskog theory and the utility of the recollision corrections to the
rotational friction will be assessed in subsequent sections.

2. Collective Properiies

There are many transport coefficients for polyatomic fluids [121] and in
principle all of these should be determined. For the present purposes, we
will demonstrate how the Mori. generalized Langevin method described in
the previous section provides a mechanism for the calculation of the shear
viscosity m and the thermal conductitvity A of a pure fluid of HCBs. [101]

Several methods have been applied to the calculation of the transport
properties of fluids of HCBs. Theodosopulu and Dahler, {122-124] Ja-
gannathan, et al. [125] and Cole et al.. [126] Cole and Evans, [35] and
Evans [101] have provided distinct means for the determination of trans-
port coefficients. In the work of the Dahler group, kinetic equations were



HARD CONVEX BODY FLUIDS 61

derived for the phase space density and these equations were solved by mo-
ment methods developed by Grad. [127] In the Cole, Evans and Hoffman
works, [35] the transport properties were expressed as a time correlation
function and the method of Ernst {developed for hard spheres) [104.105]
was applied to transform the time correlation function expressions into
distribution function schemes so that the usual Enskog factorizations and
expansions could be made. For both the Dahler and the Ernst methods,
the operating expressions for the evaluation of the transport coefficients
are complicated and in the end, the relationship of the computed trans-
port coefficients to the hard-sphere limit is not always clear. A direct time
correlation function approach, [1,101] based on the Mori method is, in our
opinion, simpler and leads to results of some generality. Cole et al. [126]
Cole and Evans, [35] and Theodosopulu and Dahler (122-124] found that
“new” collisional integrals arose in the transport coefficient calculations
which incorporated the nonlocal nature of the collision event. In the
present approach, these non-local corrections follow as matrix elements
of the binary collision operator.

We begin with a calculation of the shear viscosity, 7. Accordingly we in-
troduce the collective variable whose decay defines 7 : the k-space current
density [1]

v(k,1) =Y _vi() exp(ik - ri{1)) (329)
along with its transverse part,
J(k,t) =ik x v(k,1) (3.30)

From linear response theory, the time correlation function of the fluctuat-
ing current density obeys a phenomonological decay law

mp(8/01) < J(—k,0) - J(k, 1) >= —nk* < J(~k,0) - J(k,1) >  (3.31)

with a decay rate of k*n/(mp). So, to calculate 1 one must derive an
analogous but microscopic equation for the time correlation function of
the fluctuating current density and associate the decay rate with k*n/(mp).

In the Mori, generalized Langevin method, one writes the kinetic equa-
tion for the transverse momentum density time correlation function as [128]

(8/00)C(k,t) = —»C(k,1) — Al drva(r)Cik.t — 1) (3.32)

with

vi(k) = - < J(—K)|iL|J{k) > /C(k) {3.33)
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vk, 7) = — < J(~K)fiL exp(iQLQ7)IQLII(k) > /C(K) (3.34)

Ck)y=Ck,i=0) (3.35)
Qs = 1-{I(k) > [C(K)] " < J(-k)] (3.36)

and
Ck,t) =< J(-k,0)- J(Kk,¢) > (3.37)

By comparison of the phenomonological decay law, Eq. (3.31), with the
generalized Langevin resuit, Eq. (3.32), one obtains

n= k{irgﬂ n(k,z)
nlk,z} = mp(vi(k) +/x dr exp(—zt)va(k, 1)) /K2 {3.38)
Q0

where 7 is the zero frequency (z = 0), zero wave vector (k = 0) limit
of the &,z dependent shear viscosity. For soft potentials, v(k) vanishes
and v (k, ) is the wave vector dependent time correlation function of the
fluctuating part of the stress tensor. For hard bodies, r1(k) is a nonva-
nishing, positive definite collisional term (the “direct” part of n) which
can be determined exactly. v,(k,¢), the “indirect™ part of n(k,z), can be
determined by approximating the resolvent operator and we do this in the
spirit of traditional kinetic theory methods (such as in Grad’s method of
moments [127] or early Enskog theory [97,98]).

The simplest approach to unravel the memory function is to represent
the projected time evolution operator, exp(iQ;LQ;¢), by a single basis
function, ¢(k),

Sk} = iLoJ(k) (3.39)

which is the convective derivative of the flux in question. In this sin-
gle Hermite polynomial, Enskog approximation, appropriate at dilute gas
densities, 1.(k, ¢) becomes

nak,t) = < H-K)LIb(K) >< ¢ (k)| exp(iQLQ1)| b (k) >
x < ¢(-K)IQLI(K) > /(Q*(K)C(K)) (3.40)

where
B (k) =< $(-K)|exp(iQLO1)|b (K) > - (341)

Since J(k) and ¢ (k) have different time reversal symmetries, then
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< J—K)[iL|$ (k) >= — < p(K)[IQLI(Kk) >* (3.42)

and if the projected time dependence of ¢ (k) is dominated by collisional
relaxation rather than by convection, then

< ¢ (k)| exp(iQLON| b (k) >=< d{-K)iexp(T1)|d(k) >  (3.43)
On this basis, »;(k, ¢} becomes
wa(k,1) = | < ¢ (~K)iLIF(K) > |*
x < d{-k)| exp(T)|p (k) > /[ (K)C(K)]
= [1+g,(K) < ¢(-Kk)|exp(Te)|o(k) > /C(k)  (3.44)
with
gq(k) =< ¢{—k)|Ti¢(k) > /Q*(K) (345)

To complete the reduction of v,(k, 1), we Tepresent the inverse of T by a
single function, ¢ (k) itself, so that

x

dr exp(-z1) < &(—k)|exp(T1)|d (k) >= P(k}/(z + v3(k)) (3.46)

Q0
with
vak) = | < d(~k){T|d(k) > |/ (k) (3.47)
and finally [101)

A " dt expl=zt)a(k 1) — [(1 + 4o NQW/[CINz + 1K) (3.48)

Thus, the shear viscosity follows from the Eq. (3.38) as the sum of the
direct part, given by Eq. (3.33) and the indirect part, given by Eq. (3.48).

The thermal conductivity, A, is determined by precisely the same ap-
proach as used for the shear viscosity. [101] Now we associate J(k,r) with
the local kinetic energy density, Jz(k, )

Je(k, ) = Z (%) [mv? + 1w? — 5kpT) exp(ik - £;(r)) (3.49)

i

which obeys a linear transport equation
mpC,(8/01) < Jp(—k,0)-Ip(k, 1) >= —k*A < Jp(—k,0)-dg(k, 1) > (3.30)

As a result of an analysis completely analogous to that applied to the shear
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viscosity, we find that A is the zero frequency, zero wave vector limit of
the full A(k, z). thus

A= lim Ak
k.}vTD (k,2)

O
Alk,z) = mpCy(in (k) +[ dt exp(—zt)va(k, 1))/k* {3.51)
o
where v((k) is given by Eq. (3.33) and w»i(k,f) by Eq. (3.48) with Jg
replacing J. The shear viscosity and the thermal conductivity obtained
from this procedure are summarized in a subsequent section.

3. Positional and Qrientational Properties

Both the single particle and collective transport properties discussed in
the previous sections were derived from time correlation functions of mo-
mentum variables which changed as a consequence of collisions. When
dealing with time correlation functions of collisionally conserved dynam-
ical variables, such as positions and orientations, another version of the
Mori method is needed and this version uses two rather than one primary
variable, [129,130]
Consider a time correlation function of the form

Calt) =< A(OA() > / < A|A > (3.52)

where A is a positional collisional invariant. If two primary variables, A
and its first derivative, iLgA = A, are employed in a Mori analysis, one
obtains an identity for a frequency component of C4(7) in the form of a
two term continued fraction

Cale) = / " dr exp(—z0)Ca (1)

= 1/[z + Q2 /{z + v + 1(2))] (3.53)
Here
D =< A’>/<A’> (3.54)
vi=—<A|TIA>/<A?> (3.55)
1(2) =< A|iL[z — iQ:LQ:) iQLIA > [ < A® > (3.56)
and

Or=1-]A> <A > <A|-|A>[< A’ > < A (3.57)
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The correlation time 1, associated with the dynamical variable A is the
zero frequency (z = 0) part of C4(z) and this is

T4 = (1) +1(z = 0))/0° ' (3.58)

Equation (3.58) has the precisely the same form as the equations for
the hydrodynamic transport coefficients, Eqs. (3.38) and (3.51), and the
friction coefficient, Eq. (3.25).

By means of the Mori-generalized Langevin formalism presented above,
one can calculate the orientational correlation times for a fluid. {131)
Specifically, consider the orientational correlation time r, associated with
the decay of a second rank Legendre polynomial P;(ii-£) (or P; for short)
specifying the orientation & of a rotor-like molecule with respect to %,
an arbitrarily chosen laboratory frame. To perform this calculation, we
associate A in Eq. (3.53) with P; and A with its time derivative

A=iLyPy=w- (it x V,)P; (3.59)
If we wish to represent the effects of free precession in the »; term, we ex-

press the resolvent operator in terms of the projected convective derivative
of A,

B=0A (3.60)

and so
72 = (1/6kgT){(v) +¥2(z = 0)) (3.61)

where
w o= fL (3.62)
vz =0) = | < AliL|B > [*/|< B|T|B >< A* >] (3.63)

Equation (3.61) is applied to the calculation of the single particle and
colliective orientational correlation times in the following sections.

4. Collision Imegrals

In the previous section, we summarized procedures in which transport
properties were cast in the form of collision integrals (or matrix elements
of binary collision operators). Fortunately, the momentum portions of
the binary collision integrals can be performed exactly as shown by Hoff-
man. [95] Actually the method espoused by Hoffman applies to matrix
elements adjoint of the collision operator (and to the so-called Chapman—
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Cowling brackel integrals [97] [A, B] which are related to the binary colli-
sion operator by the identity [35]

[A,B] = — < ATLIB() + BQ2)) >=< (B(1) +B(2))|Tum(1)(> |
3.64

That a method exists for the exact calculation of the momentum integrals
is crucial to the development of the kinetic theory. For without Hoff-
man’s procedure, our general collision integrals would require numerical
methods for their evaluation. Hoffman’s procedure has been applied {and
amplified) elsewhere. [132] Here we merely summarize its essentials.

Consider a collision of two smooth HCBs in which each HCB possesses
three linear and two angular momentum degrees of freedom. Only one ve-
locity component plays a crucial role in the dynamics of the combined ten
dimensional momentum space and that component is ds/di, the relative
velocity of the contact points

ds/dt =§- g (3.65)

with
B=Va+wy X & —(v)+w x &) (3.66)

£ is a vector that emanates from the mass ceater of particle j and extends
to the contact point on its surface. Afier the collision, the component
of g along §, the surface normai at the contact point, changes sign from
its negative precollisional value (8- g*) to its positive postcollisional value
(5-g)
g=g —288-¢ (3.67)
When the set of ten momenta are expressed in an orthogonal coordinate
system in which (§-g) is a member, the effect of the collision is to reverse
one component (ds/dt) and to leave all the remaining nine momentum
variables unchanged. Recall that when one deals with hard-sphere col-
lisions, the velocity coordinates are normally, taken to be the center of
mass (%)(v] +v,) and the relative velocity v, = (v, — v;) and it is v, which
plays the role of g. For nonspherical molecules, Hoffman expressed all
the momentum dependent functions in terms of the nine orthogonal but
otherwise arbitrary coordinates and the one special ds/d¢ coordinate. In-
tegrations over the nine momentum degrees of freedom could be executed
freely (i.e., independent of collision details) and the one special coordi-
nate remained for integration subject to the particular constraints (e.g., a
restricted integration over the pre- or postcollisional hemisphere).
After having performed the momentum integrals exactly, one is left with
various orientation integrals over the excluded volume surface, diy; diin
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dridr,, and these remaining integrations are conducted in the manner
discussed in Section II.C. On the basis of these remarks, all the collision
integrals can be reduced to surface integrals weighted by the contact pair
correlation function. This completes our summary of the kinetic theory of
polyatomic fluids.

D. Applications of Enskog Theory

In this section, we summarize a few transport coefficients for a pure fluid
of convex bodies and an infinitely dilute solution of a single convex body
in a fluid of spheres. The entries were chosen either for their simplicity
or for their importance to transport processes in dense fluids.

I. Pure Fluids of HCBs

The simplest transport coefficients are the self-diffusion coefficients for
the particle translation and rotation, D, and D,,, respectively. These two
transport coefficients can be expressed in terms of the friction coefficients
which are collisional matrix elements in the Enskog approximation

fE=l<vi | Taw >/ <vi> (3.68)
fE=l<w [T > |/ <o} > (3.69)

After some algebra, one obtains

ff = pgevea, (3.70)
15 = pgev,o, 3.71)

Here g.(= gis0{s = 0)) is the surface averaged contact pair correlation
function discussed in Section I, v, is the relative thermal speed,

v = Bk T/(mu)]'? (3.72)

p is the reduced mass for the pair of HCBs (= m/2) and o, and o, are
the linear and angular momentum cross sections, given explicitly by

o, = (2/3)7S. < 1/D >, {3.73)
o, = 2m(u/DS, < (£ % 8)2/D >,
= 2m (/DS < (1 — XY (x))*/D >, (3.74)

where S, is the average surface area on the contact surface and

D? =1+ {u/D(£& = 8 + (& x §)7] (3.75)

Roughly, 1/D? and (D? — 1)/D? measure the fractional participation of
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linear and angular momentum in the collision, respectively. Both the lin-
ear and the angular momentum friction coefficient and cross sections are
related to the collision frequency per particle Z (and the total cross section
Ty} by means of an Enskog sum rule:

Z=03/8)f, +(1/2)fu = (1/)pg.t,; 011 {3.76)
Tt = 78, < D >, 3.77)

Z contains a factor of one-half in order to avoid counting the 1-2 and 2-1
collisions as two events. '

The frequency dependent shear viscosity and thermal conductivity can
be determined by our methods of Section II1.C.2 and we obtain in the
k = 0 limit,

7(z) = m(z)(1 +gy) +m (3.78)
A(z) = Ag(z)(1 +qa)* + Ay (3.79)

For the shear viscosity, one has

Mo = lim 7(z)

(15/16)[mkgT/7)} [g.Sc < 5/D —2/D’ >, (
n0(z) = pkpT /{z + v3) (3.81)
vy = (47/15)pu,g.S. < 5/D - 2/D* >, (

(

m = (d7/15)[mkg T/ m)tp?gS. < (2r* — (r-8))/D >,
qy = (47/15)pgcS: < hip/D? > (3.84)
and for the thermal conductivity,

Ap = liﬂ}) Ao(z)

= (49/32)mk3 T /w]% /gcS. < Qo/D >, (3.85)
Ao(z) = (9kp/2)pkgT [(z + v4) (3.86)
vy = (36m/49)pu,g.S. < Qu/D >, (3.87)
M = (2m/3kplmkpT /72 p°gSc < Q1 >e (3.88)
dr = @m/TpgeSe < hip(2+ D™ ~2D72) >, (3.89)
with
a = (u/N' 8 x & (3.90)

Qy = D+ (1/3)ay /DY —2(a}/D*) + (9/8)(a} — a3)*/D* (3.91)
Q. = r’[1 +2a5(1 + 2a3)/ D?*|/ D (3.92)
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The algebraic form of the derived transport coefficients is identical to
that found by Jagannathan et al. [125] Each transport coefficient has a
frequency independent plateau (arising from the “direct” terms) and a
Maxwell model [133,134] relaxing term (arising from the “indirect terms”).
In a dilute gas, the transport coefficients are given by 7,(z) and A,(2).
Equations {3.78) and (3.79) were written in a form to emphasize the sim-
ilarities to those for hard-sphere fluids.

Not all dynamical properties of fluids of HCBs necessarily map smoothly
onto those of hard spheres. Consider the spherical limit approached by
allowing the HCB to become spherical (D = 1,r = §0,5. = ¢°,g. =
gHs-a& = 0). In this limit, the shear viscosity, Eq. (3.78) for the fluid of
HCRBs reduces to that of a hard-sphere fluid. However, the same situation
does not prevail for the thermal conductivity. Bodies with a vanishingly
small nonsphericity can still transmit angular kinetic energy and thus there
is a discontinuous change in A from that of an atom,

A(HS)/p = (mky T fa) H(75/64)(1 + Cm/S)X )P/ X + (27/3)X] (3.93)

to that of a spherical diatom,

AMHCB)Y/p = (mkyTa? /) 2[(49/32)(1 + 27/T)X) /X + (2m/3)X]
(3.94)

with the same dimensions of the atom. Here X(= pa-3gHS) is a dimen-
sionless contact density. The difference between A(HS) and A(HCB) (in
the spherical limit) arises trivially from the differing heat capacities of hard
spheres and HCBs and nontrivially from dynamical corrections.

This difference between the thermal conductivities of a spherical HCB
and a hard sphere is largest at low density (when X = 0 and A(HCB)/
A{HS) = 1.31) and decreases monotonically at high densities (when X —
oo and A(HCB)/A(HS) = 0.85). Evidence for this trend can be found in
the MD simulations of Murad et al. [135} on a fused hard sphere model
of Clz. i

- The molecular dynamics of rotation in condensed phases is sampled
by the single particle and the collective second rank orientational corre-
lation functions, whose integrals give, respectively, the single particle and
colllective correlation times

™ = /m dt < P(a(0) -ii(r) > (3.95)
0]

= ZJ{ dt < Pyl i () > /S < Pty - 8) > (3.96)
ij

Li

1§ and 75 are related by the Kivelson- Keyes [131] equation
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57 =@/ h (3.97)

where g, is the static second rank pair correlation factor (see Eq. (2.28))
and j, is the dynamical equivalent of g;. 77 can be calculated by the
procedures of Section I11.C.3 and we obtain :

75 = fE1/(6kpT) +(4/3)(1/fHA (3.98)

where
A=1/Q-<d¥/D’ >,/ <d /D > =[05,09) (3.99)

Equation (3.98) depicts a high density branch in which 7; is proportional
to the friction (~ pg.) and a low density branch in which 7; is inversely
proportional to friction (~ 1/(pg.)). The convective upswing in 7; reflects
the result that without collisions the second rank projection of the molecu-
lar orientation does not relax. Kinetic theory with its hard potentials does
not predict a density independent term in 7§ which we might interpret as
an intercept in a plot of 7; versus pgc.(=~ 7n/p) in contrast to the situation
involving soft forces. [136] Note that Eq. (3.98) differs from that reported
by Cole [35] in two ways: (1) we find no intercept; and (2) the coefficient
of the convective term is (4/3) rather than the (5/3) originally quoted.
The values for A remain the same.

