
Hard Real-Time Scheduling for Low-Energy Using Stochastic Data and DVS
Processors

Gruian, Flavius

Published in:
[Host publication title missing]

DOI:
10.1109/LPE.2001.945370

2001

Link to publication

Citation for published version (APA):
Gruian, F. (2001). Hard Real-Time Scheduling for Low-Energy Using Stochastic Data and DVS Processors. In
[Host publication title missing] (pp. 46-51) https://doi.org/10.1109/LPE.2001.945370

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/LPE.2001.945370
https://portal.research.lu.se/en/publications/075ce9f5-767b-41b9-a995-1736d34ce054
https://doi.org/10.1109/LPE.2001.945370

ABSTRACT
The work presented in this paper addresses scheduling for reduced

energy of hard real-time tasks with fixed priorities assigned in a rate

monotonic or deadline monotonic manner. The approach we

describe can be exclusively implemented in the RTOS. It targets

energy consumption reduction by using both on-line and off-line

decisions, taken both at task level and at task-set level. We consider

sets of independent tasks running on processors with dynamic volt-

age supplies (DVS). Taking into account the real behavior of a real-

time system, which is often better than the worst case, our methods

employ stochastic data to derive energy efficient schedules. The

experimental results show that our approach achieves more impor-

tant energy reductions than other policies from the same class.

Keywords
Low-energy, hard real-time, RTOS, scheduling

1. INTRODUCTION
Low energy consumption is today an increasingly important design

requirement for digital systems, with impact on operating time, on

system cost, and, of no lesser importance, on the environment.

Reducing power and energy dissipation has long been addressed by

several research groups, at different abstraction levels. We focus

here on methods applicable at system-level, where the system to be

designed is specified as an abstract set of tasks. Selecting the right

architecture has been shown to have a great influence on the system

energy consumption [4,5]. Recently, with the advent of dynamic

voltage supply (DVS) processors [2,22,25], highly flexible systems

can be designed, while still taking advantage of supply voltage scal-

ing to reduce the energy consumption. Since the supply voltage has

a direct impact on processor speed, classic task scheduling and sup-

ply voltage selection have to be addressed together. Scheduling

offers thus yet another level of possibilities for achieving energy/

power efficient systems, especially when the system architecture is

fixed or the system exhibits a very dynamic behavior. For such

dynamic systems, various power management techniques exist and

are reviewed for example in [1,17]. Yet, these mainly target soft

real-time systems, where deadlines can be missed if the Quality of

Service is kept. Several scheduling techniques for soft real-time

tasks, running on DVS processors have already been described

[3,18,19,23]. Energy reductions can be achieved even in hard real-

time systems, where no deadline can be missed, as shown in

[6,7,10,20,24]. In this paper, we also focus on hard real-time sched-

uling techniques, where every deadline has to be met.

Task level voltage scheduling decisions can reduce even further the

energy consumption. Some of these intra-task scheduling methods

use several re-scheduling points inside a task, and are usually com-

piler assisted [11,16,21]. Alternatively, fixing the schedule before

the task starts executing as in [6,7,8] eliminates the internal sched-

uling overhead, but with possible affects on energy reduction.

Statistics can be used to take full advantage of the dynamic behavior

of the system, both at task level [16] and at task-set level [24]. In our

approach we employ stochastic data to derive efficient voltage

schedules without the overhead of intra-task re-scheduling.

The rest of the paper is organized as follows. In section 2 we

describe our hard real-time scheduling strategy, pointing out the

related work for each decision we make. Section 3 contains several

experimental results conducted both on real life examples and on

randomly generated, large task sets. Finally, we present our conclu-

sions in section 4.

