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We discuss historic pressure computations for the hard-disk model performed since 1953, and
compare them to results that we obtain with a powerful event-chain Monte Carlo and a massively
parallel Metropolis algorithm. Like other simple models in the sciences, such as the Drosophila model
of biology, the hard-disk model has needed monumental effort to be understood. In particular, we
argue that the difficulty of estimating the pressure has not been fully realized in the decades-long
controversy over the hard-disk phase-transition scenario. We present the physics of the hard-disk
model, the definition of the pressure and its unbiased estimators, several of which are new. We
further treat different sampling algorithms and crucial criteria for bounding mixing times in the
absence of analytical predictions. Our definite results for the pressure, for up to one million disks,
may serve as benchmarks for future sampling algorithms. A synopsis of hard-disk pressure data as
well as different versions of the sampling algorithms and pressure estimators are made available in
an open-source repository.

I. INTRODUCTION

In fundamental physics, the most detailed descrip-
tions of physical reality are not always the best. In our
quantum-mechanical world, many phenomena are indeed
described classically, without the elaborate machinery of
wavefunctions and density matrices. The exact thermo-
dynamic singularities of helium, a quantum liquid, at the
famous lambda transition [1] are for example obtained by
a seemingly unrelated model of classical two-component
spins [2–5] on a three-dimensional lattice rather than
by some quantum-mechanical representation of all atoms
in the continuum [6]. Renormalization-group theory [7]
guarantees that the simple classical spin model exactly
describes experiments in the quantum liquid [8, 9]. The
universality of simple models is also found in other sci-
ences. In biology, the study of the fruit fly Drosophila
has gradually evolved from a subject of entomology, the
science of insects, to a parable for higher animals, where
it allows one to appreciate gene damage [10] from radia-
tion. In recent decades, it was moreover understood that
many of the genes of the Drosophila have exactly the
same function as genes in vertebrates, including humans.
In physics as in biology, “(t)his remarkable conservation
came as a big surprise. It had been neither predicted nor
expected” [11], to cite a Nobel-prize winner.

Paradoxically, even simple models in science, those
stripped to their bare bones, can take monumental ef-
fort and decades of research to be understood fully. This
is the case for the Drosophila fly that entered research
laboratories around 1905 [12], and then gradually turned
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into a model organism [13]. It is also what happened to
the simplest of all particle models, the hard-disk model,
which is the focus of the present work. The model con-
sists of N identical classical disks with positions inside
a box and with velocities. Disks fly in straight-line tra-
jectories, except when they collide with each other or
with an enclosing wall. The elementary collision rules
are borrowed from billiards. The hard-disk model cari-
catures two-dimensional fluids: It lacks the explicit inter-
particle attractions of more realistic descriptions, yet it
shows almost all the interesting properties of general par-
ticle systems. Moreover, its observed phase behavior [14]
was understood in terms of topological phase transitions,
just like classical continuous spin models in two dimen-
sions [15]. The interpretation common to both cases
was unsuspected from the conventional Landau theory
of phase transitions.

Only few characteristics of the hard-disk model are
known from rigorous mathematics. The first was proven
by Daniel Bernoulli in 1738 [16], namely that the tem-
perature, which is linked to the mean-square velocity of
the disks, plays no role in their spatial distribution. It
was also proven [17, 18] that the hard-disk model, as a
dynamical system with positions and velocities evolving
under Newton’s laws, can be described statistically with
positions that all have equal statistical weight. It is fur-
thermore shown rigorously that, at small finite density,
the model is fluid [19, 20], justifying analytic expansions
developed in the 19th century [21] to link dilute hard
disks to the ideal gas of non-interacting particles. For
high densities, it was established that at close packing,
the hard-disk model forms a hexagonal crystal [22]. How-
ever, for all densities below close packing, this crystalline
structure is destroyed [23, 24] by long-wavelength fluctu-
ations. The invention of simulation methods, and their

ar
X

iv
:2

20
7.

07
71

5v
1 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  1

5 
Ju

l 2
02

2

mailto:werner.krauth@ens.fr


2

application to this very model of hard disks ever since the
1950s, was meant to overcome the scarcity of analytical
results.

With its stripped-down interactions, the hard-disk
model is indeed simple. In particular, the model lacks
attractive forces that would pull the disks together. It is
for this reason that, for a long time, hard disks and hard
spheres (in three dimensions) were considered too simple
to show a phase transition from an disordered fluid to a
solid [25, 26]. In two dimensions, furthermore, ordered
phases were expected not to exist for theoretical reasons
that were considered sufficiently solid to formally exclude
any transition [27]. Initial computer simulations, in 1953,
in the same publication that introduced the Metropolis
algorithm [28], accordingly found that “(t)here is no in-
dication of a phase transition”. It thus came as an enor-
mous surprise when, in 1962, Alder and Wainwright [14]
identified a loop in the equation of state (see Fig. 1),
suggesting [29] a phase transition between a fluid at low
density and a solid (that was not supposed, at the time,
to exist) at high density. This laid the ground work
for the Kosterlitz–Thouless–Halperin–Nelson–Young the-
ory of melting in two-dimensional particle systems [30–
32]. Even after this important conceptual advance, the
phase behavior of the hard-disk model remained con-
troversial for another fifty years, until an analysis [33]
based on the powerful event-chain Monte Carlo (ECMC)
algorithm [34] showed that hard disks melt through a
first-order fluid–hexatic phase transition combined with
a Kosterlitz–Thouless transition between the hexatic and
the solid, thus proposing a new scenario.

FIG. 1. Hard disks in a periodic box. (a): Equation of state
(pressure vs. volume) computed in 1962 by Alder and Wain-
wright [14] (b) and (c): Samples of 870 disks at densities
η = 0.726 and η = 0.672. (d): Pressures for N = 870 from
(a) compared with ECMC results (this work) for aspect ra-
tio α= (9 : 8

√
3/2) (cf Fig. 10 for an analysis of convergence

behavior).

In this work, we discuss the hard-disk model in a com-
putational and historical context, concentrating on the

pressure as a function of the volume. The reason for this
restriction of scope on pressures rather than on phases is
that the aforementioned fifty-year controversy was rooted
in difficulties in computing the pressure. After a short
introduction to the physics of the hard-disk model, we
review the thermodynamic and kinematic pressure def-
initions, and show that they are perfectly equivalent
even for finite systems. Nevertheless, the pressure may
be anisotropic and depend on the shape of the system,
rather than being only a function of system volume. We
discuss pressure estimators, with a focus on those that are
unbiased at finite N and convenient to use. We further-
more clarify that different sampling algorithms (molec-
ular dynamics, reversible and non-reversible MCMC) all
rigorously sample the same equal-weight Boltzmann dis-
tribution of positions although the time scales for con-
vergence can differ widely even for local algorithms, and
can reach years and even decades of computer time for
moderate system sizes. This was not understood in many
important historical contributions. With all this material
in hand, we confront past results with massive compu-
tations performed for this work, thus providing definite
high-precision pressure estimates for the hard-disk model
that may serve as benchmarks for the future. With its
rich phenomenology and its intractable mathematics, this
simple model has become the Drosophila for particle sys-
tems and for two-dimensional phase transitions. It has
served as a parable for difficult computing problems and
as a platform for development of MCMC and of molecu-
lar dynamics. This fascinating model has yet to be fully
understood. We aim at providing a solid base for future
work.

The plan of this work is as follows. In Section II, we
discuss the fundamentals of the hard-disk model, from
the definitions of densities and volumes to an overview
of its physical properties. In Section III, we discuss
sampling algorithms (molecular dynamics and Markov-
chain Monte Carlo (MCMC)) and pressure estimators
for this model, concentrating on new developments. In
Section IV, we digitize, discuss, and make available nu-
merical computations of the equation of state performed
since the paper by Metropolis et al., in 1953, and super-
pose them with large-scale computations done for this
work. Section V contains our conclusions. We also pro-
vide information on statistical analysis (Appendix A)
and introduce to the HistoricDisks open-source soft-
ware package, which collects pressure data since 1953,
and implements sampling algorithms and pressure esti-
mators (Appendix B) that were used in this work.

II. HARD-DISK MODEL

The hard-disk model consists of N impenetrable, iden-
tical, classical disks of radius σ and mass m, that are
perfectly elastic. Collisions are instantaneous; they cause
no deformations and induce no rotations. Pair collisions
conserve momentum and energy. Disks evolve in a fixed
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rectangular box of sides Lx and Ly (specified through
the aspect ratio α = (Lx : Ly)), which may have peri-
odic boundary conditions (“periodic” box), or else hard-
wall boundary conditions (“non-periodic” box). The two-
dimensional volume (area) is V = Lx ×Ly. In the NV T
ensemble that we consider here, N , Lx, and Ly are fixed.
For the hard-disk system, the microcanonical ensemble
(of constant energy E) and the canonical ensemble (of
constant temperature T ) are almost equivalent, and we
connect the two throughout this work. In other ensem-
bles, the box can be of varying dimensions [35–37], and
N might vary [38]. The disk i is described by the posi-
tion of its center xi = (xi, yi), and possibly by a veloc-
ity vi = (vx,i, vy,i). We denote the set of positions and
velocities by x = {x1, . . . ,xN} and v = {v1, . . . ,vN},
respectively.

A. Basic definitions and properties

We now discuss additional characteristics of the hard-
disk model and define its Newtonian dynamics. Further-
more, we summarize the physics of two-dimensional par-
ticle systems.

1. System definitions, basic properties

Lx

Ly

0 Lx

Ly

0
0
0

FIG. 2. Packings for N = 72 disks for different aspect ratios
α. (a): Periodic box with α = (1 :

√
3/2), with conjectured

optimal packing. (b): Periodic box with α = (9 : 8
√

3/2) at
the close-packing density η = π/(2

√
3).

In the limit N → ∞, the properties of a particle sys-
tem with short-range interactions are independent of the
boundary conditions. At finite N , in contrast, the bulk
part of the free energy (that scales as V ) cannot be sep-
arated from the surface term (that, in two dimensions,
scales as

√
V ). For example, a close-packed crystal of

N = 72 = 8×9 disks can fit into a periodic box of aspect
ratio α= (9 : 8

√
3/2), whereas the maximum density for

the same N in a box with α=(1:
√

3/2) is slightly smaller
(see Fig. 2). Evidently, the pressure in a box containing
a finite number of disks depends on its aspect ratio.

The following conventions for the volume or its inverse,
the density, have been commonly used in the literature.
The first is the volume V = Lx × Ly normalized by that
of a perfect hexagonal packing V0 = N(2σ)2

√
3/2 (as in

Fig. 2b). Second is the covering density η, the total vol-
ume of all disks normalized by the box volume V . Third
is the reduced density ρ, the number N of disks of radius
1
2 divided by the volume and, finally, the inverse normal-
ized density ν/(2σ)2 with ν = 1/ρ. These quantities are
related as follows:

V

V0
=

π

2
√

3

1

η
=

2√
3

ν

(2σ)2
≥ 1,

η =
π

2
√

3

V0

V
=
N

V
πσ2 ≤ 0.907,

ρ = η
4

π
=
V0

V

2√
3

=
(2σ)2

ν
≤ 1.155,

ν

(2σ)2
=

√
3

2

V

V0
=
π

4

1

η
=

1

ρ
≥ 0.866.

(1)

We will re-plot published equations of state with all four
units, thus simplifying the comparison of data.

In the hard-disk model, all configurations have zero
potential energy, and the Newtonian time evolution con-
serves the kinetic energy. Pairs of disks collide such that,
in their center-of-mass coordinate system, they rebound
from their line of contact with conserved parallel and re-
versed perpendicular velocities [39]. At a wall collision,
the velocity component of a disk parallel to the wall re-
mains the same while the perpendicular velocity v⊥wall is
reversed. When, at the initial time t = 0, all velocities are
rescaled by a factor γ, the entire trajectory transforms as

{x1(t), . . . ,xN (t)} vi→γvi∀i−−−−−−→ {x1( tγ ), . . . ,xN ( tγ )}. (2)

This property of hard-sphere models was already noticed
by Daniel Bernoulli [16].