Kinetic theory methods can be directly applied to determine collective
properties such as 75 and this calculation can be reduced to a few matrix
elements, specifically {132]

=< PS(d-2)|TIPS(0 - 2) > / < (P5(0-2) >]gaf/(6kgT)  (3.100)
where

Pi(a-2) =Y _ Py, - ) (3.101)

After performing the matrix elements in Eq. (3.100) and comparing the
result with the Kivelson-Keyes relation, we can identify

ja=1/(1+dj) S (3.102)
with

dj = 2u/Dm < K (X)) [ -8 (1 =202 — 253+ 200 - W) +xX3) /D >, [,
(3.103)

where x; = §- 0, and 4'(x) = dh{x)/dx. This completes our summary of
the orientational properties.
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2. Infinitely Dilute Solution

The fluid of HCBs with the simplest static and dynamic properties is the
infinitely dilute ‘solution comprised of a hard-sphere solvent and a sin-
gle HCB solute particle. For this case, the macroscopic shear viscosity
and thermal conductivity of the fluid is that appropriate to a hard-sphere
fluid and the single particle and collective orientational correlation times
are identical. The tagged particle friction coefficients (and accompanying
cross-sections) for the linear and angular momentum and rotational ki-
netic energy differ slightly those of single component fluids of HCBs and
are [113,114]

fi = pvr8eo; (3.104)

with i = v, w, and 1, the velocity, angular momentum and rotational energy,
respectively. v, is the relative thermal speed of the hard sphere with
respect to the HCB. Cross-sections derived on the basis of Enskog theory
are

1
5, = @n/3)u/m [ drGls=0.0/(DWe)  (3105)
Ow = 27 /1 dx G(s = 0,x)(D*(x) - 1)/(D(x)g:) (3.106)
(
o, = 47 / 1 dx G(s = 0,x)(D*(x) — 1)/(D*(x)g.) (3.107)
0

with x =i - §,
G(s =0,x) = g(s = 0,x)§"(s = 0,x) (3.108)

g(s = 0,x) the orientation dependent contact pair correlation function,
S$2(s = 0,x) the surface area element on the HS-HCB excluded volume
surface and D?(x) the HS-HCB translational-to-rotational energy transfer
function

D(x) =1+ (/D& 87 = 1+ (wh*(x)/1)(1 - %) (3.109)

For a uniaxial convex body with a specified support function, we can
calculate Enskog approximations to the three cross sections given above
using the SPT orientation dependent contact pair correlation function,
Eg. (2.46) and the surface area element $'? appropriate to a HCB-sphere
surface (see Appendix A.D). Furthermore, by means of the recollision
kinetic theory summarized earlier, that is, incorporating the single function
given by Eq. (3.26), the rotational friction coefficient can be extended




72 M. P. ALLEN, G. T. EVANS, D. FRENKEL AND B. M. MULDER

bevond the uncorrelated binary collision approximation. The recollision
correlations take the form [113,114]

fo=fo(1+p" exp(5p7)) (3.110)

f.. includes a positive definite enhancement to the friction based on the
influence of “caging” recollisions, which were analyzed using a ‘Smolu-
chowski equation to describe diffusion in a hard-sphere potential of mean
force,

If the convex body is slightly aspherical, then o, o, and o, can be
determined analytically. For simplicity, consider an ellipsoidal HCB with
semi-major axis a and semi-minor axis b in a fluid of hard spheres with
diameter . We obtain

o, =~ (47/3)(/m)S, (3.111)
a, =~ (167/15)S.u(a — b)? /i (3.112)
o, ~ 20, (3.113)

with S, = (a + {1/2)o)*. For pure fluids of HCBs, these results undergo
small changes {(x — m/2, 0 — a) and the distinction between single par-
ticle and collective orientational relaxation times becomes important. In
the case of slightly aspherical prolate ellipsoids, j; becomes

1/ = 1+ (2/5) exp(—[(b/a)* — 1]/10) (3.114)

and thus j, is less than unity in an Enskog approximation for ellipsoids.
Spherocylinders show similar behavior and those results have been given
elsewhere. [35,137] This completes our brief summary of transport prop-
erties,

E. Simulations
1. Translational and Rotational Diffusion

Translational and rotational motion in the isotropic phase have been inves-
tigated for ellipsoids of revolution with e = 2,3, 1. [34,138] Translational
and rotational diffusion coefficients are calculated by integrating the linear
and angular velocity autocorrelation functions, respectively:

Dr = 3 [ at (u - v)

0

Dp = %./ﬂ‘ dt {w;(0) - w;(t})
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In doing this, it is important to check that any slow long-time decay is
correctly included. In the case of translational diffusion, it is possible
to check the numerical procedure by measuring the limiting gradient of
the mean-square displacement with respect to time; this should equal 6D.
Additional checks were carried out in this study, to compare with the
well-known diffusion coefficients of hard spheres at similar system sizes.
It should be borne in mind that D7 depends significantly on system size,
so like must be compared with like,

A major aim of this study was to compare with the predictions of En-
skog theory, which is based on the independent binary collision model. As
was explained in Section I11.D, the Enskog predictions are simply obtained
by averaging appropriate geometrical functions for pairs at contact. [35]
The results of this study [138] are shown in Figs. 3.1 and 3.2, and several
interesting features are present. Firstly, as for hard spheres, Dy/DE first
rises, then falls, as density increases. The high density decrease is well
understood; caging effects in the dense liquid produce a rapid decay of
the velocity autocorrelation function, and indeed a negative rebound re-
gion at the highest densities, which cause D7 to be much less than the
simple kinetic theory would predict. The same observation applies to ro-

16
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Figure 3.1.  Ratio of translational diffusion coefficient 1o Enskog value, Dy /D¥, for el-
lipsoids of axial ratio ¢ = 3, 2, 1/3 and 1 (hard spheres), plotted as a function of reduced
density p/pep where pep is the close-packed density. The results for hard spheres are taken
from Ref. [139].
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Figore 3.2, Ratio of rotational diffusion coefficient to Enskog value, DR/Dﬁ, for ellip-
soids of axial ratio ¢ = 3, 2 and 1/3, plotted as a function of reduced density p/p, where
pep is the close-packed density.

tational diffusion; caging dominates. Further study of caging phenomena
in these systems [24] has raised some puzzling features, however. For both
{v:(0)-v; (1)) and {;{0) - w; (1)), a2 minimum in the function is reached after
quite a large number of binary collision times, typically 20-30xs. This
time is much longer than what is typically observed in a dense fluid of
hard spheres and is not really compatible with the idea of a rapid reversal
of velocity foltowing a single “rattle™ in a cage. Reference [24] discusses’
the various factors that may contribute to this effect.

At low densities, for hard spheres, Dy approaches its Enskog value,
since the independent binary collision model becomes correct in the di-
lute gas. This is manifestly not true for the ellipsoid systems, although the
deviations from unity amount to, at most, 10% for the systems studied in
the limit p — 0. The translational diffusion coefficient is systematically
lower than would be predicted by theory. At the same time, the rota-
tional diffusion coefficient is slightly higher. These discrepancies occur
because, even when the density is sufficiently low that molecules meet as
_ isolated pairs, each such event may consist of several correlated collisions.

This “chattering” phenomenon was discussed in Section HI.C.1. Although
chattering collisions are not accounted for by the simplest version of En-
skog theory, a more sophisticated version [99] predicts these effects. A
qualitative explanation can easily be put forward, referring to Fig. 3.3.




HARD CONVEX BODY FLUIDS 75

A
¢ A —»ﬂ%_;.

N T

imitial values decorrelation

~

% —-—

first collision

further decorrelarion

pama! recorrelation

ISR

Figure 3.3. Double collision between two hard bodies, illustrating correlating and decor-
relating effects on linear and angular velocities (schematic).

second collision

Here we focus on the “double-hit” collisions, the ones that provide
the largest correction to the simple Enskog prediction. Many of these
will involve a side-by-side geometry, as shown in the figure, and we take
as an example a near-symmetrical case with both molecules approaching
each other at similar speeds. The effect of the first collision is to reverse
both the indicated linear and angular velocities. This contributes to the
decorrelation effects seen as the initial decay of both (v;(0) - v;(¢)} and
{w;(0) - w;(t)). This part is correctly given by simple Enskog theory. How-
ever a second collision modifies both linear and angular velocities further.
The effect on the linear velocity is to enhance the results of the first col-
lision; the velocities become more decorrelated with their original values,
on average. The effect on the angular velocities is to partially negate the
results of the first collision, and to restore some of the original correla-
tion. Consequently, {v;(0) - v;(t)) decays at long times more quickly than
expected, giving Dy < DE, while (w;{0) - w;(t)) decays at long times more
slowly than expected, giving Dg > DE. This description is, of course, qual-
itative. In reality, there will be a complete range of geometries and initial
conditions in three dimensions, over which an average must be taken.

The most interesting feature in Fig. 3.1, however, is the rise of D7 /D%
above unity at intermediate densities. In the hard-sphere case, this is asso-
ciated with the celebrated r3/? algebraic long-time tails in the velocity au-
tocorrelation function [139-141] arising from coupling with hydrodynamic
vortex modes. It seems likely that another effect is operating in the case
of the ellipsoids, swamping the vortex coupling, since the enhancement in
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Figure 3.4. Translational velocity autocorrelation function (log scale} for prolate ellip-

soids with e = 10 at a reduced density p/pep = 0.2. Time is measured in units of the mean
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Figure 3.5, Translational velocity autocorrelation function (log scale) for oblate ellipsoids
with ¢ = 1/10 at a reduced density p/pe, = 0.2. Time is measared in units of the mean time
between collisions per particle.
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D7 /D% is much larger. Certainly, no evidence of algebraic decay is seen
in the systems studied (in any case, it would be difficult to obtain direct
evidence of this in the modest system sizes used). What is seen, espe-
cially in the prolate case, is a two-¢xponential decay in time (see Figs. 3.4,
3.5), indicating some coupling of the velocity with other degrees of free-
dom, possibly reorientation. A detailed theory of this phenomenon is still
lacking, but related, and even more dramatic, effects are seen in isotropic
fluids of thin hard needles [142-144] and in liquid crystalline phases of
disklike molecules. [145] In the latter context (see Section VI), we briefly
sketch a possible mechanism that can lead to such large deviations from
the Enskog theory.

2. Pretransitional Collective Rotation

A key feature of the [—N transition is the appearance of pretransitional
effects in molecular reorientation in the isotropic phase. Allen and Frenkel
[146] compared single particle and collective rotation, in the isotropic phase
near to the ordering transition, with a view to identifying these pretran-
sitional fluctuations. The crucial theoretical prediction is the Kivelson-
Keyes equation of Section (3.D.1) [131.147] where the single particle second-
rank correlation time 75 and its collective counterpart 7, are calculated in
the simulation as time integrals of appropriate time correlation functions,
and the static second-rank Kirkwood factor g is computed as a sum over
pairs. In the simulations (for the e = 3 prolate ellipsoid system), collective
rotation was seen to slow down dramatically near the I—N transition, but
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0 05 1 a value of unity. The vertical lines mark the

/ estimated boundaries of the 1 — N coexistence
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the effect is mostly explained by the divergence of the static factor g.
There is little evidence for any dramatic variation in j,, which seems to
be just less than unity in agreement with {low density) kinetic theory (see
Fig. 3.6) [35] (see Section III.D.1) and with the (scant) experimental evi-
dence. [148,149] Indeed, in the absence of information to the contrary, j»
had long been assumed to be essentially unity, and the simulations seem
to provide some justification for this. However, for spherocylinders the
situation is not so simple. [77] The low density theoretical prediction is
again that j is slightly less than unity, and this is confirmed by simulation.
However, at higher densities, j> appears to rise to more than 1.5.
Throughout, one must remember that the [—N transition is weakly first
order, rather than continuous, so actually it preempts the complete diver-
gence of g; and 5/73. Also, it is important to bear in mind the limitations
of small system sizes and modest simulation run lengths, when discussing
collective reorientational degrees of freedom near a phase transition.

PART TWO: THE LIQUID-CRYSTALLINE
PHASE

IV. PHASE TRANSITIONS

A. Theory

In order to describe phase transitions in liquid-crystalline systems,! we
need a statistical mechanical formalism capable of dealing with sponta-
neous symmetry breaking. The formalism based on the canonical partition
function employed in the section on the isotropic phase is not up to this
task. We therefore introduce the general framework of density functional
theory (DFT), with which one can give a unified description of all phase
transition phenomena in continuous systems. Next we give an overview
of the diverse approximations that have been proposed to obtain work-
able functionals for the description of liquid-crvstalline phase transitions
in HCB fluids. Finally, we review the application of these ideas to specific
transitions.

|

'In the compilation of this section. we were able to make use extensively of the in-depth
review by Vroege and Lekkerkerker Phase Transitions in Lyotropic Colloidal and Polymer
Liguid Crystals [150]. We are grateful to these authors for supplying a preprint version of
their review.
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1. Density Functional Formalism

The density functional formalism is in essence just a variational formu-
lation of the classical statistical mechanics of many-particle systems. It
has, however, several advantages with respect to other approaches. First,
variational problems are well understood and there exists a large body of
mathematical knowledge concerning their solution. Secondly, the quantity
being varied is a function of the degrees of freedom of a single particle
only, so that we are shielded from the complexities of n-particle distribu-
tions. In fact, it is a deep and surprising result of the theory that there
is a one-to-one correspondence between the single particle distribution
function and the full N-particle probability density. Finally, the formalism
can deal with spontaneous symmetry breaking in a direct and natural way,
making it an ideal tool for the study of symmetry related phase transitions.
To our knowledge the first application of density functional techniques to
liquid crystals is due Workman and Fixman. [151]

In order to state the the theory, we first need to define the one-particle
distribution function (ODF)

N

PRIGETOBE(ET ) (@1
i=1

where ¢ = (r, Q) is shorthand for the degrees of freedom of a single
particle, being, for the HCBs we are considering, the position of the center
of mass r and the orientation {} with respect to a fixed reference frame.
The sum on the right hand side of Eq. (4.1) runs over all the NV particles in
the system and the angular brackets denote equilibrium averaging. Note
that the ODF so defined is normalized to the number of particles, that is,

dépV (€)= N (4.2)
1%

where the integration runs over the finite volume V of our system,

The full statement of density functional theory for classical many par-
ticle systems [152] is the assertion that there exists a functionat Wp'!] of
the ODF with the following propertigs:

1. For any arbitrary ODF p‘!", the following inequality holds: W[p'""} >
W[pé(l,)] where pl!,, is the equilibrium distribution.

2. W[péil)] = Weq where W,y is the thermodynamic equilibrium value
of the grand canonical potential.

As such, this statement is entirely nonconstructive: We are told that the
functional exists, but not how to construct it. As we shall see, the actual
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construction involves approximations, which in final analysis can only be
tested through comparison with simulation data. Nevertheless, the gen-
eral structure of the functional can be analyzed somewhat further. First,
recalling the thermodynamic relation W = F — uN relating the grand
canonical potential W to the free energy F, the chemical potential x and
the number of particles N, we can write

Wipt) = o] [ agg(e *3)

which introduces the functional F[p'"] representing the Helmholtz free
energy of the system. This free energy functional can be split into an
ideal and an excess part, the latter containing all contributions due to the
interactions between the particles.

BFIp] = / dep (@ Vrp®(E) — 1} - @[] (44)

where V7 is the thermal de Broglie volume discussed in Appendix A A
and we have introduced the functional ®[p!"] = —BFoycess(p!!] that serves
as a generating functional for the n-particle direct correlation functions

_ 8 bfp"]
507 (E)50 (&) -3V (&)

" Historically, the first approach to the actual construction of the functional
is in terms of a diagram expansion obtained by re-summing the diagrams in
an expansion of the grand canonical potential in terms of an external field,
which is eliminated in favor of the ODF through a topological reduction
technique. [153] The resuit is the following identity:

SN ) 43)

Sum of ali connected, irre-
ducible diagrams with pt! ver-
tices and Mayer function bonds:

fl&. &) =e PE8) — 1

For hard particles the Mayer function is just the negative of the charac-
teristic function y of the mutual excluded volume of the particles,

D[ptV] = (4.6)

-1, if i and j overlap

fl& &) = —x(&: &) = { 0, if{ and j do nor overlap (4.7)

One can also use the definition (4.5) to relate the excess part @ to some
properties of a reference state p(()” through a double functional integration.
Consider an arbitrary one parameter family of ODFs p([,]) interpolating

smocthly between a reference systemn at p([)” and a final state at plm as a
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parameter a goes from 0 to 1. Since the functionals are unique, the final
result will nor depend on the path of integration. [154] A first integration
yields

(D[p F‘u /dﬂ"‘““bip
5®[pl"] By (£)
/ /déﬁ gy " da

/da/dfc“’(g[ ”])ap“ (&) (4.8)

One can now repeat such an integration to eliminate the one-particle direct
correlation function in favor of a description in terms of the two-particle
direct correlation function.

O o) = D + [ de [ age®ig 816D D 4

Putting these two resulls together yields

d[p"] =
m ! a () apf{x”(ét)
ol + [ da [ decte 1o )5
0 {13

Lo a0l (£) 9py, (£
’ (g, ¢, [N E « 4.10
o [da [Cad [asaeetie g ) TRE FEE @)

This expression, wh:ch can be used to relate the excess free energy of a
system to the structural properties of a (possibly simpler) reference phase,
is the starting point for many approximations considered.

In order to locate the equilibrium ODF of our system, we have to
minimize the grand canonical functional. This leads first of all to the
necessary (but not yet sufficient) criterion that the functional be stationary
to variation in the equilibrium ODF,

SWIP(I]]
aptV(€) 1

Inserting the explicit forms (4.3) and (4.4) and using the definition (4.5),
we find the following equation for the ODF:

=0 (4.11)
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pU(E) = e exp (g, [pl!]) (4.12)
v

The chemical potential u can be eliminated from this equation by using
the normalisation condition (4.2). One can look on this equation as a
non-linear self-consistency relation for the ODF, the one-particle direct
correlation function ¢!} playing the role of an effective field that acts on
a particle due to interactions with the rest of the system.

To ensure that a stationary distribution satistying the condition (4.11) is
indeed a minimum, we need the following condition to be met for arbitrary
variations ApU:

5
/ atd Eap(l ' 8o (2) ApM(E)Ap(E) > 0 (4.13)

It should be stressed that this condition is necessary but not always suf-
ficient to determine the stability of the phase in question. This becomes
apparent when calculating phase coexistence at constant pressure where
the Gibbs free energy is the relevant thermodynamic potential. This ne-
cessitates a separate calculation of the pressure of each potential phase.
A useful technique for analyzing nonlinear equations like the station-
arity condition (4.11) in the neighborhood of phase transitions, where, as
a rule, coexisting solutions to the equations occur, is bifurcation analysis.
This technique probes new solutions to the equations that branch off from
a known reference solution by making a parametric expansion around the
branch or bifurcation point. In our case, a reference solution would be

a locally stable phase p(()” that exists in a given range of densities. The
procedure starts by assuming the following form for a solution close to the
reference solution at the densily ny:
1) 1 1 1
P = gy +ep + eV +

R, = nRp+ €N + €My + -+ (4.14)

These expansions are inserted into the stationarity equation {4.11) and a
solution is constructed order by order in the arbitrary parameter €. The
first order equation is usually called the bifurcation equation and provides
information both about the location of the bifurcation, that is, the density
at which it occurs, and the nature of the new solution (symmetry). It takes
the form of a generalized eigenvalue problem

o0& = o) / (g, & [ (&) (4.15)
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One can successively solve the higher order equations in the hierarchy
generated by these expansions, thus constructing approximations to the
bifurcating solution that are valid at ever increasing distances (in the so-
lution space) from the reference solution.

2. Specific Approximations

a. The Onsager Approximation. Historically, the first and, undoubtably,
the most influential approach to ordering phenomena in HCBs is that
proposed by Onsager in 1949. Although derived from first princtples using
the theory of mixtures, it is in fact a density functional theory avant la
lettre. In terms of the expansion (4.6), it consists of neglecting all higher
order diagrams, keeping just the lowest order single bond diagram. The
explicit expression for this diagram is given by

1 ,
@l = 5 [ dedg e €10V E) (416)
Considering for a moment just spatially homogeneous phases for which
the ODF factorizes p'V (r, £2) = n¢(Q), where n is the number density and

W a normed orientational distribution function, we can simplify to

D[] = —%Nn/dﬂ dQVE(Q, QY () () (4.17)

where we have introduced the mutual excluded volume of two HCBs at
fixed orientations,

£(Q.Q) = /dr’x(r ¥, 0,0) (4.18)

Onsager justified his approximation by arguing that in the isotropic phase
of a system of extremely elongated rods, this diagram dominates all higher
order ones. More recently, it was shown that the same holds true for d-
dimensional generalizations of HCB fluids in the limit that the dimension-
ality is very high. [155] Especially this latter observation seems (o indicate
that the Onsager approximation is the hard-particle analog of the mean
field approach for long-range interactions, which is also exact in the in-
finite dimensionality limit. Moreover, the stationarity equations obtained
within the approximation are also formally equivalent to the mean field
one, the pair excluded volume playing the role of the potential and the
number density that of the inverse temperature. An added advantage of
the approximation is that the pair excluded volume at fixed relative ori-
entation has been determined analytically for a number of convex bodies
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(ellipsoids of revoluticn, spherocylinders, spheroplatelets, right circular
cylinders) allowing detailed calculations to be made.

A natural extension of the Onsager approximation is,of course, the
consideration of higher order diagrams in the virial expansion. Here one
meets with severe difficulties due to the complexity of the integrals in-
volved. The only head on attempt to face this problem was made by
Tjipto-Margo and Evans [41] who expanded the kernel of the third virial
coefficient of hard ellipsoids into a set of invariant functions. The lower
order coefficients in this expansion could be determined through a Monte
Carlo procedure. These results were then used both in a straightforward
extension of the original Onsager theory as well as a y-expansion approach
(to be discussed below). The results are a definite :mprovement over the
original second-virial coefficient based theories.

A related approach, originally proposed by Barboy and Gelbart, [49-51},
is the so called y-expansion, where the diagram expansion for a homoge-
neous fluid is re-summed in terms of the reduced density variable

n

y=1—— ; {4.19)
where we introduce the packing fraction n = nv,, with vy the proper
volume of the HCB. The idea behind this expansion is to exploit similarity
with the exact solution of the Percus—Yevick equation for hard spheres,
which suggests that all relevant quantities can be expressed as short power
series in the variable y. For a homogeneous phase, the free energy per
particle can be expressed as an expansion in the number density #

BF [l!f f Bi[¥] i
Q 4.20
dQy () In ¢ (0 )+anTn+Zk_1 (4.20)
where the B, are the generalized virial coefficients
k-1 Connected diagrams with
Bi= - v (k Y-vertices and f-bonds ) (4.21)

Eliminating the number density in favor of the variable y, we find

Ej;v—["‘flz/arnl;;(ﬂ)lnxp(n) nv—+lny+zk (] vl (4.22)

k=2

where the coefficients Ckiq!u.] are expressed in terms of the generalized
virial coefficients of order k and lower,
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[ . i1
Ck[wjz(kwl)Z( k’j}.l) Bf][_”"#u)f"’ (4.23)

1=2 \
b. Scaled Particle Theory. Scaled particle theory (SPT), originally devel-
oped in the context of the hard sphere fluid, [42] was extended by several
authors to apply to fluids of non-spherical particles. [156-161} SPT is
based on the intriguing and original approach to calculate the amount of
reversible work needed Lo add a scaled copy of the original particles to the
fluid. The most elaborate version of the theory as applied to nonspherical
particles is the one presented in Ref. [158] which considers hard sphero-
cylinders and allows both the length and the breadth of the particles 1o be
considered as independent scaling parameters. This approach, however,
is effective only for spherocylinders, due to the special form of the pair
excluded volume as a function of the particle’s dimensions. {161] Here,
for simplicity, we present the theory with a single scaling parameter. We
do, however, follow Cotter [160] in her perscription for achieving consis-
tent thermodynamics, which was lacking in the earlier applications of the
theory.