2. RT SCHEDULING FOR LOW-ENERGY
In the work described here, we address independent tasks running

on a single processor. The processor has variable speed (supply

voltage and energy) adjustable at runtime. The tasks arrive with

given periods and have to be executed before certain deadlines. The

priorities are fixed, assigned in a rate-monotonic (RM) or deadline

monotonic (DM) manner [14]. The runtime scheduling also oper-

ates as in RM/DM scheduling with the difference that each task

instance is assigned a maximum allowed execution time. The

scheduling strategies we adopt at task-level are presented in sub-

section 2.1. The allowed execution time are influenced by task

group level decisions, taken both off-line and on-line. The off-line

phase is presented in sub-section 2.2 and the on-line phase in sub-

section 2.3. Sub-section 2.3 also contains a proof that our schedul-

ing method keeps the response times from the original RM/DM

scheduling, and thus does not affect the feasibility of the schedule.

2.1 Task-level Scheduling Decisions
Task-level voltage scheduling has captured the attention of the

research community rather recently [8]. Fine grain scheduling,

where several re-scheduling points are used inside a task were pre-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or fee.

ISLPED’01, August 6-7, 2001, Huntington Beach, California, USA.

Copyright 2001 ACM 1-58113-371-5/01/0008...$5.00.

Hard Real-Time Scheduling for Low-Energy

Using Stochastic Data and DVS Processors

Flavius Gruian
Department of Computer Science, Lund University

Box 118

S-221 00 Lund, Sweden

Tel.: +46 046 2224673

e-mail: Flavius.Gruian@cs.lth.se

REVISED version, September 4, 2001. Note that this version is not the one officially available. Corrections

were made on pages 2 and 6, all in blue. Thanks to Jacob R. Lorch for detecting the errors on page 2.

sented in [11,16]. In [16] statistical data is used to improve the task

level schedule, by slowing down different regions of a task accord-

ing to their average execution time. Our approach produces voltage

schedules only when a task starts executing, while using stochastic

data more aggressively both at task level and task-set level. At task

level we generate voltage schedules that are correlated with the task

execution length probability distribution. For task-set level schedul-

ing decisions see sub-section 2.3.

In our model a task can be executed in phases, at different avail-

able voltages, depending on its allowed execution time Ai. The ideal

case states that the most energy is saved when the processor uses the

voltage for which the task exactly covers its allowed execution time.

This corresponds to an ideal voltage which may not overlap with the

available voltages. A close to optimal solution is to execute the task

in two phases at two of the available voltages. These two voltages

are the ones bounding the ideal voltage [6,8].

An important observation is that tasks may finish, and in many

cases do finish, before their worst case execution time (WCET).

Therefore it makes sense to execute first at a low voltage and accel-

erate the execution, instead of executing at high voltage first and

decelerate. In this manner, if a task instance is not the worst case,

one skips executing high voltage (and power eager) regions.

In the following we will distinguish between three modes of execu-

tion for a task, as depicted in Figure 1. The ideal case (mode 1) is

when the actual execution pattern (the number of clock cycles)

becomes known when the task arrives. We can stretch then the

actual execution time of the task to exactly fill the allowed time.

This mode requires rather accurate execution pattern estimates,

depending on the input data, and therefore is rarely achievable in

practice. The second mode (mode 2) is the WCE stretching - the

voltage schedule for the task is determined as if the task will exhibit

its worst case behavior. These two modes use at most two voltage

regions, and therefore at most one DC-DC switch. The third mode

(mode 3), described in more detail next, uses stochastic data to

build a multiple voltage schedule. The purpose for using stochastic

data is to minimize the average case energy consumption. Note that

the voltage schedules in all these three modes are decided at a task

instance arrival. Unlike in [11,21] no rescheduling is done while the

task is executing. The only overhead during task execution is the

one given by the changes in the supply voltage. For instance, the

lpARM processor [2] needs at most 70µs to switch from 1.2 to 3.8V.

For closer voltage levels, the switch occurs faster. Depending on the

actual task execution time, this delay may have some impact on the

schedule. The same goes for the energy lost during the DC-DC

switch. Although our discussion does not cover these, the methods

presented here can be adapted to accommodate both the DC-DC

delay and energy loss whenever the actual processor requires it.

