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ABSTRACT: Noncovalent interactions are ubiquitous in molecular and
condensed-phase environments, and hence a reliable theoretical description of
these fundamental interactions could pave the way toward a more complete
understanding of the microscopic underpinnings for a diverse set of systems in
chemistry and biology. In this work, we demonstrate that recent algorithmic
advances coupled to the availability of large-scale computational resources make
the stochastic quantum Monte Carlo approach to solving the Schrödinger
equation an optimal contender for attaining “chemical accuracy” (1 kcal/mol)
in the binding energies of supramolecular complexes of chemical relevance. To
illustrate this point, we considered a select set of seven host−guest complexes,
representing the spectrum of noncovalent interactions, including dispersion or
van der Waals forces, π−π stacking, hydrogen bonding, hydrophobic
interactions, and electrostatic (ion−dipole) attraction. A detailed analysis of
the interaction energies reveals that a complete theoretical description
necessitates treatment of terms well beyond the standard London and
Axilrod−Teller contributions to the van der Waals dispersion energy.

SECTION: Molecular Structure, Quantum Chemistry, and General Theory

S upramolecular complexes have long been recognized for
their remarkable versatility1−4 and have therefore become

increasingly utilized in a vast array of practical applications,
including molecular recognition, self-assembly, template-
directed synthesis, and biomimetics.4−8 Countless realizations
of supramolecular complexes exist5,9 and typically consist of
molecular assemblies stabilized by cooperative binding motifs,
with energetic contributions arising from strong covalent and
ionic bonds as well as weaker nonbonded intermolecular forces.
Therefore, a central problem emergent in supramolecular
chemistry is characterization and subsequent control of the
delicate balance between the different underlying interactions
that determine the relative stability of such systems.
Of particular importance in supramolecular chemistry is the

class of host−guest complexes, composed of a host molecule,
such as the so-called molecular “tweezers” or “pincers,” and a
guest molecule, typically a relatively smaller organic molecule,
which are primarily stabilized by noncovalent interactions.
Hence, host−guest complexes serve as prototypes for molecular
recognition and transient binding eventsprocesses which are
primarily dictated by this underlying set of noncovalent
interactions. As such, noncovalent interactions play a central
role in determining the functionality of host−guest complexes,
with an influence that encompasses conformational energetics,
entropic contributions, and solvation effects.

A crucial step in the control and rational design of host−
guest complexes is therefore an accurate theoretical description
of this underlying set of noncovalent interactions in the absence
of complex temperature and environment effects, that is, “clean-
room conditions”, which could provide direct access to the
energetics of these supramolecular systems. However, the large
size of most functional host−guest complexes of chemical
relevance poses enormous challenges for current theoretical
methodologies in terms of both accuracy and computational
feasibility. In this regard, high-level quantum chemistry
methods such as full configuration interaction (FCI) or
coupled cluster theory with single, double, and perturbative
triple excitations (CCSD(T)) could certainly provide highly
accurate binding energies for such systems. In fact, a number of
databases of binding energies computed at the CCSD(T) level
of theory for small molecular dimers (containing up to a few
dozen atoms in size) have recently become available.10−12

However, the steep associated computational cost (scaling as
N7 for CCSD(T), where N is a measure of the system size),
makes the application of such high-level quantum chemistry
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methods to large supramolecular systems very challenging, if
not impossible, with the computational resources available
today.
Stochastic methods for solving the Schrödinger equation

such as quantum Monte Carlo (QMC) could, in principle, be
utilized to obtain the exact description of molecular ground-
state wave functions and energies.13 In particular, diffusion
quantum Monte Carlo (DQMC) represents an optimal
approach for treating large systems14,15 because the DQMC
method allows for a direct and highly accurate sampling of the
ground-state electronic wave function, with a more favorable N3

computational scaling. While the DQMC approach has the
ability to describe noncovalent interactions with benchmark
(i.e., subchemical) accuracy in small molecular dimers,16 the
applicability of DQMC to large supramolecular systems has not
been systematically demonstrated to date.
In this work, we considered a select set of six host−guest

complexes (see Figure 1) from the recently proposed S12L
database of Grimme,17,18 representing the spectrum of
noncovalent interactions, including dispersion or van der
Waals (vdW) forces, π−π stacking, hydrogen bonding,
hydrophobic interactions, and electrostatic (ion−dipole)

