
Abstract 

Java’s automatic memory management is the main
reason that prevents Java from being used in hard real-
time environments. We present the garbage collection
mechanism that is used by the Jamaica Virtual Ma-
chine, an implementation of the Java Virtual Machine
Specification. This mechanism differs significantly
from existing implementations in the way threads are
implemented, root references are found and in the ob-
ject layout that is used. The implementation provides
hard real-time guarantees while it allows unrestricted
use of the Java language. Even dynamic allocation of
normal garbage collected Java objects is possible with
hard real-time guarantees.

1. Introduction

Current implementations of the Java Virtual Ma-
chine Specification [1] fail either to provide hard real-
time guarantees [2, 3], or pose severe restrictions on
the Java language when programming real-time code
[4].

Even though a significant number of algorithms for
hard real-time garbage collection have been developed,
e.g., [5, 6, 7, 8, 9], Java’s threading system and
memory model have so far made an implementation of
an exact, incremental, hard real-time garbage collector
impossible. The advantages of such an implementation
would nevertheless be tremendous: Standard Java code
could be used for real-time programming, including
the use of Java libraries, dynamic memory manage-
ment that is essential in object-oriented applications
and the security that can only be provided by automatic
memory management.

When we are talking about real-time garbage collec-
tion, we mean a system that allows worst case
execution times to be derived for any task that is per-
formed. In the context of garbage collection this means
that the worst case performance of operations like

memory accesses, reference assignments, modificati-
ons of the root set and allocations are known. For such
a system to be useful, this worst case performance must
be small, else the worst case performance of a bigger
task consisting of several of such operations quickly
becomes unacceptable.

The Jamaica Virtual Machine project aims at provi-
ding such hard real-time behaviour. In this paper, we
present the garbage collection mechanism that is used
by Jamaica to achieve this goal.

2. Required Real-Time Guarantees

There are several guarantees that have to be given
by a Java implementation so that it can be used for hard
real-time programming:

2.1 Hard upper bounds for execution time

There have to be hard upper bounds for the worst-
case execution times of all operation that can be per-
formed in Java code. For the implementation to be usa-
ble, these worst-case times also have to be small so that
a reasonable worst-case execution time for a task that
consists of many of these operations can be determi-
ned. 

In the context of garbage collection, upper bounds
have to be guaranteed for the execution times of
memory related operations like allocation of objects,
reads and writes to the heap, and modifications of refe-
rences in the ‘root set’, i.e., on the stack or in processor
registers.

2.2 Execution has to succeed in a predictable
way

Additionally to the worst-case execution time for an
operation, it is also required that the operation succeeds
in the desired way. A system that guarantees an upper
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bound on the execution time of an allocation is of little
use if an allocation just results in throwing of an Out-
OfMemoryException in the case that the guaranteed
execution time was too short for the garbage collector
to free sufficient memory.

Instead, the system has to guarantee to free suffi-
cient memory to satisfy all memory requests. Of cour-
se, this can only work as long as the total amount of
reachable memory used by the application is limited
since the physical memory is limited as well.

Requiring predictability also disqualifies any
conservative garbage collection technique, like the one
presented in [10]. If conservative scanning is used, ran-
dom values can cause arbitrary amounts of memory to
be retained, making the execution of an allocation
completely unpredictable.

A similar problem that has to be dealt with is
fragmentation. It has been shown that fragmentation
overhead in typical applications is very low [11]. Un-
fortunately, Johnstone’s results are of little help in sys-
tems that require hard guarantees instead of average
measurements.  If predictably correct execution is re-
quired, the memory management system has to fight
fragmentation, else the system may fail in unpredicta-
ble ways.

2.3 Short thread pre-emption times

It has to be possible for high-priority threads to pre-
empt lower priority threads within a short worst-case
delay. Pre-emption must also be possible while garbage
collection work is going on, e.g., to satisfy a large
allocation request from a low-priority process. In this
case it must even be possible for the high-priority
thread to perform another (smaller) allocation when it
is running, without being affected by the lower priority
thread’s activity.