The stochastic voltage schedule (mode 3 in Figure 1) for a task is

obtained using the probability distribution of the execution pattern

for a task (the number of clock cycles used). This probability distri-

bution can be obtained off-line, via simulation, or built and

improved at runtime. Let us denote by X the random variable asso-

ciated with the number of clock cycles used by a task instance. We

will use the cumulative density of probability function, cdfx, asso-

ciated with the variable X, . This function

reflects the probability that a task instance finishes before a certain

number of clock cycles. If WX is the worst case number of clock

cycles, . Deciding a voltage schedule for a task, means

that for every clock cycle up to WX we decide a specific voltage

level (and processor speed). Each cycle y, depending on the voltage

adopted, will consume a specific energy, ey. But each of these cycles

are executed with a certain probability, so in average the energy

consumed by cycle y can be computed as . To obtain

the average energy for the whole task, we have to consider all the

cycles up to WX:

(1)

This is the value we want to minimize by choosing appropriate volt-

age levels for each cycle. Since WX may be a large number in

practice, in our implementation we group several consecutive clock

cycles into equal size groups. For the sake of brevity and clarity we

describe here only the simpler case, when the voltage levels are

decided clock cycle by clock cycle.

A task has to complete its execution during an allowed execution

time, A. If we denote the clock length associated to clock cycle y by

ky, this constraint can be written as:

(2)

The clock cycle length k dependency on the supply voltage V and

threshold voltage VT is according to: where β is

the velocity saturation index. If VT is small enough or we use a vari-

able threshold technology [22], this dependency is simplified to:

. The clock cycle energy e is directly dependent on the

square of the supply voltage as in: [6]. Eliminating V from

the last two expressions we obtain the dependency between the

clock cycle energy and length:

(3)

For clarity we will bind now , but the rest of the calculus can

be carried out for any other reasonable value of β. If we substitute

(3) in (1), we obtain:

(4)

which is the value to be minimized. By mathematical induction one

can prove that the right hand side of (4) has a lower bound (using

also (2)):

(5)

This lower bound can only be obtained if and only if:

(6)

τ i

time

a
llo

w
e

d
 tim

e

WCETactual ET

mode 1

mode 2

mode 3

Figure 1. Voltage scheduling modes for tasks: 1) ideal schedule,

2) WCET oriented schedule, 3) stochastic schedule.

Used

Energy

cd f x P X x≤()=

cd f WX 1=

1 cd f y–() ey⋅

E 1 cd f y–() ey⋅
0 y WX≤<

∑=

ky
0 y WX≤<

∑ A≤

k V V V T–()β⁄∼

k V
1 β–()∼

e V
2∼

e 1 k

2

β 1–

⁄∼
β 2=

E
1 cd f y–()

ky

2

0 y WX≤<
∑∼

LB

1 cd f y–3

0 y WX≤<
∑

 3

ky
0 y WX≤<

∑
 2

--
1

A
2

------ 1 cd f y–3

0 y WX≤<
∑

 ⋅
3

≥=

ky A 1 cd f y–3() 1 cd f y–3

0 y WX≤<
∑

 ⁄⋅=

These are the optimal values for the clock cycle length in each clock

cycle up to WX. In practice these values may not overlap with the

available clock lengths so they have to be converted to real clock

cycles. This conversion is done in a similar way to deriving a dual

level voltage schedule from an ideal one [6,8]. We find the two

bounding available clock cycles and distribute

the work of the ideal cycle in two such that

, where is the work

given to CKi and the rest is the work given to CKi+1. Thus, each

cycle in the task will distribute its work between two of the several

available clock lengths. Finally, the accumulated work loads for

each available clock cycle is rounded to integers, since one can only

execute full clock cycles.

Note that the coefficient of A in (6) can be computed off-line or, if

the probability distribution is built at runtime, on-line from time to

time. Therefore, the on-line computational complexity for obtain-

ing the stochastic voltage schedule is given by the steps subsequent

to (6). One has to compute the ideal clock cycle for each of the WX

clock cycles. Finding the bounding clock cycles takes logarithmic

time of the number of voltage levels, Nv. This gives a complexity of

.

Two examples of stochastic voltage schedules are given in Figure 2.