Consider an HCB fluid to which we add a single scaled copy of the
other particles. The size of the inserted particle is governed by the scaling
parameter A. When A is taken to be zero, we are adding a point particle
to the fluid, when A = 1, the inserted particle is identical in size to the
other particles, and when A > 1, we are effectively creating a particle-
shaped macroscopic cavity in the fluid. The main assumption of SPT is
that the reversible work W done to insert the scaled particle smoothly
interpolates between the limits A <« 1 and A > 1. Denoting by vy(A)
the proper volume of the particle as a function of the scaling parameter,
we can easily calculate the work for the case that the inserted particle is
MACTOSCopIC i size,

W (QIA) ~ PugiA) = A*Puy (4.24)

where P is the equilibrium pressure. The fact that the particle volume,
and hence this contribution to the work, scales as the third powér in the
scaling parameter suggests that if we can calculate the contributton of
adding a very small particle up to second order in A. we can by adding
these two together obtain an expression that works well in both limits

~ and so allow us to interpolate to A = 1. For the case of a homogeneous

but possibly orientationally ordered fluid, where the ODF has the form
pU(r ) = ny () the expansion to second order in A can be calculated
from a generalization of the expansion, originally derived by Reiss et al.
(42]
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o ()
-BW(QA) =Iny" TnkF(k)(ﬂM) (4.25)
k=0

where the F*) are related to the equilibrium &-particle distribution func-
tions through

k
FO@R) =] fdﬂfafr(ﬂj) f drg® ey, . 9))
=1 X

(7 408,001
(4.26)

The spatial integrations run over all configurations where the fluid particles
overlap with the scaled particle, which is inserted at the origin. Note
that in an orientationally ordered phase, the work done depends on the
orientation of the inserted particle with respect to a fixed reference frame.
The k-particle distribution functions that appear are generalizations of
the well-known two-particle radial distribution function and are defined
through the reiation

N |
PO, LB = Y BE -6 8lE& - &)

UEEI

k
= (Hp‘”(ﬁ-)) g9E & M) (427)
i=1 .

Since the k-particle distribution functions are identically zero in any config-
uration where two or more particles overlap each other (the probability of
these configurations being zero), we can write down the expansion (4.25)
in the case where the scaled particle is so small that no three particles
can overlap with the scaled particle without also overlapping which each
other:

e PWHIL 1—n/dﬂ1w(n1)/ dr,
FALILA)=]

1
+;n2[d()]w(ﬂl)/dﬂztﬁ(ﬂz)
xf dr]/ drg® (r 0,120, [¢1])
FULLY |A)=t X180 [A)=1
(4.28)

One can even reduce this expression further by using exact constraints
on the pair distribution function to show that the second term does not
contribute to second order in A. One is thus left with
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e FWUNA} -n/dQW(QQE(Q,QIM) {4.29)

where we have introduced the excluded volume at fixed orientations be-
tween the scaled particle and one of the system particles. Recalling Eqs.
(2.15) and (2.32) from Section II and the results from Appendix A.D, we
can express this excluded volume explicitly as

E(Q, QM) = vo(1 + A + A(L + A) Gs(n, Q) - vn) (4.30)

Performing the expansion to second order in A and adding the cubic
term, we arrive at our final approximation for the average reversible work
needed to add the scaled particle: '

— BW = In(1 — nvo) — yWal#}A — % (2Walwly + Walw]y?) 4% = BPuo’
(4.31)

where the parameter y = nvy/(1 — nvg) is the one also introduced in the
previous subsection and the functionals W, are defined by

wowl = [dn [ave@u@en.q) (4.32)
Wile) = [ de [ae [a0rw@u@v@e@ 0@, o)
(4.33)
with the kernel C is given by
no (L N
C(1, Q") = (zvﬂf(ﬂ.,ﬂ ) l) {4.34)

All the necessary ingredients have now been collected. The contact
with thermodynamics is made through the obeservation that the excess
chemical potential of the fluid is related to the average reversible work
needed to create a cavity of the same size as the original particles, hence

ex = [ Ay (W (QIA = 1) (4.35)

The equation of state can now be found by integrating the Gibbs-Duhem
relation
apr aﬂex

T o

(4.36)
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The free energy is now easily calculated by using the relation G = pN =
F + PV yielding as our final result

BFH/N =In Vruy+In y+/dﬂw(ﬂ) (In () - 1}+ Wz[:p]y+éw3[a,lx]y3
(4.37)

This result looks identitical in structure to the y-equation result (Eq. 4.20)
if one keeps terms up to second order in y. Indeed upon closer inspection,
one finds that W; is in fact identical to C,. The coefficient W5, however,
differs from the corresponding Cs, [161] except in the case of hard spheres
where both approaches lead to the same result, which is also identitical to
the one obtained from the exact solution to the Percus—Yevick equation
[1] using the compressibility route for the equation of state.

It should be pointed out that the method of implementing SPT outlined
above and followed, with minor variations, by all the papers cited, is not
the optimal way of doing it. Tully-Smith and Reiss [58] have devised a
more general scheme, based on the same ideas, that removes the limitation
of expanding the work function just to third order in the scaling parameter
and replacing it by an asymptotic expansion of the kernel of the work
- function in inverse powers of the scaling parameter. The coefficients in
this expansion are then fixed by maximally exploiting a number of exact
constraints.

c. Direct Correlation Function Approaches. In this section, we discuss
the approaches to the problem of constructing a free energy functional
for the nonisotropic HCB fluid that take the expansion about a reference
fluid (4.10) as a starting point. We will take the reference fluid to be
both isotropic and homogeneous, that is, p({)l) = ny/8m and at the same
number density as the system, that is. n; = ny. Since the free energy is a
true functional, the path of the functional integration can be freely chosen
to be of the simple form p{" = ;,1([]l)+)l£|p“j where Ap(!) = p{” ~py. Using
the fact that the one-particle direct correlation in the reference phase does
not depend on the particle’s coordinates, we arrive at

Dl = bl + 3 / dedg e (g, £ [p) DA (£)2p(E)  (438)

We now need to specify the two-particle direct correlation function in
the reference phase. The various approaches discussed below distinguish
themselves by the way in which they deal with this problem.

First, and as an aside, it is instructive to see that the previously described
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Onsager approximation is recovered, if we replace the direct correlation
by the first term in its low density expansion

B E o) = FIE.E), np< ] (4.39)

where f is the Mayer function.

The most direct route to obtaining ¢ in the isotropic phase was fol-
lowed by Patey and co-workers [23.25,162] who used results from the
numerical solution of the various liquid state integral equations for the
isotropic HCB fluid. In this scheme, one obtains a set of density de-
pendent coefficients in an invariant expansion of the direct correlation
function which can be used as input to the functional expansion. This is
of necessity a rather involved procedure. Many authors therefore take
the simplifving step of mapping the problem onto the direct correlation
function for hard spheres, for which we possess an approximation in an-
alytical form through the solution to the Percus—Yevick equation as well
as several semi-empirical extensions thereof. Given the scarcity of hard
information, these approximations are all, to a greater or a lesser degree,
inspired guesses.

A first proposal, originally suggested by Pynn, '163,164] is to model the
direct correlation function by the hard-sphere one, artificially made ori-
entation dependent by scaling the interparticle distance with the distance
of closest approach between the two HCBs o (£, §2, {¥'), where § is the unit
vector along the line connecting the centers of the two particles,

e, 0,0, (M) = chitr/a(, 2.), ng) (4.40)

This expression of course reduces to the correct expression for hard
spheres. Since in this approach the influence of relative orientation is de-
coupled from the influence of interparticle distance, the name decoupling
approximation is appropriate. It has the defect. first noticed by Lado, [165]
that for r — 0 the direct correlation function is predicted to be isotropic,
contrary to reality.

Another proposal. due to Baus et al. [166] who formulated it with el-
lipsoids of revolution in mind, is the following:

Pe 0, 0, [pl") = ALY i (r ) e, Reit) (4.41)
vy

where in the simplest case the effective hard-sphere diameter is deter-
mined by the equal volume rule 4wl /3 = vy and the efféctive density
nere 15 taken equal to the reference density ny,. By construction, this ex-
pression does not have the deficiency of being isotropic at short distances.
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One can go one step further by assuming that one can use the expression
{4.41) to describe an approximalte direct corretation of an orientationally
ordered phase. This new reference phase will already contain some- of
the effects of orientational order but still posses a rotationally invariant
direct correlation function. To correct for the fact that there is on average
less interaction between the partially aligned particles at a given density
as compared to the isotropic fluid of the same density, the pseudonematic

reference state should have a lower effective density. This effective density -

can be fixed by requiring the same value at contact of the direct correla-
tion function in the purely isotropic case and in the effective nematic case,
where the average contact distance in the latter case should be reduced in
order to take into account the ordering of the particles. The perscription
suggested by Colot et al. is the following

cg;(r/a'eff =1,my) = c(}g(r/aeff = X, Hefi) (4.42)

where x is a factor that accounts for the reduced average contact distance.
For etlipsoids, Colot et al. [167] unfortunately chose x = b/a where a and
b are the lengths of the major and minor axes, respectively. This implies
an average contact distance smaller than the minor axis of the ellipsoids,
which is of course unphysical.

d. Weighted Density Approximations. Next, we briefly discuss a class of
methods for the construction of density functionals for HCB fluids, the
so-called weighted density approximations (WDA), all traceable to the
ideas originally suggested by Tarazona and Evans [168,169] and Curtin
and Ashcroft [170,171] in their work on the inhomogeneous hard-sphere
fluid. Consider our general expression for the density functional (4.10) in
the case that the reference state is the zero density state, that is, Ap!"{(£) =
pV(£). In that case, the excess free energy functional can be written as

ol = [ ago (e e [o") (4.43)

where Ay(£, [p""]) is a nonlocal functional of the ODF. The idea of the
WDA is to replace this nonlocal functional by a function A¢(p'V(£)) of
a suitably chosen focal density p''!(£). This local density is then taken to
be some kind of weighted average of the true ODF over a neigborhood
surrounding the point in question. In practice, the effective density is
taken to depend only on the position and the orientational effects are
included in an effective way through the averaging procedure. The usual
form of this averaging is therefore

a(r) = / dr dQdQwir — ¢, 0, Q)M (', ) (4.44)

@
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The approximated excess free energy functional will then take the form
Do) = [ denie)a (i) (4.45)
where we have introduced
n(r) = /dnp“>(r.n) (4.46)
The two inputs of a specific WDA are thus the form of the weight function
wir— v, 8, 8)') and the explicit form of the function Ad.

The proposal put forward by Poniewierski and Hotyst [172,173] is to
take the following definition for the averaged local density:

1
Alr) = /dﬂ/dn’ dQ'ZBisox(rfr’,Q,ﬂ')f(r,Q)p(”(r’,Q’) (4.47)
2
where the orientational distribution function f(r, 1) is defined as

F(6,0) = o (r, Q) / 40 (e, ) (4.48)

and the isotropic second virial coefficient is introduced to obtain a proper
normalization:

/drdﬂdﬂ’x(rﬁ r,0,0) = /deQ‘E(Q,Q’) = 2(3w2)33§50 (4.49)

Given the fact that the effective local density is independent of orientation
so that the system is effectively sphericalized, it is natural to select an
effective excess free energy density related to the hard sphere system.
Poniewierski and Holyst chose
FCXCL‘S& -
— Ag(n) = nB, + (3%(17) - 4n) (4.50)
which is the Carnahan-Starling expression for the excess free energy per
particle of the hard-sphere fluid in terms of the packing fraction n (see
Ref. [1]) corrected to give the proper second virial coefficient for the non-
spherical particles in the isotropic phase.

A _ BEE™ 4~ 3n)
NOT TN T ATy

{(4.51)

A related approach is the one introduced by Somoza and Tarazona [174,
175]. They base their analysis on a mapping onto the system of parallel
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hard ellipsoids (PHE) rather than onto the the hard-sphere fluid. In this
way, they hope to include more of the anisotropic structure of the full HCB
Aluid into the reference system. Moreover, in the case of PHESs, one is able
to make use of the fact that this system can be related to the hard sphere
fluid using an affine scale changing transformation. [176] Their procedure
is as follows. First select the equivalent PHE system through the rule that
the volume of the PHE is equal to that of the HCB in question and that
the the average moments of inertia of the HCB are proportional to those
of the PHE, that is,

Tcs) = ] A0S (. D ca(Q) x Tong (4.52)

Then use a scaled version of the weighting function applied 1o the ithomo-
geneous hard-sphere fluid, {177] the scaling given by the mapping between
the HS and PHE, to obtain the effective local density #(r) of the PHE. Fi-
nally, construct the WDA excess free energy functional for the PHE with
an extra factor that corrects for the second virial coefficient of the HCB
in a manner similar to that of the phenomenological Parsons approach.
Pl =
_ i dQ'p " (0, Y ) xuca(r — Q. )
Q" (r, M)A S ‘ i
/dl'd o (r, Q) Adppe(n(r)) Tar dvpT (e, ) xrme(r — )
' (4.53)

e. Empirical Approaches Finally, we discuss some of the more empirical
approaches to the construction of theories for phase transitions in HCB
fluids. In all cases an attempt is made to somehow incorporate nonspheric-
ity into known results on the hard sphere system.

One of the first such theories is due to Flapper and Vertogen [178,179]
who argued that the packing fraction n for hard spheres of diameter o
can also be interpreted as

n=otn= %V_exc]n (4.54)
where Vexq is the excluded volume of two spheres. They therefore pro-
posed to identify the effective packing fraction for nonspherical particles
(in a homogencous, e.g.. nematic phase) as

neily] = gnielo)) = gn [ dQAQB@OE@IEQ. Q) (@459)

The equation of state for the HCB fluid is then postulated to be the one
for the HS fluid. but with the above effective packing fraction. Choosing
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for instance the Carnahan-Starling relation [53] to model the HS behavior.
we can construct the approximate free energy functional

BF[) L M4~ 3nly))
T—/dnlﬂ(ﬂ) tn ¢(Q)+lﬂ Vrn —[1—1][{”)2

In a similar vein we have the “scaling” approach introduced by Lee.
[180,181] Here the excess free energy of the Carnahan-Starling HS equa-
tion is rather arbitrarily multiplied by a scaling function that contains the
dependence on the orientational distribution

oy El) (m{d —3n)
BFEXCESS ] = S ( Ty ) {4.57)

(4.56)

As was pointed out by Vroege and Lekkerkerker, [150] this result coin-
cides with that of the so called decoupling approximations, both the direct
correlation version discussed in Section. IV.A.2 above as well as one based
on the radial distribution function discussed by Parsons. [182]

3. Specific Transitions

In this section we presents the results of the theoretical approaches de-
scribed above as they are applied to the various liquid crystalline phase
transitions thatoccur in HCBs.

a. Isotropic—-Nematic Transition. The most studied transition occurring in
HCRB fluids is, of course, the isotropic-nematic transition. As is observed
in the computer simulations, HCBs that are sufficiently nonspherical un-
dergo a weakly first order transition from the low density isotropic phase
to the uniaxially symmetric nematic phase. The first order nature of the
transition is correctly captured by all thecries. They differ. however, in
their predictions about the strength and the location of the transition. Key
quantities to compare are therefore the packing fractions 7, and nnem
of the coexisting phases, the coexisience pressure Peoex conveniently ex-
pressed in dimensioniess units as P* = Py, and the jump in the nematic
order parameter < P> >, at the transition.

For ellipsoids of revolution, the most detailed comparisons can be made
for particles with a length-to-width ratio x = 3. The results are summarized
in Table L.

From these results it is clear that most theories underestimate the
coexistence densities and probably overestimate the jump in the order
parameter.’ The scaling approach of Lee[181] seems incredibily accurate

“Nao reliable results are quoted for this quantity in the literature, but it is generally believed
1o be of the order of < P >= 0.35
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TABLE 1
Comparisons of Results for the Isotropic—-Nematic Transition of Several Theories with MC
Data for the Case of Hard Ellipsoids at x =3

Source .
Method Reference Tisg | Tmem Ploex | <Pr>c
Monte Carlo [183) 0.507 | 0.517 9.79 B
y-expansion true By [41] 0465 | 0481 8107 0.641
y-expansion approx. B {160} 0420 | 0438 5n 0.568
Integral equations [25] 0418 | 0436 — 0.657
Decoupling approximation [184] 0493 | 0494 - 0.017
Decoupling + partial ¢® [185] 0314 | 0335 - 0.547
Structural mapping [167] 0472 | 0494 7.76 0.561
Structural mapping + decoupling [186] 0475 | 0.49%4 - 0.547
Weighted density [173] 0454 0474 4.68 0.485
Scaling approach [181] 0.308 | 0517 10.00 0.533

as far as the densities and the pressure are concerned but this might be
fortuitous since it does less well at length-to-breadth ratio x = 2.75 (al-
though it might be argued that that is in fact a much harder case since
we are close to the isotropic-nematic-solid triple point). In the light of
the recent results from more extended simulations with larger number of
particles at x = 3, [187] which indicate that the true transition densities are
probably even higher than the ones quoted here, we should be careful to
draw definite conclusions about the relative merit of these theories based
on the numbers given.

We now turn to spherocylinders where we make a comparison at length-
to-breadth ratio x = 5 in Table II The same general picture already ap-
parent from the results on the ellipsoids is also evident here. The phe-
nomenology of the transition is well captured, the numbers seem to be
of the right order of magnitude but it is unclear whether they represent
a systematic approximation to the the actual values. We return to these
questions in the concluding remarks of this section.

The question of what happens to the isotropic-nematic transition if
the particles are no longer uniaxially symmetric has a history dating back
to Freiser’s observation [189] that one could even imagine the formation

] TABLE M
Comparisons of Results for the Isotropic-Nematic Transition of Several Theories with MC
Data for the Case of Hard Spherocylinders at x =5

Source
Method Reference Tjsp | "mem Peoex | <Py >
Monte Carlo (188 0.40 0.40 4.9 | -
Integral equations [25} 0325 | 0338 - 0.635
Weighted density [173] 0.38 0.41 29 0.59
Scaling [180] 0400 | 0418 536 0.667
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of a biaxial nematic phase, that is, a phase where both a major and the
minor axes of the molecule are orientationally ordered. In the context
of hard particle fluids, the theoretical approaches were at first confined
to systems of rectangular slabs that were only allowed a discrete set of
orthogonal orientations. [193,190-193]. More progress was made with the
anatytical solution of the excluded volume problem at arbitrary relative
orientations of a biaxial generalization of the spherocylinder, the so-called
spheroplatelet, which allows, for example, the Onsager theory to applied to
such a system. [55] Using the methods of bifurcation analysis. Mulder [194]
was later able to clarify the distinct features of the phasediagram in the
Onsager approximation for all hard particles having the same symmetry
as rectangular slabs (symmetry group Dy;). The most important feature in
this phase diagram, depicted schematically in Fig. 4.1, is the occurrence of
a so-called Landau bicritical point as one continuously deforms a prolate
particle into an oblate particle. This bicritical point is the end point of two

L T N L -
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Figure 4.1.  Schemaltic phasediagram for hard biaxial particles. On the horizontal axis
the shape of the particle is varied by changing one of its characteristic lengths so that particles
ranging from elongated rods to flat disks are obtained
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first order transition lines to the rod-like (N, ) and platé-like {N_) nematic
phases formed by the rather prolate particles and rather oblate particles,
respectively. The intermediate case is a particle which is neither distinctly

- rod-like nor platelike and undergoes a second order phase transition to a

biaxial nematic {N,) phase. The theory of Ref. [194] gives an analytical
expression for determining this intermediate particle shape in terms of
moments of the pair-excluded volume. If we characterize the particle by
three distinct dimensions /ength < breadth < width then the “bicritical”
shape is given approximately by the intuitively reasonable result

bvi.cr = Viw (4.58)

that is, the middle dimension is the geometric mean of the outer two.
Hotyst and Poniewierski [195] considered the same type of system using
their version of the weighted-density approximation as well as an adapted
version of the scaling theory of Lee. {180] Although this involves more
elaborate free energy functionals than the Onsager approximation, the re-
sults for the bicritical shape were nevertheless the same as in Ref. [194],
a fact which can be explained by an application of formal methods [196]
showing how relatively insensitive results concerning the symmetry prop-
erties of phase diagrams are to the type of approximations employed. In
fact the predictions of the theory are well borne out by the results of sim-
ulations performed by Allen [197] (see Section IV.B.3) on a system of hard
biaxial spheroids.

A very recent result concerns the isotropic—cholesteric transition in a
HCB fluid. By applying a torsional deformation to a biaxial spheroid,
Evans [198] was able to construct a chiral HCB (this construction is ex-
plained in Appendix A.C). Employing a version of the Parsons-Lee [180)
scaling approach, he was able to determine the pitch of the cholesteric
helix which,for a realistic choice of molecular size and chirality, turns out
to be a visible wavelength as is also observed in experiments.

b, Nematic-Smectic Transition. The fact that particles with purely repul-

sive interactions would be able to form a smectic would have been actively
dismissed by most workers in the field until just a couple of years ago. Nev-
ertheless, the possibility had been clearly demonstrated by Hosino et al.
[199] as early as 1979. They considered a fluid of hard rods with their long
axis constrained to point in a chosen preferential direction thus forming a
“nematic” by design. Using an approximate method to locate a possible
instability of such a phase to a density wave along the preferred direc-
tion, they were able to give predictions in the Onsager approximation for
the packing fraction at which a smectic phase would set in and the initial
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wavelength of the density modulation. Later on they showed [200] that the
smectic phase even occurred in their model when the rods were allowed
to point in three mutually orthogonal directions.