Statistically, during the Newtonian hard-disk time evo-
lution, the sets of positions and of velocities are mutually
independent. All positions x that correspond to N -disk
configurations have the same statistical weight π with a
Cartesian density measure and, in a non-periodic box,
the velocities are randomly distributed on the surface
of the hypersphere in 2N -dimensional space with radius
Rv =

√
2E/m, where E is the conserved (microcanoni-

cal) energy. The measure in the 4N -dimensional sample
space of positions and velocities is thus

dπ ∝ Θ(x)dNx dNv δ

(
E −

∑
i

mv2
i /2

)
, (3)

where Θ(x) = 1 for positions that correspond to hard-
disk configurations and Θ(x) = 0 otherwise. In a peri-
odic box, in addition, the two components of the total
velocity and the position of the center of mass in the rest
frame are conserved. For large N , where the ensembles
are equivalent, the microcanonical energy per disk corre-
sponds to E/N = kBT = 1/β, where kB is the Boltzmann
constant and T the temperature of the canonical ensem-
ble. The spatial part of the measure of Eq. (3) remains
unchanged, and the uniform velocity distribution on the
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surface of the hypersphere in 2N dimensions implies that
the one-particle, marginal distribution of velocity compo-
nents becomes Gaussian:

π(vi,x) ∝ exp
(
−βmv2

i,x/2
)

(N →∞) (4)

(and analogously for vi,y, see [39, Sect. 2.1.1]).
The probability distribution of the velocity perpendic-

ular to a wall v⊥wall (essentially the histogram of momen-
tum transfers with the walls at the discrete wall-collision
times) differs from Eq. (3). For N →∞, this distribution
is biased by a factor |v⊥wall| with respect to the Maxwell
distribution:

π(|v⊥wall|) ∝ |v⊥wall| exp
(
−βm(v⊥wall)

2/2
)
, (5)

which has been described through the “Maxwell bound-
ary condition” (see [39, Sect. 2.3.1]). For finite N ,
the same biasing factor appears. The distribution of
the velocity perpendicular to a wall is derived from
the surface element on the hypersphere of radius Rv =√
v2

1 + · · ·+ v2
n in n = 2N dimensions:

dΩ = Rn−1
v sinn−2 φ1 sinn−3 φ2 . . . sin φn−2dφ1 . . . dφn−1,

(6)
where φ1, . . . , φn−2 ∈ [0, π] and φn−1 ∈ [0, 2π], and where
only v1 = Rv cos φ1 is expressed in terms of a single an-
gle. It is thus convenient to identify v1 with v⊥wall. The
radius Rv of the hypersphere at the microcanonical en-
ergy E = mR2

v/2 is related to the inverse temperature
in the canonical ensemble as R2

v = 2N/(mβ). With the
integrals

A =

∫ π

0

dφ1| cos φ1| sinn−2 φ1 =
2

n− 1
,

B =

∫ π

0

dφ1 sinn−2 φ1 =
√
π

Γ[(n− 1)/2]

Γ(n/2)
,

(7)

this yields:〈
1

|v⊥wall|

〉
=

1

Rv

B

A
=

√
π

Rv

Γ(N + 1
2 )

Γ(N)

N→∞−→
√
πmβ

2
,

(8a)〈
|v⊥wall|

〉
= Rv

B

2NA
=
Rv
√
π

2N

Γ(N + 1
2 )

Γ(N)

N→∞−→
√

π

2mβ
,

(8b)

where in the limit N →∞ the ratio of the Γ functions ap-
proaches

√
N . The relative perpendicular velocities ∆v⊥ij

(the projection of the relative velocity vi − vj perpen-
dicular to the interface separating disks i and j at their
collision) is, similarly:〈

1

|∆v⊥ij |

〉
=

√
2π

Rv

Γ(N + 1
2 )

Γ(N)

N→∞−→
√
πmβ, (9a)

〈
|∆v⊥ij |

〉
=
Rv
√
π√

2N

Γ(N + 1
2 )

Γ(N)

N→∞−→
√

π

mβ
. (9b)

2. Pair correlations, entropic phase transition

In the hard-disk model, the Boltzmann weights are
the same for all sets of disk positions, since there are
no explicitly varying interactions. In consequence, the
two possible fluid phases (namely the gas and the liquid)
are confounded. A purely entropic “depletion” interac-
tion [40] between disks nevertheless arises from the pres-
ence of other disks, effectively driving phase transitions.
The three phases of the hard-disk model are fluid (with
exponential decays of the orientational and positional
correlation functions), hexatic (with an algebraic decay
of orientational and exponential decay of positional corre-
lations), and solid (with long-range orientational correla-
tions and an algebraic decay of positional correlations).
The hexatic and solid phases have only been identified
through numerical simulations, and mathematical proofs
of their existence are still lacking.

B. Hard-disk thermodynamics

In statistical mechanics, a homogeneous system (com-
posed of, say, N particles in a fixed box) is described
by an equation of state connecting two quantities, as for
example the volume and the pressure. When for some
volumes, a homogeneous phase may not exist, two (or
exceptionally three) phases may coexist. We now link
the definitions of the pressure from the thermodynamic
and kinematic viewpoints and then discuss phase coexis-
tence in finite systems.

1. Pressure, thermodynamic and kinematic definitions

In statistical mechanics, the pressure P is given by the
change of the free energy with the system volume:

βP =
∂ log Z

∂V

V ′→V
=

1

V − V ′
Z − Z ′

Z
. (10)

with Z the partition function and Z ′ ≡ Z(V ′). For
hard disks and related models, the rightmost fraction in
Eq. (10) expresses the probability that a sample in the
original box of volume V is eliminated in the box of re-
duced volume V ′ < V . In rift-pressure estimators [41],
the volume V of an Lx × Ly box is reduced by remov-
ing an infinitesimal vertical or horizontal slab (a “rift”),
yielding the components Px and Py of the pressure. Rifts
can be placed anywhere in the box, and one may even av-
erage any given hard-disk sample over all vertical or hor-
izontal rift positions (see Subsection III C). We will also
discuss homothetic pressure estimators, where all box di-
mensions and disk coordinates are scaled down by a com-
mon factor. Used for decades, they estimate the pressure
P = (Px + Py)/2.

Besides the thermodynamic definition of the pressure,
one can also define the kinematic pressure as the ex-
change of momentum with the enclosing walls. However,
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thermodynamic and kinematic pressures are rigorously
identical already at finite N , and the corresponding es-
timators can be transformed into each another. This is
also true for the pressure estimators built on the virial
formalism that we also discuss.

FIG. 3. Volume reductions for a non-periodic box. (a):
Pathological corner-grind volume reduction, that eliminates
no samples for sufficiently large σ. (b): Horizontal wall rift
used to estimate the pressure Py. (c): Vertical rift used to
estimate Px. (d): Homothetic volume reduction.

2. Equation of state, phase coexistence

In the thermodynamic limit, the stability of mat-
ter is expressed through a positive compressibility κ =
−(∂V/∂P )/V . For a finite system in the NV T ensem-
ble, this is not generally true in a presence of a first-order
phase transition, where two coexisting phases are sepa-
rated by an interface with its own interface free energy.

In a periodic two-dimensional box for finite N , on in-
creasing the density (decreasing the volume), a first-order
phase transition first creates a bubble of the denser phase
in the less dense phase (for hard disks: a hexatic bub-
ble inside the fluid). The stabilization of this bubble re-
quires an extra “Laplace” pressure corresponding to the
surface tension, which renders the overall pressure non-
monotonic with V [29]. At larger densities, the bubble
of the minority phase transforms into a stripe that winds
around the periodic box. In the stripe regime, the length
of the two interfaces and thus the interface free energy
do not change with V , so that the pressure remains ap-
proximately constant. Finally, one obtains a bubble of
the less dense phase (the fluid) in the surrounding denser
(hexatic) phase (see Fig. 4). The phase coexistence is
specific to the NV T ensemble as certain specific volumes
V/V0 do not correspond to densities η = (N/V )πσ2 of
a homogeneous stable phase for N → ∞. Phase coex-
istence is absent in the NPT ensemble. The pressure is
then the control variable, and the volume V/V0 is discon-
tinuous at the transition, providing for a simpler physical
picture. However, in the NPT ensemble and its variants,
sampling algorithms generally converge even more slowly
than in the NV T ensemble.

The phase coexistence and the non-monotonous equa-
tion of state are genuine equilibrium features at finite N .
Moreover, the spatially inhomogeneous phase-separated
equilibrium state is reached from homogeneous initial

configurations through a slow coarsening process, whose
dynamics depends on the sampling algorithm.

A (Phase I)

B (Phase II)

2
3

4

5

Finite N

1

1

2

3

4

5

FIG. 4. First-order phase transition in the NV T ensemble.
(a): Free energy with increasing second derivative, and thus a
monotonously decreasing pressure. (b): Free energy with—for
the infinite system—metastable branches starting at volumes
V1 and V2, and a non-monotonous equilibrium pressure P
for finite N . (c): Sequence of five regimes in a finite two-
dimensional periodic box, with pure (1,5), bubble (2,4) and
stripe (3) phases.

III. SAMPLING ALGORITHMS AND
PRESSURE ESTIMATORS

In the present section, we discuss sampling algorithms
(molecular dynamics, MCMC) and pressure estimators
for the hard-disk model. All algorithms are unbiased and
correct to machine precision. For example, molecular
dynamics implements the Newtonian time evolution of
disks without discretizing time. The reversible Monte
Carlo algorithms, from the historic Metropolis algorithm
to the recent massively parallel Monte Carlo (MPMC)
on graphics-card computers, satisfy the detailed-balance
condition: the net equilibrium flow vanishes between any
two samples. The non-reversible ECMC algorithms only
satisfy the global-balance condition, and samples live in
an extended “lifted” sample space.

Besides the sampling algorithms, we also discuss pres-
sure estimators, including recent ones that overcome the
limitations of the traditional approaches. Thermody-
namic pressure estimators compute the probability with
which a sample is eliminated as the box is reduced in
size while kinematic pressure estimators determine the
momentum fluxes at the walls or inside the box. Impor-
tantly, both types of estimators have the same expecta-
tion value (the pressure P or its components Px or Py),
and they merely differ in their efficiency and ease of use.
Even at finite N , there is thus no ambiguity in the defi-
nition of the pressure. The various estimators play a key
role in the equation-of-state computations in Section IV.
All algorithms and estimators are cross-validated for four
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disks in a non-periodic square box (see Appendix B 2 a).
These tiny simulations illustrate the absence of any finite-
N bias in the pressure estimators.

A. Event-driven molecular dynamics (EDMD)

Event-driven molecular dynamics (EDMD) [42] imple-
ments the Newtonian time evolution for the hard-disk
model by stepping forward from one event (pair colli-
sion or wall collision) to the next. Between collisions,
the disks move with constant velocities. Collisions of
more than two disks, or simultaneous collisions can be
neglected. For large run times τsim, if the sample space is
connected, molecular dynamics samples the equilibrium
distribution of positions and velocities of Eq. (3).

1. Naive molecular-dynamics program

From a given set of positions and velocities for N = 4
disks in a non-periodic box, our naive EDMD code com-
putes the minimum over all pair collision times for the
N(N − 1)/2 pairs of disks, and over the wall collision
times for the N disks. This minimum corresponds to a
unique collision event (multiple overlaps appearing with
finite-precision arithmetic can be treated in an ad-hoc
fashion). The code then updates all the positions and
the velocities of the colliding disks. This algorithm is
of complexity O

(
N2
)
per event. A related naive pro-

gram in a periodic box (with arbitrary N) is used for
cross-validation of other algorithms. Practical implemen-
tations of EDMD process the collisions through floating-
point arithmetic. As the hard-disk dynamics is chaotic
for almost all initial configurations, trajectories for dif-
ferent precision levels quickly diverge and only the sta-
tistical properties of the trajectories are believed to be
correct.

2. Modern hard-disk molecular dynamics

The complexity of EDMD can be reduced from the
naive O

(
N2
)
per event scaling to O (logN). This is be-

cause the collisions of a given disk must only be tracked
with other disks in a local neighborhood (reducing by it-
self the complexity to O (N)) and because the collision
of two disks i and j only modifies the future collision
times for pairs involving i or j (see [43, 44]). This al-
gorithm keeps O (N) candidate events of which a finite
number must be updated after each event. Using a heap
data structure, this is of complexity O (logN), while the
retrieval of the shortest candidate event time (the next
event time) is O (1). Although the update of the event
times involves elaborate book-keeping, and although the
processing of events according to collision rules is time-
consuming, the EDMD algorithm is thus fairly efficient.
It has been successfully used for the hard-disk model up

to intermediate sizes (N . 2562 in the transition region).
Open-source implementations of this algorithm are avail-
able [45]. The EDMD algorithm has not been successfully
parallelized, despite some efforts in that direction [46].

B. Hard-disk Markov-chain Monte Carlo

Hard-disk Monte-Carlo algorithms consider a sample
space consisting of the N positions. Initial samples that
are easy to construct, are modified through reversible
or non-reversible schemes. In the large-time limit, the
equal-probability measure of the positions in Eq. (3) is
reached.

1. Local hard-disk Metropolis algorithm

In the local hard-disk Metropolis algorithm [28], at
each time step, a small random displacement of a ran-
domly chosen disk is accepted if the resulting sample is
legal and is rejected otherwise. A move and its inverse
are proposed with the same probability, so that the al-
gorithm satisfies the detailed-balance condition with a
constant equilibrium probability, and the net probability
flows vanish.

The local Metropolis algorithm has been much used
to obtain the hard-disk equation of state. On a modern
single-core central-processing unit (CPU), this algorithm
realizes roughly ∼ 1010 moves per hour. (For simplic-
ity, we use “moves” for “proposed moves”.) However, its
convergence is very slow. In Section IVB2, we will show
evidence of mixing times [47] in excess of 10 years of CPU
time for ∼ 106 disks. The sequential variant of the local
Metropolis algorithm updates the disk i+ 1 (identifying
N + 1 ≡ 1) at time t + 1 after having updated disk i at
time t. This non-reversible version runs slightly faster
as it requires fewer random numbers per move, but the
performance gain is minimal.