We assumed a normal probability distribution with the mean of 70

cycles, and standard deviation of 10. WX is 100. Assuming we only

have four available clock frequencies f, f/2, f/3, and f/4, we give two

voltage schedules obtained for two different values of the allowed

execution time. The schedules are given in number of clock cycles

executed at each available frequency. The allowed execution time is

reported in percentage of the time needed for executing the worst

case behavior (WX) at the highest clock frequency (f). Some exper-

imental results on how stochastic voltage schedule contribute at

saving energy are presented in section 3.

2.2 Off-line Task Stretching
The scheduling condition proposed by Liu and Layland [14] is a

sufficient one and covers the worst possible case for the task group

characteristics. Yet, an exact analysis as proposed in [13] may

reveal possibilities for stretching tasks and still keeping the dead-

lines. Based on this, [20] describes a method to compute the

maximum required frequency for a task set (or the minimum

stretching factor). In similar way, we go further and compute mini-

mal stretching factors for each task in the task

group . A task is a defined by the triple

composed of the WCET, period and deadline for

task . Note that throughout the paper Ci refers to the worst case

execution pattern WX running at the fastest clock frequency. We

consider that the tasks in the group are indexed according to their

priority, computed as in RMS.

We compute the stretching factors in an iterative manner, from the

higher to the lower priority tasks. An index q points to the latest task

which has been assigned a stretching factor. Initially, . Each

of the tasks has to be executed before one of its sched-

uling points Si as defined in [13]:

, if . If ,

we only need to change the set of scheduling points according to

. For each of this scheduling

points , task exactly meets its deadline if:

(7)

Note that for the tasks which already have assigned a stretching fac-

tor we used that one, , while for the rest of the tasks we assumed

they will all use the same and yet to be computed stretching factor,

, which is dependent on the scheduling point. For the task the

best scheduling choice, from the energy point of view, is the largest

of its . At the same time, from (7), this has to be the equal for all

tasks . There is a task with index m for which its best

stretching factor is the smallest among all other tasks:

. Note that this in not necessarily the

last task, n. If , this task sets the minimal clock frequency as

computed in [20]. Having the index m, all tasks between q and m

can be at most stretched (equally) by the stretching factor of m.

Thus, we assign them stretching factors as

. With this an iteration of the algorithm

for finding the stretching factors is complete. The next iteration then

proceeds for . Finally the process ends when q reaches n,

meaning all tasks have been given their own off-line stretching

factors.

An example is given in Table 1. Note that tasks 3 and 4 can be

stretched off-line more than 1 and 2, while 5 has the largest stretch-

ing factor. The processor utilization changes from 0.687 to 0.994.

We use the utilization after off-line stretching in computing the

energy reduction upper bound in our experiments. For ,

the difference between the stretching factors grows.

2.3 On-line Slack Distribution
At runtime it is important to use the variations in execution length

of the various task instances to be able to stretch other tasks and

thus consume less energy. In [20] the only situation when a task is

stretched is when it is the only one running and has enough time

until the next task arrives. In all other situations tasks are executed

at the speed dictated by the off-line analysis. In [11] tasks are

CK i ky< CK i 1+≤

ky wi∆ CK i⋅ 1 wi∆–() CK i 1+⋅+= wi∆

O WX Nvlog⋅()

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

47@f/4 25@f/3 20@f

27@f/3 47@f/2 26@f

8
Allowed is 300%
of WX at clock f

Allowed is 200%
of WX at clock f

1-cdf function
for a normal
distribution
with mean 70
and standard
deviation 10.