Since the first observalion of the actual formation of a smectic phase
in a system of parallel hard cylinders by Stroobants et al. [20i] most the-
oretical work has concentrated on sytems of aligned rods. Interestingly
enough, one of the simplest HCBs, the ellipsoid of revolution, does not
show a smectic phase for the perfectly aligned system. This fact is easily
understood on the basis of the observation made by Lebowitz and Per-
ram [176] that a system of aligned eilipsoids can be mapped onto the hard
sphere fluid by a global change of scale. Since hard-sphere fluids do not
possess a smectic phase neither do the aligned ellipsoids. Theories have
therefore concentrated on hard right circular cylinders and spherocylin-
ders. We can compare their results by looking at their predictions for the
critical packing fraction 5. and the wavelength A, of the smectic density
modulation at the transition. In Table I, we collect the results on parallel
cylinders which undergo a continuous transition, as is correctly predicted
by all theoretical approaches. For hard spherocylinders the situation s
somewhat more complex since the results depend on the length-to-width
ratio x = L/D of the particles. In the limit that x — oo, the results should
coincide with those onr the cylinders since in that limit the influence of the
hemi-spherical caps becomes negligible. In Table IV we compare some
results for x = 3.

By considering oblique cylinders or parallelepipeds. 2 number of au-
thors have also studied smectic phases where the density wave is not
parallel to the direction of molecular alignment thereby modelling the
so-called smectic-C phase. [199.208]

A number of authors have also considered the possibility of the for-
mation of a columnar phase in these systems [205,204,207,209] but since

TABLE IlI
Comparisons of Results for the Nematic-Smectic Transition
of Several Theorics with MC Data for the Case of Parallel
Hard Cylinders. (Note That the Critical* Wavelength Scales
with the Length L of the Cylinder

Source
Method Reference ne | Ao/l
Monte Carlo [201] 035 | 1.27
Onsager (202} 0.58 1.40
Onsager+ 8, [202) 0.36 1.35
Onsager+B4+8, [202] 0.37 1.34
Effective free energy [203] 0.35 1.28
Weighted density [204] 0.28 1.40
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TABLE IV
Comparisons of Results for the Nematic-Smectic Transition
of Several Theories with MC Data for the Case of Parailel
Hard Spherocylinders with Length-to-Breadth Ratio x = 3

Source
Method Reference e | Ac/L
Monte Carlo 201 043 [ =16 |
Cell model 205 T ~05] =16
Integral equation [206] ~038 | =15
Decoupling [207] 0.36 1.65
Weighted density |208] 0.42 1.6

I This theory predicts a first order N-§ transition

the recent simulation results indicate that the stability of this phase is
questionable [210] (see Section IV.B.4), we will not discuss this point in
detail.

A final result on the nematic-smectic transition in aligned sytems worth
mentioning is the recent work by Hotlyst. [211] He considers parallel par-
ticles built up from a thinner and a thicker cylindrical segment, that is,
particles that are not up-down symmetric. In a fluid where half of the
particles points up and the other half down, he finds in the Onsager ap-
proximation a transition to a smectic phase with a double modulation of
the density, The smallest wavelength is due to the tendency of the fluid
to form closely coupled alternating layers with the molecules pointing up
and down, respectively. These bilayers themselves are at a typical dis-
tance from each other given by the second, larger wavelength. This phase
is commoniy known as a smectic A, phase.

The problem of the nematic-smectic transition for the case of freely ro-
tating particles has also been considered by several authors: Poniewierski
and Hotyst [172,212,213] using the weighted density approximation (see
Eq. {(4.47)) and Somoza and Tarazona [175,208,214] using their density
functional theory with the aligned ellipsoids of revolution fluid as a refer-
ence system (see Eq. (4.53)). In both cases, the particles considered were
sphero-cylinders. Unfortunately there exists only a single set of simulation
data on this system for the case x = 5 making quantitative comparisons
next to impossible. Neévertheless one notes major differences in the re-
sults of the two approaches. A key factor determining these differences
is their respective predictions for the location of the tricritical point on
the nematic-smectic transition line. For very elongated rods the theory
predicts a continuous transition which is consistent with the idea that these
systems at the typical N-8 transition densities are almost fully orientation-
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ally ordered and thus should behave like their perfectly aligned counter-
parts. * At a finite length-to-width ratio x,,; the transition is predicted to
become first order. In the Poniewierski-Hotyst theory this critical aspect
ratio is predicted to be x;,; = 5.9 {213] while the Somoza-Tarazona result
is x,; = 50. The nature of this large discrepancy is at present not under-
stood. Moreover, there is no indications from the simulation data at x = 5
that the transition is first order. Both theories do agree on the location of
the isotropic-nematic-smectic triple point at x = 3.

Taylor and Herzfeld [216] applied scaled particle theory to a system of
hard spheroplatelets with a view on determining the role of particle bi-
axiality on the nature and location of the smectic phase. They restricted
themselves, however, to discrete orientations for the molecules. New fea-
tures in their work are the appearance of a biaxial smectic phase and a
near complete suppression of the biaxial nematic phase in favor of the
smeclic phase.

Finally, Evans [217] studied the question of how the shape of a particle
influences the propensity to form smectic phases. He introduces a particle
intermediate between the ellipsoid of revolution and the spherocylinder,
the “ellipocylinder” which allows one to study a one-parameter family
of shapes ranging from the eilipsoid of revolution. which does not form
a smectic phase, to a spherocylinders that does. Using the Parsons-lLee
“scaling” approach, he determines the phase diagrams of the different
sytems. The main result is that the freely rotating “ellipocylinders™ do
form a smectic phase indicating that the ellipsoids of revolution are indeed
a singular case.

¢ Mixtures. Theoretical work on mixtures of hard particles has been very
limited, although most of the theoretical approaches discussed here can in
principle be generalized to treat multicomponent systems. Lekkerkerker
and co-workers {218,219] considered binary mixtures of rods of different
length in the Onsager approximation. The results show a host of new phe-
nomena of which we mention (i) fractionation effects; the concentration of
the longer rods is enhanced in the nematic phase; (ii) widening of the co-
existence region; the density of the isotropic phase at coexistence may be
substantially smaller than that of the nematic phase; (iii) re-entrancy; on

¥Recent work by Poniewierski i215] who analyzed the behavior of spherocylinders in the
limit L/D — oo shows that this is a rather subtle question. In fact there are non-zero
contributions to the free energy due to the rotational freedom of the particles even in the
limit. This shows that one can not simply identify the infinitely long rods with the aligned
systerm as had been tacitly assumed by most workers
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the increace of density some mixtures can undergo a re-entrant transition
from a nematic phase to an isotropic phase.

Another system of interest is a mixture of rod-like and plate-like par-
ticles. Alben [220] predicted on the basis of a lattice model that such a
mixture might form a biaxial nematic phase at certain compositions. In fact
the phase diagram of this mixture as a function of composition should be
isomorphic to the one shown in Fig. 4.1. Rabin et al. [221] and Stroobants
and Lekkerkerker [219] later considered this question for hard particles in
the Onsager approximation and essentially confirmed Alben’s predictions.
A later paper by Palffy-Muhoray et al. [222], albeit dealing with a mean
field description, raised the question whether phase separation between
a rod-like and plate-like nematic phase would not be thermodynamicaily
more favourable. To our knowledge, this is still an open question.

d  Two-Dimensional Nematics. Two-dimensional liquid crystals are very
different from their three-dimensional counterparts. This can be clearly
demonstrated by considering the isotropic-nematic transition in two di-
mensions. On basis of the Landau theory of phase transitions, we expect
that the isoiropic nematic transition in two dimensions should be of sec-
ond order. Density functional theory [223] predicts the same. However,
the actual situation is much more subtle than that. The point is that two-
dimensional nematics are very similar to the two-dimensional Heisenberg
system (“2D-xy model”) and hence there is a possibility that topologi-
cal defects have a pronounced effect on the nature of the phase transi-
tions. [224] In order to see this, we should consider the change in free
energy of a two-dimensional nematic, due to distortions of the director
field. In fact, in Section V.A 4, we discuss the so-called Frank distortion
free energy of a 3D nematic liquid crystal in some detail. Here we simply
“horrow” the expression for the distortion free energy of a 3D nematic
(Eq. 5.8) and adapt it to the 2D case under consideration. We choose
the average director along the y-axis. We denote the angle between the
average director and the instantaneous local director by ¢. By analogy
to the three-dimensional case, [2] the expression for the deformation free
energy is of the form

1 1
Fp = 'Z'Kl(a\'"x)z + §K3(ayn.r)2
1 1
= EKl(a,[a)2 + 51<3(ava)2 (4.59)

where K; and K3 are the “splay” and “bend™ elastic consiants discussed
in Section V.A 4. In the last line of Eq. {4.59), we have assumed that @
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is small. We shall simply postulate that the deformation free energy of
a 2D nematic is given by Eq. (4.59). Moreover, we shall assume for the
sake of convenience that K, = K. In that case, we obtain a very simple
expression for the deformation free energy density;

Fp= %K(VB);’ (4.60)

Using this expression, it is easy 10 compute the elastic contribution to
the free energy of a single w-disclination in a 2D nematic, Consider a
circular path (circumference 2mr) around the disclination core. Along
this path, the director rotates over an angle 7. Hence (V8)? = (1/2r)%. If
we insert this expression in Eq. (4.60) and integrate from the disclination
core (radius ag;, say) to L (the linear dimension of the system), then we
“find that the elastic energy of an isolated disclination is

L, [F2ar K
&

i

Clearly, Fy) — oo if L. = co. This would seem to suggest that no free
disclinations are possible in a 2D nematic. However, we should also con-
sider the “configurational entropy™ of a single disclination, that is, the
entropy & log €) associated with the number of distinct ways in which we
can place a disclination in a two-dimensional area L2, If we use a, as our
unit of length, then the configurational entropy is given by k log(f./ay)?
(where we have neglected an additional constant, independent of system
size), Combining this expression for the configurational entropy with our
expression for the elastic free energy (Eq. 4.61), we obtain the following
expression for the total free energy of a single disclination in a 2D nematic:

Frotal = (% -2k T) log(L/ag) {4.62)

Equation (4.62) suggests that if kT < (#K/8). no free disclinations are
possible, whereas for kT > {wK /8), spontaneous generation of free discli-
nations may take place. However, if a nematic contains a finite con-
centration of free disclinations. orientational correlations are destroyved
over distances longer than the characteristic separation of the free defects
and the resulting phase is an isotropic fluid. This simple version of the
Kostertitz-Thouless scenario for defect mediated phase transitions pre-
dicts that the nematic phase cannot be stable above a critical temperature
kT* = (wK/8). Atthat temperature, there is a continuous phase transition
{of “infinite” order) from the nematic to the isotropic phase. However,
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there is an alternative possibility: namely that the I-N transition is simply
first order. But if the I-N transition is of first order, then this transition
must occur before the nematic phase has reached the point where it be-
comes unstable with respect to the formation of free disclinations; that is,
at a first order I-N transition, the following inequality must hoid:

BkT

™

K>

This condition also follows from the more rigorous version of the KT-
theory. _

Note that our discussion of the disclination-mediated I-N transition
was based on the assumed from of the Frank free energy (Eq. 4.59). It
should be stressed that this form of the deformation free energy has quite
drastic conseguences for the nature of orientational order in 2D nematics.
In particular, it implies that there exists no true long-ranged orientational
order in such systems. We define the £th orientational correlation function
as

gelr) =< cos 2£(8(0) — 6(r)} >=Re < exp[—2i£(0(0) — 8(r))] > (4.63)

Using the fact that the free energy (Eq. 4.60) is quadratic in #(k), it is
easy to show that g,(r) has the following form:

~20%kT {wK —1
ge(r) = (;%) = (aio) (4.64)

where the last term on the right-hand side of Eq. (4.64) defines the ex-
ponent ;. Note that this equation implies that, provided that Eq. {4.59)
is valid, there is no true long-range orientational order in a 2D nematic,
but algebraic or “quasi long-range” order. Similarly, it can be shown that
the order parameter < cos26 > also vanishes algebraically with increasing
system size:

I3 —kT/aK
< cos26 >x (—) {4.65)

ay
Now recall that a 2D nematic is only expected to be stable against
the spontancous generation of free disclinations, when K is larger than
/(8% T). Hence, at the K-T transition, the orientational correlation func-
tions and the nematic order parameter must satisfy the following relations:

g(r) = (i ) o (4.66)

aq
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L 1/8
< 0828 Soc (__) (4.67)
ay

Two points should be stressed: (1) if the I-N transition 1s first order, then
at the transition the exponents of g, and < cos2@ > must be iess than
the critical values given by Eq. (4.66); (2) the above arguments rest on
the assumption that the deformation free energy is of the form given by
Eq. (4.60). If this expression is valid, 21D nematics can only have algebraic
orientational order. However, it has thus far only been possible to prove
the absence of true long-range orientational order for a certain class of
short-ranged potentials called separable. [225] A pair-potential is called
separable if the interaction energy of two molecules at fixed center-of-
mass separation r; depends only on the relative orientation of the two
molecular axes w; - u;, but not on r; - w; or r; - u;. Realistic pair-potentials
are hardly ever separable. We come back to this point in Section IV.B.5.

4. Critical Discussion

After having reviewed the various approaches to the theory of phase
transitions in HCB fluids it seems fitting to comment on what has been
achieved so far. On the one hand we observe that, more or less, all the-
ories are able to reproduce the phenomenology of the phase transitions
in question. It is worth pointing out that one does not need an elaborate
density functional to achieve this goal. In fact most of the transitions that
occur can be understood on the basis of the Onsager approximation alone.
For the class of functionals that do not explicitly contain a three particle
contribution, this observation can even be given a formal justification, [196]
at least as far as transitions from the isotropic phase are concerned.

As far as the quantitative predictions of the various theories are con-
cerned the situation is less clear. In many cases, reasonable to good results
{as compared to simulations) are obtained. However, one is at a loss to
understand why a specific choice of functional performs well or not. More-
over it is not evident that one can systematically improve on the proposals
given here. The techniques based on series expansions of the free energy
functional { generalized Onsager and y-expansion) are liable to suffer from
convergence problems even if the difficulties of obtaining higher order con-
tributions was surmounted. Scaled particle theory should in principle be
extensible but its quantitative predictions at the level where we are able
to use it are not encouraging. The direct correlation function approaches
are even harder to generalize. In the case of the integral equations, one
first of all has to deal with the unknown influence of the choice of the clo-
sure equation. Next, in order to deal with true breaking of symmetry, one
should really solve a coupled set of equations involving both the ODF and
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a correlation function, rather than study the instabilities of the isotropic
phase. This has not been attempted so far. The approaches based on the
idea of a local weighted density are burdened by the fact that the choice
of weighting function is essentially arbitrary and that it is unclear whether
the hard-sphere equation of state is indeed the proper reference system
for the thermodynamics of nonspherical particles.

At a more general level, one should keep in mind that constructing a
density functional also implies certain approximations for the correlation
functions. Since density functionals are usually employed to study the
thermodynamics of the systems involved, this is not often discussed. It
remains to be seen whether the approximate correlation functions bear
any resemblance io the real ones for these systems. Probably the theory
of HCB fluids still has a long way to go before it achieves the level of
simultaneous prediction of both the structure and the equation of state
that is obtained in the current theories of the hard-sphere fluid.

B. Simulations
1. Phase Transitions and Free Energy

In order to map the “phase diagram™ of a hard-core model system by
computer simulation, we must be able to accurately locate all phase tran-
sitions. In this section, we section we discuss the special techniques that
are required to locate first-order phase transitions.

The most direct way to study first order phase coexistence in a com-
puter simulation would be to simply change the temperature or pressure
of the system under study until a phase transformation occurs. In the
real world, it is often (although by no means always) possible to ensure
that such a phase change takes place reversibly. The coexistence point
is defined as the point where the reversible phase transformation occurs.
At coexistence, the temperature and pressure of the coexisting phases are
equal. In addition, the chemical potential of every individual species o

must have the same value in every phase.
P =Py, Ti=Tu, AT = i {4.68)

Although it is vsually not possible to locate a phase transition in a -
simulation by direct observation of the coexistence of two phases, much
progress has been made during the past few years in the simulation of
phase coexistence of moderately dense fluid phases. The so-called Gibbs-
ensemble method of Ref. [226] relies on the fact that it is possible to
satisfy the conditions for coexistence between two bulk phases (or, to be
more precise, homogeneous phases with periodic boundary conditions)
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by allowing them to exchange both volume and molecules. Unfortunately,
such a direct simulation method is of limited value in computer simulations
of transitions involving dense phases that have some translational order.
The reason why the Gibbs-ensemble method breaks down under those
circumstances is twofold. First. pronounced hysteresis effects are usually
observed in computer simulations of a strong first order phase transition,
such as melting. This implies thar it is difficult for the molecules in the
system to spontaneously rearrange from a configuration belonging to the
“old”.phase, to one that corresponds to the “new” phase. But even if the
two different phases have somehow been prepared, it is usually impossible
to exchange particles between them. As a consequence, we cannot ensure
the equality of the chemical potential in the two phases.

Under those circumstances, it is stil]l possible to locate the point where
the two phases coexist. But in order to do so, we must explicitly compute
the chemical potential of the homogeneous phases at the same temperature
and pressure and find the point where the two p’s are cqual. Below,
we describe several techniques that can be used to compute the chemical
potential (or, equivalently, the Helmholtz free energy) of particles in dense
phases.

a. The Natural Way. When discussing techniques to measure free ener-
gies, it is useful to recall how such quantities are measured experimentally.
In the real world, free energies cannot be obtained from a single measure-
ment either. What can be measured, however, is the derivative of the free
energy with respect to volume V' and temperature 7

(g_f;) NT -F (67

(%) e E (4.70)

Here P is the pressure and E the energy of the system. The trick is now
to find a reversible path that links the state under consideration to a state
of known free energy. The change in F along that path can then simply be
evaluated by integration of Eqs. (4.69) and (4.70). In the real world, the
free energy of a substance can only be evaluated directly for a very limited
number of thermodynamic states. One such state is the ideal gas phase, the
other is the perfectly ordered ground state at T = QK. In computer simu-
lations, the situation is quite similar. In order to compute the free energy
of a dense liquid, one may construct a reversible path to the very dilute gas

and
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phase. It is not really necessary to go all the way to the ideal gas. But at
least one should reach a state that is sufficiently dilute that the free energy
can be computed accurately, either from knowledge of the first few terms
in the virial expansion of the compressibility factor PV /NkgzT, or that the
chemical potential can be computed by other means (see Ref. [227] and
Section IV.B.2 below). For thé solid, the ideal gas reference state is less
useful {although techniques have been developed to construct a reversible
path from a dense solid to a dilute (lattice-) gas [228]). The obvious ref-
erence state for solids is the harmonic lattice. Computing the absolute
free energy of a harmonic solid is relatively straightforward, at least for
atomic and simple molecular solids. However, for hard-core models, the
crystalline phase is never harmonic. Hence, other techniques are required
to compute the free energy of hard-core solids.

b. Artificial Reversible Paths. Fortunately, in computer simulations we do
not have to rely on the presence of a “natural” reversible path between
the phase under study and a reference state of known free energy. If such
a path does not exist, we can construct an artificial path (see e.g. Ref. [1]).
It works as follows: consider a case where we need to know the free
energy F(V,T) of a system with a potential energy function U, where
U, is such that no “natural” reversible path exists to a state of known
free energy. Suppose now that we can find another model system with a
potential energy function Uy for which the free energy can be computed
exactly. Now let us define a generalized potential energy function U{A),
such that /(A = 0) = Uy and U(A = 1) = U;. The free energy of a system
with this generalized potential is denoted by F(A). Although F(A) itself
cannot be measured directly in a simulation, we can measure its derivative

with respect to A:
(.‘?'f) - <3U("‘)> (@71)
IS wyvra A/ nvra

If the path from A = 0 to A = 1 is reversible, we can use Eq. (4.71) to
compute the desired F(V,T). We simply measure (< U /OA > for a
number of values of A between 0 and 1. Typically, 10 quadrature points
will be sufficient to get the absolute free energy per particle accurate to
within 0.01kzT. However, it is important to select a reasonable reference
system. For solids, one of the safest approaches is to choose as a reference
system an FEinstein crystal with the same structure as the phase under
study. [229] This choice of reference system makes it improbabie that the
path connecting A = 0 and A = 1 will cross an (irreversible) first order
phase transition from the initial structure to another, only to go back to its
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original structure for still larger values of A. Nevertheless, it is important
that the parametrization of U(A) be chosen carefully. Usually, a linear
parametrization (i.e., U(A) = AU, + (1 — A)Uy ) is quite satisfactory. But
for hard particles, such a A-parametrization leads to problems because
one cannot continuously switch off a hard-core potential using a linear
parametrization. In Appendix B.A, we briefly sketch how to compute the
Helmholtz free energy of the crystalline state of a system of non-spherical
hard particles. More details about such free energy computations can be
found in Refs. [81,227,230,231].