2. Massively parallel Monte Carlo (MPMC) algorithm

The MPMC algorithm generalizes the local Metropo-
lis algorithm for implementation on graphical processing
units (GPU) [48]. It uses a four-color checkerboard of
rectangular cells of sides larger than 2σ, that is super-
posed onto the periodic box and is compatible with the
periodic boundary conditions. Cells of the same color are
distant by more than 2σ. They are aligned with the êx
and êy axes. The MPMC algorithm samples one of the
four colors, and then independently updates disks in all
corresponding cells using the local Metropolis algorithm
with the additional constraint that disks cannot leave
their cells (see Fig. 5). After a certain time, the color is
resampled. The checkerboard is frequently detached from
the box, then randomly translated and repositioned, ren-
dering the algorithm irreducible.
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On a single NVIDIA GeForce RTX3090 GPU, our
MPMC code reaches 2.1×1013 moves per hour, an order
of magnitude more than an earlier implementation [49,
Table II]. Repositioning the checkerboard is computa-
tionally cheap and is done often enough for the conver-
gence time, measured in moves, to be only slightly larger
than for the local Metropolis algorithm.

FIG. 5. Four-color checkerboard decomposition in a periodic
box, with cells larger than 2σ. If the green color is cho-
sen, highlighted disks may move, but cannot leave their cells.
Disks in different green cells do not communicate.

3. Hard-disk event-chain Monte Carlo (ECMC)

Hard-disk ECMC is a non-reversible continuous-
time “lifted” Markov chain [34] in which—on a single
processor—at each time t, a single active disk moves
with constant velocity, while all the others are at rest.
The identity and velocity of the active disk constitute
additional “lifting variables” in an extended (lifted) sam-
ple space [50–52]. At a collision event, the active disk
stops, and the target disk becomes active. The variants
of ECMC differ in how the velocity is updated. In the
straight variant, the velocity of the active disks is main-
tained after a pair-collision event. It is usually chosen to
be either in the ±êx or the ±êy direction, that is, along
one of the coordinate axes. At a wall-collision event, the
velocity is flipped, for example from ±êx to ∓êx. In ad-
dition, resampling events take place typically at equally
spaced times separated by the run-time interval τsim. At
such resamplings, a new active disk is sampled, and the
new velocity is sampled from {±êx,±êy}. With periodic
boundary conditions, the new velocity is sampled from
{+êx,+êy}.

Under conditions of irreducibility and aperiodicity,
ECMC samples the equilibrium distribution of hard-
disk positions with non-zero net probability flows. How-
ever, the hard-sphere ECMC and the hard-sphere lo-
cal Metropolis algorithm are not strictly irreducible [53].
ECMC is much more powerful than the local Metropo-
lis algorithm, and in Section IVB2, we will evidence
speedup factors of ∼ 103. The HistoricDisks soft-
ware package (see Appendix B) contains sample codes
for straight ECMC, reflective ECMC [34], forward

ECMC [54], and Newtonian ECMC [55]. Straight ECMC
is fastest for the hard-disk model, and it was successfully
parallelized [56]. The performance of straight ECMC is
roughly of 1010 events (collisions) per hour on a modern
single-core CPU. Its parallelized version reaches . 1011

events per hour. This performance is currently limited
by a hardware bandwidth bottleneck [57], that will be
overcome in the near future.

C. Hard-disk pressure estimators

As discussed in Subsection II B 1, the pressure de-
scribes, on the one hand, the change of the free energy
when the volume is reduced and, on the other hand, the
time-averaged momentum exchange with the walls. In
the present subsection, we reduce the volume through
rifts and rift averages, and by uniformly shrinking the
box. We also compute the momentum exchange directly
and through a virial formula. Our motivation is two-fold.
First, we obtain practical pressure estimators that we im-
plement in our algorithms. Second, we discuss in detail
that all the pressure estimators of Monte Carlo and of
molecular dynamics compute the same object, and this
even for finite systems. The decades-long discrepancies
in the estimated pressures can thus not be traced to dif-
ferences in their definitions.

1. Rifts and rift averages

In an Lx×Ly box, the volume may be reduced through
a vertical “rift” [xr, xr + ε] × [0, Ly] with disk positions
transforming as:

{x, y} →


{x, y} if x < xr
∅ if xr ≤ x < xr + ε

{x− ε, y} if x ≥ xr + ε,

(11)

where “∅” means that the position is eliminated. A rift
either transforms a uniform hard-disk sample into a uni-
form sample in the reduced box, or else eliminates it be-
cause a disk falls inside the rift or because two disks over-
lap (see Fig. 6) In a non-periodic box, wall rifts at xr = 0
or xr = Lx − ε (and likewise for y) chip off a slice from
the surface. Vertical rifts, as in Eq. (11), estimate the
pressure Px, and horizontal rifts ([0, Lx]× [yr, yr+ ε]) the
pressure Py. Simultaneous vertical and horizontal rifts
with Lyεx = Lxεy conserve the aspect ratio of the box.
Equivalent to a homogeneous (homothetic) rescaling of
the box, they estimate the pressure P = (Px + Py)/2.
The pressure can be estimated for finite ε from a finite
number of samples, but then requires an extrapolation
towards ε→ 0. In EDMD and ECMC, the extrapolation
can be avoided because of the infinite number of samples
produced in a given run-time interval τsim.

We first reduce the volume V of a non-periodic Lx×Ly
box by a vertical wall rift with xr = Lx − ε or by a hori-
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FIG. 6. Vertical rift [xr, xr + ε] × [0, Ly]. (a): Lx × Ly box
with vertical rift of width ε at position xr. (b): Transformed
sample, which is eliminated because of a pair overlap.

zontal wall rift with yr = Ly−ε. A sample in the original
box is eliminated through the wall rift with the probabil-
ity that one of the disks overlaps the wall rift. Disk i is
at position xi with the normalized single-disk probabil-
ity density π(1)(xi) and at an x-position in the interval
[Lx−σ− ε, Lx−σ] with probability ε

∫
dyπ(1)(Lx−σ, y).

We normalize the single-disk density ρ to V , so that the
normalized probability density π(1)(xi) of a given disk i
to be at position xi equals π(xi) = ρ(xi)/V . We then
use the rescaled line density ρx(x) =

∫
dyρ(x, y)/Ly, and

likewise for ρy(y). With the vertical rift volume εLy and
analogously for the horizontal one, this gives the wall-rift
pressure estimator:

β

[
Px
Py

]
=
N

V

[
ρx(Lx − σ)
ρy(Ly − σ)

]
. (12)

Naively, the rescaled line densities ρx and ρy are obtained
from a histogram of the x-coordinates, extrapolated to
x = Lx − σ and equivalently, to x = σ (see Table I, line
1 and Appendix A).

# Sampling method: pressure estimator βP

1 EDMD: wall-rift fit (see Eq. (12)) 10.74(7)

2 EDMD: wall rift (see Eq. (13c)) 10.79625(4)

3 ECMC: wall rift (see Eq. (14)) 10.7962(4)

4 EDMD: rift average (see Eq. (19a)) 10.79629(3)

5 ECMC: rift average (see Eq. (20)) 10.7962(4)

6 EDMD: homothetic fit (see Eq. (27a)) 10.74(4)

TABLE I. Thermodynamic pressure estimates for four disks of
radius σ = 0.15 in a non-periodic square box of sides 1. The
kinematic estimators of Subsection III C 3 lead to identical
expressions.

Within EDMD, the rescaled line densities of Eq. (12)
can be computed, without extrapolation, from the time
interval ∆t = 2ε/|v⊥wall| before and after the collision dur-
ing which a disk with perpendicular velocity v⊥wall over-
laps with the wall rift at xr = Lx − ε. The time interval
∆t here simply indexes equilibrium samples and has no
kinematic meaning. The change of volume (by the two
rifts at x = 0 and x = Lx) equals 2εLy. For ε→ 0, only
a single disk overlaps with the wall rift, leading to the

EDMD wall-rift estimator:

βPx =
1

2Lyτsim

∑
w:(i,±êx)

2

|v⊥(i)|
(13a)

=

〈
2

|v⊥wall|

〉 n̂±êx
wall︷ ︸︸ ︷

1

2Lyτsim

∑
w:(i,±êx)

1 (13b)

=
2
√
π√∑
v2
i

Γ(N + 1
2 )

Γ(N)
n̂±êx

wall (13c)

N→∞−→
√

2πβmn̂±êx

wall . (13d)

The sum in Eq. (13a) goes over the wall collisions w
of all disks i in ±êx direction, and n̂±êx

wall is the wall-
collision rate per vertical unit line element. In Eq. (13),
the right-hand sides are estimators, whose expectation
yields the pressure on the left-hand side. In this equa-
tion and the following ones, the additional 〈. . .〉 (such as
n̂±êx

wall →
〈
n̂±êx

wall

〉
in Eqs (13c) and (13d)) are omitted. In

Eq. (13a), the estimator has infinite variance. It is regu-
larized through its mean value in Eq. (13b). The latter
is evaluated in Eq. (13c) with the Maxwell-boundary ex-
pression of Eq. (8), and tested to 4×10−6 in relative pre-
cision against other estimators (see Table I, line 2). The
pressure estimator of Eq. (13c) can also be derived as
a kinematic pressure estimator through the momentum
transfer with the walls (see Subsection III C 3). Thermo-
dynamic and kinematic pressures thus agree already at
finite N .

The wall-rift pressure estimator adapts non-trivially to
ECMC. We consider straight ECMC with a single active
disk that moves with unit speed along the ±êx direction.
As a lifted Markov chain, ECMC splits the equilibrium
probability of each “collapsed” sample x equally between
the N lifted copies (consisting of x and of the label of
the active disk for a given displacement vector) (see [52]
and [58, Appendix A]). ECMC only determines overlaps
with the walls for the active disk, and a lifted sample that
must be eliminated is detected with a biased probability
1/N . This bias is corrected by multiplying the right-hand
side of Eq. (13a) by N , resulting in the ECMC wall-rift
estimator:

βPx =
N

2Lyτsim

∑
w:(a,±êx)

2

|v⊥wall|
= 2Nn̂±êx

wall (14)

(see Fig. 7a). It is tested to 4×10−5 in relative precision
(see Table I, line 3).

Within molecular dynamics and ECMC, pressures can
also be estimated by rifts inside the box and in partic-
ular by averages over all rift positions xr in addition to
the average over τsim already contained in the wall-rift
estimators. This can be written as

βPx =
1

εLy

1

Lxτsim

∫ t+τsim

t

dτ

∫ Lx−ε

0

dxrΘ(τ, xr), (15)
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where Θ(τ, xr) is zero if the sample at time t+τ is main-
tained after the reduction with parameter xr and one if
it is eliminated. The ideal-gas contribution to Eq. (15),

βP ideal gas
x =

εN

Lx

1

εLy
=
N

V
, (16)

counts the proportion of rifts that eliminate samples be-
cause the centers of the disks fall inside. The pair-
collision contribution to Eq. (15) is derived consider-
ing the sample shown in Fig. 6. If the distance be-
tween two disks i and j is in the interval [2σ, 2σ +
ε∆xmin

ij /(2σ)], where ∆xmin
ij is the x-separation at con-

tact, the corresponding samples are eliminated for a time
(2/|∆v⊥ij |)[ε∆xmin

ij /(2σ)] for vertical rifts in the interval of
length ∆xmin

ij between the two disks at contact. Together
with the wall term analogous to Eq. (13), the rift-average
pressure estimator for EDMD thus reads:

βPx =
N

V
+

1

V τsim

∑
p:(ij)

|∆xmin
ij |2

2σ

〈
2

∆v⊥ij

〉

+
∑

w:(i,±êx)

〈
2σ

|v⊥wall|

〉 , (17)

where the mean values again involve Maxwell-boundary
expressions. Eq. (17) can be combined with an analo-
gous expression for Py to obtain the EDMD rift-average
estimator for P :

βP =
N

V
+

σ

V τsim

∑
p:(ij)

〈
2

∆v⊥ij

〉

+
∑

w:(i,±êx,±êy)

〈
1

|v⊥wall|

〉 .
(18)

In a non-periodic box, using Eqs (8) and (9), the EDMD
rift-average estimator takes the form

βP =
N

V
+

σ
√
π√∑
v2
i V

Γ(N + 1
2 )

Γ(N)
(n
±êx±êy

wall +
√

2npair)

(19a)

N→∞−→ N

V

(
1 +

σ
√
πmβ

N
npair

)
, (19b)

where n±êx±êy

wall is the wall-collision rate, the number of
all wall collisions per time interval, and similarly for the
pair-collision rate npair. In theN →∞ limit of Eq. (19b),
wall collision play no role. The EDMD rift-average esti-
mator of Eq. (19a) is tested to 3×10−6 in relative precision
(see Table I, line 4).