attraction, and ascertained the quality of binding energies
obtained via extrapolation of experimental association free
energies17 with respect to benchmark binding energies
computed at the DQMC level of theory. Although this
comparison revealed a fair degree of overall fidelity between
the extrapolated and DQMC binding energies, quantitative
differences as large as 3.6 kcal/mol (e.g., for the case of the
cucurbit[6]uril−butylammonium cationic complex, 6a in
Figure 1), which are well above the chemical accuracy
benchmark of 1 kcal/mol, persist and are indicative of the
inherent limitations in the approximate corrections utilized to
extract binding energies from experimentally determined
association free energies.
To further investigate the underlying noncovalent inter-

actions determining the stability of host−guest complexes, we
performed a many-body decomposition analysis of the long-
range correlation energy in the aforementioned systems. Such
an analysis is complementary to the DQMC methodology,
which provides benchmark energetics for the systems
considered herein, by yielding detailed physical insight into
the fundamental role played by noncovalent interactions in
governing supramolecular chemistry. As a result of this analysis,
we found that the many-body expansion of the long-range
correlation energy is slowly convergent and displays nontrivial
behavior, depending on the symmetry and underlying topology
of a given host−guest complex, strongly indicating that a
chemically accurate theoretical description of supramolecular
binding energies requires terms well beyond the standard
London (two-) and Axilrod−Teller (three-) body contributions
to the dispersion energy. We further investigated this point by
extending our analysis to the long-range correlation energy of a
double-walled carbon nanotube (DWCNT; see Figure 2). The

marked anisotropy of polarization interactions in this system
leads to a reduction of the interwall dispersive binding, which
amounts to ∼25% with respect to the (isotropic) pairwise vdW
energy.
To construct an accurate reference for the energetics in

host−guest complexes, we performed DQMC calculations to
determine the binding energies for a subset of six complexes
from the S12L database17 (see Figure 1). This subset (namely,

Figure 1. Molecular geometries of the six host−guest complexes
studied in this work following the original nomenclature of Grimme in
ref 17. 2a: tetracyanoquinone−tweezer (TCNQ@tweezer), 2b: 1,4-
dicyanobenzene−tweezer (DCB@tweezer), 4a: buckyball−catcher
(C60@catcher), 5a: glycine anhydride−macrocycle (GLH@mcyle),
6a: butylammonium−cucurbit[6]uril cation (BuNH4@CB6), and 7b:
1-hydroxyadamantane−cucurbit[7]uril (ADOH@CB7).

Figure 2. Graphical depiction of a periodic double-walled carbon
nanotube (DWCNT), composed of coaxial (10,10) and (5,5) single-
walled carbon nanotubes. The supercell shown contains 900 carbon
atoms.
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2a 2b, 4a, 5a, 6a, and 7b, following the original nomenclature
of Grimme17) was selected to represent the broad range of
geometries and noncovalent interactions of primary relevance
in supramolecular chemistry, thus preserving the general
character of the full S12L database.
The stochastic DQMC electronic structure method is a well-

established ab initio, or first-principles, approach to solving the
Schrödinger equation and can therefore be utilized in the
computation of highly accurate ground-state energies and
properties.14 Because the DQMC methodology intrinsically
accounts for dynamical electron correlation effects at all
interelectronic separations, DQMC can be considered as a
natural benchmark reference for approximate density func-
tionals and other perturbative approaches. Exhibiting a
favorable computational scaling with system size (N3), the
DQMC method can optimally utilize the computational
resources afforded by high-performance massively parallel
(super)computer architectures, thereby enabling the challeng-
ing large-scale applications carried out in this work.
All DQMC calculations presented herein have been

performed utilizing the CASINO suite of programs,19 employ-
ing Slater−Jastrow trial wave functions

Ψ = ↑ ↓
D D eR( )T

J
(1)

in which D↑ and D↓ are Slater determinants assembled from
single-particle spin orbitals representing the α (up) and β
(down) electron-spin projections, respectively, and eJ is the so-
called Jastrow factor, an exponential comprised of a sum over
explicitly correlated one- (electron−nucleus), two- (electron−
electron), and three-body (electron−electron−nucleus) terms.
The computed DQMC binding energies for the six host−

guest complexes considered in this work are provided in Table
1. The binding energy of the host (H) and guest (G) forming

the host−guest complex (H−G) was defined as ΔE = E(H−G)
− E(H) − E(G). All DQMC calculations were performed
utilizing molecular geometries optimized with dispersion-
corrected density functional theory (DFT) in ref 18.
Convergence tests were performed to verify the dependence
of the computed binding energies on the imaginary time-
propagation step (see Supporting Information). In addition, the

reliability of the fixed node approximation was also tested
through the use of different trial wave functions. As discussed in
greater detail later, both the time step and nodal errors fall
within the statistical uncertainties reported in Table 1
(corresponding to ±σ).
While DQMC provides direct and reliable access to

benchmark energetics in supramolecular systems, an indirect
empirical estimate of the binding energies for the S12L host−
guest complexes can also be determined from experimental
association free energies, as was recently done by Grimme.17