2. Phase Transitions in Liguid Crysials

Let us consider how the techniques sketched in the previous section can be
applied to first order phase transitions in liquid crystals. At the outset, it
should be stressed that it is often not trivial to construct a reversible path
that will link a liquid-crystalline phase to a state of known free energy.
Usually. the liquid-crystalline phase of interest will be separated by first
order phase transitions from both the dilute gas and the low temperature
(harmonic) solid. In the case of the nematic phase, this problem has
been resolved by switching on a strong ordering field. In the presence of
such a field. the first order isotropic—nematic transition is suppressed and
a reversible expansion to the dilute gas becomes possible. {75] However,
this approach has one obvious disadvantage: in order to compute the (very
small) difference in the free energy of the isotropic and the nematic phase,
we subtract two large numbers. The first is the change in (excess) free
energy of the isotropic phase upon compression from the dilute gas to the
I-N transition. The second is the change in free energy associated with (a)
the alignment of the dilute gas in a strong field, (b) the compression of this
aligned fluid to the density of the nematic phase and (c) the switching off
of the aligning field at this density. Usually, the free energy change in step
(a} is evaluated analytically. However, the other steps all require numerical
integration. As a consequence, our estimate of difference in free energy
of the isotropic and nematic phases is usually rather inaccurate. In this
respect, the method is similar to the one used to locate the liquid-vapour
transition by integrating around the critical point. It also suggests that the
solution of this problem may be similar; rather than constructing a long
“physical” integration path. it may be advantageous to construct a short
“artificial” path. For instance, it is in principle straightforward to compute
the reversible work needed to transform the isotropic phase directly into
the nematic phase along a “reaction path” where we constrain the nematic
order parameter to take on values intermediate between isotropic and
nematic. In a different context, this approach has been explored by van
Duijneveldt and Frenkel. [232)
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a. Particle Insertion Method. An alternative method that can be used to
compute the free energy of a fluid phase (including the nematic phase}
is the so-called particle insertion method of Widom. [16] The statistical
mechanics that is the basis for this method is quite simple, Consider the
definition of the chemical potential x, of a species . From thermody-
namics, we know that u is defined as

aF
(%),

where F is the Helmholtz free energy of the N-particle system. If we
express the Helmholtz free energy of an N-particle system in terms of
the partition function Qx (Eq. 2.104), then it is obvious from Eq. (4.72)
that, for sufficiently large N the chemical potential is given by g = —kT
In(Qn.1/0Qx). If we use the explicit form {Eq. 2.104) for Qx, we find

= —kT In(Qn,1/OnN)

_ q(T)V Jds" ! exp(—BU(s""")))
= —kT In( N1 ) - kT ln( TasN exp(~BU(S™)) )

= pid(V) + pex . {4.73)

In the last line of Eq. (4.73), we have indicated the separation in the ideal
gas contribution to the chemical potential, and the excess part. As uig{V)
can be evaluated analytically, we focus on pm... We now separate the
potential energy of the (N + 1)-particle system into the potential energy
function of the N-particle system, U/(s"V), and the interaction energy of
the (N + 1)th particle with the rest: AU = U{s¥*!) — U(s"). Using this
separation, we can write ., as

pen = —&T In < /dsN+l exp(—BAU) >y (4.74)

where < .- > denotes canonical ensemble averaging over the configu-
ration space of the N-particle system. The important point to note is that
Eq. (4.74) expresses pu.x as an ensemble average that can be sampled by
the conventional Metropolis scheme. This last integral can be sampled
as follows: we carry out a constant NV T Monte Carlo simulation on the
system of N particles. At frequent intervals during this simulation we
randomly generate a coordinate sy, . uniformly over the unit cube. With
this vaiue of sy,,, we then compulte exp{—BAYU). By averaging the lat-
ter quantity over all generated trial positions, we obtain the average that
appears in Eq. (4.74). So, in effect, we are computing the average of the
Bolizmann factor associated with the random insertion of an additional
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particle in an N-particle system, but we never accept any such trial inser-
tions, because then we would no longer be sampling the average needed in
Eq. (4.74). The Widom method is a very powerful method to compute the
chemical potential of (not too dense) atomic and simple molecular liquids.
Its main advantage is its great simplicity, and the fact that it can be added
onto an existing constant NV T MC program, without any modifications to
the original sampling scheme; we are simply computing one more thermal
average.

The Widom method was first applied to the evaluation of the free energy
of the isotropic and nematic phases of infinitely thin platelets by Eppenga
and Frenkel. {67] The particle insertion scheme is well suited for the latter
system, as the method works best for strongly anisometric molecules at low
density. In fact, in Ref. [67] it is shown that, in the case of nematics, the
scheme can be made more efficient by inserting particles that are aligned
with the nematic direction. For details, we refer the reader to Ref, [67].

b. Free Energies of Smectic and Columnar Phases. For the calculation of
free energies of smectic and columnar phases. other techniques have to be
used. The situation is simplest if the transition from the nematic to smec-
tic phase is continuocus (or. at least, free of hysteresis). In that case, the
“natural” thermodynamic integration of Eq. (4.69) may be used to com-
pute the free energy of the smectic phase, assuming that we know the free
energy of the nematic phase. This approach was, for instance, followed in
Refs. [201,233]. Often, however. the smectic phase cannot be expanded or
compressed reversibly into a phase of known free energy. In such cases,
we should construct an artificial path to a phase of known free energy.
For instance, in the study of the phase behavior of freely rotating sphero-
cylinders, a smectic phase was observed that was separated by first order
phase transitions from both the isotropic and the solid phase. [234] How-
ever, in the corresponding system of parallel spherocylinders, the smectic
phase could be expanded reversibly to the dilute gas reference state. In
this case, it was possible to compute the free energy of the smectic phase
of freely rotating molecules, by computing the (excess) reversible work
required to align the spherocylinders.

Even if such a convenient reference system is not at hand, there exist
fairly robust schemes to compute the free energy of an arbitrary smectic or,
for that matter, columnar phase. In the case of a smectic, we can exploit
the fact that a smectic phase can be considered as a one-dimensional solid
stacking of 21D fluid (54) or solid (Sg) layers. Similarly, a columnar phase
resembles a 2D crystal of 1D fluid columns. In Ref. [230], a technique
is described that makes it possible to reversibly decompose such smectic
(columnar) phases into isolated fluid layers (columns). However, this ap-
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proach has, to our knowledge, not yet been applied to such liquid crystals.
It should be stressed that such absolute free energy calculations need not
be repeated for every model that we may care to study. For instance, if we
have computed the absolute free energy of one state point in the smectic
phase of rod-like molecules with an aspect ratio of 5 (say), then we can
compute the free energy of the smectic phase of similar molecules with
another aspect ratio simply by computing the reversible work needed to
change the shape of our model particles from the initial aspect ratio to the
desired value, [235, Such an approach has been followed by Allen in his
study of biaxial ellipsoids. [197]

c. Alternatives to Free Energy Calculations. Up to this point, we have
discussed various techniques that allow us to locate a first order phase
transition in a computer simulaion. Sometimes, however, such calculations
may result in a less accurate estimate of the phase transition than can
be obtained from other criteria. This is of particular relevance in the
case of weak first order phase transitions, such as the one separating the
isotropic fluid from the nematic phase. In the latter case, the coexistence
point is bracketed by a rather narrow pressurc (or temperature) range
where hysteresis occurs. Clearly, if our free energy calculations result in
an inaccuracy in the coexistence pressure that exceeds the range where
hysteresis occurs, we might as well have estimated the location of the
phase transition directly from the equation of state data. Another, less
well founded but quite convenient, criterion to locate the I-N transition
is to use the equivalent of the Lindemann rule for the I-N transition.
Experimentally, it is known that, at the isotropic-nematic transition, the
order—parameter in the nematic phase hes a value of 0.35 £0.15. It would
seem that such an ill-defined “melting rule” cannot possibly provide us with
a very accurate estimate of the I-N transition. However, in the vicinity of
the I-N transition, the nematic order parameter varies quite steeply. As
a consequence, the above rule of thumb usually yields an estimate of the
density of the I-N transition that is as least as good as the one obtained
by free energy calculations.

3. Resulis: Spheroids

Computer simulations of hard-core models for two-dimensional liguid
crystals were pioneered by Vieillard-Baron in the early 1970s. {5] Vieillard-
Baron also made much progress towards the study of three-dimensional
model systems, [6] but did not observe spontaneous nematic ordering in
3D. The first systematic simulation study of a three-dimensional hard-core
nematogen was performed by Frenkel and Mulder [75] who studied a sys-
tem of hard ellipsoids of revolution for a number of length-to-width ratios
between 1/3 and 3.
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The shape of hard ellipsoids of revolution is characterized by a single
parameter, x, the ratio of the length of the major axis (2a)} to that of the
minor axis (2b): x = a/b {in the literature, both e and x are used to denote
the ratio a/b). Prior to the simulations reported in Ref. [75], the phase
behavior of hard spheroids was only known for a few special values of
x, viz. x = 1: hard spheres. which freeze at 66% of close packing. [236]
X — oo thin hard needles, because this limit is equivalent to the Onsager’s
model. The latter system has a transition to the nematic phase at vanishing
volume fraction. And x — (: thin hard platelets, which also form a
low density nematic. [67) The simulations of Ref. [75] were performed on
a sysiem containing ~ 10° particles and for values of x between 3 and
1/3. In order to locate all phase transitions, the absolute free energy
of all phases was computed. Figure 4.2 shows how the stability of the
different phases of hard ellipsoids depend on their length-to-width ratio.
Four distinct phases can be identified, namely the low density isotropic
fluid, an intermediate density nematic liquid-crystalline phase, which is
only stable if the length-to-width ratio of the ellipsoids is larger than 2.5 or
less than 0.4, and a high density orientationally ordered solid phase. In the
case of weakly anisometric ellipsoids, an orientationally disordered solid
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Figure 4.2.  “Phase diagram™ of a system of hard ellipseids of revolution. [75] The ratio of
the length of the semi-major to the semi-minor axis is denoted by x. The reduced density p*
is defined such that the density of regular close packing is equal to v2 for all x. The shaded
areas indicate two-phase regions associated with a first order phase transition. The following
phases can be distinguished: It isotropic fluid. §: orientationally ordered crystalline solid. PS;
oriemationally disordered (“plastic™) crystal, and N; nematic liquid-crystalline phase. The
densities of coexisting phases at a first order phase transition (black dots) were computed in
a free-energy calculation. Note that no stable nematic is possible for 0.4 < x < 2.5.
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phase was also observed. One thing to note about the phase transitions
in the hard-ellipsoid system is that for particles with 3 > x > (1/3) the
relative density-jump at the I-N transition is much smaller than for the
Onsager model. Typically, the density changes only by some 2% at the I-N
transition. Hence the very large density discontinuity at the I-N transition
in the Onsager model (more than 20%) is peculiar to long rods and not
to hard-core models in genecral. Recent simulations of Zarragoicoechea
et al. [187] indicate that, although the nematic phase is stable in a system
of O(100) ellipsoids with an axial ratio x = 3, the nematic phase becomes
unstable for systems of 256 ellipsoids. This result is surprising in view
of the fact that Allen and Frenkel found an (apparently) stable nematic
phase for a system consisting of up to 216 particles. It seems likely that
the very weakly first order isotropic nematic transition is more sensitive
to finite-size effects than a strong first order transition, such as freezing.
In any event, the findings of Ref. [187] suggest that the isotropic-nematic
transition line may have a slightly larger slope than indicated in Fig. 4.2.
It seems unlikely that this will affect the qualitative features of the phase
diagram. However, when we speak about “the” phase diagram of hard
ellipsoids of revolution, the reader should bear in mind that the results
that we discuss were obtained for system sizes of the order of 100 particles.

Perhaps the most striking feature of the phase diagram in Fig. 4.2 is
the near symmetry between the behavior of oblate and prolate ellipsoids
with inverse length-to-width ratios. Prolate-oblate {x — 1/x) symmetry
of ellipsoids is to be expected at low densities because the second virial
coefficient B>(x) equals B;(1/x). However, no such relation holds between
the third and higher virial coefficients. To give a specific example: in the
limit x — oo (the Onsager limit}, B;/B} — 0, whereas for x — 0 (hard
platelets [67]) Bi/B: — 0.4447(3). Hence there is no reason to expect
any exact symmetry in the phase diagram of hard ellipsoids of revolution.
For larger anisometries than studied in the simulations of Ref. [75] one
should expect to see asymmetric behavior in the location of the isotropic-
nematic transition. In fact, Allen has performed simulations of ellipsoids
with aspect ratios 5, 10, 0.2 and 0.1. [237] These simulations show that,
as the molecular anisometry increases, the isotropic-nematic transition
continues to shift to lower densities. This is to be expecled in view of the
known limiting behavior of infinitely thin hard platelets and infinitely thin
hard rods (see above). However, in Ref. [237] the exact location of the
isotropic-nematic transition is not computed.

Even though we expect to see appreciable prolate-oblate asymmetry
in the location of the isotropic-nematic transition for highly anisometric
spheroids, it is doubtful if the near symmetry of the melting line will
be much affected. Strongly aligned rods and platelets follow the same

P
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Figure 4,3, pf’pcluse-packed of a system of biaxial ellipsoids with axial ratio c/a = 10,
while b/a varies between 1 {prolate limit) and 10 {obiate limit). In this figure, b/a is repre-
sented on a logarithmic scale with base 0. The dashed curves separate state poinis belonging
to the different phases: 7 denotes the isotropic phase, N, the “rod-like” nematic phase, &V .
the “platelike™ nematic phase and 8 the biaxial phase. The drawn curves connect the mea-
sured state-point data within one phase at a given reduced densily . Note that the biaxial
phase ends in a Landau bi-critical point at an aspect ratio a/b = /0. This behavior is in
agreement with the theoretical predictions of Mulder. 1194

cquation of state (P = 3p) and a simple estimate of the melting point
of very anisometric ellipsoids {238) suggests that in the limit x — oo, the
symmetry between oblate and prolate ellipsoids is still present,

More recently, Allen has studied the effect of molecular biaxiality on the
mesogenic properties of hard ellipsoids. [197) In particular, Allen studied
the nature of the liquid-crystalline phase as a prolate spheroid was made
increasingly biaxial and was finally transformed into an oblate spheroid.
In this case it was found that the rod-like and plate-like nematic phases
are separated by a biaxial phase. Figure 4.3 shows how the stability of
the different liquid-crystalline phases depends on the molecular biaxiality.

4. Beyond Nematics

The existence of a nematic phase in a system of hard-core molecules is not
surprising. In fact, the earliest analysis of any statistical-mechanical model
for a liquid-crystalline phase, that is, Onsager’s study of a system of thin
hard rods, shows that this simple hard-core system must form a nematic
phase at sufficiently high density. It would, of course, be nice if there ex-
isted something like the Onsager model for smectics: an exactly solvable
model system that exhibits a transition to the smectic-A phase. Unfortu-
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nately, no such model is known. Hence the only way to test approximate
“molecular” theories of the smectic phase is to compare with computer
simulations. In the spirit of Section IV.B.3 we look for the simplest possi-
ble model that will form a smectic phase. In the case of nematics, convex
hard-core models were the natural candidates because these constituted
the natural generalization of the Onsager model. However, for smectics it
is not obvious that hard-core models will work. In fact, in the existing text-
books on liquid-crystal physics the possibility of a hard-core smectic is not
even discussed. The only presimulation article discussing the possibility of
hard-core smectics is a paper by Hosino et al. [239] The “traditional™ ap-
proach was to ascribe smectic ordering to attractive interactions between
the molecular cores or, alternatively, to the change in packing entropy of
the flexible tails of the mesogenic units. [240-243}

a. Parallel Molecules. Whereas essentially any fluid of sufficiently non-
spherical convex hard bodies will form a nematic phase, nonsphericity
alone is not enough to from a smectic phase. This is best demonstrated
by the following simple example. We know from experiment that in many
smectic phases, the orientational order parameter § =~ 1.  Let us there-
fore first consider the possibility of forming a smectic phase in a fluid of
perfectly aligned molecules (§ = 1). We know that sufficiently nonspher-
ical hard ellipsoids can form a nematic phase (see Section IVB3). Itis
natural to ask whether a perfectly aligned nematic of hard ellipsoids can
transform into a smectic phase. The answer to this question is no. The
reason is quite simple. Consider a fluid of ellipsoids with length-to-width
ratio a/b, all aligned along the z-axis (say). Now we perform an affine
transformation that transtorms all z coordinates into coordinates z’, such
that z’ = (b/a)z. At the same time we transform to new momenta in the
z-direction: p. = (a/b)p,. Clearly, this transformation does not change
the partition function of the system, and hence all thermodynamic prop-
erties of the system are unchanged. However, the effect of this affine
transformation is to change a fluid of parallel ellipsoids into a system of
hard spheres. But, as far as we know, hard spheres can only exist in
two phases; fluid and crystal. Hence parallel ellipsoids can only occur in
the (nematic) fluid phase and in the crystalline solid phase. In particular,
no smectic phase is possible. This makes it extremely improbable that a
fluid of nonparallel elipsoids will form a stable smectic. Such a phase
is only expected in the unlikely case that the orientational fluctuations
would stabilize smectic order. This example demonstrates that we should
be careful in selecting possible models for a hard-core smectics. Surpris-
ingly (and luckily) it turned out that another very simple hard-core model
system, namely a system of parallel hard spherocylinders, does form a
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smectic phase. [201,233] A stable smectic phasc is possible for length-to-
width ratios L/D > 0.5. In addition, we find that another phase appears
at high densities and larger L/D values. In small systems, the phase ap-
peared to be columnar, [201] but in larger systems the range of stability
of the colurnar phase shrinks (see Fig. 4.4) and is largely replaced by a
hexagonal solid phase. In order to tell whether the latter phase is indeed
truly solid or, for example, smectic-B, would require simulations on Sys-
tems that contain many more particies than the 1000-2000 that we were
thus far able to study systematically. It should be noted that, although the
present evidence suggests that there may not be a columnar phase in a Sys-
tem of pure parallel spherocylinders, very recent work of Stroobants [244]
indicates that, in a binary mixture of parallel spherocylinders of unequal
length, the columnar phase reappears.

Figure 4.4. Schematic “phase diagram™ of a system of parallel hard spherocylinders as
obtained by computer simulation. [210] The abcissa indicates the length-1o-width ratio L/ {3,
The ordinate measures the density referred to the density at regular close packing. The dashed
area indicates the two-phas¢ region al the first order freezing transition. For L/D < 3, 1the
solid consists of “ABC -stacked triangular planes. For larger values of 1./D, we find evidence
for a hexagonal (" AAA”) stacking of the molecules (i.¢., triangular lattices stacked on top of
one another. At very high densitics and large L/ values we find a pocket where the system
appears to form a columnar phase. However. the range of stability of this phase is strongly
dependent on the size of the system studied. Although we still ebserved this calumnar phase
for a system of 1080 particles, it is conceivable that this phase will disappear altogether in
the thermodynamic limil. The dashed curve tndicates the nematic—smectic transition.
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b. The Effect of Rotation. Of course, a model system consisting of parallel
spherocylinders is rather unphysical. 1tis therefore of considerable interest
to know if a system of freely rotating hard-core molecules can form a
smectic phase. This question is of some practical interest. in view of the
experimental evidence that smectic {245] and columnar [246] ordering may
take place in concentrated solutions of rod-like DNA molecules.

Simulations of a system of freely rotating spherocylinders with length-
to-width ratio L/D = 5 [188,247] revealed the presence of a stable smectic
phase, in addition to the expected isotropic, nematic and solid phases.
This work was recently extended to other aspect ratios by Veerman and
Frenkel. [234] These authors show that the smectic phase disappears at
L/D = 3. At this aspect ratio, the nematic phase is no longer (meta)-
stable. Figure 4.5 shows a tentative phase diagram of freely rotating hard
spherocylinders.
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Figure 4.5, Phase diagram of a system of freely rolating spherocylinders as a function
of the ratio between the length of the cylindrical part (L) and the diameter (D). The
ordinate p* measures the density divided by the density at repular close packing. The grey
(dashed) area is the two-phase region separating the densities of the coexistiag solid and fluid
phases. The black dots indicate computed phase-coexistence points. The nematic-smectic
transition is indicated by a dashed curve, as is the isotropic-nematic transition. Although
the latter transition is expected 10 be of first order, the resolution of the current simulations
was insufficient to determine the density discontinuity at this transition. The location of the
jsolropic-nematic-smectic triple point can only be estimated approximately and is indicated
in the figure by a gquestion mark.
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¢. Columnar Phases 1f hard-core models exhibit smectic phases, one may
wonder if excluded volume effects can also induce the formation of the
even more ordered, columnar phase. In this case, it is natural to look for
a convex, plate-like molecule. Oblate ellipsoids are not expected to form
columnar phases. The argument why this should be so is essentially the
same as the one that “explains” why prolate ellipsoids should not form
smectic phases. Rather. we should look for the oblate equivalent of the
spherocylinder.

For ellipsoids, the transition from prolate to oblate shapes is controlled
by a single parameter (the axial ratio a/b). In contrast, spherocylinders
cannot be changed into oblate particles simply by changing L/D (unless
we allow for the possibility of negative L/D). It turns out that a particu-
larly convenient “oblate spherocylinder” model is the so-called rruncated
sphere [248] discussed in Section 11.D.1

At high densities, truncated spheres can be stacked in a regular close-
packed lattice, The volume fraction at regular close packing is

My = (/6)y/3 — (L/DY:

Note that for L/D = 1 (hard spheres), this reduces 10 the well-known
hard-sphere result #., = 7/v18. For L/D — 0 (flat, cylindrical platelets),
we obtain the 2D hard-disk value ng, = 7/v12.

Veerman and Frenkel [81] have reported Monte Carlo simulations on
a system of truncated spheres with L/D=0.1. 0.2 and (1.3, over a range of
densities between dilute gas and crystalline solid [81,248]. Surprisingly, it
turned out that ait three model systems behaved completely differently.

