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ABSTRACT Differential evolution is a famous and effective branch of evolutionary computation, which

aims at tackling complex optimization problems. There are two aspects significantly affecting the overall

performance of DE variants, one is trial vector generation strategy and the other is the control parameter

adaptation scheme. Here in this paper, a new hierarchical archive-based trial vector generation strategy with

depth information of evolution was proposed to get a better perception of landscapes of objective functions

as well as to improve the candidate diversity of the trial vectors. Furthermore, novel adaptation schemes

both for crossover rate Cr and for population size ps were also advanced in this paper, and consequently,

an overall better optimization performancewas obtained after these changes. The novel HARD-DE algorithm

was verified under many benchmarks of the Congress on Evolutionary Computation (CEC) Competition test

suites on real-parameter single-objective optimization as well as two benchmarks on real-world optimization

from CEC2011 test suite, and the experiment results showed that the proposed HARD-DE algorithm was

competitive with the other state-of-the-art DE variants.

INDEX TERMS Depth information, differential evolution, hierarchical archive, numerical optimization.

I. INTRODUCTION

Different Evolution (DE) is a famous and effective popula-

tion based trial-and-error method for the tackling of com-

plex single objective numerical optimization problems [37].

Generally, the single objective optimization problem can be

mathematically represented as finding the optimal solution

X∗ of the following set:

�∗ ≡ arg min
X∈�

f (X ) = {X∗ ∈ � : f (X∗) ≤ f (X ), ∀X ∈ �}

(1)

where X denotes vector of parameters, � denotes the

solution space and f (X ) denotes the objective function of

the optimization problem. Usually, the vector of parame-

ters X , e.g. � ⊆ R
D for a D-dimensional optimization,

is restricted by a lower Xmin and upper Xmax bound of

constraints, Xmin = (xmin,1, xmin,2, ..., xmin,D) and Xmax =
(xmax,1, xmax,2, ..., xmax,D), then the jth parameter, j ∈
{1, 2, ...,D}, of X can be initialized as follows:

xj = xmin,j + randj(0, 1) · (xmax,j − xmin,j) (2)

Moreover, the parameters in vectorX should always satisfy

xmin,j ≤ xj ≤ xmax,j, j ∈ {1, 2, ...,D}, during the whole

evolution. After initialization of all vectors in the population

(the ith vector of the population in the Gth generation is

denoted by Xi,G), DE employs mutation operation to generate

donor vector, i.e., Vi,G, and then employs crossover opera-

tion to generate trial vector, i.e., Ui,G. Fig. 1 presents the

relationship between the target vector Xi,G, the donor vector

Vi,G and potential trial vectors, i.e., Ui,G, U
′
i,G or U ′′

i,G, of the

canonical DE algorithm in a 2D view [8], [9], [21], [31].

Finally, selection is conducted between the target vector Xi,G
and the trial vector Ui,G.

There are two aspects significantly affecting the over-

all performance of DE algorithm, one is the trial vec-

tor generation strategy, and the other is control parameter

adaptation scheme. For the trial vector generation strategy,

there are also two components within it, one component

is mutation strategy and the other component is crossover

scheme. As many mutation strategies and crossover schemes

had been proposed in the literature since the inception of
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FIGURE 1. Relationship between target vector Xi,G, donor vector Vi,G and
trial vector candidates Ui,G, U ′

i,G
or U ′′

i,G
of the canonical DE algorithm in

a 2D view.

DE algorithm [32], [33], [36], [37], a notation ‘‘DE/x/y/z’’

was introduced to classify these different trial vector gen-

eration strategies where x specifies the target vector, y

is the number of different vector pair, and z denotes the

crossover scheme. Then, the trial vector generation strat-

egy of canonical DE algorithm employing the DE/rand/1/z

mutation strategy and a binomial crossover scheme can be

written in the form: DE/rand/1/bin. Besides the canonical

DE algorithm, Price et al. [31], [34], [37] also introduced

other trial vector generation strategies, such as DE/best/1/bin,

DE/best/2/bin, DE/target-to-best/1/bin, DE/rand/1/either-or,

etc. Feoktistov and Janaqi [12] conducted a generalization of

these mutation strategies, and they classified these mutation

strategies into four groups, however, this classification was

not welcomed by DE researchers in comparison with the

DE/x/y/z convention. Mezura-Montes et al. [25] conducted

a deeper comparison among these DE mutation strategies,

and experiment results revealed that DE/best/1/bin had an

overall better exploitation capacity and performed better on

unimodal separable objective functions while mutation strat-

egy DE/rand/1/bin had an overall better exploration capacity

and performed better on multi-modal nonseparable objec-

tive functions. Later research [8], [35], [43] showed that

the mutation strategy DE/target-to-best/1/bin can be consid-

ered a balance between exploitation and exploration of the

above two mutation strategies, nevertheless, the global best

guided mutation strategies, e.g. DE/best/1/bin, DE/target-

to-best/1/bin, etc., usually lead to premature convergence.

Instead of employing the single global best solution, Zhang

and Sanderson [43] proposed a new mutation strategy

DE/target-to-pbest/1/bin employing a handful top superior

individuals for evolution while incorporating an optional

external archive for solution diversity enhancement. This new

mutation strategy achieved a big success, and the recently

proposed state-of-the-art DE variants either employed the

same mutation strategy [6], [7], [39] or employed some sim-

ilar variants of this mutation strategy [14], [21], [23].

Besides mutation strategy, crossover scheme also played

important role in the trial vector generation strategy. There are

mainly two crossover schemes in DE algorithm, one is expo-

nential crossover, and the other is binomial crossover. The

exponential crossover is actually a combination of 1-point

crossover and 2-point crossover proposed in Genetic Algo-

rithm (GA) [15], and it has a representative/positional bias

because of the dependence on parameter separation. The

binomial crossover tackles the representative bias by treating

each parameter independently, however, bias [19], [21], [24]

still exists from a high dimensional perspective of view, and

this was discussed in the following paragraph mentioning

control parameter Cr of DE algorithm. There were also other

crossover-like operations, e.g. disabled crossover (trial vector

generation without crossover) [31], blending crossover [14],

and arithmetic recombination [8], [9] techniques mentioned

in the literature, nevertheless, the binomial crossover was

the most popular one on real-parameter single objective

optimization.

Control parameters adaptation schemes also play very

important role in the overall optimization performance of DE

algorithm, and there are three control parameters, population

size ps, scale factorF , and crossover rateCr , restricting selec-

tion operation, mutation operation, and crossover operation

respectively. ps denotes the population size which defines

the number of selection operations in each generation, F

denotes the scale factor which constricts the difference vector

in mutation operation, and Cr denotes the crossover rate

which determines how many parameters in the target vector

are changed during the crossover operation. Earlier research

on DE algorithm employs fixed control parameters during

the whole evolution. The recommended values of the three

control parameters by DE inventors Price et al. [31] are given

as follows: ps is recommended to be set an integer multiple

number of dimension D, ps ∈ [5D, 10D], and ps = 100 is

a good default setting; F is recommended to be set a real

number in the interval [0.4, 1], and F = 0.5 is a good default

value; There are different recommendations of Cr , and all

these recommendations are within the interval [0, 1]. Cr =
0.1 is a good initial value for unimodal separable functions

while Cr = 0.9 is a good initial value for multi-modal

and nonseparable functions. In addition, there are also some

other recommendations for the control parameter settings

mentioned in the literature [1], [13], [25], [30], [31], [41].

These claims and counter claims concerning the rules of the

fixed control parameter settings may confuse DE researchers.

Furthermore, the binomial crossover scheme with a fixed

Cr also has a representative bias from higher dimensional

perspective of view. As we know, the performance depen-

dence on parameter separation of exponential crossover is

actually due to the unequal selection probability of potential

candidates, and this unequal selection probability also exists

in binomial crossover with a fixed crossover rate from a

higher dimensional view. Meng et al. [24] and Pan et al. [27]

proposed a new Cr parameter reduced DE variant employing

an auto-generated crossover matrix to replace the crossover
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rate Cr and tackled the high dimensional representative

bias, nevertheless, these all lack a good adaptation to

the objective function during the whole evolution. There-

fore, DE variants with adaptive control parameters became

much more popular both for scientific researchers and for

engineers [4], [8], [21], [31], [35].