Rift-average pressure estimators for ECMC detect wall
and pair collisions with biases (see Eq. (14)), that must
again be corrected, namely by a factor N for each wall

1
2

3 4

1
2

3 4

12

FIG. 7. ECMC rift estimators. (a): The ECMC wall-rift esti-
mator only detects rift overlaps of the active disk, explaining
the factor N in Eq. (14), that is absent in Eq. (13a). (b): A
pair of disks (i, j) leading to the elimination of the sample is
detected only if either i or j are active, explaining a factor
N/2 entering Eq. (20). (c): Illustration of the x-separation at
contact ∆xmin

ij (also relevant for EDMD).

event and by a factor N/2 for each pair event, the latter
because a lifted sample of N disks that must be elim-
inated is detected only if either i or j are active (see
Fig. 7c). This leads to the straight-ECMC rift-average
estimator,

βPx =
N

V
+

N

V τsim

∑
p:(ij)

∆xmin
ij +

∑
w:(i±êx)

2σ

 , (20)

that again differs in the factors ∝ N from the correspond-
ing formulas of EDMD. Furthermore, it averages over
a bounded distribution of ∆xmin

ij , with the wall-velocity
only taking the values ±1, whereas in EDMD, the cor-
responding continuous distributions of 1/|∆v⊥ij | and of
1/|v⊥wall| have infinite variance. The straight-ECMC esti-
mator of Eq. (20) is tested to 4×10−5 in relative precision
(see Table I, line 5).

In a periodic box, there are no wall collisions, and the
direction of motion of straight ECMC is either +êx or
+êy. In Eq. (20), all the x-separations at contact ∆xmin

ij

and the chain length τsim (which, because of the unit
velocity, corresponds to the total displacement) add up to
the difference of the final position xfinal of the last disk of
the chain and the initial position xinitial of the chain’s first
disk. Here, periodic boundary conditions are accounted
for, so that in the absence of collision, this distance equals
τsim. For an event chain in the +êx direction, Eq. (20)
thus simplifies into the straight-ECMC estimator for a
periodic box [41]:

βPx =
N

V τsim
(xfinal − xinitial), (21)

that is easy to compute, and that will be used extensively
in Section IV. There, we alternate event chains in +êx,
which estimate Px, and event chains in +êy, which es-
timate Py. Alternating the direction of straight-ECMC
chains is required for convergence towards equilibrium.
The rift-average estimator generalizes to other variants of
ECMC. The pressure Py can also be estimated through
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event chains in ±êx and horizontal-rift averages, leading
for the straight ECMC in +êx to:

βPy =
N

V
+

N

V τsim

∑
p:(ij)

|∆ymin
ij |2

∆xmin
ij

. (22)

However, this estimator has infinite variance and is less
convenient than Eq. (21).

2. Homothetic volume reductions

Besides by rifts, the volume V of an Lx×Ly box can be
reduced by a homothetic transformation, where the box
and all positions xi are homogeneously scaled by a fac-
tor 1− εα < 1, while the disk radii σ remain unchanged.
The transformation of the box corresponds to simultane-
ous horizontal and vertical rifts of equal rift volume, but
the disk positions then transform inhomogeneously, as in
Eq. (11).

A homothetic volume reduction yields the pressure
βP = β(Px + Py)/2, rather than one of the compo-
nents. It may be performed in two steps. In a first
step (from (σ, V ) to (σ′, V ), see Fig. 8), the box and
the xi are unchanged, but the disks are swollen by a fac-
tor 1/(1− εα), possibly eliminating samples. In a second
step, all lengths are rescaled by 1− εα, so that the radii
return to σ. This second step (from (σ′, V ) to (σ, V ′))
is rejection-free, and its reduction of sample-space vol-
ume, with Z(σ, V ′) = (V ′/V )NZ(σ′, V ), constitutes the
ideal-gas term of the pressure.

FIG. 8. A homothetic volume reduction performed through a
swelling of disks followed by a uniform reduction of all lengths
(box, positions, radii).

In the two-stage transition Z(σ, V ) → Z(σ′, V ) →
Z(σ, V ′), the two-step procedure turns Eq. (10) into

βP
V ′→V

=
log [Z(σ, V )]− log [Z(σ, V ′)]

V − V ′

=
N

V
+

1

V − V ′
Z(σ, V )− Z(σ′, V )

Z(σ, V )
.

(23)

The final term again divides the elimination probability
of a sample by the change of volume (see also [59–62]).

The pair-elimination probability is expressed by
the normalized probability density ĝ(rx, ry), with
ĝ(rx, ry)drxdry the probability that a that a given pair
distance is in [rx, rx + dx][ry, ry + dy]. With ĝ(r) as the
average of ĝ(rx, ry) over the corresponding ring of ra-
dius r, the probability that a given pair distance is in

the interval [r, r + dr] is thus 2πrĝ(r)dr. By conven-
tion, the pair correlation function g(r) is normalized to
g(r) = V ĝ(r). For our application, we have r = 2σ and
dr = 2σεα, and there are N(N−1)/2 pairs of disks. Also,
the absolute change of volume for Lx → Lx(1 + εα) and
Ly → Ly(1+ εα) is 2V εα. The pair-collision contribution
to the pressure is thus:

βP pair =
N

V

N − 1

V
2πσ2g(2σ), (24)

an expression that is correct for finite N and in periodic
or non-periodic boxes. The extrapolation of g(2σ) from
a histogram is detailed in Appendix A. The range of dis-
tances to the wall that are eliminated is [σ, σ(1+εα)], and
the change in volume remains 2εαV . The contribution to
the pressure of the wall at x = 0 is then

βPwall,−êx =
Nσεα
2εαV

∫
dyπ(σ, y) =

Nσ

2V Lx
ρx(σ). (25)

where we used the rescaled line densities ρx and ρy which
remain O (1) for V → ∞ (see Subsection III C 1). Sum-
ming over the four wall terms, one arrives at

βPwall =
Nσ

V

[
ρx(σ)

Lx
+
ρy(σ)

Ly

]
. (26)

The computation of the line densities ρx(σ) and ρy(σ)
from a histogram is detailed in Appendix A. The com-
bined pair and wall contributions yield the homothetic
pressure estimator for a non-periodic Lx × Ly box:

βP = N/V+

N

V

[
2π

(N − 1)σ2

V
g(2σ) + σ

ρx(σ)

Lx
+ σ

ρy(σ)

Ly

]
(27a)

N→∞−→ N

V
[1 + 2ηg(2σ)] . (27b)

Eq. (27a) is tested by histogram fits and extrapolations to
contact of ρ(σ) and g(2σ) to 4×10−3 in relative precision
(see Table I, line 6). Eq. (27b) has long been used for
estimating pressures in MCMC [28].

EDMD and ECMC can estimate the pressure with-
out the extrapolations of the pair correlation functions
and the wall densities by tracking the time during which
pairs of disks are close to contact, or a disk is close to
the wall. The explicit computation for EDMD simply
reproduces Eqs (18) and (19), both at finite N and in
the thermodynamic limit. The corresponding homoth-
etic pressure estimators for ECMC are readily derived,
but they have diverging variances that require specific
care. For all variants except straight ECMC, they cor-
rectly estimate wall contributions to the pressure and can
be used for non-periodic boxes. The velocities of straight
ECMC are always parallel to some walls, precluding the
estimation of all wall contribution to the pressure.
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3. Kinematic pressure estimators

Kinematic pressure estimators of EDMD determine the
time-averaged exchange of momentum between disks, or
between disks and a wall. Their use goes back to Daniel
Bernoulli [16], who pointed out that under the scaling
vi → γvi∀i of Eq. (2), both the number of collisions per
time interval and the momentum transmitted scaled as γ,
so that the pressure had to be proportional to the square
of the (mean) velocity (in other words to the tempera-
ture). In the non-periodic Lx × Ly box, the transmitted
momentum with, say, the vertical walls at x = 0 and
x = Lx gives the kinematic EDMD estimator:

Px =
1

2Lyτsim

∑
w:(i,±êx)

2m|v⊥wall| (28a)

= 2m
〈
|v⊥wall|

〉
n̂±êx

wall (28b)

=
mRv

√
π

N

Γ(N + 1
2 )

Γ(N)
n̂±êx

wall , (28c)

N→∞−→
√

2πβmn̂±êx

wall , (28d)

where in Eq. (28c), we used Eq. (8b). Already at finite
N , the kinematic EDMD estimator of Eq. (28c) is identi-
cal to the thermodynamic wall-rift pressure estimator of
Eq. (13c), as we may identify R2

v = 2N/(mβ).
The EDMD kinetic pressure estimator can also be de-

rived from the virial function

Gx = m

N∑
i=1

xivi,x (29)

which is strictly bounded during molecular dynamics, so
that its mean time derivative vanishes:〈

d

dt
Gx

〉
=

〈
d

dt
Gwall
x

〉
+

〈
d

dt
Gpair
x

〉
+m

〈
N∑
i=1

v2
i,x

〉

= m

〈
N∑
i=1

(xiv̇i,x + v2
i,x)

〉
= 0. (30)

The wall contribution to this expression stems from colli-
sions with the vertical walls at x = 0 and x = Lx, which
are given by 2m

〈
|v⊥wall|

〉
σ and −2m

〈
|v⊥wall|

〉
(Lx − σ),

respectively. This results in〈
d

dt
Gwall
x

〉
= −2m

〈
|v⊥wall|

〉
(Lx/2− σ)n±xwall (31a)

= −V Px + 2mσ
〈
|v⊥wall|

〉
2Lyn̂

±x
wall, (31b)

where we have used Eq. (28b).
For the pair-collision contribution to Eq. (30), we

use that at the collision of disks i and j, the distance
∆xij = xi−xj satisfies |∆xij | = 2σ. With the unit vector
ê⊥ = ∆xij/(2σ) and the velocity difference ∆v = vi−vj
(before the collision), the change of the velocity of disk i
is −ê⊥(∆v ··· ê⊥), and the change of the velocity of disk j

is ê⊥(∆v ··· ê⊥) (see [39, Sect. 2.1.1]). An individual pair
collision thus contributes

−m
(∆xmin

ij )2

4σ2
(∆v ···∆xmin

ij )︸ ︷︷ ︸
−2σ|∆v⊥ij |

, (32)

an expression where both terms can be averaged inde-
pendently. Finally, we may use

〈
v2
i,x

〉
= R2

v/(2N) to
rearrange Eq. (30) into a kinematic EDMD pressure es-
timator:

βPx =
N

V
+

β

V τsim

∑
w:(i,±êx)

〈
2σ|v⊥wall|

〉
+
∑
p:(ij)

(∆xmin
ij )2

4σ2

〈
2σ∆v⊥ij

〉
. (33)

Using Eqs (8) and (9), this kinematic estimator is seen
to be equivalent to the thermodynamic rift-average esti-
mator of Eq. (17).

IV. EQUATION-OF-STATE COMPUTATIONS

We now compare historic hard-disk pressure computa-
tions since 1953 [14, 28, 49, 63–67] with massive simu-
lation results obtained in this work using the sampling
algorithms and pressure estimators of Section III. Our
re-evaluation will illustrate the three principal challenges
that the hard-disk model shares, mutatis mutandis, with
other sampling problems. First, the estimate of the pres-
sure continues to depend on the initial configuration for
very long run times, until equilibrium is reached. We will
call this time the “mixing time” [47] in a slight abuse of
terminology, as we do not consider certain pathological
initial configurations, which trap the Markov chain for-
ever (see [53]). The pioneering works, by Metropolis et al.
and by Alder and Wainwright obtained crucial insights
from very short computer experiments with run times
much below the mixing time. However, later works that
attempted to interpret manifestly unequilibrated sam-
ples [68–70], or that failed to recognize the lack of con-
vergence, arrived at qualitatively wrong conclusions. In
the hard-disk model, mixing times can be bounded rig-
orously only at small densities [71]. At higher densities,
heuristic criteria for the mixing time, which have not
been fully presented before, appear crucial. In our case,
they depend on time series of other observables than the
pressure, or on multiple runs from qualitatively different
initial configurations.

The second challenge for hard-disk computations con-
sists in the intricate dependence of the pressure on the
shape of the box (that is, the aspect ratio) and on the
number N of disks, rendering extrapolations to the ther-
modynamic limit non-trivial. In small boxes, the hexatic
and solid phases are confounded, as they only differ at
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large distances, so that the behavior in the thermody-
namic limit is not necessarily reflected in the equation of
state at small N .

The third challenge concerns the very evaluation of the
pressure. Within Monte Carlo methods, the pressure was
long evaluated through extrapolation towards contact of
the pair correlation function in Eq. (27b), a procedure
fraught with uncertainty. The rift formulas of Subsec-
tion III C that originated with ECMC, and that we even
use in MPMC as short fictitious ECMC runs placed at
regular time intervals, overcome the need for extrapola-
tions.

A. Hard-disk equation of state for small N

Since the early days of computer simulation, the pres-
sure of the hard-disk model has been computed with the
aim of determining its phase behavior in the thermody-
namic limit. While the identification of thermodynamic
phases in finite systems can be subject to discussion, the
pressure is unambiguously defined, and it can in principle
be computed to arbitrary precision.

1. Metropolis et al. (1953), rotation criterion

In 1953, in the publication that first introduced
MCMC, Metropolis et al. [28] estimated the pressure
from the extrapolated pair-correlation function for 224
disks in a periodic square box. This number 224 = 16×14
disks can be perfectly packed at density η = π/(2

√
3) =

0.907 in an almost square-shaped box of aspect ratio
α= (16

√
3/2 : 14) = (0.9897 : 1) and almost at that den-

sity in a perfectly square box. Metropolis et al. concluded
that “(t)here is no indication of a phase transition”. The
equation of state for N = 224, α= (1 : 1), recomputed in
this work using straight ECMC to a relative precision of
10−4, is somewhat higher than the historic pressures. It
is also slightly non-monotonic (see Fig. 9a).