Another related difficulty in many garbage collector
implementations is scanning of root pointers. For this
scanning, a thread is typically suspended for the time
required to scan the references stored in its stack and
the processor registers. This causes a delay that is
clearly unacceptable when short pre-emption times are
required, so a different solution has to be found.

3. Threads in the Jamaica Virtual Machine

The presence of threads in the Java language that are
all able to access the same shared heap is definitely the
single most important reason for real-time garbage
collection to be difficult in Java implementations. Usa-

ge of native (kernel-level) threads for the implemen-
tation of Java threads complicates root scanning, since
little is known about the threads’ states, as to where to
find valid reference values, etc.

New Java implementations like [12] do attack this
problem by not relying on system threads at all. In-
stead, thread-switching is implemented explicitly, allo-
wing thread-switches only after the execution of a cer-
tain number of bytecode instructions. Since these
thread switches can occur only at very few places that
are known to the VM, exact information on the state of
all threads is available. The disadvantage of this ap-
proach is that blocking operations, like I/O that is per-
formed within native code called via the Java Native
Interface [13], causes the complete virtual machine and
all Java threads to stop.

Another approach is to use native threads, but to
provide exact information only at so-called GC Points
as proposed by [14] or [7]. These mechanisms require
that a thread is notified when the GC needs to access its
state. At the beginning of a GC cycle all threads have to
be notified for root scanning. This complex operation
is likely to cause significant worst-case pre-emption
delays making it unusable for our approach. 

It has also been proposed to provide exact informa-
tion on a thread’s state on every machine instruction
[15]. The main reasons that make this proposal inade-
quate for Jamaica are the difficulty it incurs on portabi-
lity and its complexity in general.

For Jamaica, we have decided to use a new mecha-
nism that is a mixture between the first two approa-
ches: Native threads are used to implement Java
threads. But a global semaphore is used to allow at
most one Java thread to execute at any time. Frequent-
ly executed synchronization points guarantee that pre-
emption time is limited and small. Additionally, the
global semaphore is released for the execution of nati-
ve code, execution of native code does not stop any
Java threads and even blocking operations like I/O can
be performed in native code while other threads conti-
nue running normally.

The code that needs to be executed at a synchroniza-
tion point is very simple: A static flag that indicates the
need for synchronization has to be tested. Only in the
case when this flag is set the current thread’s state has
to be saved and the global semaphore can be released
so that another Java thread can continue execution.

Another advantage of this scheme using synchro-
nization points is that code executed between two syn-
chronization points is automatically atomic. Operati-
ons like memory writes that require execution of write-
barrier [16] code are simplified, it is sufficient to en-



sure the required GC invariants by the time the next
synchronization point is reached.

Other parts of the virtual machine implementation
do also profit from the automic atomicity of code se-
quences that do not contain synchronization points.
One example is the code required to enter or exit Java
monitors, that can be implemented very efficiently
using mechanisms presented in [17] and [18].

4. Root Scanning

Root scanning is the task of finding all objects on
the heap that are referenced by variables that are not
stored on the heap themselves. This typically includes
static variables, the stacks of all threads and the
processor registers.

For static variables, root scanning can easily be im-
plemented: The Jamaica Virtual Machine stores all sta-
tic variables on the heap so they are not part of the root
set.

Scanning the stack and registers poses a bigger pro-
blem since scanning can take a significant amount of
time while the scanned thread has to be suspended,
causing an intolerable worst-case delay for thread pre-
emption.

The approach to root scanning taken by Jamaica is
quite radical: There is only one single root pointer, and
all other references that are present locally in registers
or on stacks also have to be present on the garbage
collected heap. Thanks to the fact that at most one Java
thread is executing at any time while all other Java
threads are stopped at synchronization points, copying
reference values to the heap is required only at syn-
chronization points and on calls. To store these referen-
ces into the heap, the write-barrier code described be-
low is used to ensure consistency of the garbage collec-
tor invariants.