Generally speaking, all the adaptation schemes of control

parameters mentioned in the literature can be classified into

three categories: the first category is ‘‘Deterministic param-

eter control’’, and the control parameters in this category are

renewed according to a certain deterministic rule, e.g. the

time based adaptation of mutation rate r in [16], the number

of function evaluations based inertia weight iw in [17] and the

number of function evaluations based top superior rate p in [6]

and [7] etc., can be classified into this category; the second

category is named of ‘‘Adaptive parameter control’’, which

means that the adaptation mechanisms in this group employ

some feedbacks of the evolution in the parameter adaptation,

the adaptation scheme for Cr in [35] and the adaptation

schemes for bothF andCr in [6], [7], [38], [39], and [43] etc.,

can be classified into this category; the last category is called

‘‘Self-adaptive parameter control’’, whichmeans evolution of

the evolution. Control parameters in this group are encoded

into each individual and they also undergone evolution oper-

ations such as mutation, crossover and selection. The self-

adaptive mechanisms of F and Cr in [3]–[5] and [42] and the

self-adaptive mechanism of population size ps in [40] etc.,

can be classified into this category.

By reviewing some recently proposed state-of-the-art DE

variants, we can see that each powerful DE variant was a

combination of both a specified mutation strategy and the

associated adaptation schemes for control parameters. For

example, Zhang and Sanderson introduced a novel muta-

tion strategy with optional external archive in JADE algo-

rithm [43], meanwhile, new control parameter adaptation

schemes both for scale factor F and for crossover rate Cr

were also introduced in the JADE algorithm, both of which

helped JADE win the competition on scale-invariant opti-

mization at WCCI2008. The LSHADE algorithm [39] inher-

ited the external archive based mutation strategy proposed

in JADE algorithm and proposed a success history based

control parameter pool to enhance the diversity of control

parameters, furthermore, a dynamic linear population size

reduction scheme were also incorporated into this algorithm,

all of which helped LSHADE algorithm win the competition

on real-parameter single objection optimization at CEC2014.

Brest et al. proposed a new weighted version of mutation

strategy as well as well-tuned control parameter adaptation

schemes in jSO algorithm [7], and this new algorithm secured

the first rank at CEC2017 competitions. However, all these

above mentioned DE variants still had weaknesses both in

trial vector generation strategy and parameter adaptation

schemes, e.g. stagnation or lack of diversity in a certain given

mutation strategy, misleading interaction weakness among

control parameters F and Cr [23] in some state-of-the-art

DE variants. Therefore, in this paper a novel HARD-DE

algorithm is proposed to enhance the overall optimization

performance on the commonly used CEC benchmarks. This

new variant is based on advantages of some former state-

of-the-art DE variants, e.g. JADE [43], LSHADE [39] and

LPALMDE [23], etc., and the main contributions of the paper

are listed as follows:
1) A novel hierarchical archive based mutation strat-

egy was proposed in the HARD-DE algorithm, and

depth information of evolution was firstly taken into

consideration in the mutation strategy. The proposed

hierarchical archive based mutation strategy with depth

information can make a better perception of the land-

scape of objective functions and consequently obtained

an overall better performance on the tested CEC

benchmarks.

2) A novel adaptation scheme for crossover rate Cr with

grouping strategywas proposed in the HARD-DE algo-

rithm, and this control parameter adaptation scheme

performed very well on the tested benchmarks with the

above proposed mutation strategy.

3) A novel parabolic population size reduction scheme

was also proposed in the HARD-DE algorithm, further-

more, a deep discussion on two implementations of the

parabolic reduction scheme was presented in the paper

as well.

4) Two test suites (CEC2013 test suite and CEC2017 test

suite) containing 58 benchmark functions on real-

parameter single objective optimization and two real-

world optimization problems from CEC2011 were

employed in evaluation of the novel HARD-DE algo-

rithm, and this choice of benchmarks may avoid over-

fitting problem of a certain algorithm under a single

test suite. The experiment results show that the new

proposed HARD-DE algorithm was also competitive

with the other state-of-the-art DE variants.

The rest of the paper is organized as follows. The related

works in Section II reviews several famous DE variants

that are closely related to our proposed HARD-DE algo-

rithm. Section III presents the details of the novel HARD-

DE algorithm. Section IV conducts the experiment analysis

of the HARD-DE algorithm in comparison with DE vari-

ants reviewed in Section II. Finally, conclusion is given in

Section V.

II. RELATED WORKS

In this part, several famous and powerful DE variants includ-

ing JADE [43], LSHADE [39], iLSHADE [6], jSO [7]

and LPALMDE [23] are briefly reviewed. They are all

closely related to the novel HARD-DE algorithm in the

paper. By reviewing these former state-of-the-art DE variants,

researchers can get a better understanding why and how we

proposed the novel HARD-DE algorithm.

A. JADE

Zhang and Sanderson proposed a new optional external

archive based mutation strategy in JADE algorithm [43],
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the new mutation strategy employed a handful top superior

elites of the population rather than the only global best elite in

evolution. As we know, the mutation strategies DE/rand/1/bin

and DE/target-to-rand/1/bin usually have good exploration

capacity and converge slowly in many optimizations while

some greedy strategies such as DE/best/1/bin and DE/target-

to-best/1/bin have good exploitation capacity and usually

converge prematurely [25]. The new proposed mutation strat-

egy in JADE made a good balance between the two charac-

teristics by introducing a handful top superior individuals in

the mutation strategy. This mutation strategy achieved a big

success and the following reviewed powerful DE variants also

employed the same or similar mutation strategy. The detailed

equation of the mutation strategy is presented in Eq. 3:

Vi,G = Xi,G+F · (Xpbest,G−Xi,G)+F · (Xr1,G−X̃r2,G) (3)

where Xi,G denotes the target vector, Vi,G denotes the donor

vector, X
p
best,G denotes a certain vector selected from the top

100p% individuals of the population, p is the percentage

of top superior individuals. Moreover, an optional external

archive was also incorporated into the mutation strategy

for diversity enhancement of trial vectors. Symbol A was

employed in denoting the external archive that recorded the

inferior solutions during the evolution, and X̃r2,G in Eq. 3 is

a randomly selected vector from the union P∪ A while X̃r1,G
is a randomly selected vector from the current population P.

Furthermore, the indices of i, r1 and r2 always satisfy i 6=
r1 6= r2. At the beginning of the evolution, the archive A is

initialized empty, A = ∅, then after each generation of the

evolution, the discarded inferior solutions are gradually added

into A. When the number of inferior solutions exceeds the

fixed maximum size of A, the more solutions are randomly

selected out from the inferior solution set and then erased

from archive A.

As it is known to all that besides the mutation strategy,

a well-designed adaptation scheme for control parameters

can also improve the optimization performance of DE vari-

ants. The JADE algorithm also introduced novel adaptation

schemes both for scale factor F and for control parameter Cr .

The adaptation schemes of control parameters F and Cr are

given in Eq. 4 and Eq. 5 respectively:




µF = (1 − c) · µF + c · meanL(SF )

meanL(SF ) =
∑

F∈SF F
2

∑
F∈SF F

(4)





µCr = (1 − c) · µCr + c · meanA(SCr )

meanA(SCr ) =
∑

Cr∈SCr Cr

|SCr |
(5)

whereµF is the location parameter of the Cauchy distribution

obeyed by the scale factor F , F ∼ C(µF , σF ), meanL(SF )

denotes the Lehmer mean of the set SF ; µCr is the mean

of the Normal distribution obeyed by the crossover rate Cr ,

Cr ∼ N (µCr , σCr ), meanA(SCr ) denotes the arithmetic mean

of the set SCr . The scale parameter σF and the standard

deviation σCr are set the same value, σF = σCr = 0.1.

When a better solution is found by a trial vector, then the

corresponding individual is labeled ‘‘success’’. SF and SCr
are the sets recording scale factor F and crossover rate Cr of

the success individuals respectively. Moreover, |SCr | denotes
the size of set SCr , parameter c is used for balancing the old

µF (or µCr ) and the corresponding mean of the success set

in the update scheme. Usually, c is recommended to be set a

value that satisfies 1/c ∈ [5, 20], and c = 0.1 is the default

value in JADE algorithm.