Apart from the binding energy, the measured free energies
contain many other contributions, such as entropic and
solvation effects, which are often of comparable magnitude
and opposite sign to the binding energy. For these reasons, the
experimental association free energies are roughly one order of
magnitude smaller than the corresponding binding energies.
Hence, the determination of reliable binding energies from
experimentally determined association free energies is a delicate
task, which is only further complicated by the need to introduce
a number of approximations in the computation of both
entropic and solvation contributions, the accuracy of which is
often difficult to assess. For example, the solvation effects for
the S12L database were computed utilizing a simplified
continuum solvent model, while entropic contributions were
treated in the rigid rotor-harmonic oscillator (RRHO)
approximation, with further approximations required to avoid
divergences in the low-frequency regime. Furthermore, the
configurational entropy was neglected; that is, a nondynamical,
single-structure approach was used during the computation of
binding energies.
To assess the reliability of this approach, we also present in

Table 1 the comparison between binding energies computed at
the DQMC level of theory and extrapolated utilizing the
aforementioned prescription. From this data set, one can
immediately observe absolute differences ranging from 1.4 to
3.6 kcal/mol, with the largest deviations for complexes 2a (2.4
kcal/mol), 2b (3.3 kcal/mol), and 6a (3.6 kcal/mol). In
complexes 2a and 2b, the host−guest binding is predominantly
due to dispersion or vdW forces. Therefore, the host−guest
interaction is expected to be responsible for the appearance of
soft vibrational modes, with further low-lying vibrational modes
appearing that are related to the host system (i.e., the opening
and closing of the “tweezer” moiety). In this regard,
anharmonicity, which is neglected in the RRHO approximation,
might play an important role in the qualitative and quantitative
description of these modes. In addition, the empirical
interpolation between the harmonic vibrational and rotational
entropy contributions (i.e., to avoid divergences in the low-
frequency regime) might also contribute to such large
deviations from the DQMC values. For the complex 6a, the
electrostatic cation−dipolar binding is a likely source of
inaccuracy for the continuum solvent model; the character-
ization of the solvent by a macroscopic dielectric function
might not be well-suited here due to the polarization effects
occurring within such a complex asymmetric system.
We note in passing that the differences between the DQMC

and extrapolated binding energies encountered for every host−
guest complex considered herein (and, in particular, complexes
2a, 2b, and 6a) are well above the demanding “chemical
accuracy” benchmark of 1 kcal/mol. Despite this fact, the
qualitative agreement among these binding energies is certainly
remarkable and constitutes an important “sanity check”
between two radically different approaches for determining

Table 1. Binding Energies for Each of the Considered S12L
Host−Guest Complexes in kilocalories per mole

binding energies

complex DQMCa
extrap.
expt.b

PBE
+MBD*c

2a TCNQ@tweezer −27.2 (0.3)d −29.9 −29.0

2b DCB@tweezer −17.2 (1.0) −20.5 −18.8

4a C60@catcher −25.8 (1.5) −27.5 −28.3

5a GLH@mcyle −33.4 (1.0) −34.8 −33.8

6a BuNH4@CB6 −81.0 (1.6) −77.4 −82.1

7b ADOH@CB7 −24.1 (1.8) −22.6 −27.4
aDQMC computed binding energies with associated statistical
sampling uncertainties given in parentheses. bBinding energies
extrapolated from experimentally measured association free energies
via approximate solvation and entropic corrections.18 cBinding
energies for the PBE functional including long-range correlation at
the MBD* level (see the text for details). dAs visible from the lower
statistical error, a longer DQMC sampling was performed for complex
2a in order to test the actual importance of statistical noise (see
Supporting Information for details).
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the gas-phase binding energetics of large supramolecular
systems.
The binding energies computed at the DQMC level of