5. Object Layout

Jamaica uses a new object layout to represent Java
objects. The layout has been developed to avoid the
overhead caused by the use of handles and the com-
plexity due to moving objects, while still avoiding
fragmentation.

The heap is partitioned into blocks of just one single
fixed size. This size is configurable, for most applica-
tions a size of 32 Bytes seems to perform best.

Java Objects and any memory that is internally
allocated by Jamaica is constructed out of one or
several of these blocks that may be non-contiguous in

memory. For allocations that exceed the block size, the
Java object is partitioned into a graph of these blocks
and several such blocks are allocated. For normal Java
objects, a linked list of blocks is used, while arrays and
strings are represented in tree-like structures.

This object layout completely avoids fragmentation,
while there is no need to move objects nor to use hand-
les or otherwise update object references.

6. The Garbage Collection Algorithm

The basic garbage collection algorithm that is used
in Jamaica is a simple incremental mark and sweep
collector as described in [19]. This algorithm uses three
sets of objects that are distinguished by the colours
white, greyand black. A cycle starts with all objects
being white, and the objects reachable from root
pointers are marked grey. It then proceeds as long as
there are greyobjects by taking a greyobject, marking
it blackand marking all white objects that are referen-
ced by this object grey. A write-barrier ensures that
whiteobjects are never referenced by blackobjects as a
result of an assignment performed by the application.
When there are no grey objects left, all white objects
are garbage and are recycled in the sweep phase. In this
phase blackobjects are converted back to white, so that
the next cycle can start.

The Jamaica garbage collector does not directly deal
with Java objects or Java arrays and does not know ab-
out their structure. Instead, it is working on single fixed
size blocks. Working on blocks simplifies the garbage
collector loop significantly, while it automatically pro-
vides small units of garbage collection work that can
be done in incremental steps: The basic operations per-
formed by the garbage collector are scanning or
sweeping a single block. The garbage collector’s work
is allowed to be pre-empted after each of these basic
operations, so that other threads can run even while
garbage collection work is going on.

The garbage collector has to be able to distinguish
reference values from non-references that are stored on
the heap. To do this, a bit array large enough to hold
one bit for every word that is present on the heap is
used. All words that contain references have their cor-
responding bit set. This allows fast identification of
reference values, while it has a minimal memory
overhead.

Additionally, memory space is required to hold the
colour of every block. Two bits per block are sufficient
for this, since there are only three different colours. But
allocating just two bits for the colour has a very impor-
tant impact on the garbage collector’s efficiency, since



it is not possible to find a greyblock in constant time.
In the worst case, all blocks have to be scanned just to
find one moregrey block, causing an overall quadratic
performance of the collector. Caching systems for the
grey blocks as proposed in [20] can reduce this
overhead in the average case, but for guaranteed real-
time behaviour this is not sufficient. 

An alternative used in [21] would be to use doubly-
linked lists, one list for each colour that is used. This
approach allows to find greyobjects and to change an
object’s colour in constant time, but it has a significant
memory overhead of two words per block. Also, the
write-barrier code becomes fairly complex since it has
to perform several assignments to correctly unlink an
object from one list and relink it to a new one.

The approach taken by Jamaica is using one word
per block for the colour. For colours white and black,
this word contains a special value (0 and -1, respective-
ly) indicating the colour. Any other value indicates that
the block is grey. All greyobjects are stored in a linked
list, using the colour word to store the reference to the
next element in this list. Another special value (1) is
used to mark the last element in this list. Adding a
block to and removing the first block from the grey-list
are efficient operations that can be performed in
constant time, so that a complete garbage collector
cycle is guaranteed to finish in a time that is linear in
the number of allocated blocks. 

As mentioned above, a write-barrier has to be used
to ensure that no black block ever contains a reference
to a white block. For any write of a reference to a white
block into the heap, the reference is added to the list of
grey blocks before the write is performed. The code re-
quired for a write of a reference to a field a.f = r can be
illustrated as follows:

if ((r != NULL) && (colour(r) == white)) {
colour(r) = grey_list;
grey_list = r;

}
a.f = r;

Atomicity of this operation is guaranteed since no
synchronization point is executed between greyingand
performing the write.