B. LSHADE

LSHADE algorithm [39] is an enhanced version of SHADE

algorithm by incorporating linear population size reduction

scheme, and the SHADE algorithm is also an improved

JADE algorithm by introducing both a diversity entry pool

and fitness value based adaptation schemes [29] for control

parameters while employing the same external archive based

mutation strategy. There are H entries in the diversity entry

pool, and each entry records a µF and µCr pair within it. All

the control parameter pairs in the pool are assigned equal

values, µF = µCr = 0.5, at the initialization stage. The

control parameters of each individual employed in mutation

operation during the evolution are randomly selected from a

certain entry, and only one entry is updated in each gener-

ation. The update sequence of the H entries are in a circle,

from the 1st to the last and then back to the 1st , and then

a new circle begins until the terminal of the evolution. The

H -entry pool enhances the robustness of LSHADE and voids

probabilistic errors that may lead to the undesirable values

of the control parameters. The detailed fitness value based

adaptation schemes for control parameters µF and µCr are

presented in Eq. 6 and 7 respectively:




wk =
1fj∑|SF |
k=1 1fj

1fj = f (Xj,G) − f (Uj,G)

meanWL(SF ) =
∑|SF |

k=1 wk · S2F,k∑|SF |
k=1 wk · SF,k

µF,G+1 =

{
meanWL(SF ), if SF 6= ∅

µF,G, otherwise

(6)





wk =
1fj∑|SCr |
k=1 1fj

1fj = f (Xj,G) − f (Uj,G)

meanWL(SCr ) =
∑|SCr |

k=1 wk · S2Cr,k∑|SCr |
k=1 wk · SCr,k

µCr,k,G+1 =

{
meanWL(SCr ), if SCr 6= ∅

µCr,k,G, otherwise

Cri =

{
0, if µCr,ri = 0;
randni(µCr,ri , 0.1) otherwise

(7)

where |SF | denotes the size of set SF , |SCr | denotes the size
of set SCr . Both SF and SCr also denote the sets of the corre-

sponding control parameter F and Cr of success individuals.
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1fk denotes the fitness difference of the k th individual in

the success individual set, moreover, the k th individual in

the success individual set is also associated with a jth index

of the whole population in the Gth generation. ri denotes a

random index of the H -entry pool, and if µCr,ri of the r
th
i

entry equals to zero, then the crossover rate Cr of the ith

individual is always locked to 0 during the evolution, which

means forcing the ith individual searching toward a certain

coordinate direction each generation, and this setting usually

performs better on some multi-modal functions.

LSHADE algorithm also incorporated a linear population

size reduction scheme for the adaptation of control parameter

ps. The dynamic change of ps is presented in Eq. 8:

psG=




round[

psmin−psini
nfemax

· nfe+psini], if G > 1

psini, otherwise

(8)

where psini denotes the initial population size, psmin denotes

the minimum population size, nfemax denotes the maximum

number of function evaluations, and nfe denotes the current

number of function evaluations, round[·] means the ‘‘round

to the nearest integer’’ operation. Obviously, we can see that

the population size decreases from psini to psmin during the

evolution, accordingly, the size of the external archive A is

decreased adaptively according to population size ps, and

always satisfying the following equation:

|A| = rarc · psG (9)

where |A| denotes the size of the external archive, rarc denotes
a constant ratio of the external archive size to population size,

and psG denotes the population size of the Gth generation.

C. iLSHADE

The iLSHADE algorithm [6] is a further extension of the

LSHADE algorithm, five small modifications are involved

in it, and these modifications are usually beneficial to tackle

multi-modal optimization problems. For the first modifica-

tion, a largerµCr value and smaller ps value,µCr = 0.8, ps =
12 · D, are employed in iLSHADE algorithm at the initial

stage; Second, the control parameter pair in the H th entry

of the entry pool of iLSHADE is set constant value, µF =
µCr = 0.9, during the whole evolution. Third, if a terminal

value or a negative value of µCr is selected from the entry

pool, then the corresponding Cr value of the individual is set

to zero. Fourth, the adaptation schemes for control parameter

µF andµCr are changed to new schemes shown in Eq. 10 and

Eq. 11 respectively:




wk =
1fj∑|SF |
k=1 1fj

1fj = f (Xj,G) − f (Uj,G)

meanWL(SF ) =
∑|SF |

k=1 wk · S2F,k∑|SF |
k=1 wk · SF,k

µF,k,G+1 =
{
(meanWL(SF )+µF,k,G+1)/2, if SF 6=∅

µF,k,G, otherwise
(10)





wk =
1fj∑|SCr |
k=1 1fj

1fj = f (Xj,G) − f (Uj,G)

meanWL(SCr ) =
∑|SCr |

k=1 wk · S2Cr,k∑|SCr |
k=1 wk · SCr,k

µCr,k,G+1 =





(meanWL(SCr ) + µCr,k,G+1)/2,

if SCr 6= ∅

µCr,k,G, otherwise

Cri =

{
0, if µCr,ri = 0;
randni(µCr,ri , 0.1) otherwise

(11)

where the same symbols have the same meanings as the ones

in LSHADE algorithm. Furthermore, the generated control

parameters Cr and F of each individual of the population are

also conducted a readjustment according to Eq. 12 and Eq. 13.

Fi,G =





min(Fi,G, 0.7), if nfe < 0.25 · nfemax

min(Fi,G, 0.8), if nfe < 0.5 · nfemax

min(Fi,G, 0.9), if nfe < 0.75 · nfemax

(12)

Cri,G =

{
max(Cri,G, 0.5), if nfe < 0.25 · nfemax

max(Cri,G, 0.25), if nfe < 0.5 · nfemax

(13)

where nfe denotes the number of function evaluations in the

current generation, nfemax denotes the maximum number of

function evaluations allowed during the evolution. The last

modification is that instead of employing a constant p value

that specifies the top 100p% superior individuals, iLSHADE

algorithm employs a dynamic changed p value with the

renewing scheme shown in Eq. 14:

p =
pmax − pmin

nfemax
· nfe+ pmin (14)

where pmax is the initial value of parameter p, pmax = 0.2,

and pmin is the terminal value of parameter p, pmin = 0.1.

D. jSO

The jSO algorithm [7] is actually an improved iLSHADE

algorithm by incorporating a new inertia weight into the

mutation strategy as well as incorporating some modifica-

tions of the control parameters. The modified mutation strat-

egy in jSO is presented in the following equation:

Vi,G=Xi,G+Fw · F · (Xpbest,G − Xi,G)+F · (Xr1,G − X̃r2,G)

(15)

where same symbols have the same meaning as the ones in

Eq. 3 except for the new symbol Fw. Here in Eq. 15, Fw
denotes a new incorporated inertia weight and it satisfies:

Fw =





0.7, if nfe < 0.2 · nfemax

0.8, if 0.2 ≤ nfe < 0.4 · nfemax

1.2. otherwise

(16)

Furthermore, the generated control parameters F and Cr

of each individual in the population are also conducted a
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readjustment according to Eq. 17 and Eq. 18 respectively

during the evolution.

F =

{
F, if F < 0.7&nfe < 0.6nfemax

0.7 otherwise
(17)

Cr =





0.7. if Cr < 0.7&nfe < 0.25nfemax

0.6, if Cr < 0.6&0.25nfemax ≤ nfe < 0.5nfemax

Cr, otherwise

(18)

Besides control parameter adaptation schemes and mutation

strategy, there is still an extra difference lying in the ini-

tialization stage of the jSO in comparison with iLSHADE

algorithm. This difference can be named of initialization dif-

ference, and the initial parameters ps, µF , pmax and pmin are

recommended to be set values as follows: ps = 25log(D)
√
D,

µF = 0.3, pmax = 0.25 and pmin = pmax

2
.

E. LPALMDE

The LPALMDE algorithm [23] can be considered as an

improved LSHADE algorithm, both the mutation strategy

and the adaptation schemes for control parameters were all

enhanced with advantages in LSHADE and jSO incorporated

into it. For the mutation strategy in LPALMDE algorithm,

a time stamp based external archive was advanced with the

equation shown in Eq. 19:

Vi,G=Xi,G+F · (Xpbest,G−Xi,G)+F · (Xr1,G−X̂r2,G) (19)

The same symbols in the above equation has the same mean-

ings as the ones in Eq. 3. Moreover, symbol X̂r2,G is different

from X̃r2,G as X̂r2,G is selected from a different union P ∪ Â,

and Â denotes the time stamp based external archive while

X̃r2,G is selected from union P∪A where A denotes the exter-

nal archive without time stamp mechanism. The time based

mechanism avoids too old inferior solutions being archive

residents during the whole evolution, furthermore, it achieves

a dynamic change from the mutation strategy with external

archive to mutation strategy without archive.

For the adaptation schemes of control parameters, a Param-

eters with Adaptive Learning Mechanism (PALM mecha-

nism)was introduced in LPALMDE algorithm. Both the scale

factor F and crossover rate Cr were updated according to the

PALM mechanism in which a new grouping strategy based

adaptation was proposed. By separating the control param-

eters into different groups, all the three control parameters

including F , Cr and pswere updated in independent manners

which tackled the misleading interaction among parameters.

The adaptation scheme for population size ps in LPALMDE

algorithm is the same as LSHADE algorithm with the adap-

tation scheme shown in Eq. 8, the adaptation schemes for F

and Cr were new introduced ones with the equation shown in

Eq. 20 and Eq. 21 respectively.




S =
⋃k

j=1 SFj

wn =
1fn∑|S|
n=1 1fn

meanWL(S) =
∑|S|

n=1 wn · S2n∑|S|
n=1 wn · Sn

Fj =

{
meanWL(S), if S 6= ∅

Fj otherwise,
j ∈ [1, k].

(20)





rj =





ns2j

nSucc · (nsj + nfj)
, if nsj > 0,

ǫ, otherwise.

P(j) =
rj∑k
j=1(rj)

.