Figure 2. Two stochastic voltage schedules for a task with normal

distribution execution time and worst case behavior of 100 cycles

1 - cdf

α i{ }
1 i n≤ ≤ τ i

τ i{ }
1 i n≤ ≤

τ i Ci T i Di, ,()=

τ i

Table 1: Numerical Example for Off-line Stretching

Task τ Off-line Stretching factor α

No. WCET (C) Period (T) value iterations needed

1 1 5 1.428 1

2 5 11 1.428 1

3 1 45 1.785 2

4 1 130 1.785 2

5 1 370 2.357 3

q 0=

τ i q i n≤<,

Si kT j 1 j i≤ ≤ 1; k T i T j⁄≤ ≤{ }= T i Di= T i Di≠

Si' t t Si∈() t Di<()∧{ } Di{ }∪=

Sij Si∈ τ i

αrCr

Sij

T r

------⋅
1 r q≤ ≤
∑ α ij C p

Sij

T p

------⋅
q p< i≤
∑⋅+ Sij=

αr

α ij τ i

α ij

τ i q i n≤<,

αmj()
j

max α ij()
j

max()
i

min=

q 0=

αr αmj()
j

max= q r m≤<,

q m=

T i Di>

stretch at their WCET at runtime, independent of other tasks, using

several checking/re-scheduling points during a task instance. The

work in [10] uses only two voltage levels. The slack produced by

finishing a task early is entirely used to run the processor at the low

voltage. As soon as this slack is consumed, the task starts running

at high voltage. Our method is perhaps most resemblant to the opti-

mal scheduling method OPASTS presented in [7]. Yet, OPASTS

performs analysis over task hyperperiods, which may lead to work-

ing on a huge number of task instances for certain task sets. Our

method keeps a low and the same computational complexity,

regardless of the task set characteristics.

We describe next our strategy for slack distribution. In short, an

early finishing task may pass on its unused processor time for any

of the tasks executing next. But this time slack can not be used by

any task at any time since deadlines have to be met. We solve this

by considering several levels of slacks, with different priorities, as

in the slack stealing algorithm [12]. If the tasks in the task set

have m different priorities, we use m

levels of slacks . Without great loss of generality con-

sider that the tasks have different priorities, m = n. The slack in each

level is a cumulative value, the sum of the unused processor times

remaining from the tasks with higher priority. The invariant

describing the state of the slacks in every level, at any time is given

by (10). Initially, all level slacks Sj are set to zero. To maintain the

relation between slack levels, the levels are managed at runtime as

follows:

• whenever an instance k of a task with priority i starts exe-
cuting, it can use an arbitrary part of the slack available
at level i, Si. So the allowed execution time for task will be:

. The remaining slack from level i will
degrade into level i+1 slack. Each level slack will be updated
according to:

(8)

• whenever a task instance finishes its execution, it will generate
some slack if it finishes before its allowed time. If is the
actual execution time, the generated slack is .
This slack can be used by the lower priority tasks. In this case
the level slacks are updated according to:

(9)

• idle processor times are subtracted for all slacks. This ensures
that the critical instance from the classic RM analysis remains
the same.

The computational complexity required by the on-line method is

linearly dependent to the number of slack levels.

Note that task instances can only use slack generated from higher

priority tasks and produce low priority slack. We call this slack deg-

radation. Whenever the lowest priority task starts executing, all

level slacks are reset. Note also that not necessarily all slack at one

level is used by a single task. Various methods can be used, but we

mention here only the two we used in our experiments:

• Greedy: the task gets all the slack available for its level:

• Mean proportional: we consider the mean execution time
for each task instances waiting to execute (in the ready queue).
The slack is proportionally distributed according to these:

The strategy of managing the slack we just described allows us to

keep the critical instance response time for all tasks, as we prove

next. The response time for task is computed as

, where Ai is its allowed execution time, as

before, and Ii(t) is the interference from the other tasks. From the

managing strategy given before, the cumulated slack on each level,

at a certain time t is of form:

(10)

The slack of level i is composed of all slack from level i-1, less the

slack used by the instances of tasks with priority i-1 but plus all the

slack generated by these. The number of instances executed, k, is

determined by the task period. Note that S1 is always zero. Elimi-

nating the iteration in the previous formula:

(11)

The task with the highest priority will never receive slack and there-

fore, .