theory and presented herein provide the most reliable
benchmarks available to date for the energetics of large
supramolecular systems of chemical relevance and can therefore
serve as reliable references for the development (and
subsequent validation) of computationally efficient approximate
electronic structure methods. In fact, a main advantage of
utilizing the DQMC method lies in its ability to accurately treat
long-range correlation effectseffects that are inherently
quantum mechanical, many-body, and nonlocal in character
which pose quite a challenge for many approximate electronic
structure methods. However, the DQMC method alone does
not directly allow for a detailed analysis of the various electron
correlation contributions to the binding energies in question.
Because of the stochastic nature of the sampling of the many-
body ground-state wave function, the DQMC method
computes ground-state energies in a nonperturbative fashion,
making a distinction among the different energy components
impractical. Therefore, to gain direct physical insight into the
role played by the long-range correlation energy in the
stabilization of host−guest complexes, we will make combined
use of an alternative and complementary approach, which
allows for a detailed analysis of the pairwise and many-body
contributions to the long-range correlation energy within the
framework of DFT.
Semilocal DFT is a self-consistent quantum-mechanical

electronic structure method that accurately describes electro-
statics, induction, and hybridization effects but does not include
long-range electron correlation and therefore fails to account
for dispersion or vdW interactions. As discussed in greater
detail later, we explicitly treat the long-range correlation energy
within DFT by utilizing the random-phase approximation
(RPA) in the dipole limit20 (obtained through the MBD*
methodsee Supporting Information) based on a range-
separation of the interelectronic Coulomb potential. The RPA
approach seamlessly includes many-body effects in the
correlation energy to all orders and is a very accurate theory
for the long-range correlation energy, provided that correct
polarizabilities are utilized as an input. To efficiently compute
the long-range RPA correlation energy, we map the molecular
system onto a set of atom-centered quantum harmonic
oscillators (QHOs) and utilize an effective oscillator Hamil-
tonian.21 With respect to the recently published MBD
method,21 MBD* (called MBD@rsSCS in ref 22) offers an
improved description of highly anisotropic systems, primarily
due to range-separation of the Coulomb operator and a correct
resultant treatment of the long-range electrodynamic response.
Although the MBD* method is not expected to reach the

same degree of accuracy as DQMC, performance beyond
chemical accuracy has been demonstrated utilizing this
methodology in both small molecules21 and extended
systems.23 In this regard, the MBD* method can be regarded
as complementary to DQMC, which not only provides a
detailed many-body decomposition analysis of the long-range
correlation energy but also allows for even more challenging
large-scale applications due to its high computational efficiency.
Before proceeding any further, a comparison against reliable
benchmark data remains essential to assess the accuracy of the
MBD* method and its predictivity for supramolecular systems.
The computed PBE+MBD* (MBD* coupled to the PBE

functional24) binding energies for the six host−guest complexes

considered in this work are also provided in Table 1. (All DFT
calculations were performed with the FHI-aims code.25) In
general, we observed very good performance across the entire
S12L database, with a mean absolute relative error (MARE) of
5.5% computed with respect to the extrapolated experimental
values, which is similar to the MARE obtained for smaller gas-
phase molecular dimers.21 In this regard, it should be
emphasized that the PBE+MBD* method, with a correspond-
ing mean absolute error (MAE) of 1.6 kcal/mol over the entire
S12L database, provides an accuracy comparable to that of the
reference data. In fact, the binding energies computed at the
PBE+MBD* level of theory are consistently in closer
agreement with the benchmark DQMC results than the
extrapolated values: by performing a statistical analysis
restricted to the subset of six host−guest complexes considered
in this work, we found a MAE of 1.7 kcal/mol with respect to
the DQMC results, which should be compared to the MAE of
2.3 kcal/mol obtained when comparing the extrapolated
binding energies to the same reference DQMC values. Through
this analysis, we further confirm the importance of the long-
range correlation energy, the contribution of which can amount
to more than 90% of the total binding,26 which is clearly an
integral component of the binding energy that is not captured
at the underlying DFT level of theory.
The agreement between the PBE+MBD* and DQMC

binding energies is essentially comparable to the statistical
error of the stochastic DQMC method, except for the
complexes 4a (C60@catcher) and 7b (ADOH@CB7), which
can be explained by the underlying approximations employed
in the PBE+MBD* method. For instance, the approximation of
localized QHOs might not provide the flexibility to adequately
describe the response of the delocalized electrons present in the
C60 guest of complex 4a, leading to a moderate deviation (i.e.,
1.0 kcal/mol outside the error bar). Regarding complex 7b, the
elevated number of hydrogens in the guest pointing toward the
host causes the combined appearance of weak hydrogen bonds
and Pauli exchange−repulsion effects. Here the approximate
treatment of exchange at the semilocal DFT level of theory
combined with the inexact range separation of the Coulomb
interaction certainly represent a limitation in this context. A
systematic analysis of the influence of these effects on the
binding energies of the entire S12L database is currently under
investigation.
To better analyze the role of the many-body (many-atom)

interactions in the binding energies of the S12L complexes, we
have carried out a many-body decomposition of the infinite-
order MBD* energy into pairwise (two-body), three-body, and
higher-order terms. This many-body decomposition is facili-
tated by the fact that the MBD* correlation energy (Ec