µCr =
∑k

j=1(P(j) · Cr2j )∑k
j=1(P(j) · Crj)

(21)

where S denotes the scale factor set of success individuals

in all groups while SFj denotes the scale factor set of success

individuals in the jth group;1fn denotes the fitness difference

of the nth individual in set S;meanWL(S) denotes the weighted

Lehmer mean of set S, Fj denotes the location parameter of

a Cauchy distribution for the scale factor in the jth group; nsj
and nfj denote the number of success and failure individuals

in the jth group and nSucc denotes the number of success

individuals in the population. Moreover, a new parameter

called selection probability of groupsP(·) was also introduced
in the LPALMDE algorithm, and this parameter was also

employed in the adaptation of crossover rate Cr and updated

adaptively during the evolution.

To summarize, the external archive based mutation strat-

egy and the fitness difference f (Ui,G − f (Xi,G) based

parameter adaptation schemes are empirically very useful

in the enhancement of DE algorithm. Consequently, these

two advantages are also inherited into our new HARD-DE

algorithm.

III. THE PROPOSED HARD-DE ALGORITHM

In this section, we give a thorough description of the new

proposed HARD-DE algorithm. The description of the whole

algorithm is separated into three parts: in the first part,

the hierarchical archive based trial vector generation strat-

egy with depth information of evolution is given in detail;

In the second part, the novel control parameter adapta-

tion schemes with grouping strategy both for scale factor

F and for crossover rate Cr are clearly illustrated; In the

third part, novel parabolic population size reduction schemes

including three different approaches are presented, moreover,

the default HARD-DE algorithm is also defined.

A. HIERARCHICAL ARCHIVE BASED MUTATION

STRATEGY WITH DEPTH INFORMATION

As is known to all that trial vector generation strategy signif-

icantly affects the overall optimization performance of DE
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variants. The strategy DE/target-to-pbest/1/bin proposed in

JADE [43] made a big success and recent state-of-the-art

DE variants, e.g. LSHADE [39], iLSHADE [6], jSO [7],

LPALMDE [23] and QUATRE-EAR [21] etc., all employed

the same or similar trial vector generation strategy as JADE

algorithm. However, this trial vector generation strategy still

has someweaknesses which can be found in papers [21], [23].

Here we mainly focus on a new weakness, the ignored depth

information of the evolution in DE/target-to-pbest/1/bin.

The depth information of a Kinect frame is about the

distance between the sensor and the object, the depth infor-

mation of a multi-layer neural network is about the data trans-

formed during a number of layers. Here the depth information

of evolution in HARD-DE algorithm is about the linkage of

more than three different generation of populations, and the

linkage reflecting depth information is incorporated into the

mutation strategy, and it is implemented by a hierarchical

external archive. The proposed hierarchical archive based

mutation strategy with depth information is given in Eq. 22:

Vi,G = Xi,G + F · (Xpbest,G − Xi,G)

+F1 · (Xr1,G − X̃r2,G) + F2 · (Xr1,G − X̃r3,G) (22)

where same symbols have the same meanings as the ones

in Eq. 3 of JADE algorithm. The new symbol X̃r3,G here

denotes a randomly selected vector from the union P ∪ B

while X̃r2,G still denotes a randomly selected vector from

the union P ∪ A, where P denotes the current population of

individuals, A denotes the inferior solutions stored in the first

level storage of the hierarchical archive and B denotes the

former generations of individuals stored in the second level

storage of the hierarchical archive. Actually, A mainly stores

inferior solutions generated in the recent passed generations

while B stores solutions of the population in several former

generations. The indices r1 and r2 in each generation are

the same as JADE algorithm, and the index r3 is randomly

chosen from the union P∪B by employing random selection

with restriction [28], [31] referring to r1 and r2. Moreover,

the relationship among the three scale factors F , F1 and F2
satisfy the following equation:

{
F1 = 0.9 · F
F2 = 0.7 · F

(23)

The hierarchical archive can be easily established with-

out much computation expense, and it is initialized empty

at the beginning of the evolution. Then in each generation

during the evolution, the discarded inferior solutions from

the current population are inserted into the first-level storage

and the individuals in current population are inserted into the

second-level storage of the hierarchical archive respectively.

The fixed maximum size of the first-level storage in the

hierarchical archive is the same as population size, the fixed

maximum size of the second-level storage is several times

bigger than population size. Here we use ps · rarc to denote

the maximum size of the second-level storage of the external

archive, rhar is the amplification factor, and its default setting

is rhar = 3. When the number of solutions exceeds either

the fixed maximum of first-level storage or the second level

storage in hierarchical archive, readjustment of the solutions

in the corresponding storage is activated and then some of

the solutions are randomly removed from the storage to keep

the total number of solutions equaling to the fixed maximum

size of the storage, the readjustment scheme is the same as

that in JADE algorithm. The hierarchical external archive in

HARD-DE algorithm is illustrated in Fig. 2.

FIGURE 2. The storage in the hierarchical external archive in HARD-DE
algorithm.

B. CONTROL PARAMETERS ADAPTATION

SCHEMES FOR F AND Cr

In this part, the adaptation schemes of all the three control

parameters F , Cr and ps in the novel HARD-DE algorithm

are clearly presented. Besides incorporating abovementioned

advantages in Section II, this part also introduced a novel

adaptation scheme for crossover rate Cr with grouping strat-

egy, and also introduced a novel parabolic population size

reduction scheme. As is known to all that DE variants belong

to probabilistic evolutionary algorithms. Due to the proba-

bilistic nature, a better solution can be found by a good F

and a bad Cr and vice versa in DE variants, e.g. JADE,

LSHADE, iLSHADE and jSO etc., then the bad parameter

would bemistaken for a good onewhichmay consequently be

propagated into next generation [23]. LPALMDE algorithm

pointed out this weakness, named it misleading interaction

weakness among control parameters, and tackled this weak-

ness by separating these control parameters into different

groups and then updated them independently during the evo-

lution. However, the update scheme of Cr in LPALMDE

algorithm was heavily dependent on the number of individu-

als in each group, which may fall into a bad adaptation of Cr

when population size became relative small in a population

size reduction scheme.

Here in the HARD-DE algorithm, there are k groups main-

tained during the whole evolution, the grouping strategy of

the population is depicted in Fig. 3. From the figure we

can see that each group is associated with two parameters,

control parameter µCr and selection probability P(·). The
control parameter µCr denotes the mean value of a normal

distribution that the crossover rate parameter of individuals

obey and the initial µCr values for all the groups are the

same, µCr1 = µCr2 = ... = µCrj = ... = µCrk = 0.8.
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FIGURE 3. Classification of individuals in groups and group parameters
illustration in HARD-DE algorithm.

Algorithm 1 Pseudo Code of Stochastic Universal Selec-

tion

Input: Population size ps and selection probability of

each group P(·) = (P(1),P(2), ...,P(k));

Output: The group indices that the individuals are

categorized into;

Initialization space = 1
ps
, rnd = rand(),

rndn = (rnd : 1 : ps) × space, sumP = 0,

label = zeros(ps, 1), index = zeros(ps, 1);

for j = 1; j ≤ k; j+ + do

sumP = sumP+ P(j);

nlabel records binary inverted label value.

label = nlabel&(rndn < sumP)′;
index = index + label × j;

label = label|index;
index = index(randperm(ps));

return index;

The selection probability P(·) denotes the possibility that a

certain individual of the population is categorized into the

group, and the initial values of the k probabilities are also

equal, P(1) = P(2) = ... = P(j) = ... = P(k) = 1
k
. Then,

all individuals of the population in each generation can be

separated into the k groups by employing stochastic universal

selection in Algorithm 1. Accordingly, control parameter Cr

of the ith individual that categorized into the jth group can be

generated according to Eq. 24. Moreover, if the generated Cri
value is out of the interval [0, 1], then it should be truncated

to be the nearest bound, 0 or 1.