The 224-disk square-box system of Metropolis et al.,
from 1953, carries lessons that are pertinent to the
present day. Indeed, in a square box, any hard-disk sam-
ple can be rotated by an angle π/2 = 90° into another
valid sample. At high enough density, two such sam-
ples are inequivalent because the local hexagon which
describes the six disks that typically surround any given
disk has on average a 60° symmetry but not a 90° sym-
metry. For each local set of samples, there thus exists
another inequivalent set of samples (generated through
a 90° rotation) of identical statistical weight. This ro-
tation, and the corresponding transformation of samples
can be formalized through the global orientational order
parameter

Ψ6 =
1

N

∑
l

1

nbr(l)

nbr(l)∑
j=1

e6iφlj , (34)

that changes from Ψ6 to −Ψ6 (that is, arg(Ψ6) →
arg(Ψ6) + π) under a rotation by 90°. In Eq. (34), φlj is
the angle of the line connecting disks l and j with respect
to the êx-axis, and nbr(l) is the number of neighbors of l
resulting from a Voronoi construction. In a square box,
the ensemble average of the orientational order parame-
ter thus satisfies 〈Ψ6〉 = 0, and for an irreducible Markov
chain, it agrees with its time average, as expressed in the
ergodic theorem [47]:

Pπ{0}

[
lim
t→∞

1

t

t∑
i=1

fi = 〈f〉

]
= 1, (35)

where f is a function of the sample at time i given the
distribution π{0} of initial configurations, and P is the
probability. As the mean value 〈Ψ6〉 is known to vanish,
we can employ Eq. (35) with f = Ψ6 as a diagnostic tool
and suppose that the hard-disk Markov chain in a square
box reaches the mixing time (with errors decreasing as
the square root of the run time) only when the orienta-
tional order parameter Ψ6 has been rotated by more than
180° [72]:

|supp(arg(Ψ6)| > π. (36)

Here, “supp” stands for the support of the empirical dis-
tribution, in our case for the range of angles of Ψ6 that
are visited during a simulation. This heuristic rotation
criterion supposes that the orientational order parameter
Ψ6 is the slowest-decaying variable in the hard-disk sys-
tem. Our time series of Ψ6 in a square box, with known
mean value 〈Ψ6〉 = 0, pinpoints problems with a hard-
disk pressure estimation that might not be signaled by
the time series of the pressure itself. We use the rotation
criterion in two different settings. In small systems (as
the 224-disk case of Metropolis et al.), the entire range
of arg(Ψ6) values is swept through many times, leading
to high-precision estimates for the pressure, even though
it strongly depends on the angle. In large systems, as
the hard-disk model with N = 1282 at η = 0.716, that
we will discuss in Fig. 12, we barely satisfy the criterion,
but it still assures us that up to a symmetry Ψ6 → −Ψ6

all relevant regions of sample space were visited. High-
precision estimates for the pressure now result from the
fact that the pressure depends weakly on arg(Ψ6).

Our ECMC simulations satisfy the rotation criterion
for N = 224 in a periodic square box up to a density
η = 0.72. At large enough densities, the ECMC simula-
tion may remain for long times in a set of samples with
essentially the same value of arg(Ψ6) before flipping to
another set of samples with arg(Ψ6) + π. This very slow
rotation of Ψ6 is a harbinger of the serious convergence
problems of the hard-disk model for larger N at densi-
ties of physical interest. As we will show, the pressure is
strongly correlated with Ψ6 up to moderate values of N .
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FIG. 9. Equations of state P (V ) for the hard-disk model at small N . (a): P (V ) for N = 244 for α= (1 : 1) computed in
1953 [28] compared with ECMC computations (this work). (b): P (V ) for N = 72 computed in 1962 [14] (for unspecified aspect
ratio α) and ECMC pressures for α = (1 :

√
3/2), (1 : 1), and (9 : 8

√
3/2). (c): P (V ) for N = 870. This work’s square-box

computations satisfy 〈Ψ6〉 ' 0, except for data points in parentheses (see Fig. 10).

2. Revisiting Alder and Wainwright (1962)

Alder and Wainwright, in 1962, used EDMD to esti-
mate the pressure for 72 and 870 disks in rectangular
periodic boxes for which they did not specify the as-
pect ratios. As already discussed in Fig. 1, their non-
monotonic equation of state led to the prediction of a
phase transition. The computed pressure is indepen-
dent of the sampling method (molecular dynamics, lo-
cal Metropolis algorithm, ECMC), but it depends on the
aspect ratio of the box. For 72 = 9 × 8 disks and as-
pect ratio α= (9 : 8

√
3/2) = (1 : 0.7698) where they can

be perfectly packed, the equation of state obtained by
ECMC in this work agrees remarkably well with the his-
toric data (see Fig. 9b). In contrast, for a square box
(aspect ratio α= (1 : 1)), the equation of state follows a
slight “S” shape, but it remains monotonous for all den-
sities. For the aspect ratio α= (1 :

√
3/2), the pressure

is barely “S” shaped. For the aspect ratio α=(1 :1), our
ECMC computations satisfy the rotation criterion up to
densities η . 0.74, and pressure estimates achieve 10−4

relative precision.
For 870 disks, the dependence of the pressure on the

aspect ratio is less pronounced than for N = 72 (see
Fig. 9c). Since 870 = 30 × 29, this number of disks can
be close-packed for the aspect ratio α= (29 : 30

√
3/2) =

(1 : 0.896). For the aspect ratio α = (1 : 1), the orien-
tation criterion of Eq. (36) is again satisfied up to high
densities (see Fig. 10a). However, even at moderate den-
sities, an ECMC run can take several CPU hours be-
fore visiting all possible orientations, and the pressure
clearly correlates with the orientation (see Fig. 10b). On
smaller time scales, the time series remains blocked in
samples that all roughly have the same orientational or-
der parameter Ψ6 (see Fig. 10c). Analyzing such shorter
time series gives incorrect estimates of the pressure (Pα
or Pβ , etc., rather than P ). Accordingly, the window-
averaged pressure features long-time correlations, with

an estimated autocorrelation time of ∼ 2×1010 events
(corresponding to roughly two CPU hours for ECMC).
Nevertheless, on a long enough time scale estimated by
the rotation criterion, all these systematic errors disap-
pear, and the error of the pressure estimator starts to de-
crease as the square root of the run time (see Fig. 10d).
The achieved 10−4 relative error on the pressure esti-
mates in Fig. 9c, from longer simulations than those il-
lustrated in Fig. 10, is much smaller than the systematic
error | 〈Pα〉−〈Pγ〉 |/P ∼ 10−2 of a calculation that is too
short to rotate Ψ6.

B. Equations of state for large N

The equations of state for larger N than those consid-
ered by Metropolis et al. and by Alder and Wainwright
came into focus in the decades following 1962. At suf-
ficiently large N , as we know today, fluid, hexatic, and
solid phases can be distinguished, and the latter clearly
differs from the crystal. In the simulations, three effects
stand out. First, mixing and autocorrelation times be-
come truly gigantic already for reasonable densities, even
for the best currently known algorithms. Nevertheless,
the pressure (as other physical quantities that we do not
consider in this work) can be computed to a precision
that, from a given time on, increases as the square root
of the computer time. From N = 1282 to N = 10242,
this program can be put into practice, but it requires con-
siderable computer resources. The failure to converge is
signaled through a number of criteria, but not necessarily
by the time series itself. Second, in the coexistence phase
of the fluid and the hexatic in theNV T ensemble, the ini-
tial dynamics towards equilibrium is dominated by coars-
ening. In this process, for example, small hexatic islands
nucleate in the fluid, then coalesce and slowly grow until,
in the stationary state of the time evolution, the sample
presents itself as two domains, one for each coexisting
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FIG. 10. Pressure P and global orientational order Ψ6 for
a three-hour ECMC run (N = 870, η = 0.716, square box
α= (1 : 1)). (a): Values of Ψ6 in the complex plane. High-
lighted clusters with inverted Ψ6 (such as α1 and α3) have
the same statistical weight. (b): Cluster averages for P vs.
arg(Ψ6). (c): Trajectories of Im(Ψ6) and Re(Ψ6) with indi-
cated clusters. (d): Running average and window average for
P .

phase. Precise knowledge of the pressure allows one to
draw the boundaries of the phase coexistence. Third, as
realized ten years ago, the high-density coexisting phase
through the first-order phase transition is a hexatic, and
thus distinct from the crystal that can serve as an initial
configuration of MCMC configurations. Mixing times in
the hexatic phase are very long, and are likely to scale
with a larger exponent with N than in the fluid [20].

1. Hard-disk model with N = 1282 to N = 5122

For the hard-disk model with N = 1282, the relative
precision levels of sequential ECMC, parallel ECMC, and
of MPMC reach ∼ 10−5 for the pressure, for example, at
η = 0.698, much more precise than previous studies in
the literature [63, 73] (see Fig. 11a). For α= (1 : 1), our
calculations satisfy the rotation criterion of Eq. (36) up
to density η = 0.716, albeit for high densities on an im-
pressive time scale, even for the MPMC algorithm (see
Fig. 12). This is where earlier studies failed to equili-
brate, and produced erroneous pressure estimates.

At density η = 0.716, samples of the MPMC computa-
tion may remain in one cluster indexed by a given value
of arg(Ψ6) for ∼ 109 sweeps, and then produce a cluster
average for the pressure βPV0/N that differs relatively by
about 10−3 from the equilibrium average (see Fig. 12c).
On such time scales, the outcome of the simulation is
thus unpredictable, and the observed convergence of the
pressure is not towards its ensemble average but towards
some metastable cluster value. This behavior is readily
detected from within the simulation data through the ro-
tation criterion of Eq. (36) and through the dependence
of obtained pressure values on initial conditions (such as
different orientations or fluid and crystalline initial con-
figurations).

For even larger systems, such as N = 5122, the compu-
tations in the literature dramatically suffer from the fail-
ure to equilibrate, with incorrect pressure estimates es-
pecially at high densities. For α=(1:1), our MPMC im-
plementation satisfies the rotation criterion at η . 0.712
within a few weeks of computer time (which would cor-
respond to centuries of run time of the local Metropolis
algorithm on a single CPU). For even higher densities, all
currently known sampling algorithm fail to equilibrate in
the strict sense of that criterion. Fortunately, at largerN ,
the influence of the boundary conditions is much smaller
than for small N (see Fig. 13a). We estimate the system-
atic error stemming from the failure to rotate Ψ6 by start-
ing independent simulations for N = 5122 from a number
of initial configurations with different global orientational
order parameters Ψ6 (see Fig. 13a). The resulting sys-
tematic errors are found to be at most as large as the
statistical errors. Our pressure values are consistent with
previous ECMC and MPMC calculations [33, 49] up to
η = 0.718, cross-validating the correctness of the conclu-
sion in Ref. [49] (see Fig. 11b). In a non-square box, the
components Px and Py of the pressure generally differ.
For N = 1282 and 5122 at aspect ratio α = (1 :

√
3/2),

our estimates for Px and Py agree within error bars even
in the hexatic phase, as the system dimensions are larger
than the positional correlation length.

2. Hard-disk model at N = 10242

For the hard-disk model at N = 10242, single-core
implementations of the reversible Metropolis algorithm
and of EDMD fail to equilibrate for densities η & 0.700
on accessible time scales even on a modern CPU. Only
straight ECMC (whose week-long mixing time of the se-
rial version [33] reduces in the parallel implementation)
and MPMC (run in parallel on thousands of cores on a
GPU) are currently able to partially achieve convergence.
It is for this reason that in the past, unconverged calcu-
lations [65–67] resulted in erroneous pressure estimates
and, in consequence, qualitatively wrong predictions for
the hard-disk phases and the phase transitions.