7. Garbage Collector Activation

To guarantee to satisfy all allocation requests, it has
to be ensured that the garbage collector performs suffi-
cient work. On the other hand, it is desirable to avoid
garbage collector overhead whenever it is not required
either because no allocation is going on or because
there is sufficient free memory. Furthermore, garbage
collection work should be distributed fairly on the
application threads: Threads that perform much
allocation should pay for the garbage collection work
with their execution time while other threads that per-
form no or little allocation should not be affected by
this work.

The garbage collection work in Jamaica is therefore
coupled with allocation, in the way proposed in [22].
For every block that is allocated, the number of
garbage collection increments that are performed is P
= M/F, where M is the size of the heap (in number of
blocks) and F is the amount of memory that is current-
ly free. As has been shown in the paper, this guarantees
sufficient garbage collection progress as long as the
amount of reachable memory stays below the system’s
total memory, while a worst-case upper bound for P
can be determined if the amount of reachable memory
R stays below a fixed upper bound of memory K (so
that R ≤ K always holds).

Since one garbage collector cycle consists of traver-
sing all allocated memory twice, once during the mark
and once during the sweep phase, every work incre-
ment consists of marking or sweeping two blocks. This
guarantees that a cycle finishes at the latest after the
number of increments performed exceeds the amount
of allocated memory, as is required by this approach
(see [22] for the details). Table 1 illustrates the worst-
case number of increments that are required for the
allocation of one block, as a function of the upper
bound of reachable memory k = K / M. 

On the PowerPC processor, a marking or sweeping
of one block takes about winc = 80 (compiled) machine
instructions. For an application that uses at most two
thirds of the total memory as reachable objects Pmax is
13.38, so that the allocation of one block of memory is
limited by 2·winc·Pmax ≤ 2·80·14 = 2240 machine in-
structions of garbage collector work. Our experience

k: 0% 50% 66.7% 70% 75% 80% 85% 90% 95% 97.5% 100%
Pmax:1.0 6.61 13.38 15.72 20.45 27.65 39.77 64.21 137.9 285.8 ∞

Table 1: Upper bound for the required number of GC increments per block allocated
as a function of the upper bound of the reachable memory.



with the implementation so far shows that the worst-
case occurs very infrequently, while the average case
requires significantly less garbage collector work.

A high priority thread can pre-empt a lower-priority
thread while it is performing this garbage collection
work, since synchronization points are present after
marking or sweeping of each single block.

The worst-case behaviour can be improved by fix-
ing Pmax instead of using a function of the amount of
free memory. As shown in [9] and [22], a value of Pmax
= 2/(1-k) is sufficient for an application that uses a frac-
tion of the heap that never exceeds k. In the example
above, this will result in 2·winc·Pmax= 2·80·6 = 960 in-
structions of garbage collector work per allocation of
one block. But this improvement in worst-case perfor-
mance comes at a high cost in average-case performan-
ce, ignoring the actual memory usage of the applica-
tion. Furthermore, if the application exceeds the limit
on the amount of reachable memory only slightly, the
system might fail to recycle sufficient memory. Never-
theless, Jamaica provides optional support for a fixed
Pmaxsince applications that only depend on the worst-
case behaviour can profit from it.

8. Experimental Data

To be able to estimate the effect on the run-time per-
formance of our garbage collection scheme we have
collected information during execution of three large
Java applications. To record this information, the
applications were compiled with an extended version
of the TurboJ Java-bytecode compiler [23].

The applications that were examined are 
1. HotJava [24], a Web browser written in Java.

During the test we used it to browse the Web pages
of The Open Group Research Institute [25].

2. SwingSet [26], the demo application that comes
with the Swing GUI class library and that makes
extensive use of the classes in this library.

3. TurboJ [23], a highly optimizing Java bytecode
compiler. We recorded its behaviour while compi-
ling all 1610 Java standard classes.