Cri =

{
Ni(µCrj , 0.1). if µCrj > 0

0. otherwise
(24)

Scale factor F of each individual in the population obeys

Cauchy distribution, F ∼ C(µF , σF ), where µF denotes

the location parameter of the Cauchy distribution that all

scale factors obey, and σF denotes the scale parameter of

the Cauchy distribution. The initial value of µF is set to

µF = 0.3, and σF is set a constant value during the whole

evolution, σF = 0.1. Then, the ith individual in the population

can be generated according to Fi ∼ C(µF , σF ). Furthermore,

if the generated Fi value is outside the interval (0, 1], it should

be readjusted according to Eq. 25:

Fi =





Ci(µF , σF ), while Fi ≤ 0

1, if Fi > 1

Fi, otherwise

(25)

All the parameters µF , µCrj and P(j), j ∈ {1, 2, ..., k}
are renewed adaptively during the evolution in the proposed

HARD-DE algorithm, and we present some notations first

before the illustration of these adaptation schemes. If a better

solution is found by the trial vector which is generated accord-

ing to the above mentioned control parameters and mutation

strategy, a success sign ‘s’ is labeled on the individual, oth-

erwise a failure sign ‘f’ is labeled on it. Moreover, the set of

all ‘s’ individuals is denoted by S (S only stores the indices

of the ‘s’ individuals in the population), the set of the control

parameter Cr values of the ‘s’ individuals is denoted by SCr ,

and the set of control parameterF values of the ‘s’ individuals

is denoted by SF . Obviously, the three sets have the same

size and elements with the same index of these sets are about

the same individual, therefore, we use the same variable s to

index the three sets. Then the adaptation scheme of µF can

be renewed according to the following Eq. 26:




ws =
1fSs∑|SF |
s=1 1fSs

1fi = f (Xi,G) − f (Ui,G)

meanWL(SF ) =
∑|SF |

s=1 ws · S2F∑|SF |
s=1 ws · SF

µF,G+1 =

{
meanWL(SF ), if SF 6= ∅

µF,G, otherwise

(26)

where Ss denotes the index of a certain ‘s’ individual in

the population, 1fi denotes the fitness difference of the ith

individual, ws denotes the weight of control parameter F ,

and meanWL(SF ) denotes the weighted Lehmer means. In the

adaptation of control parameter µCr , only the group with

lowest selection probability is renewed in each generation.

Therefore, the selection probability of each group should be

renewed first before the update of control parameterµCr . The

update scheme of selection probability is presented in Eq. 27:




rj =





ns2j

ns · (nsj + nfj)
, if nsj > 0,

ǫ, otherwise.

ns =
k∑

j=1

nsj,

P(j) =
rj∑k
j=1(rj)

.

(27)

where nsj and nfj denote the number of ‘s’ individuals and ‘f’

individuals in the jth group respectively while ns denotes the

number of ‘s’ individuals in the population. ǫ is assigned a

small value, e.g. ǫ = 0.01, which is used to avoid possible

null values of probability. After the selection probability of

all groups are renewed, we can find the index idx of the
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FIGURE 4. Illustration of adaptation schemes for crossover rate Cr and scale factor F in HARD-DE algorithm.

group with smallest selection probability. If there are more

than one index, idx will be assigned a random index from

these indices. Then the parameter µCr in the idx-group is

to renewed according to Eq. 28. Fig. 4 illustrates the novel

adaptation schemes both for crossover rate Cr and for the

scale factor F in the HARD-DE algorithm in detail.





ws =
1fs∑|SCr |
s=1 1fs

1fi = f (Xi,G) − f (Ui,G)

meanWL(SCr ) =
∑|SCr |

s=1 ws · S2Cr (s)∑|SCr |
s=1 ws · SCr (s)

µCridx ,G+1 =





meanWL(SCr ), if SCr 6=∅&max{SCr }>0

0, if SCr 6=∅&µCridx ,G=0

µCridx ,G. otherwise

Cri =

{
randni(µCridx , 0.1), if µCridx > 0;
0. otherwise

(28)

C. PARABOLIC POPULATION SIZE REDUCTION SCHEME

In this part, the novel parabolic population size reduction

scheme employed in HARD-DE algorithm is introduced.

Empirically, the quick reduction of population size at the

beginning of the evolution usually leads to a bad percep-

tion of the landscape of most objective functions. There-

fore, we proposed a parabolic population size reduction

scheme in the paper to slow down the decrease of population

size at the beginning of the evolution. Generally, there are

two points [psini, psini] and [nfemax , psmin] that the parabola

should pass through, therefore, if we take one of the point

as the convex, then the two different parabolas can be illus-

trated in Fig. 5. We adopt the convex downward parabolic

FIGURE 5. Illustration of the population size reduction schemes between
the novel parabolic approach and linear approach.

population reduction scheme in the HARD-DE algorithm

because population size decreases slowly at the beginning of

the evolution in this approach. The detailed equation of this

approach is given in Eq. 29:

psG+1 = round[
psmin − psini

(nfemax − psini)2
· (nfe− psini)

2 + psini]

(29)

where psmin and psini denote the minimum and initial value

of population size, nfe and nfemax denote the current number

of function evaluation and maximum number of function

evaluation respectively, round[·] denotes rounding to the

nearest value operation. As it is known to all that when fixed

maximum number of function evaluation is employed in the

evaluation of algorithms, the slower decrease of population

size at the beginning of the evolutionmeans fewer generations

of the evolution, which may result in bad optimization perfor-

mance in some multi-modal benchmark functions, and this is
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Algorithm 2 Pseudo Code of HARD-DE Algorithm

Input: Bound constraints [RDmin,R
D
max], the fixed

maximum number of function evaluations nfemax,

benchmark functions f (X);

Output: Best fitness value f (Xgbest ), best individual

Xgbest , number of function evaluations nfe;

Initialize the population size ps = psini, all individuals

X = {X1,X2, ...,Xps}, k = 4, A = ∅, µF = 0.3,

µCr1 = µCr2 ... = µCrk = µCr = 0.8, p = 0.11,

rarc = 3, P(1) = P(2) = ... = P(k) = 1
k
, G = 1;

for i = 1; i ≤ ps; i+ + do

Xi,G = Xi, calculate fitness value f (Xi,G);

Label the global best Xgbest,G;

Calculate the corresponding fitness value f (Xgbest,G);

nfe = ps, G = 2;

while nfe ≤ nfemax do

for i = 1; j ≤ ps; i+ + do

Generate X
p
best,G, Xr1,G, X̃r2,G and X̃r3,G;

if G > 2 then

Adjust the individuals of the population;

Adjust storage A and B according to Eq. 32;

Categorize ps individuals into k-groups by stochastic

universal selection in Algorithm 1;

for j = 1; j ≤ k; j+ + do

Generate F and Cr of individuals in the jth

group: F ∼ C(µF , 0.1), Cr ∼ N (µCrj , 0.1);

Readjust F and Cr into the bound constraints if

necessary;

for i = 1; i ≤ ps; i+ + do

Generate Xr1,G, Xr2,G and Xr3,G;

Generate donor vector Vi,G and trial vector Ui,G;

Calculate fitness value f (Ui,G);

nfe = nfe+ ps;

for i = 1; i ≤ ps; i+ + do

if f (Ui,G) ≤ f (Xi,G) then

Xi,G+1 = Ui,G;

else

Xi,G+1 = Xi,G;

if SF 6= ∅ then

Update µF according to Eq. 26;

Update P(1),P(2), ...,P(k) according to Eq. 27;

Update µCridx according to Eq. 28;

G+ +;

Update storage A and B;

Label Xgbest,G and the corresponding f (Xgbest,G);

Adjust population size according to Eq. 29;

f (Xgbest ) = f (Xgbest,G),Xgbest = Xgbest,G;

return f (Xgbest ), Xgbest , and nfe;

a dilemma. Here in the paper, we also presented a pivot based

reduction approach to balance the above mentioned dilemma.

The introduced pivot pt is defined in this form: pt = (x, y),

where x denotes the current number of function evaluations

and y denotes the current population size, then the population

size reduction scheme can be changed to Eq. 30:

psG+1 =





ceil[
y− psini

(x − psini)2
· (nfe− psini)

2 + psini],

if nfe ≤ x

floor[
y− psini

(x − psmin)
· (nfe− nfemax) + psmin].

otherwise

(30)

which can be considered as a combined parabolic-linear pop-

ulation size reduction scheme. When pt = [nfemax, psmin],

the pivot based population size reduction scheme is degraded

into the parabolic population size reduction scheme and when

pt = [psini, psini], the pivot based population size reduction

scheme is degraded into the linear population size reduction

scheme. Here we use ‘‘HARD-DE-Para’’ and ‘‘HARD-DE-

Linear’’ to denote the parabolic population size reduction

scheme and the linear population size reduction scheme

respectively. Furthermore, the mutation strategy proposed in

this paper, shown in Eq. 22, has a better perception of the

landscape as a whole while mutation strategy in JADE algo-

rithm, shown in Eq. 3, has a better exploitation characteristic

and performed very well especially on some multi-modal

functions. Therefore, we further extends the pivot based pop-

ulation size reduction scheme in Eq. 30 by employing two

different mutation strategies which are listed as follows:

Vi,G =

{
According to Eq. 22, if nfe ≤ x

According to Eq. 3, otherwise
(31)

‘‘HARD-DE-Pivot’’ is used in denoting this approach, and it

is also taken as the default trial vector generation strategywith

pt = [2/3 · nfemax, 1/3 · psini] in HARD-DE algorithm. The

initial values of F and Cr for the second mutation strategy

are F = 0.6, Cr = 0.8, and they are also renewed adap-

tively according to Eq. 26 and Eq. 28 respectively. Moreover,

the size of the first level storage and the second level storage

in the hierarchical external archive is also changed adaptively

according to the decrease of population size. The size of the

first level storage and the size of the second level storage

satisfies the following equation during the evolution:
{

|A| = psG

|B| = rarc · psG
(32)

where |A| and |B| denote the size of the first and second

storage of the hierarchical external archive, rarc denotes the

ratio of external archive size to population size, and psG
denotes the current population size. The pseudo code of the

HARD-DE is presented in Algorithm 2.