MBD*)
can be expanded in powers of the product of the bare response
function χ0 with the interaction v as:20

∫ ∑
π

ω χ= −*
∞

=

∞

E
n

v
1

2
d

1
Tr[( ) ]c

M

n

nBD

0
2

0
(2)

The present procedure for the perturbative expansion of the
MBD* long-range correlation energy differs from that followed
in ref 27, which was based on an averaging of the free QHO
characteristic frequencies, all of which were set to a single value,
chosen to preserve the total correlation energy. In contrast, the
many-body expansion utilized herein is based on a straightfor-
ward Taylor series decomposition of the logarithm term that
naturally arises in the RPA correlation energy; as such, this
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expansion allows for a clear diagrammatic interpretation of each
perturbative term, now expressed in powers of χ0v. In addition,
we also note that an alternative range-separation of the
Coulomb interaction, with smoother and isotropic short-
range behavior, has been employed in this work.22

The second-order truncation of the series contained in eq 2
leads to the well-known C6/R

6 London pairwise summation,
the third-order term contains the so-called Axilrod−Teller−
Muto28 (ATM) energy contribution, while the summation to
infinite order corresponds to the full MBD* energy. As an
expected general trend, the terms corresponding to the even
powers in eq 2 are typically negative (attractive), while odd
powers provide contributions of positive sign (repulsive). The
alternating sign behavior was observed in all complexes, the
only exception being the 2a host−guest complex (which loses
this alternating trend after fifth order).
An analysis of the data contained in Table 2 confirms that the

many-body terms provide substantial decreases in the binding

energies. The magnitude of these decreases depends on the
particular system and exceeds 10% for all systems considered,
apart from 5a (7.2%). The reason for this smaller effect
(encountered also in the 5b S12L complex, with a 7.5%
decrease) can be attributed to a combination of effects, such as
the rather sparse and symmetric conformation and the
relatively low impact of dispersion forces on the overall binding
in a complex that is primarily bound by hydrogen bonding.
Interestingly, with the mere inclusion of the ATM (three-body)
term, the binding decrease is exaggerated, as the higher-order
terms provide a further reduction by about a factor of two.
Hence, the neglect of higher-order (n > 3) terms often amounts
to a few kilocalories per mole and will lead to errors much
larger than the highly desired chemical accuracy threshold. As
visible in Figure 3, the progressive decrease in the absolute
values of the perturbative contributions with n only converges
at relatively higher orders. The rate of convergence again
depends on the system, and deviations from MBD* below 1%
are usually achieved only after n ≈ 6. We stress that a deviation
of 1% from MBD* can correspond to ∼1 kcal/mol for such
supramolecular systems, that is, only slightly below the accuracy
of the reference data.
To further illustrate this point, we analyzed the MBD* long-

range correlation energy of an infinite, periodic, double-walled
carbon nanotube (DWCNT). This system is composed of two
coaxial single-walled nanotubes, namely, of the (10,10) and
(5,5) type, as seen in Figure 2. Despite the metallicity inherent

to the DWCNT, this system possesses only two graphene-like
crossing linear bands29 at the Fermi surface. Hence, the
contribution of these delocalized states to the overall
correlation energy will be rather limited. To ensure
convergence with respect to finite-size effects, we adopted a
supercell of 35.7 Å along the DWCNT longitudinal axis,
corresponding to 900 carbon atoms. The MBD* contribution
to the binding energy is defined as previously described, in
which the inner and outer nanotubes represent the two
fragments of the host−guest complex. The apparent dimension
of the system does not represent a limitation for the MBD*
method, which can easily be applied to systems containing
thousands of atoms. By virtue of the spatial extension and
highly anisotropic character of the DWCNT, long-range many-
body effects appear to be strongly enhanced in this complex:
the long-range MBD* contribution to the binding energy is