For the system with L/ = 0.1, it was observed that the system spon-
taneously ordered to form a nematic phase at a reduced density of (.335
(i.c., at 33.5% of regular close packing). At a density corresponding to
49% of regular close packing, this nematic phase undergoes a strong first-
order transition to a columnar phase (at a reduced density p* = 0.534. The
columnar—crystalline transition occurs at much higher density (p” > 0.80).
Surprisingly, the columnar phase is not present in systems of aligned trun-
cated spheres. [249]

Next, we turn to the system of platelets with L/D = 0.2.- At first sight,
the behavior of this system looks quite similar to that observed for the
thinner platetets. In particular, the equation of state for truncated spheres
with L/D = 0.2 looks similar to the one corresponding to L/D = 0.1.
However, we do not find a nematic phase in the dense fluid, close 10
freezing. In particular, if we measure the orientational correlation function
g2(r) =< Py(u(0)-u(r)) > of the dense fluid, we find that it decays to zero
within one molecular diameter, even at the highest densities of the “fluid”
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branch (see Fig. 4.6). In a nematic phase, g»(r) should tend to a finite
limit: g2(r) — S? as r — o, where § is the nematic order parameter. It
should be stressed that the absence of nematic order in the L/D = (.2
system is not a consequence of the way in which the system was prepared.
Even if we started with a configuration at a reduced density p/pg, = 0.50
with all the molecules initially aligned, the nematic order would rapidly
dissapear. In other words, at that density the nematic phase is mechanically
unstable. If we had to base our analysis exclusively on Fig. 4.6, we would
have concluded that truncated spheres with L/D = 0.2 freeze from the
isotropic phase.

The surprise comes when we consider the higher order orientational
correlation function ge(r) =< Py(u(0) - w(r)) >. Usually, when gi(r) is
short-ranged, the same holds a fortiori for g4(r). However, Fig. 4.7 shows
that for densities p/pep > 0.53, g2(r) is much longer ranged than g,(r). This
suggests that the system has a strong tendency towards orientational or-

der with cubic symmetry (“cubatic”, not to be confused with cubic, which -

refers to a system that also has translational order). In computer simu-
lations one should always be very suspicious of any spontaneous order-
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Figore 4.6, Density dependence of the orientational correlation function g,{r) =<
P2(0(0) u(r)) > in a system of hard truncated spheres with a length-to-width ratie L/D=0.2.

Drawn curve: p/p, = 0.51; long dashes: p/p.p = 0.57, short dashes: p/p., = 0.63 . Note
that even at the highest densities studied, g,(r) is short ranged.
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Figure 4.7. Density dependence of the orientational correlation function galr} =<

-~ Py(u(0}-u(r)) > in a system of hard truncated spheres with a length-1o-width ratio L/D=0.2.

Symbols as in Fig. 4.6. Note that, unlike gz(r). g4(r) appears to be long-ranged at high den-
sities. '

ing with cubic symmetry, because such ordering could be induced by the
(cubic) periodic boundary conditions. In order to test if the boundary
conditions were responsible for the cubatic order, we did a number of
long simulations with systems of up to 2048 particles. These simulations
strongly suggest that the onset of cubatic orientational order is not an ar-
tifact of the boundary conditions. Another indication that the boundary
conditions are not the cause of the observed ordering is that still higher
order correlations (g, and gg) that could also be induced by the periodic
boundaries, are in fact rapidly decaying functions of 1. If we make a log-
log plot of g4(r} in the large system for several densities between p = 0.51
and p = 0.63 (see Fig. 4.8), it appears that the cubatic order is not truly
long-ranged but quasi-long-ranged. that is, g4(r) ~ r~", where 7 depends
on the density p. This observation should, however, be taken with a large
grain of salt, as the range over which linear behavior in the log-log plot
is observed corresponds to less than one decade in r.

Finally, for truncated spheres with L/D=0.3, both the nematic and the
“cubatic” phase are absent. We have summarized our knowledge of the
phase behavior of the truncated-sphere system [81] in a tentative phase
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Figure 4.8. Log-log plot of the orientationat correlation function galry =< Py{u(l) -
u{r)} > in a system of hard truncated spheres with a length-o-width ratio L/D=0.2 as a
function 'of density. With increasing density. the amplitude of this correlation function goes
up.. The lowest curve corresponds to p* = 01.51. The following drawn curves 1o p* =1.54 and
p* = 0.56. The long-dashed curve corresponds to p* = 0.57. Al higher densities p*=0.58.
0.60 and 0.63 (long-dashed curves). g4{r) appears to decay algebraically over the narrow
range of distances {1 < r/D < 3.2) where we could observe monotonic decay of g4(r).
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Figure 4.9. Tentalive phase diagram of cut spheres with an aspect ratio L/D between 0.1
and 0.3. The high density solid/columnar phase is separated by a first order phase transition
from 1he low density fluid phase. The densities of the coexisting phases are indicated by
black dots. The open circles indicate the approximate location of phase transitions that have
been estimated using techniques other than free energy calculations. The isotropic-nematic
transition is weakly first order. The same appears 1o be the case with the isotropic-cubatic
transition. In our simulations, the transition between the solid and the columnar phases
appeared to be continuous.
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diagram (Fig. 4.9). In fact, we know a few features of this phase diagram
for both larger and smaller values of L/D. In particular, we know that for
L/D=1 (hard spheres). the two-phase region is located between p*=0.67
and p*=0.74. For L/D —0. the isotropic-nematic transition occurs at
pr=0. :

5. Simulation of 2D Nematics

In Section IV.A 3, we discussed the peculiar nature of the nematic phase
in two-dimensional systems. The discussion in that section suggests that
there are two obvious questions about 2D nematics that one could try to
answer by simulation. (1) If the pair potential is nonseparable, do we find
algebraic or true long-range order? (2) If we find algebraic order, do we
observe a first order I-N transition or a continuous ‘one of the Kosterlitz—
Thouless type. For the first question, a good starting point would be to
choose a pair potential that is as nonseparable as possible. An obvious
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Figure 4.10. Equation of state of two-dimensional fluid of infinitely thin hard needles
of length 1. Note that in this figure the reduced pressure is the independent variable. The
reduced density (pl?} is indicated by crosses, the chemical potential g by triangles. The
drawn curves at low pressure were computed using a 5-leem virial series.
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candidate is a two-dimensional model of infinitely thin hard needles, [250]
that is, a two-dimensional hard-body fluid. This pair potential is very
non-separable in the sense that, at fixed |r;| and fixed u;.u; the pair po-
tential is not constant, but may vary between € and co. The equation of
state of this system is shown in Fig. 4.10. According to.the bifurcation
analysis of the corresponding Onsager limit, [251] a second order isotropic—
nematic transition is expected at a density pL? = (37/2) =4.712--- and a
pressurePL? = 11.78---. At first sight this seems to be quite a reasonable
estimate of the I-N transition, because very close to this point the equa-
tion of state appears to exhibit a change of slope. However, analysis of
the long-range behavior of the orientational correlation functions and of
the system-size dependence of the order parameter < cos 20 > indicate
that the higher density phase is not a stable nematic. The orientational
correlation functions decay either exponentially (see Fig. 4.11) or with an
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Figore 4.11. Orientational correlation functions ga(r) =< cos 2(${0) — ¢(r)) > and
g4(r) =< cos 4{¢(0) — &(r})) > for a two-dimensional system of hard ncedles of length
L=1. This figure shows that at a reduced density pL2=6.75, the orientational order decays
exponentially. In other words: the phase is isotropic.
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apparent algebraic exponent that is larger than the critical value given in
Eq. (4.66). Only at a density that is almost twice the Onsager transition
point does the observed behavior conform to what is expected for a stable
nematic with algebraic order (see Fig. 4.12). However, at this density,
the equation of state is completely featureless. Such behavior is to be
expected of the 1-N transition and is in fact of the K-T type.
Subsequently, Cuesta and Frenkel [223] have studied the isotropic to
nematic transition in a system of 2D hard ellipses with aspect ratios 2, 4
and 6. It is found that in all cases where a stable nematic phase 1s found
(aspect ratios 4 and 6), this phase exhibits algebraic orientational order.
However, whereas the I-N transition appears to be of the K-T type for
aspect ratio 6 (and larger), the transition is found to be of first order

a1 aaal e 4 4o

1 10
r/L

Figure 4.12. Orientational correlation functions g2(r) =< cos 2{¢(0) — ¢(r}) > and
g4(r) =< cos 4(¢(0) — @&{r}) > for a two-dimensional system of hard needles of length
L=1. This figure shows thal at a reduced density pL.2=8.75. the orientational order decays
algebraically. From the values of the algebraic exponents 1 and ny the effective Frank

elastic constant can be computed. At p==8.75, this Frank constant is large enough to make
the 2D nematic stable with respect to disclination unbinding.
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for aspect ratio 4. This implies that in the latter case, the 2D nematic
undergoes a first-order transition before it has reached the point where
it becomes absolutely unstable with respect to diclination unbinding. A
very puzzling feature is the nature of the high density phase of 2D ellipses.
A snapshot of such a phase is shown in Fig. 4.13.  This phase does not
appear to have true crystalline order, nor for that matter, smectic order.

Figure 4.13, Snapshots of typical configurations
of a systemn of hard ellipses in the isotropic phase
(n = 0.329), near the estimated estimated isotropic—
nematic transition {1=20.599) and in the high density
phase (n = (.809). Although the latter phase ex-
hibits local solid-like ordering, il is not a true {two-
dimensional) solid.
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Yet it does clearly have a large amount of local order. The precise nature
of this high density phase is currently under investigation.

V. STATIC PROPERTIES

A. Theory

This sections deals with the static properties of HCBs in the liquid-crystal-
line phase. Most of the scalar properties like the equation of state and
the “vector™ properties like the various correlation functions, that were
discussed in Section I, are of course also relevant in this case. Only their
definitions will have to adjusted to reflect the presence of long-range ori-
entational and (partial) positional order that occurs. There are, however,
also a few static properties that are unigue to the liquid crystailine state,
that is, the order parameters that describe the nature and degree of order,
and the elastic constants that describe the response of the system to long
wavelength distortions of the initially uniform field of preferred local ori-
entations. Since it is basic to the whole discussion, we start by discussing
the structure of the ODF in the LC phase, which leads us to the definitions
of the order parameters. The other properties are then dealt with in turn.

1. Order Parameters

The ODF (one particle distribution function) p'! was introduced in Sec-
tion 1I1, but its explicit form was left undetermined. This makes sense in
the context of density functional theory where it plays the role of the basic
variable as a single unit. In practice, however, we need to describe the
ODF in more detail, even if only to be able to approximate it numerically.
The most natural way to obtain such a description is to expand it into a
complete set of functions that are in fact the irreducible representations
of the original, unbroken symmetry group of the low density phase. In
our case this is the group Gy = T & O3 of the translation group T and the
full three-dimensional orthogonal group 5 . The basis functions in this
expansion are just products of plane waves and irreducible rotation-group
matrix elements. [252] A side product of this approach is the fact that the
expansion coefficients will turn out to be order parameters not only in the
intuitive sense that they will be zero in the disordered phase and nonzero
in the ordered one but also in the formal sense of the Landau theory of
phase transitions, that is, they themselves transform as irreducible basis
sets of the unbroken symmetry group. [253] In the most general case. we
can thus write

1 , (2¢ + 1) .
p(r, )y = v Z Z Wak,t,m,ne‘k D! () (5.1)
k

fman
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where the prime on the first summation indicates a restriction to k-vectors
in the first Brillioun zone, :

For the typical system studied this expansion expansion reduces to a
much simpler one. Consider, for example, a nematic phase formed by
uniaxially symmetric molecules with inversion symmetry.  In this case,
we have no dependence on position and dependence on the orientation
only through the angle @ the major molecular axis makes with the z-
axis of an arbitrary reference frame. A systematic way of deducing the
correct expansion is then to average Eq. (5.1) over the extra symmetries
introduced. For the example of the nematic, we thus average over the
system volume (no positional order) ., the azimuthal angle ¢ of the lab
frame (uniaxial symmetry of the phase), the angle ¢ around the maolecular
symmetry axis and the inversion operation applied to the molecular frame.
The result is the expansion

p(E, Qnem = nf(8)=n > @afpg(cos 0) (5.2}

{=EVENn

The second expansion coefficient
@ ={P) = /d cos 8f(0)P,(0) (5.3)

is, of course, the well known Maier-Saupe order parameter. [254]

In some cases it is preferable to work with the basis set generated by
the so-called irreducible Cartesian tensors [255] rather than the rotation
matrices. The uniaxial component of the second rank irreducible tensor
is known as the de Gennes order parameter

S:%(3ﬁ®ﬁ—1) (5.4)

The unit vector A is the so-called nematic director, which is actually defined
up to a sign, reflecting the inversion symmetry of the phase. In a frame
where 8 is diagonal, that is, the director is along the z-axis of the lab frame,
the component S, is actually equal to the Maier-Saupe order parameter.

2. Correlation Functions

The usual method of the defining equilibrium distribution functions in
a disordered fiuid phase uses the explicit representation of the full N-
particle distribution defined in terms of the system Hamiltonian. In a
phase with any kind of long-range order, this method breaks down, since
it cannot deal with the occurrence of spontaneous order which is an effect
associated with the thermodynamic limit, N — oo, where the finite N
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representation is meaningless. As mentioned in the previous chapter, these
difficulties can be bypassed using the density functional formalism. The
various correlation functions are then defined through their relation to the
direct correlation functions which are obtained directly from the density
functional itself. Recalling Eq. (4.5) from Section IV, we find for the two-
particle direct correlation function

8 ®[p]

8p " (&)8p' (&)

where we have used the shorthand £ = (r, ). From here, we can go to the
usual two-particle distribution function p®' via the generalized Ornstein—
Zernike equation [152]

P&, &) - pV (8P (&) = p V(€PN (&)P (6, &) (5.6)
() [ des (600, 8) - PV () (6)) P66 )

D, &)=

(5.5)

3. Equation of State

In the context of density functional theory, the equation of state is probably
best obtained directly from its definition in terms of the equilibrium free
energy.
oF
P=—|_ = = Flpt" i
(5%),, F=7ral (5.7)
Lacking any substantial theory for the correlation function themselves, the
traditional virial (cf. Eq. 2.10) and compressibility relations (cf. Eq. 227)
are of limited use in an ordered phase.

4. Frank Elastic Constants

We consider here the effect of long wavelength distortions of the local pre-
ferred direction in a nematic liquid. Such a distortion is most conveniently
described by introducing the director field i(r) specifying the direction of
the local preferred molecular orientation with respect to a fixed lab frame.
The derivation of the macroscopic free energy of distortion is then an ex-
ercise in the construction of the relevant second order rotational invariants
constructed from #i(r) and its derivatives. We quote here the well known
result2]

Fy= 1KV @)+ 1K(8-V A i)’ + 1Ks (A (T AR)Y (5.8)
which introduces the Frank elastic constants: K, (splay), K; (twist) and
K5 (bend). The distortions of the director field associated with each of




128 M. P. ALLEN, G. T. EVANS, D. FRENKEL AND B. M. MULDER

the three constants are depicted in Fig. 5.1 It is now the task of statistical
mechanics to come up with microscopic expressions for the Frank con-
stants. For hard particles this question was first addressed by Priest [256)
and Straley.[257] The first to derive an essentially exact formulation on the
basis of density functional theory were Poniewierski and Stecki. [258-260]
Here we present a slightly adapted version of their results, {261]

Consider a nematic phase of uniaxially symmetric molecules. The undis-
torted ODF has the form p!"(r,d) = nf(f - @), where # is the number
density.ii the (constant) director and @ a unit vector along the molecular
symmetry axis. We now allow the director to vary spatially with ‘typical
wavelengths much larger than the molecular scale. In this case, we can
assume that the local orientational distribution function retains the same
functional form as in the undistorted bulk, that is, the only thing that
varies is the direction of the preferred orientation. In other words, if the
orientational distribution in the undistorted bulk is given by fy(f - @), then
the position dependent orientational distribution of the distorted system
is given by f{r,@) = fy(R(r) - ©), where fi(r) is the director at r. If the
distortions are not too large we can functionally expand the free energy
functional in terms of the difference Af(r, @) = f(r, &) — fy(f - @), yielding
to second order

BAF[Af) = —%nzfdrdﬁfdl’ diAf(r, AL, 8D (r 0,0, @, [f])
(5.9)

There are no first order terms in this expansion because the undistorted
phase is stable, so that its first order variation with respect to arbitrary
changes in the ODF vanishes (cf. Eq. 4.11). As we assumed only long
wavelength distortions, we will make a gradient expansion of the difference
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Figure 5.1. Distortions of the director in the nematic phase: from left 1o right: splay,
twist and bend.
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in the orientation distribution functions. To this end we first choose a
more convenient reference system for the two-particle integration, defining
the center-of-mass coordinates R = %(r +r') and the relative separation
Ar = r —r'. The distribution function at r and r can then be related to the
one in the center of mass through the Taylor expansion

FHR = 1an) = fitam)-5) £ SR

+1 & 'ZVR) = 2VR)f()(ﬁ(R) L) £ O(Ar)

Inserting this into Eq. (5.9) and performing a partial integration, we
find

(5.10)

BAF[Af] = %nz / dR dAr da dii' fy(A(R) - i) fy (R(R) - &)
x [(Ar- Vg)A(R) -] [(Ar- VR)A(R) - 0] ¢ (Ar i, i, [fi]) (5.11)

where the dot on the distribution functions denotes differentiation with
respect to their single argument. that is, i - .

The elastic constants can now be deduced by imposing infinitesimal
distortion patterns corresponding to the three fundamental “modes” dis-
cussed earlier

i(R) = +eXe, {splay)
aR) = +eXev {twist)
a(R) = &, + eZ&, (bend) (5.12)

Inserting these one by one into Eq. (5.11) one can simply read off the
relevant constants

BK, = INn ] dAr divdd'fy(A - &) fo(f - &) (Ax) il (P (Ar, 8, &, [fo)])
BK, = §Nn / dar disdi fol - @)fo(h - &)(Ax)uyu,c P (Ar, 8, &, [fo])

BK; = INn / dAr div di fo(i - @) fo(h - 8 YAz u ' P (AR D, W, [fo])
(5.13)

Of course, the major obstacle in the application of such formulas is, yet
again, the lack of any hard facts about the direct correlation function of
the nematic phase. Explicit predictions have thercfore been given mainly
for the Onsager approximation, where the direct correlation is at least
known (cf. Eq. 4.39). The results of this approximation, which assumes
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that the direct correlation is independent of both the density and the bulk
phase of the system, can at best be of a rather qualitative nature. _
Poniewierski and Stecki [260] have also shown how IMICTOSCOpic expres-
sions for the Frank constants can also be derived from hydrodynamic flue-
tuation theory. {262] This formulation, although no more convenient from
the purely theoretical point of view, has the distinct advantage of relating
the elastic constants to properties more easily measurable in simulations.
In order to give their results we need to define the Ursell function /¢

U, i, i) = pP(r,,¢, &) — pO(r, i) (¢, &) (5.14)

Note that in the nematic phase this quantity is translationally invariant.
The Frank constants are then given by '

< Py > L ) i
K, = Jm, lim ‘ﬁ/ div di'ueid 1, U (g, 0, )
n ;;2 > = q!imo lil'l'lU q§ fdﬁdﬁ’uyu;uzu;l}(z)(q,fl,ﬁ')
2 y—U gy
<Py > o o . u
- BKj = lim lim g7 / di ditw it u 1, UP(q,0,0')  (5.15)

B. Simulations

The detection of different kinds of orientational and translational order in
a computer simulation requires special care. For instance, the structural
information that is contained in the familiar radial distribution function,
g{(r), is insufficient to distinguish between different kinds of (liquid-) crys-
talline ordering. Hence; other functions that probe the relevant forms of
translational and orientational order must be introduced. Below, we de-
scribe the different structural probes that can be used to probe (liguid-)
crystalline order in computer simulations,

1. QOrientational Order Parameters

In an isotropic molecular liquid, the one-particle distribution function p,
is a constant. In an ordered system, such as a liquid crystal, p; depends
on the molecular orientation £} and possibly also on the center of mass
coordinate r. In a nematic, p is a function of £ only.

Although knowledge of g suffices to determine the nature and degree
of ordering in a liquid crystal, it is often convenient to be able to quantify
the liquid-crystalline order with a few numbers rather than with a con-
tinuous function. The quantities a; with ¢ > 2, defined in Section V.A.1
can be used as a measure of the nematic order. Often the quantity a,
= < Py(cos ) > is referred to as the nematic order parameter, and is
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denoted by §. Similarly, it is possible to define order parameters that
quantify smectic and columnar order by expanding the spatial variation
of the single particle density function p; in Fourier components. ‘The am-
plitude of the Fourier component with the lowest nonzero wave vector
that is commensurate with the periodicity of the density modulation is a
measure for the smectic (columnar) order.

From a computational point of view, the definition of the nematic order
parameters in Eq. (5.2} is not entirely satisfactory for the following reason:
a, is defined as the average of Py(cos 8), where 8 is the angle between
the molecular orientation vector @ (for convenience we consider axially
symmetric molecules) and the nematic director f. But the director is
defined as the average alignment direction of the molecules in a nematic.
In the absence of external forces the direction of i is not known a priori.
Hence Eq. (5.2) suggests that in order to measure the order parameter,
we should first determine the preferred alignment (i.e., we should already
know if the sample is in the nematic phase) and only then can we measure
the degree of nematic order.