IV. EXPERIMENT ANALYSIS OF HARD-DE ALGORITHM

A. EXPERIMENT ENVIRONMENT DESCRIPTION

In this section 58 benchmarks from the CEC2013,

CEC2017 test suites and 2 benchmarks from CEC2011 test
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TABLE 1. Minimum, Median, Mean/Std of fitness error 1f ∗ over 51 runs under each benchmark on 30-D optimization are presented here for
comparisons. ‘‘>’’, ‘‘=’’ and ‘‘<’’ denote better performance, similar performance and worse performance in comparison with the default HARD-DE
algorithm (HARD-DE-Pivot).
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TABLE 2. Recommended Parameter settings of all these contrasted algorithms.

suite are employed in verifying the proposed HARD-DE

algorithm. Generally, there are several commonly used CEC

test suites for real-parameter single objective optimization,

e.g. CEC2005 test suite, CEC2013 test suite, CEC2014 test

suite and CEC2017 test suite. Only one test suite for algo-

rithm verification may have over-fitting problem, therefore,

the paper suggests to use more than one test suites for

algorithm comparison. Moreover, the reason why we adopt

CEC2013 and CEC2017 test suites is that CEC2013 fur-

ther enhances the eight year ago CEC2005 test suite and

CEC2017 test suite is directly improved from CEC2014 test

suite rather than CEC2013 test suite. Therefore, our test suite

contains the benchmarks both from CEC2013 and CEC2017,

and benchmarks in CEC2013 test suite are mapped into

our test suite and labeled as fa1–fa28 while benchmarks

in CEC2017 test suite are mapped into our test suite and

labeled as fb1–fb30. Finally, we also employed two real-world

benchmarks from CEC2011 test suite in the verification of

the proposed HARD-DE, the first real-world problem is

parameter estimation for frequency-modulated (FM) sound

waves, and the second problem is spread spectrum radar

polly phrase code design. The two real-world benchmarks

are denoted as fc1 and fc2 herein the paper.

All the experiments were conducted on RedHat Linux

Enterprise Edition 5.5 x64 Operating System of a PC with

Intel(R) Core(TM) i5−4590CPU@3.3Hz. The implementa-

tion of all the contrasted algorithms were underMatlab 2011b

Unix version. 51 runs were conducted on each benchmark

and the fitness error 1f ∗ = f − f ∗ (f was the fitness value

obtained by an algorithm under a benchmark function and f ∗

was the optimal value of the benchmark) was collected of the

total 51 runs for experiment analysis. Values that is smaller

than eps, eps = 2.220446e-016, was considered as zeros in

the analysis.

B. ANALYSIS OF DIFFERENT POPULATION SIZE

REDUCTION SCHEMES

In this part, CEC2013 test suites for real-parameter single-

objective optimization benchmarks are employed in ana-

lyzing the above mentioned three different population size

reduction schemes, including the HARD-DE-Para, HARD-

DE-Linear, and HARD-DE-Pivot (the default HARD-DE

algorithm). The ‘‘Minimum’’ (also the best), ‘‘Median’’,

‘‘Mean and Standard Deviation’’ of fitness error 1f ∗ over

51 runs on each benchmark are contrasted in Table 1 with

the maximum number of function evaluation equaling to

10000 · D. Symbols ‘‘>’’, ‘‘=’’ and ‘‘<’’ in the parentheses

behind the values denote ‘‘Better Performance’’, ‘‘Similar

Performance’’ and ‘‘Worse Performance’’ respectively. The

‘‘Minimum’’ and ‘‘Median’’ values are measured by their

arithmetic values with the rule ‘‘the smaller the better’’

while the ‘‘Mean/Std’’ values are measured underWilcoxon’s

signed rank test with a level of significant α = 0.05.

From the table we can see that HARD-DE-Para algorithm

performs best of the three on the unimodal benchmarks

of CEC2013 test suite; the default HARD-DE algorithm

(HARD-DE-Pivot algorithm) obtains ‘‘Better Performance’’

on many basic multi-modal benchmarks (most of the bench-

marks from f8 to f20) of CEC2013 test suite; Both HARD-

DE-Linear and HARD-DE-Para obtain better or at least

similar performance in comparison with the default HARD-

DE algorithm on some of the composition functions, e.g.

f24–f28. Generally, the default HARD-DE algorithm

reveals an overall better performance in comparison with

HARD-DE-Linear and HARD-DE-Para from ‘‘Minimum’’,

‘‘Median’’ and ‘‘Mean/Std’’ perspective of view.

C. PARAMETER SETTINGS OF THE CONTRASTED

ALGORITHMS

Here in this part, several former state-of-the-art DE vari-

ants including JADE [43], LSHADE [39], iLSHADE [6],

jSO [7] and LPALMDE [23] are contrasted with the new pro-

posed HARD-DE algorithm. All these contrasted DE variants

employ the default parameter settings, and these are sum-

marized as follows: In JADE, scale factor F and crossover

rate Cr obey semi-fixed Cauchy distribution and semi-fixed

Normal distribution, F ∼ C(µF , σF ) and Cr ∼ N (µCr , σCr )

respectively. The initial µF and µCr is set to µF = µCr =
0.5, and they are dynamically renewed during the evolution.

σF , σCr , the population size ps, the ratio of top superior indi-

viduals p and the balance parameter c are all fixed constants,

σF = σCr = 0.1, ps = 100, p = 0.05, and c = 0.1, during the

whole evolution. In LSHADE algorithm, parameters F and

Cr are obeyed the same distribution and initialized the same

values as JADE, moreover, a linear population size reduc-

tion is employed and the population size dynamic decreased

from psini, psini = 18 · D, to the fixed minimum psmin,

psmin = 4. Moreover, historical success values of µF and

µCr are recorded in a H -entry pool, H = 6, a larger p

defining the ratio of top superior individuals and a bigger rarc

defining the factor of external archive are employed in the

algorithm, p = 0.11 and rarc = 2.6. In iLSHADE algorithm,
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the same settings of µF and µCr in the first H − 1 entries

are employed except for the initial value ofµF in comparison

with LSHADE algorithm, and a larger initialµF is used in the

firstH−1 entries,µF = 0.8. The initial values ofµF andµCr

in the last entry are set fixed constant values, µFH = µCrH =
0.9, which are different from LSHADE algorithm. The same

population size reduction scheme is employed in iLSHADE,

but with a smaller initial value, psini = 12 ·D, in comparison

with LSHADE algorithm. Furthermore, instead of employing

fixed ratio p in LSHADE algorithm, the iLSHADE algorithm

employed a dynamic decreased ratio p, from 0.2 to 0.1, during

the evolution. For jSO, the distribution of control parameters

µF and µCr and the archive factor rarc are also the same

as LSHADE algorithm though the initial values of µF and

µCr are different, a bigger µF and a smaller µCr are used

in the initialization, µF = 0.3, µCr = 0.8. Moreover,

a smaller H ,psini and a different decreasing interval of p are

employed in jSO algorithm, H = 5, psini = 25 · logD
√
D

and p ∈ [0.25, 0.125]. For the LPALMDE algorithm, control

parameters F and Cr also obey semi-fixed distributions, F ∼
C(µF , 0.2), Cr ∼ N (µCr , 0.1) and the initial values of µF

and µCr are equal, µF = µCr = 0.5. Group number k is set

a constant value, k = 8, and population size is dynamically

decreased from psini = 23 · D to psmin = k . The ratio of

top superior individuals p is set constant value, p = 0.11,

which is the same as LSHADE algorithm. The new parameter

time stamp T0 in LPALMDE algorithm is also set a constant

value, T0 = 70. The factor of the external archive rarc is

different from the one in LSHADE algorithm, rarc = 1.6. For

the proposed HARD algorithm, control parameters F and Cr

obey the same distribution as LSHADE, however, the initial

values ofµF andµCr are different from the ones in LSHADE,

a smaller µF and a bigger µCr , µF = 0.3, µCr = 0.8, are

employed in the HARD-DE algorithm. Moreover, the setting

of parameter p is the same as LSHADE algorithm, p = 0.11,

the initial population size is same as jSO, ps = 25log(D)
√
D,

and the number of groups in HARD-DE algorithm is different

from that in LPALMDE, a smaller group number, H = 4

is employed in HARD-DE algorithm. All these settings are

listed in Table 2.