The slow mixing manifests itself in pairs of runs that
start on the one hand from a fluid-like initial configu-
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FIG. 11. Equations of state P (V ) for the hard-disk model at large N . (a): P (V ) for N = 1282 from Refs [63, 73] and MPMC
pressures (this work) for α=(1 :

√
3/2) and α=(1 :1) where all but the data point in parentheses satisfy the rotation criterion

of Eq. (36) (see Fig. 12 for Ψ6-resolved pressures). (b): P (V ) for N = 5122 from Refs [49, 65, 66] and MPMC pressures (this
work) for aspect ratios α= (1 :

√
3/2) and α= (1 : 1), where runs with η < 0.712 satisfy the rotation criterion. (c): P (V ) for

10242 from Refs [33, 49, 66, 67], compared to MPMC (this work) for aspect ratios α= (1 :
√

3/2) and (1 : 1), where at density
η > 0.708 the rotation criterion is violated, but the systematic error thus committed is negligible (see Fig. 13a).

ration with only short-range correlations and a global
orientational order parameter |Ψ6| & 0 (obtained by the
Lubachevsky–Stillinger algorithm [74]) and on the other
hand from a crystalline initial configuration with |Ψ6| .
1. In the fluid–hexatic coexistence region (η = 0.708),
as well as in the hexatic phase (η = 0.718), ECMC
takes about 106 sweeps to coalesce the two values of
|Ψ6| (see Fig. 13c and Fig. 13d). For ECMC, at ∼ 1010

events/hour, this corresponds to about a week of single-
core CPU time. In contrast, MPMC requires roughly
109 sweeps to coalesce. On a GPU with ∼ 104 individual
cores, this is achieved in less than two days, but on a
single-core CPU, the local Metropolis algorithm (which
has roughly the same efficiency per move as MPMC)
would require 109+6 moves which correspond to ∼ 105

hours or ∼ 10 years, at a typical 1010 moves per hour.
Both branches of these calculations have similar times for
arriving at equilibrium, illustrating that the fluid–hexatic
coexistence phase is as difficult to reach from the fluid as
it is from the crystal. While the mixing is very slow,
the pairs of curves reaching the same value of |Ψ6| give a
lower bound for the required run times of our ECMC and
MPMC algorithms, although these times are still much
below the mixing time in this system, if one were to in-
clude the rotation in arg(Ψ6) in its definition. For the
density η = 0.718, at N = 10242, our total MPMC run
times amount to 6.4×109 sweeps, roughly 6 times longer
than what it shown in Fig. 13d.

Although MPMC and ECMC are today’s fastest algo-
rithms for the hard-disk model, they fail to satisfy the
rotation criterion of Eq. (36) on human timescales for
N = 10242 at densities η & 0.708. Fortunately, the in-
fluence of arg(Ψ6) on the pressure is quite small. To test
this, we started very long MPMC calculations from a
number of finely spaced crystalline initial configurations
with different values of arg(Ψ6). At the very high den-
sity of η = 0.718 for N = 10242, the relative statistical

errors for the pressure is 5×10−4 for each run, while the
maximum distance between the mean values, that could
possibly correspond to a systematic error, is also found to
be 5×10−4. We estimate the pressure uncertainty as the
maximum of the individual statistical and the difference
in mean values (see Fig. 13b). The estimated pressures
are also almost independent of the aspect ratio α=(1:1)

and the α= (1 :
√

3/2) (Fig. 11c). Finally, in non-square
boxes, the estimates for Px and Py agree to very high pre-
cision for large N , while they differ markedly in smaller
systems (see Table II). The disagreement of previous cal-
culations appears thus rooted in the very long times to
reach the correct values of |Ψ6|.

V. CONCLUSION

In this work, we have discussed the hard-disk pressure,
which was estimated in the the very first MCMC com-
putation in 1953, and in one of the earliest molecular-
dynamics computations, in 1962. We have argued that
the difficulty of the pressure estimation had not been fully
realized in the decades-long controversy over the phase-
transition scenario of this simple model. Our first aim
was to provide the context for this computation through
a discussion of the physics of the hard-disk model, of the
sampling algorithms and pressure estimators and, cru-
cially, of the criteria for bounding mixing times. Our
second aim was to finally provide definite high-precision
estimates of the pressure through massive computations
and to compare them to the values from the literature,
thereby ending a long period of uncertainty and doubt.
In doing so, we hope to provide benchmarks for the next
generation of sampling algorithms, estimators, and phys-
ical theories.

The history of the hard-disk model epitomizes a num-
ber of prime computational issues. One of them is
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FIG. 12. Analysis of the rotation criterion of Eq. (36) for
a single MPMC run (N = 1282, η = 0.716, α= (1 : 1)). (a):
Histogram of Ψ6 in the complex plane. Clusters α, α′ satisfies
Ψα

6 = −Ψα′
6 and have equal weight. (b): Trajectory of Re(Ψ6)

and Im(Ψ6) with first visits to clusters indicated (cf Fig. 10).
(c): Running average and window average of the pressure,
showcasing slow convergence.

the role of so-called “computer experiments”, that is, of
heuristic simulations which run for much less than the
mixing time. The pioneering work of Alder and Wain-
wright was clearly of that type, as their published pres-
sures explicitly depend on the initial configurations.

Computer experiments below the mixing-time scale are
akin to perturbation expansions in the theory of liq-
uids or in quantum mechanics, as the sampling below
the mixing-time scale merely “perturbs” around the crys-
talline or fluid initial configurations. Just like perturba-
tion theory, such computer experiments can provide im-
portant insights, yet they have limited predictive power,
as was evidenced by the decades-long controversy about
the hard-disk phase transitions. Beyond the mixing time,
the influence of the initial configuration fades away expo-
nentially, and exponential convergence towards the equi-
librium distribution sets in. Only the statistical errors
remain. In this regime, MCMC and molecular-dynamics
sampling unfolds all its power. Although the mixing and
correlation time scales can be gigantic, as discussed, the
goal of sampling beyond the mixing time scale must not
be lost sight of.

A crucial computational issue for MCMC and
molecular-dynamics algorithms consists in estimating the

N α P / Px, Py Method
64 (1:

√
3/2) 8.065(3), 8.137(4) Naive

8.0671(9), 8.1402(9) ECMC
72 (9:4

√
3) 8.1614(4), 8.2382(5) Naive

8.1617(7), 8.2386(8) ECMC
2562 (1 :1) 9.172(5) ECMC (g(2σ))

9.1707(2) ECMC
9.1708(1) MPMC

2562 (1 :
√

3/2) 9.176(6) ECMC (g(2σ))
9.1703(2), 9.1704(3) ECMC
9.1704(1), 9.1705(1) MPMC

5122 (1 :1) 9.170(2) ECMC (g(2σ))
9.1699(2) ECMC
9.1696(1) MPMC

5122 (1 :
√

3/2) 9.167(3) ECMC (g(2σ))
9.1694(3), 9.1694(3) ECMC
9.1695(2), 9.1697(2) MPMC

TABLE II. Cross validation of pressure estimates between
straight ECMC (naive and state-of-the-art) and MPMC in
periodic boxes of given aspect ratio α, all at density η = 0.698.
MPMC integrates short fictitious runs of straight ECMC, in
order to estimate pressures through Eq. (21). ECMC uses the
rift-average estimator of Eq. (21), except where indicated to
test agreement of the pair-correlation formula of Eq. (27b).

mixing times. We have insisted that simply analyzing
a time series (in our case, that of the pressure) is usu-
ally not sufficient. Furthermore, we have discussed two
strategies to estimate these times reliably for the hard-
disk model. First, we designed an observable—the orien-
tational order parameter for hard disks in a square box—
with known mean value. We then argued that as long as
the run-time average of this observable differed consider-
ably from its known mean, the mixing-time scale has not
yet been reached. Used for more than a decade [33, 34],
this rotation criterion supposes that the orientational or-
der is the slowest-moving observable in the hard-disk sys-
tem.

Our second strategy to lend credibility to our MCMC
calculations consists in starting from widely different ini-
tial configurations, following in the footsteps of Alder and
Wainwright, yet accepting the result of the calculation
only if the influence of the initial configuration has faded
away. This approach is related to the coupling approach
for Markov chains [75]. The fluid and crystalline initial
configurations that we used to initialize Markov chains
for 106 disks in the hexatic phase stand in for the worst-
case initializations, as they are called for in the definition
of the mixing time [47]. The mixing time provides the rel-
evant time scale for analyzing MCMC calculations, and
certainly the one where run-time averages become inde-
pendent of how the Markov chain is initialized.

Finally, we emphasize the role of algorithm develop-
ment, and of hardware implementations, even in the sim-
ple model of hard disks. In this work, we relied heavily
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FIG. 13. Convergence analysis for the hard-disk model at η = 0.708 and η = 0.718 (square box α= (1 : 1)). (a): Scatter plot
of the pressure as a function of the orientational order parameter (N = 5122). (b-d): N = 10242 for EDMD and ECMC. (b):
Cluster averages obtained from independent runs from initial configurations at specific values of Ψ6. The difference, smaller
than 10−3, estimates the systematic error. (c) and (d): Time evolution of the absolute orientational order |Ψ6|, starting from
either a disordered initial configuration (with |Ψ6| & 0) or from a crystal (with |Ψ6| . 1) (LMC refers to the local Metropolis
algorithm).

on ECMC, which, as evidenced in Fig. 13c and d and
d, speeds up MCMC simulations by several orders of
magnitude. ECMC is a family of non-reversible Markov
chains, rather than a specific algorithm, and variants of
the original straight and reflective ECMC continue to be
developed. The opportunities granted by non-reversible
Markov chains (and by MCMC approaches in general),
are certainly very far from having all been explored. The
recent extension of ECMC to arbitrary interaction po-
tentials [41] and in particular to the field of molecular
simulation [76, 77], carries considerable promise. The
spectacular development of GPU hardware over the last
fifteen years has greatly democratized parallel computa-
tions with, again, one of the cleanest applications being
the hard-disk model. Decidedly, this simple model is a
“Drosophila” of statistical physics.
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Appendix A: Extrapolation and statistics

Sampling algorithms output time series of configura-
tions and of pressures (for example one value of the es-
timated Px for each event chain in ±êx). Further anal-
ysis transforms this raw output into the pressure esti-
mates and confidence intervals provided with this work.
The pressure estimators that rely on the extrapolation
of pair-correlation functions and wall densities have been
superseded in recent years by the rift-average estimators.
We nevertheless describe them here in order to illustrate
that the new estimators are perfectly sound. We also

sketch the stationary-bootstrap method which estimates
the confidence intervals of the pressure time series.

1. Extrapolation of pair correlations and wall
densities

The pressure estimator of Eq. (27a) extrapolates the
rescaled line densities ρx(x) and ρy(y) to x = σ, Lx − σ
and y = σ, Ly − σ, respectively, and the pair-correlation
function g(r) to contact at r = 2σ. We use the fourth-
order polynomial histogram fitting procedure of Ref [33]
contained in the HistoricDisks software package (see
Appendix B). Within our MPMC production runs, how-
ever, we use the parameter-free rift-average estimators
from fictitious straight-ECMC runs to estimate Px and
Py, rather than the extrapolation method.

To determine the rescaled line density ρx(σ) (and sim-
ilarly ρy), the x-coordinate of a disk at position xi =
(xi, yi) is retained in a histogram of bin size 10−3σ if
xi < 1.1σ or xi > Lx − 1.1σ. The histogram is normal-
ized by dividing the number of elements in each bin by
2 × 10−3σnN , where n is the total number of sampled
configurations (not only those contributing to the his-
togram) and N is the number of disks. The histogram is
further multiplied by Lx for ρx (and likewise by Ly for ρy)
in order to satisfy the normalization π(1)(xi) = ρ(xi)/V .
It is the line density ρx(x), which is fitted and then ex-
trapolated to x = σ.

The extrapolation of g(2σ) proceeds analogously to
that of ρx(x). The pair distances in the range 2σ <
r < 2.1σ are retained in a histogram, then normalized by
dividing the number of elements in each bin by the bin
size 10−3σ and the total number of sampled distances
nN(N − 1)/2. The normalized histogram approximates
2πrĝ(r). The histogram is further multiplied by V/2π
and divided by the distance r corresponding to the cen-
ter of each bin, yielding the empirical g(r), that is then
extrapolated to r = 2σ.
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2. Statistics

The standard errors in this work were computed with
the stationary bootstrap method [78, 79], and double-
checked with the blocking method [80]. In stationary
bootstrap, the standard error is estimated by creating
a large number of simulated time series (typically 1000).
Each of the time series has the same length as the original
series, and is created by piecing together randomly cho-
sen sub-series of geometrically distributed length. The
only parameter controlling the geometrical distribution
is chosen so that it minimizes the mean squared error
of the estimated standard error for an infinite sub-series
length and for an infinite number of sub-series [81, 82].
The compatibility of the stationary-bootstrap error es-
timate with that of the blocking method was carefully
checked for the entire data presented in the figures as
well as in Table II.

Appendix B: Historic data, codes, and validation

The present work is accompanied by the
HistoricDisks data and software package, which
is published as an open-source project under the GNU
GPLv3 license. HistoricDisks is available on GitHub
as part of the JeLLyFysh organization [83]. The package
provides the pressure data extracted from the literature
since 1953, and also the set of high-precision pressures of
the present work (see Subsection B 1). Furthermore, the
package contains naive MCMC and MD implementations
and pressure estimators (used for validation purposes in
Table I) as well as state-of-the-art implementations used
in Section IV.

1. Pressure data, equations of states

The pressure data in the HistoricDisks package are
from Refs [14, 28, 33, 63, 65–67, 73], or else correspond
to results obtained in this work. Pressure data for a
given reference, a given system size and aspect ratio
are stored in a separate file in the .csv format (see
the README file for details). Pressures and error bars
were digitized using the WebPlotDigitizer software [84]
where applicable, or else extracted from published ta-
bles. The HistoricDisks package furthermore provides
Python programs that visualize equations of state. All
pressure data are for the NV T ensemble, and the control
variable (volume or density, plotted on the x-axis) follows
all four conventions of Eq. (1). The dependent variable
(the pressure, plotted on the y-axis) follows two conven-
tions, namely βPV0/N and βP (2σ)2. In order to facil-
itate the direct comparison across different conventions,
the produced figures have four x-axes and two y-axes.
The pressure data base in the HistoricDisks package
may evolve in the future.