Table 2. Truncation Errors in the PBE+MBD* Long-Range
Correlation Energies for the Host−Guest Complexes
Considered in This Work

correlation energy analysis

complex 2nd−∞a 2nd−3rdb

2a TCNQ@tweezer 12.2% 20.7%

2b DCB@tweezer 11.9% 19.6%

4a C60@catcher 12.9% 22.6%

5a GLH@mcyle 7.2% 13.2%

6a BuNH4@CB6 12.5% 21.0%

7b ADOH@CB7 12.3% 21.3%
aDifferences between the second- and infinite-order MBD* correlation
energies (percentage-wise, with respect to the infinite-order value).
bDifferences between the second- and third-order MBD* correlation
energies (percentage-wise, with respect to the infinite-order value).

Figure 3. Many-body decomposition of the long-range MBD*
correlation energy, as defined in eq 2. Results are reported for the
complexes showing the slowest and fastest convergence (4a and 5a,
respectively) and for an intermediate case (6a). The additional case of
a periodic double-walled carbon nanotube (DWCNT) is also
considered for comparison. (Upper Panel) Ratio of the single nth-
order energy contribution with respect to the full infinite-order MBD*
binding energy. (Lower Panel) Deviation of the cumulative
summation of the many-body contributions up to nth order with
respect to the full infinite-order MBD* binding energy.
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reduced by 24.7% from second to infinite order, as illustrated in
Figure 3. In addition, a strikingly slow percentage-wise
convergence of the perturbative MBD* series is also observed,
leading to a deviation of 5.7% from full infinite-order MBD* at
sixth-order, corresponding to a remarkable ∼32 kcal/mol per
supercell. A comparable behavior is also expected in finite-
extension nanotubes with length scales comparable to the
present supercell, although the convergence of the many-body
expansion was shown to be very slow in anisotropic low-
dimensional systems.30

The sensitive dependence of the many-body effects on the
structure of the host−guest complex and the nature of the
binding strongly indicate that a simple renormalization of the
standard C6/R

6 pairwise summation is unable to provide the
same degree of accuracy as a full many-body treatment of the
long-range correlation energy in all types of supramolecular
systems. In the same breath, a perturbative approach limited to
a fixed finite-order also appears to be inaccurate due to the
relatively slow convergence of the perturbative series. In
particular, second-order Moeller−Plesset perturbation theory
(MP2) completely neglects many-body dispersion effects, as
they arise from higher-order correlation contributions. The ad
hoc addition of the ATM term to empirical dispersion-
corrected DFT approaches31,32 is questionable in this regard,
further complicated by the fact that unphysical damping
functions have to be utilized. In fact, employing different
empirical damping functions for two- and three-atom
interactions is inconsistent, as the attenuation of this
fundamental interaction at any perturbative order stems from
the same origin. In the MBD* approach, instead, the short-
range attenuation of the Coulomb interaction is seamlessly
achieved, requiring only the attenuation of the interaction
between two atoms at a time, which is consistent with the
presence of terms up to two-particle interactions (at most) in
the full nucleo-electronic Hamiltonian.
By making use of state-of-the-art DQMC algorithms and

large-scale computational resources, we provided benchmark
binding energies for a set of six host−guest complexes from the
S12L database. The DQMC data represent the first accurate
benchmark for large supramolecular systems, with estimated
errors not far from chemical accuracy. Very close agreement is
found between DQMC and the PBE+MBD* method, and a
perturbative many-body decomposition analysis of the long-
range correlation energy in these host−guest complexes clearly
demonstrated the need for an accurate description of many-
body correlation effects. The influence of these many-body
interactions was found to have a significant dependence on the
symmetry and underlying topology of the host−guest
complexes. As a consequence, these effects cannot be recovered
by an effective pairwise approach as high perturbative orders are
required to converge to the full infinite-order MBD* limit for
the long-range correlation energy. Moreover, the mere
inclusion of the three-body Axilrod−Teller−Muto energy
contribution was shown to provide an overestimated reduction
of the binding with respect to the full infinite-order energy and
cannot be used to reproduce the infinite-order long-range
correlation energy with high fidelity. The relatively successful
application of the PBE+MBD* method to host−guest
complexes of chemical relevance demonstrates that this is a
promising approach for the challenging investigation of large-
scale supramolecular systems. The remaining issues to be
addressed include a systematic analysis of the underlying

semilocal density functional approximation and many-body
correlation effects beyond the dipole approximation.
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