D. OPTIMIZATION PERFORMANCE EVALUATION UNDER

BENCHMARKS FOR NUMERICAL OPTIMIZATION

The comparison results of the algorithms mentioned in last

subsection are presented here. There are two parts in the

comparison: in the first part, all these algorithms are evaluated

under CEC2013 test suite; In the second part, the HARD-DE

is also contrasted with the jSO algorithm which secured the

first rank of the CEC2017 competition. Therefore, the first

part comparison is conducted on fa1–fa28 benchmarks of

our test suite on 10-D and 30-D optimization respectively.

Table 3 and Table 4 present the mean/std (mean value and

the corresponding standard deviation) of fitness error over the

51 runs on 10D and 30D optimization respectively. Symbols

‘‘>’’, ‘‘=’’ and ‘‘<’’ in the parentheses behind the mean/std

pair denote ‘‘Better Performance’’, ‘‘Similar Performance’’

TABLE 3. Mean/std fitness error 1f ∗
= f − f ∗ comparison on 10D

optimization among JADE, LSHADE, iLSHADE, jSO, LPALMDE and HARD-DE
is presented here. The results are calculated under 51 independent runs
with the fixed maximum number of function evaluations nfemax equaling
to 10000 · D. The overall performance (>, = or <) of each algorithm is
measured under Wilcoxon’s signed rank test with the significant level
α = 0.05 in comparison with the new proposed HARD-DE. The bottom
line summarized the overall performance on the 28 benchmarks.

and ‘‘Worse Performance’’ respectively, all of which are

measured under Wilcoxon’s signed rank test with a level of

significant α = 0.05.
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TABLE 4. Mean/std fitness error 1f = f − f ∗ comparison on 30D
optimization among JADE, LSHADE, iLSHADE, jSO, LPALMDE and HARD-DE
is presented here. The results are calculated under 51 independent runs
with the fixed maximum number of function evaluations nfemax equaling
to 10000D. The overall performance of each algorithm is measured under
Wilcoxon’s signed rank test with the significant level α = 0.05 in
comparison with the new proposed HARD-DE.

For 10D optimization with the results shown in Table 3,

we can see that all the six DE variants perform equally well

on most of the unimodal functions including fa1, fa2, fa4 and

TABLE 5. Mean/std fitness error 1f = f − f ∗ comparison on 50D
optimization among JADE, LSHADE, iLSHADE, jSO, LPALMDE and HARD-DE
is presented here. The results are calculated under 51 independent runs
with the fixed maximum number of function evaluations nfemax equaling
to 10000D. The overall performance of each algorithm is measured under
Wilcoxon’s signed rank test with the significant level α = 0.05 in
comparison with the new proposed HARD-DE.

fa5, and they can always find the global optima on them each

run. JADE, LSHADE, jSO and LPALMDE outperform other

DE variants on benchmark fa11, and they can always find the
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FIGURE 6. Here presents the convergence speed comparison by employing the median value of 51 runs obtained by each
algorithm on 30-D optimization. There are total 28 comparison figures and the first 6 figures are presented here. (a) f1. (b) f2.
(c) f3. (d) f4. (e) f5. (f) f6.

global optima each run. The proposed HARD-DE algorithm

outperforms other DE variants on benchmark fa6, on which

other DE variants often converged into some local optima.

Furthermore, the proposed HARD-DE algorithm reveals

19 better performances and 5 similar performances out of

28 benchmarks in comparison with JADE algorithm; it also

reveals 12 better performances and 6 similar performances

in comparison with LSHADE algorithm; reveals 13 better

performances and 5 similar performances in comparison with

iLSHADE algorithm; reveals 12 better performances and

6 similar performances in comparison with jSO algorithm;

reveals 12 better performance and 6 similar performances in

comparison with LPALMDE algorithm. In a word, the new

proposed HARD-DE algorithm secures an overall better
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FIGURE 7. Continued from Fig. 6, comparisons on f7–f12 are presented here. (a) f7. (b) f8. (c) f9. (d) f10. (e) f11. (f) f12.

performance on 10D optimization under the tested bench-

mark functions.

For 30D optimization with the results shown in Table 4,

we can see that all the six DE variants perform equally

well on f1, f5, f28. The JADE algorithm outperforms other

DE variants on f11, and it can also find the global optima

during each run. The jSO algorithm and the HARD-DE

algorithm outperform other DE variants on benchmark f10,

and they can find the global optima during each run as

well. Moreover, the proposed HARD-DE algorithm obtains

22 better performances and 4 similar performances out of

28 benchmarks in comparison with JADE algorithm; it also

obtains 15 better performances and 5 similar performances

in comparison with LSHADE algorithm; obtains 13 better

performances and 6 similar performances in comparison with

iLSHADE algorithm, 17 better performances and 5 similar

performances in comparison with jSO algorithm, 19 bet-

ter performances and 4 similar performances in compari-

son with LPALMDE algorithm. In a word, the proposed

HARD-DE algorithm secures an overall much better per-

formance on 30D optimization under the tested benchmark

functions.
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FIGURE 8. Continued from Fig. 7, comparisons on f13–f18 are presented here. (a) f13. (b) f14. (c) f15. (d) f16. (e) f17. (f) f18.

For 50D optimization with the results shown in Table 5,

we also can see that all the DE variants except JADE perform

equally well on f6 and f28. The JADE algorithm outperforms

the other DE variants on f11, and it also obtains the same best

performance as HARD-DE algorithm on f17. The LSHADE

algorithm outperforms the other DE variants on f1, f4, f12, f13
and f20; The iLSHADE algorithm outperforms the other DE

variants on f9, f15, f19 and f23; The jSO algorithm outperforms

the other DE variants on f3, f7, f10, f21, f25 and f26; The

LPalmDE algorithm outperforms the other DE variants on

f8, f16 and f18; The HARD-DE algorithm outperforms the

other DE variants on f2, f5, f6, f14, f17, f22, f 24 and f27.

Furthermore, the new proposed HARD-DE algorithm obtains

26 better or similar performance in comparison with JADE

algorithm, it obtains 19 better or similar performance in com-

parison with LSHADE algorithm, it obtains 16 better or sim-

ilar performance in comparison with iLSHADE, jSO and

LPALMDE algorithm. In a word, the proposed HARD-DE

algorithm secures an overall better performance on 50D opti-

mization under the tested benchmark functions.

The proposed HARD-DE algorithm is also verified from

convergence speed perspective of view. All the convergence
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FIGURE 9. Continued from Fig. 8, comparisons on f19–f24 are presented here. (a) f19. (b) f20. (c) f21. (d) f22. (e) f23. (f) f24.

speed comparisons that employ the median value of the

51 runs are also presented here in Fig. 6–Fig. 10 for algorithm

evaluation on 30-D optimization. Fig. 6 presents the com-

parison under the first 6 benchmark functions in which the

first 5 benchmarks are uni-modal functions, and we can see

that JADE algorithm with fixed population size outperforms

other DE variants on benchmarks f1, f5 and f6, the popula-

tion size reduction scheme based DE variants have similar

convergence curves on all of the six benchmark functions

though some of them have a little faster converge speed while

others have a little slower convergence speed. What should

be emphasized more is that most of these DE variants except

for the new proposed HARD-DE algorithm usually con-

verge into local optima on benchmark f6 during the 51 runs,

however, this cannot be reflected by the converge speed

perspective. Fig. 7–Fig. 8 mainly presents the convergence

speed comparisons on multi-modal functions f7–f18. We can

see that JADE algorithm outperforms other DE variants on
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FIGURE 10. Continued from Fig. 9, the last four comparisons are presented here for analysis. (a) f25. (b) f26. (c) f27. (d) f28.

benchmark f11, all the DE variants can converge into the

global best on f10 except for JADE. The novel HARD-DE

algorithm outperforms others on benchmark f7, and it is also

competitive in comparison with other DE variants on bench-

marks f8, f9, f12, f14, f16 and f17. Fig. 9 and Fig. 10 present

the convergence speed comparison under the left two multi-

modal functions and six composition functions. From these

figures we can see that the novel HARD-DE algorithm per-

forms extremely well on these composition functions rather

than the left two multi-modal functions, and the HARD-

DE algorithm is also competitive with the other DE variants

on f22 and f24–f28. From all the 28 convergence figures,

we can see that JADE algorithm with fixed population size

usually converges quickly at the beginning of the evolution,

however, other DE variants with population size reduction

schemes usually obtain better performance at the end of the

evolution, and our proposedHARD-DE algorithm, as a result,

is competitive with other state-of-the-art DE variants from

convergence speed perspective of view under these tested

benchmarks.