To facilitate reproduction of our results, we disabled
inlining, since the aggressiveness of inlining has an im-
portant impact on other optimizations.

8.1 Saving of Root References at call points

We have measured the overhead of storing copies of
local references into the heap as it is required at every
call to allow constant-time root scanning as presented

above. To do this, we counted the number of local
variables of reference types (these include local
variables found in the Java bytecode, local variables to
emulate the Java stack and temporary variables
introduced by the compiler for different purposes) that
exist at each call point. We have recorded the total
number of such variables in a method, and the number
of variables that are life at the call point. The results of
this simulation are present in Figure 1, given as aver-
age numbers of local reference variables at the
execution of a call. The average number of references

present at a call varies from 4.32 to 6.24, while the
number of life references is only between 2.02 and
2.73. The additional overhead of copying these refe-
rences to the heap on every call corresponds to just a
few heap stores per call, while saving only the life
variables has about half the overhead of saving all refe-
rences. Since life values have to be stored in a caller-
safe place anyway, the additional overhead appears ea-
sily acceptable, especially when regarding the benefits
of removing GC latencies due to root scanning comple-
tely and avoiding the need to provide any further infor-
mation on root variables.

8.2 Memory accesses

Next, we compared the usage of fixed size blocks
with traditional object models to estimate the cost or
gain in execution time overhead. We compare the fol-
lowing five scenarios:
1. A non-moving garbage collector that uses direct

references. 
2. A defragmenting moving garbage collector that

uses handles to update reference values.
3. The fixed size scheme used by Jamaica with

blocks of 32 bytes and representing objects as lin-
ked lists and arrays as trees. Small objects or ar-
rays can be stored in a single block and can be

Application: HotJava SwingSet TurboJ

6.24 5.41 4.32

2.73 2.51 2.02

Figure 1: Average number of total and life
reference variables on a call

Total references

Life references



accessed directly, while larger structures require
accessing several blocks to read or write a field or
array element.

Figure 2 compares the number of memory accesses
needed for our three test cases. The absolute numbers
of memory accesses and the relative numbers of
memory accesses per object or array access are shown.
Object accesses for the non-moving scenario (1) requi-
re only a single memory access, while for arrays a se-
cond access is required to read the array's length and do
the index checking.

For the moving scheme using handles (2), an addi-
tional memory access is required to read the actual
address of the object or array. We see that this scheme
doubles the number of memory accesses for objects,
while it increases the number by 50% for arrays.

For the fixed size block approach (3), things are a bit
more complicated. Fields with small offsets can be
read or written in a single memory access, while fields
with larger offsets might require 2, 3, or more accesses.
But small offsets are very frequent so that a single
memory access is sufficient for most object accesses.
Compared to the scenario using handles the test cases
need between 1.13 and 1.51 memory accesses instead
of 2.0.

Accessing arrays is significantly more complex in
the fixed size approach, Very small arrays have their
data within the array header, and three memory
accesses are sufficient to read or write an array ele-
ment. Larger arrays need 4, 5, 6, or more accesses de-
pending on the size of the array.

Regarding the total number of memory accesses
needed for the moving and fixed size strategies, we see
that the fixed size approach performs slightly better for
the HotJava and SwingSet test cases, while it is perfor-

ming slightly worse for TurboJ, where the additional
memory accesses due to the high frequency of accesses
to large arrays cannot be compensated for by the gain
due to the significantly cheaper accesses to objects.

9. Conclusion

The Jamaica Virtual Machine approaches the pro-
blem of garbage collection in Java implementations in
a way that differs significantly from current implemen-
tations. The garbage collector has an impact on a signi-
ficant part of the implementation, including threads, lo-
cal variables and the object layout.

The result is a virtual machine that provides hard
real-time guarantees for normal Java programs without
the need for specific attention by the programmer.
Short pre-emption times are guaranteed and even
memory allocation can be performed with short hard
real-time guarantees. No current Java implementation
we know of gives comparable guarantees.
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