Fortunately, it is possible to give a definition of S that does not presup-
pose knowledge of i. To see this, consider the expression for < Py(ii-&) >,
where & is an arbitrary unit vector:

<P2(ﬁ-é)>:——z 3Mﬁ; [)-é (5.16)

Eé-Q'é

where 1 is the second-rank unit tensor and the last line of Eq. (5.16}
defines the tensor order parameter Q. Q is a traceless, symmetric second-
rank tensor. Its eigenvalues correspond to the expectation values of 5, =
< P,(i1- &,) > for the three orthonormal eigenvectors &,. We now define
the director i to be the eigenvector of Q that has the largest eigenvalue
S. In a uniaxial nematic, the other two eigenvalues must be equal. If
we combine this with the fact that € is traceless, it follows that the latter
eigenvalues must be equal to —S/2. In the nematic phase, we can therefore
rewrite the tensor order parameter Q as

3

Q-sa-l

a
517
: (5.17)
In a numerical simulation, it is quite simple to determine the eigenvalues
and eigenvectors of Q. The nematic order parameter is then simply the
largest eigenvalue of this second-rank tensor. Although this definition of
S is indeed convenient to measure order in the nematic phase, it is less
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convenient to detect the isotropic—nematic transition. The reason is that
the largest eigenvalue of Q is, by construction, positive. Hence, even in the
isotropic phase it does not fluctuate around zero, but remains positive. In
Appendix B.B, we show that, in the isotropic phase, the largest eigenvalue
of Q only vanishes as 1/v/N. If. in contrast we define the nematic order
parameter as —2 times the riddle eigenvalue of Q, then we find that
this quantity does fluctuate around zero in the isotropic phase. Its average
value has a much weaker system size dependence, viz. as 1/N. For details,
see Appendix B.B.

2. Correlation Functions

a. Orientational Correlation Functions. A convenient probe, both of the
long-range orientational order in liquid crystalline phases. and of the local
orientational order in the isotropic phase, is provided by the orientational
correlation functions g,(r), defined as

ge(r) = (P, (0(0) - a(r))) (5.18)

where P¢(x) is the £"* Legendre polynomial and @(r) is a unit vector along
the axis of the molecule at distance r from the reference molecule. In
the nematic phase, all g,(r) with even ¢ are long-ranged. In the isotropic
phase, they typically decay to zero within one molecular diameter, except
very close (o the isotropic-nematic transition. It is straightforward to
verify that, in a phase with long-ranged orientational order, the following
equality must hold
fim go(r) = S;

where a;, (= §;) s the fth orientational order parameter, defined in
Eq. (5.2). In a simulation, we can only study orientational correlations
for interparticle separations less than L /2, where L is the diameter of the
periodic simulation box. Hence, in practice, we will use the approximate

estimate
Sp = \/ge(r =LJ2)

For /=2, the above estimate of the nematic order agrees well with the
value obtained using Eq. (5.16).

b. Translational Correlation Funcrions. In order to characterize (liquid-)
crystalline phases with partial translational order, it is convenient to de-
fine correlation functions that probe this kind of ordering. Simplest among
these functions is the longitudinal density correlation function denoted by
g.(r). This function measures the amplitude of density correlations in the
direction of the alignment of the molecules. We can also define correlation
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functions that probe density correlations in the directions perpendicular to
. the molecular alignment axis. The simplest function to measure such cor-
relations is denoted by g(r1). Here, r| is defined as the component of the
distance between two particles perpendicular to the molecular alignment
axis. g(r.) can, for instance, be used to distinguish a columnar phase,
where the ordering of columns in a two-dimensional crystal lattice creates
a strong modulation of g{r. ). from a nematic phase. where g(r,) is rather
featureless. A detailed description of these, and other probes of partial
translational order in liquid crystals can be found in Ref. [81]

3. Frank Elastic Constants

As discussed earlier, the Frank elastic constants determine the response
of the system to any external perturbation causing an orientational de-
formation. In the simplest case of the nematic phase, the free energy of
deformation may be written as in Eq. (5.8), which essentially defines the
elastic constants K, K; and K.

In simulations. the elastic quantities are most conveniently computed
from equilibrium orientational fluctuations. The necessary equations have
been summarized by Forster. [262] We assume, for simplicity, that the
molecules are axially symmetric, with a unit vector & = (e, €;y, ¢;.) along
the axis of each molecule i. The center of mass of molecule { is at position
r;. Then the ordering tensor in reciprocal space, for N molecules in volume
V, is defined as

N

Quﬁ(k) - Z

NIt W

(e,,,e,g - wSQB) exp(ik - 1) {5.19)

Here 8,5 is the Kronecker delta, &, 8 = x,v,z.and k is the wave vector.
This is the Fourier transform of the real space orientation density

Qup(6) = 37 3 Pas(k) exp(—ik -0 (5.20)
k

In an unperturbed system, the orientation density is independent of position:
{Q(r}))o = (Q)o = (Q(0))o/V = constant (5.21)

As discussed earlier, the order parameter P, is the highest eigenvalue of
{Q)y. and # is the corresponding eigenvector. If we choose it = (0,0,1),
then (), is diagonal with

1—

<Qx.r}(l - (Qy,v)ﬂ = *“Z‘PZ (5.22)
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(Qzz}o = P, {5.23)
Fluctuations of Q) are related to the elastic constants as follows:
-2
- - 9 PyVkgT
(sz(k)sz(—k)>0 =7 (m) (5.24)

-
PyVkgT ) (525)

. . 9
(0005 (-W) = 3 ( Kok? + Ksk?

where the wave vector k = (k,.0,%,) is chosen in the xz plane. Just as
the elastic constants are defined for long wavelength director fluctuations,
so the above equations are valid only in the limit of smali k. In practical
applications, it is necessary to extrapolate to k = 0. Particular attention
must be paid to this, since in a small simulation box, there will be only a
limited range of wave vectors accessible.

It should be emphasized that these fluctuation expressions are exactly
equivalent to the forms involving the direct correlation function ¢@!, as
discussed in Section V.A. This correspondence is made clear in the work
of Poniewierski and Stecki, [26(}] Somoza and Tarazona [263] and others.
It is also worth stressing that the Frank constants for hard-particle liquid
crystals exist and are well behaved. The free energy for these systems
is entirely entropic in origin: a deformation of the director ficld changes
the entropy through its effect on molecular freedom and packing. The
appropriate thermodynamic derivative is the Frank elastic constant. In a
similar way, the hard-sphere crystal elastic constants are well known and
well behaved (except in the limit of close packing).

Attempts to calculate elastic constants have been made for hard ellip-
soids and spherocylinders. [264,265] Typical system sizes are in the range
125 £ N < 600. For these system sizes, the accessible range of & is limited,
and deviations from the ideal equations (5.24,5.25) can be seen. Noncthe-
less, the & — 0 extrapolation is practicable, and results reliable to about
15% can be obtained. These are shown for two different ellipsoid shapes
m Figs. 5.2, 5.3. The density functional theories of Section V.A [63] are
also depicted in the figure, and it can be seen that theory generally under-
estimates the simulation results. A similar comparison has been carried
out for spherocylinders by Somoza and Tarazona, [208] using the results
of Allen and Frenkel. [264,265] Once more, the theory generally under-
estimates the results of simulation. Recall that these same theories are
comparatively successful in reproducing the transition density and order
parameter variation. This discrepancy is presumably due to the sensitivity
of the elastic constants to the variation of the direct correlation function
¢@ at larger r;;, outside the hard core overlap region. A more detailed
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Figure 5.2. Elastic constants for Figure 5.3. Elastic constants for
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We show K, (a). Ky (O) and K; tation as for Fig. 5.2.
{0), with simulation results denoted by
filled symbols, and the theory of Tjipto-
Margo and Evans [63] by open symbols.

knowledge of the form of ¢ for both isotropic and nematic molecular
liquids would be helpful.

Very recently, a more direct approach has been made [266] to calculate
the twist elastic constant K5, by directly measuring the torque density in
a system of molecules in twisted periodic boundary conditions. For a
cuboidal simulation box of dimensions L, = L, # L,, pericdic replicas in
the +z direction are rotated by, respectively, +#/2 about the z axis relative
to the original. This rotation is applied to center of mass coordinates as
well as molecular orientations, but for a nematic fluid the distortion of
the positional degrees of freedom is inconsequential. A uniformly twisted
nematic director field, with the director everywhere perpendicular to the
z axis, of wave vector k; = m/2L,, is stabilized in these boundaries, as
shown in Fig. 5.4. The torque density associated with this deformation
is [2]

TV = —V7aF, [0k, = Kk, (5.26)
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Figure 5.4. Director field stabilized in a cubvidal simulation box with twisted penodic
boundary conditions applied. ‘Neighboring boxes in the direction of the helix axis have all
position and orientation vectors rotated hy +%/2 about the axis.

where V is the volume of the box. The torque is measured as a sum of
pairwise contributions

"= 5 <Z 2.~ TﬁJZU> (>:27)
: i i

where 1 is the z component of the torque on / exerted by j. and T}
the corresponding torque exerted on j by i. Further work is needed to
establish the range of applicability of this technique, and to assess its value
as a cross-check of the fluctuation expression approach discussed above.

VI. DYNAMIC PROPERTIES
In the nematic phase, two separate diffusion coefficients D and D, de-

scribe translation parallel and perpendicular to the director, respectively .
" Each is the time integral

Dy = /u dt (1) (6.1)
D, = /ﬂmdr eL(t) (6.2}

of an appropriate component of the center of mass velocity autocorrelation
function

¢ty = Oy ()} (6.3)

L
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ci{ty = (w{Qu () (6.4)

Here v_ is either of the two Cartesian components perpendicular Lo the
director (say, v,, if the director is parallel to the z-axis) while v lies
along it. Note that the chosen units of temperature and mass imply that
¢, (0) = ¢;(0) = 1. that is, the correlation functions are normalized.

Diffusion in the nematic phase has been studied for ellipsoids of rev-
olution. [267] For highly elongated prolate ellipsoids an unusual increase
with density is seen for D| just above the I—=N transition; for very flat
oblate ellipsoids a similar effect is observed for D,. Examples are shown
in Figs. 6.1 and 6.2. This seems to be associated with the rapid variation
in order parameter close to the transition; physically the increasing order
of the environment surrounding a molecule promotes slow decay of the
velocity correlations, offsetting the general damping influence of an in-
creasing collision rate. The correlations persist for many tens of collision
times; these effects are illustrated in Figs. 6.3 and 6.4.

The most striking feature of these velocity correlations is the very slow
long-time decay, extending to many tens of single particle collision times,
of the more persistent component (¢ (¢} for the prolate case, ¢, (¢) for the
oblate). We tentatively attribute this to coupling of the velocity with slow
molecular reorientation, nof to coupling with the hydrodynamic vortex
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Figure 6.5. Diffusion cocfficients parallel and perpendicular to the director (log scale} as
functions of reduced density p/pep for prolate ellipsoids with ¢ = 10.
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Figure 6.2. Diffusion coefficients parallel and perpendicular to the director (log scale) as
functions of reduced density p/pep for oblate ellipsoids with e = 1/10.
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Figure 6.3. Translational velocity autocorrelation function (log scale), parallel and per-
pendicular to the director, for prolate ellipsoids with ¢ = 10 at a reduced density gfpep =033,
Time is measured in units of the mean time between collisions per particle.
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Translational velocity autocorrelation function {log scale), parallel and per-
pendicular to the director, for oblate ellipsoids with ¢

= 1/10 at a reduced density

p/pcp = 0.35. Time is measured in units of the mean time between collisions per parti-
cle.

mode which gives rise 10 algebraic 1 %/? long-time tails. [139-141] The
long-time decay seems to be exponential, not algebraic. Yet, although we
see no evidence for algebraic decay, we have no reason to doubt that the
latter effect should be present at sufficiently long times. For shorter times,
it 1s apparently masked by other effects.

Hess [268] has developed a theory based on relating the highly ordered
system of ellipsoids to a reference system of hard spheres, by affine trans-
formation. For perfect alignment (order parameter S = 1) a scaling of all
the coordinates and ellipsoid shapes by a factor 1/e converts each ellipsoid
configuration into an equivalent configuration of hard spheres. However,
the scaling cannot simply be applied to the velocities as well, so there is
not a one-to-one correspondence for dynamical properties. Nonetheless, it
is possible to apply the scaling to the diffusion equation, and moreover to
generalize the result to cater for imperfect orientational ordering (5 < 1).
The principal result of this analysis is an equation relating the anisotropy
of diffusion to the order parameter S and the elongation e:

D"—DJ_ 82—1
A=— _— =S| —— .
D”+2Dl (82+2) (65)

i
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In the limit of high ordering the anisotropy A is predicted to be substantial:
for example, as § — 1, A — 0.97 fore = 10, and A — 0.89 fore =5. A
previous theory, due to Chu and Moroi [269], when applied to ellipsoids
yields a slightly different formula:

D”—D_L e—1 .
= . 6.6
D"+2Dl S(e+2) ( }

Predicted values of A are rather lower than for Eq. (6.5): as § — 1,
A—075fore =10, and A — (.57 for e = 5.

Remarkably, the simulation results agree very well (see Fig. 6.5) with
the universal affine-transformation prediction, Eg. (6.5), for all the shapes
studied. Much higher values of A are observed than can be explained by
the original Chu and Moroi theory (Fig. 6.6). However, the relationships
between Dy, D, and the “equivalent” hard-sphere values are not explained
so well by the affine transformation model.

The increase of D, with density for rod-like melecules is reminiscent of
the divergence of the longitudinal diffusion coefficient predicted by Doi
and Edwards [270-273] and tested by simulation of the isofropic hard nee-
dle fluid [142-144]. The Doi-Edwards theory applies in the semi-dilute
regime, and their idea of “tube dilation” associated with orientational
ordering may be valid here, although a detailed comparison for the orien-
tationally ordered fluid in the prolate ellipsoid case is not valid.

A
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Figure 6.5. Test of the Hess theory for diffusion in the nematic phase. We plot the

anisotropy of diffusion A versus the shape-scaled order parameter according to Eq. (6.5).
Results fore = 10 (@), ¢ =5 (A).e=3 (M. e = % Cle= % (&).and e = ﬁ (O} are
shown.
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Figure 6.6. Test of the Chu and Moroi theory for diffusion in the nematic phase. We
plot the anisotropy of diffusion A versus the shape-scaled order parameter according to Eq.
(6.6). Notation as for Fig. 6.5.

Very recently, Tang and Evans [S. Tang and G.T. Evans, J. Chem. Phys.,
to appear| have formulated the kinetic theory in a way that explains the
two-exponential decay very well. Using a projection operator formalism,
they separate the decay rates of ¢{r) and ¢, (¢} into components for dif-
ferent relative orientations of molecular axis, director, and direction of
motion. Without any adjustable parameters, and taking only the density
and order parameter as input, the measured diffusion coefficients and cor-
relation functions are predicted quite accurately. This approach also ex-
plains two- exponential decay in the isotropic phase (see Section 1ILE.1),
in terms of an Enskog-like theory.

Finally. we discuss an extreme example of anistropic diffusion in the ne-
matic phase, namely the diffusion of infinitely thin hard platelets. {145] The
latter model can be considered as oblate ellipsoids, in the lmit
a/b — 0.

This system orders into a nematic phase at a density pB; = 4 (B; =
d*m?/16), [67) where d denotes the diameter of a platelet. For such
platelets, this nematic phase is stable at all finite densities with pB, > 4
( and therefore its nematic order parameter can be made arbitrarily close
to one), in contrast to molecules with finite proper volume which freeze
at high enough densities.

For this rather extreme model system, we can use a simple scaling ar-
gument to predict that, in the nematic phase, the transverse diffusion con-
stant increases with increasing density. Consider an assembly of smooth
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hard platelets of diameter 4 at a density p in which the system is in the
nematic phase. The transverse diffusion coefficient for such a system can
be estimated from a knowledge of the initial slope of the velocity autocor-
relation function (assuming that this function decays exponentially with
time). This slope is given by

(v .Av.I)
(vl v)
where T"is the rate at which molecule | suffers collisions and Av is the
velocity change per collision. Assume that the normal to the plane of

molecule i is inclined at an angle # from the nematic director. A simple
geometrical construction shows that [67]

V1= — (6.7)

1
6 ~ e {6.8)
I the collision frequency goes as
T ~ puv.d* ' (6.9)

where v, is the average relative velocity of the platelets at contact. v,
contains contributions from the relative translations and rotations of the
platelets. In the nematic phase, v, is dominated by vy and rotations, and is
only weakly dependent on density. Also Av) ~ —8%v, since the impulse
imparted at a rim-platelet collision is always perpendicular to the plane
of the platelet which suffers the collision. (Note that v, is the velocity
parailel to the plane of the platelet). In other words

*

. 1
(W, @0.00) ~ ~(EO) 7 (6.10)
where the reduced density p*. = pd® has been substituted in (7), and some
numerical factors have been omitted. Hence integrating the velocity auto-
correlation function over all time, we obtain

D ~p (6.11)

Thus we arrive at the remarkable conclusion that the diffusion coefficient
diverges with density. Physically this divergence can be understood simply
as a consequence of the fact that as the density increases, the efficiency
with which collisions can transfer momentum decreases ( owing to the
increased nematic order), so that the platelets are able to slide past each
other with greater and greater ease, while diffusion perpendicular to the
molecular plane is effectively suppressed. Incidentally, a scaling argument
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similar to the one sketched above has been applied to diffusion in an
isotropic system of infinitely thin needles. In the latter case, the scaling
theory predicts a divergence of D with ,/p’. [142]

To test whether such peculiar behavior of the diffusion constant is in-
deed observed, Alavi and Frenkel [145] performed molecular dynamics
calculations of hard platelets in the density range 5 < pB; < 12, which
corresponds to a regime with pronounced nematic order (0.92 < § < 0.99)
The diffusion coefficients D, and D) were determined by examining the
long-time limit of the mean-square displacement curves.

In Figure 6.7, we have plotted the diffusion coefficient )| against pB;.

From this figure, it is clear that D, does indeed increase with density,
as had been anticipated earlier by the scaling arguments. In contrast,
Dy drops with increasing density. This feature highlights the fact that
the overall increase in diffusion is associated with the greater ease with
which platelets move parallel to their planes as the density {(and hence the
nematic order) increases. At densities beyond pB; = B, D, apparently
increases approximately linearly with pBs, a result also anticipated by the
scaling argument.
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Figure 6.7. Density dependence of the diffusion coefficient 2 of a system of infinitely
thin, hard platelets in the nematic phase. The diffusion constant is expressed in reduced
units d (kg T /M)1/2




144 M. P. ALLEN, G. T. EVANS, D. FRENKEL AND B. M. MULDER
VII. OUTLOOK

In this review, we have tried to summarize our current theoretical under-
standing of hard-convex body fluids. In view of the vast literature on this
subject, this review is inevitably incomplete In fact, an up to date compi-
lation of computer simulations on all kind of kind of models for molecular
fluids can be found in the excellent review of Levesque and Weis, {274
It is clearly even more hazardous to make predictions about the future
developments in this arca. However, it seems clear that certain problems
have received much more attention in the past than others. In particular,
a vast amount of work has been reported on equations of state of pure
HCB fluids in the isotropic phase. Much less is known, at present, about
mixtures of HCBs. Yet, this seems to be an interesting topic because we
may expect a much richer phase behavior in mixtures of nonspherical ob-
jects than in hard-sphere mixtures. If we then recall that, even for hard
sphere mixtures, the presence or absence of a fluid-fluid phase separation
is still a matter of debate, [275] it seems fair to say that the study of mix-
tures (binary, and, a fortiori polydisperse) of HCBs is a wide open area. It
should also be stressed that there is also an “experimental” reason to try
to understand the effect of polydispersity of the properties of hard-body
fluids: the best experimental realizations of hard-body fluids are suspen-
sions of nonspherical colloidal particles. These systems are hardly ever
truly monodisperse and it seems likely that this polydispersity can effect
the phase behavior of these colloidal suspensions in a nontrivial way. In
fact, the recent numerical work of Stroobants on mixtures of hard parallel
spherocylinders [244] is a case in point.

Next, let us consider transport properties. It is clear that our knowl-
edge of the dynamics of HCB fuids is still quite limited. Most of what
we know is limited to single particle properties ((rotational) diffusion) in
the sotropic and, to a lesser extent, the nematic phase. Our knowledge of
collective properties (viscosity, heat conductivity, collective orientational
fluctuations) is quite limited for isotropic fluids and virtually nonexistent
for the liquid-crystalline phases (see, however, Ref. [276]). As a conse-
guence, the theories that describe the transport properties in isotropic
molecular liquids remain largely untested. In the case of transport in
liquid crystals, the situation is even more extreme as the corresponding
“Enskog” expressions for the transport coefficients have not even been
derived yet.

Finally. it is clear that, even if we stick to hard-core models, hard convex
bodies are but a subclass of all model systems that we couid consider, First
of all, we could consider rigid nonconvex hard bodies (see, e.g., Refs. [65],
[277.278]), and secondly, flexible hard molecules (see, e.g., Ref. {279]).
Of course, very long-chain molecules have been studied extensively in

4
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the context of polymer physics, but much less is known about short-chain
molecules and the semi-fAexible molecules (“worm-like chains™). Yet, flex-
ibility is known to have a pronounced effect on the structure and phase
behavior of hard-body fluids and, in particuiar, liquid crystals. Again, this
area of research, and the study of dynamics in particular, appears wide
open.