The proposed HARD-DE algorithm is also contrasted with

the state-of-the-art DE variant jSO under CEC2017 bench-

mark functions which are mapped into our test suite and

labeled as fb1–fb30 as the jSO algorithm secured the first

rank on CEC2017 competition. The ‘‘Best’’, and ‘‘Mean/std’’

values are selected/calculated from 51 runs with the maxi-

mum number of function evaluation equaling to 10000 · D.
All these results are presented in Table 6. Symbols ‘‘>’’,

‘‘=’’ and ‘‘<’’ in the parentheses of the ‘‘Best’’ column

are measured by the arithmetic values while symbols in the

‘‘Mean/std’’ column are measured under Wilcoxon’s signed

rank test with a level of significance α = 0.05, all these

symbols has the same meanings as the ones mentioned earlier

in the paper. The overall performances are summarized in

last row of the table. From the table we can see that the

novel HARD-DE and jSO can find the global optima during

the 51-run on benchmarks fb1–fb3, fb6 and fb9. Both the

new proposed HARD-DE and jSO can find tier performance

on benchmarks fb22 and fb25. From the ‘‘Best’’ perspective,

the HARD-DE and jSO have similar performance under the

30 benchmark functions; From the ‘‘Mean/std’’ perspective,

jSO performs a litter better than the HARD-DE algorithm.

Taking all the 58 benchmark functions including fa1–fa28 and

fb1–fb30 into consideration, the novel HARD-DE algorithm

secures 30 better performances and 8 similar performances

in comparison with the jSO algorithm, therefore, the new
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TABLE 6. Best, mean and standard deviation comparison under benchmarks fb1–fb30 between the state-of-the-art DE variant jSO and the new proposed
HARD-DE algorithm. All these values are selected/calculated from 51 runs with the maximum function evaluation equaling to nfemax = 10000 × D.
Symbols ‘‘>’’, ‘‘=’’ and ‘‘<’’ in the parentheses of the ‘‘Best’’ column are measured by the arithmetic values while symbols in the ‘‘Mean/std’’ column are
measured under Wilcoxon’s signed rank test with a level of significance α = 0.05, all these symbols denotes ‘‘Better Performance’’, ‘‘Similar Performance’’
and ‘‘Worse Performance’’ respectively. The overall performances are summarized in last row of the table.

proposed HARD-DE outperforms all other contrasted DE

variants under our test suite containing 58 benchmark func-

tions. Furthermore, the jSO algorithm suffers an over-fitting

problem under CEC2017 test suites, and that’s why we rec-

ommend to employ more than one test suites for algorithm

validation.

E. OPTIMIZATION PERFORMANCE EVALUATION

ON REAL-WORLD PROBLEMS

In this section, two real-world optimization problems from

CEC2011 [10] test suite were also employed for algorithm

validation. The first problem fc1 is a 6-D parameter estimation

for frequency-modulated (FM) sound waves, and the second

problem fc2 is a 20-D spread spectrum radar polly phrase

code design, both of which are all bound constrained problem

with same range on each dimension. The maximum number

of function evaluation is set to nfemax = 150000, and the opti-

mization results of all the DE variants are presented in Table 7

and Table 8 respectively.

We can see that the proposed HARD-DE algorithm per-

forms best of all the contrasted algorithms on fc1, and all these

algorithms occasionally converged into some local optima

during the 25 runs. Moreover, the proposed HARD-DE algo-

rithm also outperforms other contrasted algorithms includ-

ing JADE, LSHADE, iLSHADE and jSO algorithm on fc2
though it performs relative worse than LPalmDE algorithm.

Generally, the canonical DE [31] and some other algorithms,

e.g. Genetic Algorithm variants [11], [15], constriction

coefficient Particle Swarm Optimization (ccPSO) [2], Ebb-

tide-fish [22], [26] and Monkey King Evolution [20] etc.,

usually performed very well on lower dimensional optimiza-

tion problems rather than these sophisticated state-of-the-art

DE variants mentioned in the paper. This is also the reason

why we didn’t choose the benchmarks with low dimension in

CEC2011 test suite.

To summarize, the proposedHARD-DE is also competitive

with the other state-of-the-art DE variants when tackling

some real-world optimization problems.

F. EVALUATING THE TIME COMPLEXITY

OF THE HARD-DE ALGORITHM

The evaluation of time complexity of the new proposed

HARD-DE is presented here in this section. Generally,

the proposed HARD-DE algorithm consumes more time in

comparison with the other state-of-the-art DE variants, and

there are two components responsible for the more time

consumed, one is the stochastic universal selection operation

(with the pseudo code shown in Algorithm 1) and the other is

the extra difference operation (Xr1,G − X̃r3,G) in the mutation

strategy (shown in Eq.22 on Page 6 of the paper), which

presented the depth information of the evolution. The stochas-

tic universal selection operation of HARD-DE is inherited

from LPalmDE algorithm, therefore, the HARD-DE may

consumes a little more time in comparison with LPalmDE

because of the mutation strategy. Furthermore, the time com-

plexity of trial vector generation and parameter adaptation in
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TABLE 7. Best and Median comparison among JADE, LSHADE, iLSHADE, jSO, LPALMDE and HARD-DE is presented here. The results are calculated under
25 independent runs with the fixed maximum number of function evaluations nfemax equaling to 150000 under two benchmarks fc1 and fc2 selected
from CEC2011 test suite for real-parameter optimization.

TABLE 8. Mean and standard deviation (Std) comparison among JADE, LSHADE, iLSHADE, jSO, LPALMDE and HARD-DE is presented here. The results are
calculated under 25 independent runs with the fixed maximum number of function evaluations nfemax equaling to 150000 under two benchmarks fc1
and fc2 selected from CEC2011 test suite for real-parameter optimization.

TABLE 9. Algorithm time complexity comparison on 30D optimization
under CEC2013 benchmark 14.

LSHADE, iLSHADE, jSO and LPalmDE are more or less

the same, therefore, we can simply sort the time complexity

of these algorithms by qualitative analysis.

Beside the qualitative analysis, we also conducts quan-

titative analysis according to the recommendation of

CEC2013 competition [18], and the time consumption com-

parison is presented in Table 9. Time consumption of basic

arithmetic expressions in CEC2013 competition recommen-

dation is recorded as T0, the time consumption of 200000

function evaluations for 30D optimization on benchmark fa14
from CEC2013 test suite is recorded as T1, and the overall

cost of a certain algorithm optimizing fa14 is recorded as T2.

We run 11 times to get the average T0, T1 and T2, and then

collect T̂2−T1
T0

for complexity evaluation. Table 9 illustrated

the time complexity comparison among these six algorithms,

and we can see that the proposed HARD-DE algorithm con-

sumes more time especially in comparison with the JADE

algorithm.

V. CONCLUSION

Differential evolution variants are famous, easy-coding and

powerful stochastic algorithms for many complex optimiza-

tion problems, however, there still exist many weaknesses

within them. This paper proposed a new hierarchical archive

based differential evolution called HARD-DE algorithm, and

two enhancements were involved in this DE variant. The first

enhancement was that a new hierarchical archive based trial

vector generation strategy with depth information of evolu-

tion was proposed to get better perception of the landscape

of the objective functions. The second enhancement was that

novel adaptation schemes for all the three control parameters

were advanced in the paper to tackle the weaknesses of

parameter adaptations in some former famous DE variants.

Then the new HARD-DE algorithm is verified under two test

suites, CEC2013 test suite and CEC2017 test suite contain-

ing 58 benchmark functions, for real-parameter numerical

optimization and 2 benchmarks from CEC2011 test suite

for real-world optimization. Both the optimization accuracy

(measured by ‘‘Mean/Std’’ values under Wilcoxon’s singed

rank test with a level of significance α = 0.05) and the con-

vergence speed (measured by the convergence curve of the

‘‘Median’’ value from 51 runs) of all the six DE variants are

contrasted for algorithm verification. From the experiment

results, we can see that: First, the novel HARD-DE-Para algo-

rithm secured an overall better performance on all tested uni-

modal benchmarks in comparison with HARD-DE-Linear

and HARD-DE-Pivot (the default HARD-DE algorithm),

and the HARD-DE-Linear secured an overall better perfor-

mance on many multi-modal benchmarks in comparison with

HARD-DE-Para. The default HARD-DE secured an overall

better performance on the tested benchmarks in compari-

son with HARD-DE-Linear and HARD-DE-Pare. Second,

the default HARD-DE algorithm obtained an overall better

performance in comparison with other famous DE variants

including JADE, LSHADE, iLSHADE, jSO and LPALMDE

on real-parameter optimization benchmarks selected from

CEC2013 and CEC2017 test suites. Third, algorithm verifica-

tion on a single test suite containing a relative small number of

benchmarks may have over-fitting problem, therefore, more

than one test suites containing a large number of benchmarks

were recommended to be employed in algorithm evaluation

in this paper. Fourth, the proposed HARD-DE algorithm was

also competitive with the contrasted DE variants on real-

world optimization problems selected from CEC2011 test

suite. To summarize, the novel HARD-DE algorithm pro-

posed in the paper secured an overall better performance in
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comparison with other famous DE variants under our test

suite though it might consume more time.
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