2. Computer programs

In addition to pressure data, the HistoricDisks
package provides access to sampling algorithms (local
Metropolis algorithm, EDMD, and several variants of
ECMC). Each algorithm is implemented in two versions.
A naive version for four disks in a non-periodic rectan-
gular box is patterned after Ref. [39]. A naive version
for N disks in a periodic rectangular box is useful for
validation of more advanced methods. Both versions are
implemented in Python3 (compatible with PyPy3). In
addition, the package provides a state-of-the-art ECMC
program for hard disks.

a. Four-disk non-periodic-box programs

Our naive programs consider four disks of radius σ =
0.15 in a non-periodic square box of sides 1. We imple-
ment the Metropolis algorithm, EDMD, and the straight,
reflective [34], forward [54] and Newtonian [55] variants
of ECMC. In addition, the pressure estimators of Subsec-
tion III C are implemented (see Table I). In detail, we pro-
vide pressure estimates from the wall density (using fit of
the histogram), from the wall rifts using EDMD, and the
wall rifts using ECMC, the latter testing the bias factor
N that is introduced because ECMC only moves a single
disk. Moreover, we check our rift-average estimators for
EDMD and for straight ECMC (that again differ by dif-
ferent biasing factors and mean values of perpendicular
velocity components). Finally, we provide a test of the
traditional fitting formula involving the pair-correlation
function. All these estimators are of thermodynamic ori-
gin. As discussed in the main text, the kinematic es-
timators, including the virial formula, lead to identical
formulas and need not be tested independently.

b. Naive periodic-box programs

The naive periodic-box programs contained in the
HistoricDisks package differ from the naive programs
only in that the number N of disks and the radius σ can
be set freely, and that the box is periodic. These pro-
grams have some use for demonstration purposes, and
to test the more efficient algorithms for relatively small
values of N . Again, the Metropolis algorithm, EDMD,
and the four variants of ECMC are implemented. Run
start from crystalline initial configurations. Configura-
tions are output at fixed time intervals. EDMD and
straight ECMC also output estimates of the pressure.

c. State-of-the-art hard-disk programs

The HistoricDisks package contains an optimized
C++ code for straight ECMC, that is derived from the
Fortran90 code used in [33]. The GPU-based MPMC
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Cuda code used in this work derives from a general
MPMC code for soft-sphere models and will be published
elsewhere [85]. Pressures obtained from these implemen-
tations agree within very tight error bars (see Table II). A

Python script contained in the package analyzes samples
that were saved from these two codes in the HDF5 [86]
file format. It computes for example the global orienta-
tional order parameters Ψ6.

[1] P. Kapitza, Viscosity of Liquid Helium below the λ-Point,
Nature 141, 74 (1938).

[2] V. G. Vaks and A. I. Larkin, On phase transitions of
second order, J. Exp. Theor. Phys. 22, 678 (1966).

[3] M. Campostrini, M. Hasenbusch, A. Pelissetto, and
E. Vicari, Theoretical estimates of the critical exponents
of the superfluid transition in 4He by lattice methods,
Phys. Rev. B 74, 144506 (2006).

[4] M. Hasenbusch, Monte Carlo study of an improved clock
model in three dimensions, Phys. Rev. B 100, 224517
(2019).

[5] S. M. Chester, W. Landry, J.Liu, D. Poland, D. Simmons-
Duffin, N. Su, and A. Vichi, Carving out OPE space and
precise O(2) model critical exponents, J. High Energy
Phys. 2020 (6).

[6] E. L. Pollock and D. M. Ceperley, Path-integral com-
putation of superfluid densities, Phys. Rev. B 36, 8343
(1987).

[7] K. G. Wilson, The renormalization group and critical
phenomena, Rev. Mod. Phys. 55, 583 (1983).

[8] J. A. Lipa, D. R. Swanson, J. A. Nissen, T. C. P. Chui,
and U. E. Israelsson, Heat Capacity and Thermal Relax-
ation of Bulk Helium very near the Lambda Point, Phys.
Rev. Lett. 76, 944 (1996).

[9] J. A. Lipa, J. A. Nissen, D. A. Stricker, D. R. Swanson,
and T. C. P. Chui, Specific heat of liquid helium in zero
gravity very near the lambda point, Phys. Rev. B 68,
10.1103/physrevb.68.174518 (2003).

[10] H. J. Muller, Nobel Lecture: The Production of Muta-
tions (1946).

[11] C. Nüsslein-Volhard, Nobel Lecture: The Identification
of Genes Controlling Development in Flies and Fishes
(1995).

[12] R. E. Kohler, Lords of the Fly: Drosophila Genetics and
the Experimental Life, History, philosophy, and social
studies of science : Biology (University of Chicago Press,
1994).

[13] M. R. Dietrich, R. A. Ankeny, and P. M. Chen, Publica-
tion Trends in Model Organism Research, Genetics 198,
787 (2014).

[14] B. J. Alder and T. E. Wainwright, Phase Transition in
Elastic Disks, Phys. Rev. 127, 359 (1962).

[15] J. M. Kosterlitz and D. J. Thouless, Ordering, metasta-
bility and phase transitions in two-dimensional systems,
J. Phys. C: Solid State Phys. 6, 1181 (1973).

[16] D. Bernoulli, Hydrodynamica (1738).
[17] Y. G. Sinai, Dynamical systems with elastic reflections,

Russ. Math. Surv. 25, 137 (1970).
[18] N. Simányi, Proof of the Boltzmann-Sinai ergodic hy-

pothesis for typical hard disk systems, Invent. Math. 154,
123 (2003).

[19] J. L. Lebowitz and O. Penrose, Convergence of Virial
Expansions, J. Math. Phys. 5, 841 (1964).

[20] T. Helmuth, W. Perkins, and S. Petti, Correlation decay
for hard spheres via Markov chains, Ann. Appl. Probab.

32, 10.1214/21-aap1728 (2022).
[21] L. Boltzmann, Lectures on Gas Theory , Dover Books on

Physics (Dover Publications, 1995).
[22] L. Fejes, Über einen geometrischen Satz, Math. Z. 46, 83

(1940).
[23] T. Richthammer, Translation-Invariance of Two-

Dimensional Gibbsian Point Processes, Commun. Math.
Phys. 274, 81 (2007).

[24] T. Richthammer, Lower Bound on the Mean Square Dis-
placement of Particles in the Hard Disk Model, Commun.
Math. Phys. 345, 1077 (2016).

[25] J. G. Kirkwood and E. Monroe, Statistical Mechanics of
Fusion, J. Chem. Phys. 9, 514 (1941).

[26] G. Battimelli and G. Ciccotti, Berni Alder and the pi-
oneering times of molecular simulation, Eur. Phys. J. H
43, 303 (2018).

[27] R. Peierls, Quelques propriétés typiques des corps solides,
Annales de l’I. H. P. 5, 177 (1935).

[28] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
A. H. Teller, and E. Teller, Equation of State Calcula-
tions by Fast Computing Machines, J. Chem. Phys. 21,
1087 (1953).

[29] J. E. Mayer and W. W. Wood, Interfacial Tension Effects
in Finite, Periodic, Two-Dimensional Systems, J. Chem.
Phys. 42, 4268 (1965).

[30] J. M. Kosterlitz, The critical properties of the two-
dimensional xy model, J. Phys. C: Solid State Phys. 7,
1046 (1974).

[31] B. I. Halperin and D. R. Nelson, Theory of Two-
Dimensional Melting, Phys. Rev. Lett. 41, 121 (1978).

[32] A. P. Young, Melting and the vector Coulomb gas in two
dimensions, Phys. Rev. B 19, 1855 (1979).

[33] E. P. Bernard and W. Krauth, Two-Step Melting in
Two Dimensions: First-Order Liquid-Hexatic Transition,
Phys. Rev. Lett. 107, 155704 (2011).

[34] E. P. Bernard, W. Krauth, and D. B. Wilson, Event-chain
Monte Carlo algorithms for hard-sphere systems, Phys.
Rev. E 80, 056704 (2009).

[35] J. Lee and K. J. Strandburg, First-order melting tran-
sition of the hard-disk system, Phys. Rev. B 46, 11190
(1992).

[36] H. C. Andersen, Molecular dynamics simulations at con-
stant pressure and/or temperature, J. Chem. Phys. 72,
2384 (1980), https://doi.org/10.1063/1.439486.

[37] M. Parrinello and A. Rahman, Polymorphic tran-
sitions in single crystals: A new molecular dy-
namics method, J. Appl. Phys. 52, 7182 (1981),
https://doi.org/10.1063/1.328693.

[38] L. A. Rowley, D. Nicholson, and N. G. Parsonage, Monte
Carlo grand canonical ensemble calculation in a gas-
liquid transition region for 12-6 Argon, J. Comput. Phys.
17, 401 (1975).

[39] W. Krauth, Statistical Mechanics: Algorithms and Com-
putations (Oxford University Press, 2006).

https://doi.org/10.1038/141074a0
https://doi.org/10.1103/PhysRevB.74.144506
https://doi.org/10.1103/PhysRevB.100.224517
https://doi.org/10.1103/PhysRevB.100.224517
https://doi.org/10.1007/jhep06(2020)142
https://doi.org/10.1007/jhep06(2020)142
https://doi.org/10.1103/physrevb.36.8343
https://doi.org/10.1103/physrevb.36.8343
https://doi.org/10.1103/revmodphys.55.583
https://doi.org/10.1103/PhysRevLett.76.944
https://doi.org/10.1103/PhysRevLett.76.944
https://doi.org/10.1103/physrevb.68.174518
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1946/muller-lecture.html
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1946/muller-lecture.html
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1995/nusslein-volhard-lecture.html
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1995/nusslein-volhard-lecture.html
https://books.google.fr/books?id=J57ht8TPP74C
https://books.google.fr/books?id=J57ht8TPP74C
https://doi.org/10.1534/genetics.114.169714
https://doi.org/10.1534/genetics.114.169714
https://doi.org/10.1103/PhysRev.127.359
https://doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.3931/e-rara-3911
https://doi.org/10.1070/RM1970v025n02ABEH003794
https://doi.org/10.1007/s00222-003-0304-9
https://doi.org/10.1007/s00222-003-0304-9
https://doi.org/10.1063/1.1704186
https://doi.org/10.1214/21-aap1728
https://books.google.fr/books?id=-I7QzCXnstEC
http://eudml.org/doc/168892
http://eudml.org/doc/168892
https://doi.org/10.1007/s00220-007-0274-7
https://doi.org/10.1007/s00220-007-0274-7
https://doi.org/10.1007/s00220-016-2584-0
https://doi.org/10.1007/s00220-016-2584-0
https://doi.org/10.1063/1.1750949
https://doi.org/10.1140/epjh/e2018-90027-5
https://doi.org/10.1140/epjh/e2018-90027-5
http://www.numdam.org/item?id=AIHP_1935__5_3_177_0
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1695931
https://doi.org/10.1063/1.1695931
http://stacks.iop.org/0022-3719/7/i=6/a=005
http://stacks.iop.org/0022-3719/7/i=6/a=005
https://doi.org/10.1103/PhysRevLett.41.121
https://doi.org/10.1103/PhysRevB.19.1855
https://doi.org/10.1103/PhysRevLett.107.155704
https://doi.org/10.1103/PhysRevE.80.056704
https://doi.org/10.1103/PhysRevE.80.056704
https://doi.org/10.1103/physrevb.46.11190
https://doi.org/10.1103/physrevb.46.11190
https://doi.org/10.1063/1.439486
https://doi.org/10.1063/1.439486
https://arxiv.org/abs/https://doi.org/10.1063/1.439486
https://doi.org/10.1063/1.328693
https://arxiv.org/abs/https://doi.org/10.1063/1.328693
https://doi.org/https://doi.org/10.1016/0021-9991(75)90042-X
https://doi.org/https://doi.org/10.1016/0021-9991(75)90042-X


20

[40] S. Asakura and F. Oosawa, On Interaction between Two
Bodies Immersed in a Solution of Macromolecules, J.
Chem. Phys. 22, 1255 (1954).

[41] M. Michel, S. C. Kapfer, and W. Krauth, General-
ized event-chain Monte Carlo: Constructing rejection-
free global-balance algorithms from infinitesimal steps,
J. Chem. Phys. 140, 054116 (2014).

[42] B. J. Alder and T. E. Wainwright, Phase Transition for
a Hard Sphere System, J. Chem. Phys. 27, 1208 (1957).

[43] D. C. Rapaport, The Event Scheduling Problem in
Molecular Dynamic Simulation, J. Comput. Phys. 34,
184 (1980).

[44] D. C. Rapaport, The Event-Driven Approach to
N-Body Simulation, Prog. Theor. Exp. Phys. 178,
5 (2009), https://academic.oup.com/ptps/article-
pdf/doi/10.1143/PTPS.178.5/5288894/178-5.pdf.

[45] M. N. Bannerman, R. Sargant, and L. Lue, DynamO: a
free O(N) general event-driven molecular dynamics sim-
ulator, J. Comput. Chem. 32, 3329 (2011).