Of course, the study of highly idealized hard-core models cannot, and
should not. replace the study of realistic models for molecular liquids and
liquid crystals. Yet, for a fundamental understanding of real molecular
systems, it is crucial to know how much of the behavior of such realistic
models is already contained in simple hard-core models and how much of
it is truly caused by other intermolecular interactions, such as dispersion
forces, dipolar interactions or even many-body forces.
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A. APPENDICES TO PART 1

A. The Ideal Free Energy of Rigid Bodies

In this appendix, we briefly discuss the calculation of the kinetic contribu-
tion to the free energy for a system of rigid bodies.

Counsider a particle whose degrees of freedom are described by a set
of n generalized coordinates, denoted by the n-dimensional vector q. The
Lagrangian of the particle in the absence of external force fields is just
given by the kinetic energy

L=T=:q-Klg) g (A1)
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The generalized momenta conjugate to g are given by

aL
P=£=K(Q)'f] (A2)

Using this to eliminate the generalized velocities q from the kinetic energy.,
we find
T=p-K(g'p (A3)

The canonical partition function of an interacting N particle system is then
given by

1 [ -
ZN = fann /Hdpquf exp[~B ) _p; K(q)™" -plexp—BV ({q,})
i=d i=1

(A.4)

where V({q,}) is the configurational energy of the system. We now per-
form the integration over the canonical momenta using the well-known
generalized Gaussian integral identity

/ dxeFAX - ;jt’(’;) (A5)

where A is a real, symmetric and positive definite 7 x » matrix. The result

18
N 22" det(K(q,
2y = B.rl_'/ {I,_I1 d‘lf\/(ﬂh+}§n(q‘”}e“”’“q*“ (A6)

where we have used the fact that det(A™') = (det(A))"".

For three-dimensional rigid bodies, the generalized coordinates are
taken to be q = (x,y,x,¢,8,¢), that is, the coordinates of the center
of mass in a Cartesian reference frame and the Euler angles specifying
the orientation of a preferred frame ( one in which the moment of inertia
tensor is diagonal) of the particle with respect to this frame. The kinetic
energy of such a particle is given by

: |
-1 (mx2 +my? + mz? + Lol + Lo + Izwg) (A7)

where m is the mass of the particle and 1, /,, I, the principal moments
of inertia. The instantaneous angular velocities in the particle-fixed frame
are given by [280]

w, = ¢ sin & sin & + 8 cos ¢ (A.8)
wy, = ¢ sin 8 cos & — @ sin ¢ (A.9)
w, = ¢ oS 6 + (A.10)
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Evaluating the determinant of the kinetic tensor K(q), we find
det(K(q)) = m*I.1,1, sin® 8 (A.11)

Introducing this into the expression for the partition function, we arrive
at

N
1
Zy = ——o dr,d (e~ BV UL .
v NW?,/E rid(e (A.12)

where we have introduced de orientational volume element d(} =
sin 8 d¢ d6 dyr and the thermal volume

[ (2mr)en" o
Vr = ——(m3)1 7 IB =y (A.13)
xiylz

which can be interpreted as the product of the translational thermal wave-
length (one factor for each translational degree of freedom)

2
PRy LN (A.14)

m

and the orientational thermal angular spreads

2
T =V 27:,& B, k=xy,z (A.15)
k

Finally, we calculate the free energy per particle of a noninteracting gas
of rigid particies in a volume V' in the thermodynamic limit ¥,V — oo at
constant density N/V = p,

BFY/N =log pVr — 1 — log 87 (A.16)
B. Center to Center Vectors

Consider two convex bodies whose mass centers are located at space points

r; and r;. The relative position of body 2 with respect to body 1 is r,
r2(s) = 1 — 1 = £(81) + 58; — £(87) (A.17)
Here £(8;) are the “radius™ vectors for body i, emanating from its mass
center and terminating at the point on its surtace with surface normal
8. Since the surface-1o-surface distance, s, is measured along a common

surface normal, which we take to point out of surface 1, then

§ =8 =8§ {A.18)

and so
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ria(s) = £(8) + 5§ — £(—8) ' (A.19)

The radius vectors can be specified in terms of the support function of
the convex body

hi =8 - £(5;) (A.20)
We derive A by taking the derivative of & with respect 1o §,
Vgh = (I - 88) - £(8) +8V£(8) {A21)

and as Vg£(8) is perpendicular to 8, then

E(8) =8h + Vgh =8h +850ph + (1/sin0)8, 04 h (A.22)

Given the support function, one can then determine the radius vector
which traces out the exterior of the hard body.
C. Support Functions

Ideally one would like to have a support function that could represent
convex shapes ranging from ellipsoids to spherocylinders. Although there
is no unique choice of function that provides this feature, one function with
some of these characteristics is a composite body formed by the addition
of a sphere to a ellipsoid

hi = (1/2)a + K (A.23)

where o is the sphere diameter and /¢ the ellipsoid support function of
body i.

The equation for the surface of a biaxial ellipsoid with (semi-) axis
lengths of a. b and c¢ is given by

R" -{d e * +u,0,c ?+ 80,677 R=1 {A.24)

where R is a Cartesian vector with components (R, R,.R.) in the body
* fixed principal axes. This surface has a support function

A =8 R = {{ax)® + (cv)? + (b2)?]'? (A.25)
where x,y,z are the projections of § along the principal body axes,
(x,¥,2) = 8y{idy, iy, 0;) (A.26)
A uniaxial body arises when a =,

-
<

W= [a® + (b* — ah)ZP)? (A.27)

and a sphere when a = b = ¢, wherein

Lt
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B =a (A28)

A chiral convex body may be formed by iotating the ,, i, of the biaxial
ellipsoid by an angle o which depends on R,. The resulting surface is still
a homogeneous quadratic form except that the principal axes, described
by the unit vectors i, (o), @,{a}, depend on R,

i (a) = 0, cos « + i, sin a
iy (a) = —W, sin & + 4, cos « {A.29)

with o = c¢R;/d and d being the intrinsic chiral period. For this twisted
biaxial ellipsoid, R is given parametrically in terms of ¢, and @, by

R, = sin 6,[a cos ¢, — ¢ sin ¢, cos ¢
Ry = sin 6,[c cos ¢, cos a +a sin ¢, sin af
R; = b cos 6, (A.30)

and the surface by
R7 - [y (a)i(@)a ? + iy ()i, (o) + 6,672 R =1 (A.31)

A representative surface is shown in Fig A.1. The surface normal for the
twisted biaxial ellipsoid is proportional to the gradient of the surface and
this together with R suffices to determine A. In the limit of small twists,
the twisted body is still convex. For large twists, the chiral body becomes
a twisted ribbon and is no longer convex. By means of a perturbation
analysis of the chiral correction to the support function, we find

hy =k + 8k (A.32)

where A7 is the support function of the convex biaxial ellipsoid and 8k, is
the first order chiral correction to body 1

8hy = £x1y,2,(3(c/KS Y — (1 + (c/ay + (c/b)})) (A.33)

and £ is a length

Figure A.1. The surface of a chiral particle as constructed by twisting a biaxial spheroid
along its major axis.
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? = (@ - A’ w/(cd) (A.34)

characterizing the extension of the surface due to chiral bulge.

At this point we can construct a variety of convex bodies: a sphere,
a uniaxial ellipsoid, a biaxial ellipsoid and a twisted biaxial ellipsoidal
body. By rolling a sphere over the exterior of these chosen bodies, we
can flatten the sides of these bodies (which the exception, of course, of
the sphere) to give shapes that approach spherocylinders, spheroplatelets,
and twisted spheroplatelets but unlike the spherocylindric class of bodies,
the composite bodies (sphere + ellipsoid) have a support function which
is not defined piecewise. As an example, for two chiral bodies the support
function for the pair is '

hiz = kS + k5 + 8hy — 8l (A.35)
" whereas for a chiral body and a sphere of radius a,
hi=a+h}+8hy (A.36)

If we choose to flatten either of these two shapes, we merely add to hy; a
constant corresponding to the radius of the external sphere.

D. IJacobians

Typically, we shall require the Jacobian of the transformation from center
to center coordinates to § '

dr; = |8r2/8sids = S'%(s)ds (A37)
‘This determinant simplifies as dry2/ds = § and so

5'%(s) = [8- 812 /88 x 012 /0| (A.38)

When we take the @ and ¢ derivatives of 15, we obtain

81']2/88
o112 /0
and hence

§olht+ O%h] + 84505((1/sin 6)D4h} (A.39)
8¢05[(1/sin 0)Dyhl8,[h + cot 83ph + F5h)  (A.40)

S'2 = (h+ O2h)(h +cot 88,h + T3h) — (Bs[(1/sin 0)35h)*  (A41)

In deriving these results, we have made use of the conventions that §
makes an anle 8 and ¢ with respect to a space fixed (i, uy, 4;) coordinate
system. Further we have defined 84 and §,, the spherical polar unit vectors
orthogonal to §.

wt
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Wy
|

= @i, cos § +sin #[d, cos ¢ + @, sin @]
= 8 x 84 = — (38, /980)

§y = —W, sin @ + cos 8[li, cos ¢ + i, sin @]
= §4 x § = (58/06)
§4 = —W, sin ¢ +1, cos ¢ (A.42)

512 s related to the orientation dependent second virial coefficient,
B»(1,2) by

B>(1,2) = (2m/3)h25" (A.43)

where A, is the support functions for two bodies in contact. For two chiral
bodies

h]z = hi + h; + 8!:1 - 6!12 (A44)
whereas for a chiral body and a sphere of radius a,
hip = a +h{ + 8h {A.45)

Each of the four support functions directly above is expressed with re-
spect to a common surface normal, §, emanating outward from the contact
point on body 1.

B. APPENDICES TO PART I

A. Free Energy of Molecular Crystals

In this appendix, we discuss how the free energy of the solid phase of a
given hard-core model system is related to the free energy of a known
reference state. We use an artificial thermodynamic integration procedure
1o relate the free energy per particle, fj, of the solid at a particular density
o to the free energy of an Einstein crystal of the same structure, at the
same density. [229] The potential energy of this reference Einstein crystal
is given by

N N
UE(Al,Ag) = Alzﬁ[‘g+r\228in2 o; (B])

i=1 i=1

where Ar; = r;—1? and §; denote, respectively, the translational and angular
displacement of particle i from its equilibrium position and orientation. A,
and A; are the coupling parameters which determine the strength of the
harmonic force. The Einstein crystal is a convenient reference system,
because its free energy per particle is known in closed form. For large
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values of the coupling constants, the configurational part of this free energy -

is approximately given by

N G- B 3
fer -2 in[N (M) ) | Ge— B2

where we have imposed the additional constraint that the center of mass
of the system is kept fixed. In order to construct a reversible path from the
Einstein crystal to a hard-core crystal at the same density, we introduce a
generalized potential energy function Uy, 4,

Upp, = Ug + UglAy, A7) (B.3)

where U is the potential energy function of the hard-particle system in
the absence of any harmonic springs. For sufficiently large values of A
and A;, the free energy of this interacting Einstein crystal reduces to the
free energy of the ideal Einstein crystal, This equality only holds if all
configurations of the ideal Einstein crystal are also acceptable configura-
tions of the interacting system. In practice, a small fraction, Py, of the
configurations of the ideal Einstein crystal would result in hard-core over-
laps. However, it is easy correct for this effect. [229] In order to compute
the free energy fy of the hard-particle crystal at the reference state p, we
perform thermodynamic integration to compute the change in free energy
as we slowly switch off the Einstein crystal coupling constants A, and A;
from their maximum vaiue ATS*. The final expression that relates fy to
the free energy of the ideal Einstein crystal is [229]

kgT InV
fo = fe(AT*, A7) + ""'N_‘PO - kaT"}—\}”‘
Allllﬂl Alzllﬂx
— /0 dA{Ar ), 0y — f dAa(sin’ 8}y, 4, " (B4)
1]

where (Ar?),,,, is the mean-square displacement of a particle from its
lattice site, at a given value of A; and A, and at fixed center of mass.
The term (kT In V)/N corrects the free energy for this fixed center of
mass constraint. Of course, the thermodynamic integration to the Einstein
crystal must be performed at a density where the crystalline phase is at
least mechanically stable. Once the absolute free energy of a phase is
known at one density, we can use Eq. (4.69) to compute it at any other
density that can be reached by reversible expansion or compression from
the reference state.
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B. System-Size Dependence of Nematic Order Parameter

When we determine the nematic order parameter in a numerical simula-
tion, we find that the value of this quantity depends on the system size.
It is, however, important to note that the different expressions for the the
nematic order parameter that are used in the literature do not all have the
same system-size dependence. In this section, we describe an approximate
method to estimate the N-dependence of the different eigenvalues of the

€ tensor
1 3 I
Q= N Z (Eﬁiﬁi - 5) (B.5)

{(where #; is a unit vector specifying the orientation of molecule i; we as-
sume cylindrically symmetric molecules}. We consider an idealized model
of an orientationally ordered fluid, namely one in which the Q tensors of
different particles are uncorreiated, that is,

< QiQ; >=<Q; ><Q; > (B.6)

This situation will occur, for instance, in noninteracting gas of molecules
in a magnetic field. Although in a real liquid crystal (or isotropic fluid)
there are short-range orientational correlations the present analysis is still
qualitatively valid in such a system if one reinterprets the Q; not as molec-
ular Q tensors but as the average Q tensor of a domain of size &, where £
is the correlation length of order parameter fluctuations. The eigenvalue
equation to be solved is

Q- Vp = AuVa (B.7)

where A, is the nth eigenvalue and v, the nth eigenvector. It is convenient
to study the equivalent problem of finding the eigenvalues of the tensor
M:

1 R
M=o Z i, (B.8)

The eigenvectors of M are the eigenvectors of Q and the eigenvalues u of
M are related to those of Q by g, — 2/3A,+1/3. The eigenvalue equation
for M then becomes

det|M — pI| =0 (B.9)
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# Zr’ X Xi % Z[- X;V; —17 Z‘. X;Z;
N Iy m oY wouvizi|=0 (B.10)
N i Ziki % 2o LY ﬁ Yz
or
- +ptroprc=0 (B.11)
where
=
1
—x7 2 Lixyy; — xoyeeyyy) (B.12)
i
+(XinZ,‘Z,' - x,-z,-x,-zj) + (y,-y,z,-zj,- _J’.iZiy_fZ;‘)]
Cp =
1
v S [(mixiyjyizeze — xixeyiz;veza (B.13)

ik
—Vi¥iXjZiXeZy = ZiZiXi¥iXeYu) + 2XiViVaZu2, X))
Solving this equation yields u, as a function of all orientations:

#’ﬂ:fﬂ(xlwylazh"':xN:yN1zN) (B'14)

where f, is a nonlinear function of all orientations. To obtain < g, >, one
should average the roots of this nonlinear equation. This is in general not
possible. We simplify this problem by solving the equation with the aver-
age coefficients < ¢; > and < ¢y >. Of course, for a nonlinear problem,
this is not equivalent to a procedure where the u’s are averaged after the
equation has been solved. However, as discussed below, we have tested
the quality of this approximation in a few specific ¢cases and find that the
pre-averaging has no noticeable effects on our qualitative or even, for that
matter, quantitative conclusions.
The averaged equation for u now reads

N —
o 2 2 2

FTE o T N (<x >(<x*>+2 <z >))

(N -—1){N-2)

TTNT

where we have used a coordinate system such that the z-axis coincides

with the axis of cylindrical symmetry. Moreover, we have used the fact
that there is no short-range orientational correlation. Using the relation

<x*><y?><z?>=0 (B.1S5)

-
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<xt>=<y? >=(1-5)/3
and {(B.16)
<72 >=(25+1)/3

where § is the nematic order parameter, we obtain the following equation
for w = 2/3x +1/3

3 1+83N-1) 3(52—- 8% 1-35%+28°
3 _——_— A — —— 3 —_
A 4A N [S f4+ 4N * 4N? 0
(B.17)
This cubic equation can be solved in a closed form.

An =r cos{¢y, + (n — 1)2—31—7-), n=-1,0,1

(B.18)
with
/1+SHN - 1)
r= — N (B.19)
and

3

El 2 _¢3 _ 2 1 2
5 Zlarms(s +3(52 = SH/N +(1 — 382+ 28%)/N )

3 (B.20)
Let us consider the isotropic case (§=0) first. In that case,
r=1/vN
and (B.21)
1 1
¢ = 3 arccos (ﬁ)
for N not too small (say N > 20),
1 T 1
arccos | ——— | &= o — = B.22
(m) 2 VR (5:22)
and hence )
T
== - — (B.23
Y/ )
The expressions for the eigenvaiues A, then become
— _1 T 1 ~ L
;\U—V—Ncos%mi—wﬁ% T
_ 1 o 1 w1 3 1
A= gpeos(-F - o ~—WET+W) (B.24)
_ 1 ST 1 — 1 -3 1
A= «WCOS(_7_ 3 N) ¥ TR T+6—W)
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We therefore arrive at the important conlusion that, although all eigenval-
ues vanish in the thermodynamic limit (N — oo), the largest (in absolute
value) cigenvalues (A.) vanish as 1/v/N, whereas the middle eigenvalue
(Ag). vanishes as 1/N. An example of the N-dependence of A_, Ay and
A, is shown in Fig. B.1. Next we consider the case § # 0. Then

3 2 _SW/N + (1 — 382 3y /N2
cos3¢ = (S +3(87 = S/ :3( 35 +25)/N ) (B.25)
which, to leading order in 1/N, is equal to
3 25 -1
COs 3¢ Al — m + SW (B.26)

Clearly, for N and § not too small, we can expand the cosine to obtain
the following expression for ¢:

1 25-1
S
¢ =38 T INS

from which it follows that ¢ = O(1/+v/N). For § # 0, r is given by

1- 82 1-8° 1
— /52 -S4+ — ,
r=14/5+ N S+ NS +O(N2) (B.28)

Hence r = 5 + O(1/N}. i we now look at A ., Ay and A, we find that for
S#£0,

(B.27)

n L 5=0. |
% 0.3 \
g Q.2 \'\,_ H 7
= R
w Ol f - .
\M
oI - e
Figure B.1. System-size dependence of A ___,.m—-‘m‘
the three roots of the average Q tensor, as -0.1 F ’_,m»‘" i
given by Eqg. (B.16) for an isotropic fluid (§ * e
= 00} with no short-range correlations. In the /”:\
same figure we have also indicated numerical -0.2 + e ’ T
results for an ideal isotropic gas for N= 100, -
400 and 800 {OPEN SQUARES). Note that .

the numerical results agree quite well with 10 100
the {approximate) analytical expressions. N
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(B.29)

Hence, in the nematic phase, A. yields a better estimate of S than —2A,.
Note that the fact that we find three different eigenvalues does not indicate
a biaxial phase, because this result was derived assuming a uniaxial phase.
The apparent biaxiality is a system size effect. The dependence of A_, Ay
and A, on § is shown in Fig. B.2.

Using the above analysis, we can give a simple “geometrical” interpre-
tation to the fluctuations in the nematic order parameter. A graphical
representation of the eigenvalues A_, Ay and A, is shown in Fig. B.3. The
three eigenvalues are equal to the projections of a triad of vectors of equal

30.00 - -50 75 1,00
- T T g
r p
J N=400 "
Al g Ja
a’ +

(D ,'"‘

w

<l A

>

W 8 8

() al _~~. (=]

i R
W ~
o “':*-\An —H.
r ~ L]

A Taa

2 Tw, |2
v f ] 1 el o
g.on .25 .50 .75 1.00

Figure B.2. Relation between the “real” (infinite system order parameter 5, and the
three roots of the average Q tensor, as compuled using Eq. (B.16), for ¥=400. Note that at
tow values of 8. A, approaches zero more rapidly than either A, or A_. At larger values of
S, A, approaches §.
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r

v

Y+

A ] B

Figure B.3. Graphic representation of the computation of the eigenvalues of the Q tensor
{Eq. B.16). The three eigenvalues are given by the projection of the threc vectors on the
horizontal axis. In the isotropic phase {a), r=O(1/vN) while ¢ = 7/6 - O(1/+v'N) In the
nemalic phase (b). r=8 + O{1/N), while ¢ = O(l/\/ﬁ). Fluctuations in the order parameter
are caused by fluctuations in both r and ¢.

length which make angles of 120° with one another. Fluctuations in the or-
der parameters are driven by fluctuations in both the length of the vectors
(r) and the angle (¢). It is important to note that the fluctuations in A
contain both effects, that is, a contribution due to biaxial fluctuations (¢)
and fluctuations in the size of the order parameter (r). As one approaches
the isotropic—-nematic transition, all fluctuations increase in magnitude and
¢ starts to rotate from /6 to 0, while r grows from I/ VN to S. In the
immediate vicinity of the I-N transition, all three eigenvalues of Q depend
strongly on the size of the system.

Finally, we should return to the pre-averaging approximation that we
made in order to solve Eq. (B.10). There we computed the eigenvalues of
the averaged tensor order parameter, rather than the average of eigenval-
ues of the fluctuating tensor order parameter. It is of course interesting
to know how seriously this averaging of a nonlinear equation affects the
predicted average values of A,. To this end, we have carried out the
following numerical test. We have generated the Q tensor for 10* con-
figurations of a system of N ideal gas molecules (N = 100, 400, 800). In
Fig. B.1 we compare the predicted eigenvalues computed from Eq. (B.16)
with the average eigenvalues obtained by direct diagonalization of Q for
all independent ideal gas configurations. Clearly, the agreement is quite
good.
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