[46] B. D. Lubachevsky, Simulating billiards: Serially and in
parallel, International Journal in Computer Simulation
2, 373 (1992).

[47] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov
Chains and Mixing Times (American Mathematical So-
ciety, 2008).

[48] J. A. Anderson, E. Jankowski, T. L. Grubb, M. Engel,
and S. C. Glotzer, Massively parallel Monte Carlo for
many-particle simulations on GPUs, J. Comput. Phys.
254, 27 (2013).

[49] M. Engel, J. A. Anderson, S. C. Glotzer, M. Isobe, E. P.
Bernard, and W. Krauth, Hard-disk equation of state:
First-order liquid-hexatic transition in two dimensions
with three simulation methods, Phys. Rev. E 87, 042134
(2013).

[50] F. Chen, L. Lovász, and I. Pak, Lifting Markov Chains to
Speed up Mixing, Proceedings of the 17th Annual ACM
Symposium on Theory of Computing , 275 (1999).

[51] P. Diaconis, S. Holmes, and R. M. Neal, Analysis of a
nonreversible Markov chain sampler, Ann. Appl. Probab.
10, 726 (2000).

[52] W. Krauth, Event-Chain Monte Carlo: Foundations, Ap-
plications, and Prospects, Front. Phys. 9, 229 (2021).

[53] P. Höllmer, N. Noirault, B. Li, A. C. Maggs, and
W. Krauth, Sparse Hard-Disk Packings and Local
Markov Chains, J. Stat. Phys. 187, 10.1007/s10955-022-
02908-4 (2022).

[54] M. Michel, A. Durmus, and S. Sénécal, Forward Event-
Chain Monte Carlo: Fast Sampling by Randomness Con-
trol in Irreversible Markov Chains, J. Comput. Graph.
Stat. 29, 689 (2020).

[55] M. Klement and M. Engel, Efficient equilibration of hard
spheres with Newtonian event chains, J. Chem. Phys.
150, 174108 (2019).

[56] B. Li, S. Todo, A. C. Maggs, and W. Krauth, Multi-
threaded event-chain Monte Carlo with local times, Com-
put. Phys. Commun. 261, 107702 (2021).

[57] B. Li, Y. Nishikawa, A. C. Maggs, and W. Krauth, Multi-
threaded event-chain Monte Carlo: Implementation and
benchmarks, Manuscript in preparation (2022).

[58] L. Qin, P. Höllmer, and W. Krauth, Direction-sweep
markov chains, J. Phys. A: Math. Theor. 55, 105003
(2022).

[59] R. Eppenga and D. Frenkel, Monte Carlo study of the
isotropic and nematic phases of infinitely thin hard

platelets, Mol. Phys. 52, 1303 (1984).
[60] P. E. Brumby, A. J. Haslam, E. de Miguel, and G. Jack-

son, Subtleties in the calculation of the pressure and
pressure tensor of anisotropic particles from volume-
perturbation methods and the apparent asymmetry of
the compressive and expansive contributions, Mol. Phys.
109, 169 (2011).

[61] E. de Miguel and G. Jackson, The nature of the calcula-
tion of the pressure in molecular simulations of continu-
ous models from volume perturbations, J. Chem. Phys.
125, 164109 (2006), https://doi.org/10.1063/1.2363381.

[62] M. P. Allen, Evaluation of pressure tensor in
constant-volume simulations of hard and soft con-
vex bodies, J. Chem. Phys. 124, 214103 (2006),
https://doi.org/10.1063/1.2202352.

[63] J. A. Zollweg and G. V. Chester, Melting in two dimen-
sions, Phys. Rev. B 46, 11186 (1992).

[64] A. Jaster, Computer simulations of the two-dimensional
melting transition using hard disks, Phys. Rev. E 59,
2594 (1999).

[65] A. Jaster, The hexatic phase of the two-dimensional hard
disk system, Phys. Lett. A 330, 120 (2004).

[66] C. H. Mak, Large-scale simulations of the two-
dimensional melting of hard disks, Phys. Rev. E 73,
065104 (2006).

[67] W. Qi, A. P. Gantapara, and M. Dijkstra, Two-stage
melting induced by dislocations and grain boundaries in
monolayers of hard spheres, Soft Matter 10, 5449 (2014).

[68] H. Weber, D. Marx, and K. Binder, Melting transition
in two dimensions: A finite-size scaling analysis of bond-
orientational order in hard disks, Phys. Rev. B 51, 14636
(1995).

[69] A. C. Mitus, H. Weber, and D. Marx, Local structure
analysis of the hard-disk fluid near melting, Phys. Rev.
E 55, 6855 (1997).

[70] K. Binder, S. Sengupta, and P. Nielaba, The liquid-
solid transition of hard discs: first-order transition or
Kosterlitz-Thouless-Halperin-Nelson-Young scenario?, J.
Phys. Condens. Matter 14, 2323 (2002).

[71] R. Kannan, M. W. Mahoney, and R. Montenegro, Rapid
mixing of several Markov chains for a hard-core model,
in Proc. 14th annual ISAAC , Lecture Notes in Computer
Science (Springer, Berlin, Heidelberg, 2003) pp. 663–675.

[72] In our simulations, we confirm that the orientational or-
der parameter Ψ6 has been rotated more than 90° and
has visited at least one of the two points on the real
axis, Ψ6 ' ±|Ψ6|, and one on the imaginary axis,
Ψ6 ' ±i|Ψ6|.

[73] A. Jaster, An improved Metropolis algorithm for hard
core systems, Physica A 264, 134 (1999).

[74] B. D. Lubachevsky and F. H. Stillinger, Geometric prop-
erties of random disk packings, J. Stat. Phys. 60, 561
(1990).

[75] J. G. Propp and D. B. Wilson, Exact sampling with cou-
pled Markov chains and applications to statistical me-
chanics, Random Struct Alg. 9, 223 (1996).

[76] M. F. Faulkner, L. Qin, A. C. Maggs, and W. Krauth,
All-atom computations with irreversible Markov chains,
J. Chem. Phys. 149, 064113 (2018).

[77] P. Höllmer, L. Qin, M. F. Faulkner, A. Maggs, and
W. Krauth, JeLLyFysh-Version1.0 — a Python appli-
cation for all-atom event-chain Monte Carlo, Comput.
Phys. Commun. 253, 107168 (2020).

https://doi.org/10.1063/1.1740347
https://doi.org/10.1063/1.1740347
https://doi.org/10.1063/1.4863991
https://doi.org/10.1063/1.1743957
https://doi.org/10.1016/0021-9991(80)90104-7
https://doi.org/10.1016/0021-9991(80)90104-7
https://doi.org/10.1143/PTPS.178.5
https://doi.org/10.1143/PTPS.178.5
https://arxiv.org/abs/https://academic.oup.com/ptps/article-pdf/doi/10.1143/PTPS.178.5/5288894/178-5.pdf
https://arxiv.org/abs/https://academic.oup.com/ptps/article-pdf/doi/10.1143/PTPS.178.5/5288894/178-5.pdf
https://doi.org/10.1002/jcc.21915
https://doi.org/http://dx.doi.org/10.1016/j.jcp.2013.07.023
https://doi.org/http://dx.doi.org/10.1016/j.jcp.2013.07.023
https://doi.org/10.1103/PhysRevE.87.042134
https://doi.org/10.1103/PhysRevE.87.042134
https://doi.org/10.1214/aoap/1019487508
https://doi.org/10.1214/aoap/1019487508
https://doi.org/10.3389/fphy.2021.663457
https://doi.org/10.1007/s10955-022-02908-4
https://doi.org/10.1007/s10955-022-02908-4
https://doi.org/10.1080/10618600.2020.1750417
https://doi.org/10.1080/10618600.2020.1750417
https://doi.org/10.1063/1.5090882
https://doi.org/10.1063/1.5090882
https://doi.org/10.1016/j.cpc.2020.107702
https://doi.org/10.1016/j.cpc.2020.107702
https://doi.org/10.1088/1751-8121/ac508a
https://doi.org/10.1088/1751-8121/ac508a
https://doi.org/10.1080/00268978400101951
https://doi.org/10.1080/00268976.2010.530301
https://doi.org/10.1080/00268976.2010.530301
https://doi.org/10.1063/1.2363381
https://doi.org/10.1063/1.2363381
https://arxiv.org/abs/https://doi.org/10.1063/1.2363381
https://doi.org/10.1063/1.2202352
https://arxiv.org/abs/https://doi.org/10.1063/1.2202352
https://doi.org/10.1103/PhysRevB.46.11186
https://doi.org/10.1103/physreve.59.2594
https://doi.org/10.1103/physreve.59.2594
https://doi.org/https://doi.org/10.1016/j.physleta.2004.07.055
https://doi.org/10.1103/PhysRevE.73.065104
https://doi.org/10.1103/PhysRevE.73.065104
https://doi.org/10.1039/c4sm00125g
https://doi.org/10.1103/PhysRevB.51.14636
https://doi.org/10.1103/PhysRevB.51.14636
https://doi.org/10.1103/physreve.55.6855
https://doi.org/10.1103/physreve.55.6855
https://doi.org/10.1088/0953-8984/14/9/321
https://doi.org/10.1088/0953-8984/14/9/321
https://doi.org/10.1007/978-3-540-24587-2_68
https://doi.org/https://doi.org/10.1016/S0378-4371(98)00337-9
https://doi.org/10.1007/BF01025983
https://doi.org/10.1007/BF01025983
https://doi.org/10.1002/(SICI)1098-2418(199608/09)9:1/2<223::AID-RSA14>3.0.CO;2-O
https://doi.org/10.1063/1.5036638
https://doi.org/10.1016/j.cpc.2020.107168
https://doi.org/10.1016/j.cpc.2020.107168


21

[78] D. N. Politis and J. P. Romano, The Stationary Boot-
strap, J. Am. Stat. Assoc. 89, 1303 (1994).

[79] Y. Nishikawa, J. Takahashi, and T. Takahashi, Stationary
Bootstrap: A Refined Error Estimation for Equilibrium
Time Series (2021), 2112.11837.

[80] H. Flyvbjerg and H. G. Petersen, Error estimates on av-
erages of correlated data, J. Chem. Phys. 91, 461 (1989).

[81] D. N. Politis and H. White, Automatic Block-Length Se-
lection for the Dependent Bootstrap, Econom. Rev. 23,
53 (2004).

[82] A. Patton, D. N. Politis, and H. White, Correction to
“Automatic Block-Length Selection for the Dependent

Bootstrap” by D. Politis and H. White, Econom. Rev.
28, 372 (2009).

[83] The url of the repository is https://github.com/
jellyfysh/HistoricDisks.

[84] A. Rohatgi, Webplotdigitizer: Version 4.5 (2021).
[85] Y. Nishikawa, W. Krauth, and A. C. Maggs, Two-

dimensional soft spheres - phase diagrams and phase
transitions, Manuscript in preparation (2022).

[86] The HDF Group, Hierarchical Data Format, version 5
(1997-2022).

https://doi.org/10.1080/01621459.1994.10476870
https://doi.org/10.48550/ARXIV.2112.11837
https://doi.org/10.48550/ARXIV.2112.11837
https://doi.org/10.48550/ARXIV.2112.11837
https://arxiv.org/abs/2112.11837
https://doi.org/10.1063/1.457480
https://doi.org/10.1081/etc-120028836
https://doi.org/10.1081/etc-120028836
https://doi.org/10.1080/07474930802459016
https://doi.org/10.1080/07474930802459016
https://github.com/jellyfysh/HistoricDisks
https://github.com/jellyfysh/HistoricDisks
https://automeris.io/WebPlotDigitizer
https://www.hdfgroup.org/HDF5/

	Hard-disk computer simulations—a historic perspective
	Abstract
	I Introduction
	II Hard-disk model
	A Basic definitions and properties
	1 System definitions, basic properties
	2 Pair correlations, entropic phase transition

	B Hard-disk thermodynamics
	1 Pressure, thermodynamic and kinematic definitions
	2 Equation of state, phase coexistence


	III Sampling algorithms and pressure estimators
	A Event-driven molecular dynamics (EDMD)
	1 Naive molecular-dynamics program
	2 Modern hard-disk molecular dynamics

	B Hard-disk Markov-chain Monte Carlo
	1 Local hard-disk Metropolis algorithm
	2 Massively parallel Monte Carlo (MPMC) algorithm
	3 Hard-disk event-chain Monte Carlo (ECMC)

	C Hard-disk pressure estimators
	1 Rifts and rift averages
	2 Homothetic volume reductions
	3 Kinematic pressure estimators


	IV Equation-of-state computations
	A Hard-disk equation of state for small N
	1 Metropolis et al. (1953), rotation criterion
	2 Revisiting Alder and Wainwright (1962)

	B Equations of state for large N
	1 Hard-disk model with N=1282  to N=5122
	2 Hard-disk model at N=10242


	V Conclusion
	 Acknowledgments
	A Extrapolation and statistics
	1 Extrapolation of pair correlations and wall densities
	2 Statistics

	B Historic data, codes, and validation
	1 Pressure data, equations of states
	2 Computer programs
	a Four-disk non-periodic-box programs
	b Naive periodic-box programs
	c State-of-the-art hard-disk programs


	 References