The interference from the high priority tasks is the time used to exe-

cute all arrived instances of these high priority tasks:

(12)

With the notations from the slack managing algorithm

. Introducing this in (12):

(13)

The last two terms in the sum are actually giving the slack of level

i, as in (11), so we can re-write (13) as:

(14)

Note that the maximal response time for a task is obtained when it

uses all the slack available at its level: .

From the last two equations:

(15)

which is exactly the response time when all tasks execute at WCET.

Thus, if the RM analysis decides that a task set is schedulable, it

remains valid when using our on-line policy.

In our implementation we additionally used a method similar to the

on-line method presented in [20]. Namely, whenever there are no

tasks in the Ready queue, the currently executing task can stretch

until the closest arrival time of a task instance. We will refer to this

in our experiments as the 1stretch method.

3. EXPERIMENTAL RESULTS
The first experiment examines the energy gains of using a stochastic

voltage schedule at task level. For this we considered a single task

with execution time varying between a best case (BCE) and a worst

case (WCE) according to a normal distribution. All distributions

have the mean (BCE+WCE)/2 and standard deviation (WCE-

BCE)/6. For a several cases ranging from highly flexible execution

time (BCE/WCE is 0.1) to almost fixed (BCE/WCE is 0.9) we built

stochastic schedules for a range of allowed execution times (from

τ i Ci T i Di, ,()={ }
1 i n≤ ≤

S j{ }
1 j m≤ ≤

τ i
∆Ci

k

τ i
Ai

k
Ci ∆Ci

k
+=

S j'
0 j i≤,

S j ∆Ci

k
– j i>,

=

Ei

k

∆Ai

k
Ai

k
Ei

k
–=

S j''

S j j i≤,

S j ∆Ai

k
+ j i>,

=

∆Ci

k
Si=

µi

∆Ci

k
Si µi µ j

j ReadyQ∈
∑

 ⁄⋅=

Ri t() τ i

Ri t() Ai I i t()+=

Si t() Si 1– t() ∆Ci 1–
k

k
∑– ∆Ai 1–

k

k
∑+= k t

T i 1–

------------=,

Si t() ∆A j

k

k
∑ ∆C j

k

k
∑–

j 1=

j i<

∑= k t

T j

-----=

∆C1
k

0=

I i t() E j

k

k
∑

j 1=

j i<

∑= k t

T j

-----=

E j

k
A j

k ∆A j

k
– C j ∆C j

k ∆A j

k
–+= =

I i t() C j ∆C j

k ∆A j

k
–+()

k
∑

j 1=

j i<

∑= k t

T j

-----=

I i t() kC j

j 1=

j i<

∑ Si t()–= k t

T j

-----=

Ri t() Ci I i t() Si t()+ +=

Ri t() Ci
t

T j

----- C j

j 1=

j i<

∑+=

WCE to 3x WCE). We assumed that our processor has 9 different

voltage levels, equally distributed between f and f/3. For a large

number of task instances generated according to the given distribu-

tion we computed both the energy of the stochastic schedule (mode

3 in Figure 1) and the WCE-stretch schedule (mode 2 in Figure 1).

We depict in Figure 3 the average energy consumption of the sto-

chastic schedule as a part of the WCE-stretch schedule. Note that

when the allowed time approaches either WCE or 3-times WCE,

the energy consumptions become equal. The lowest possible clock

frequency is f/3 which anyway means 3-times WCE, so there is no

better schedule for these cases. On the other hand when the allowed

time closes WCE, there is no other way but to use the fastest clock.

Somewhere between the slowest and the fastest frequencies

(Allowed/WCE = 2) is the largest energy gain since the stochastic

schedule can use the whole spectrum of available frequencies. Note

that the energy gains become more important when the task execu-

tion time varies much (BCE/WCE closes 0.1). It is important to

notice that WCE-stretch already gains very much energy compared

to the non-scaling case. For example when the allowed time is twice

the WCE, the WCE-stretch energy is around 25% of the no-scaling

energy. But a stochastic approach contributes even more to these

gains, as the figure shows.

Next we took two real-life hard-RT applications [9, 15] and applied

several energy reduction strategies. The results are depicted in Fig-

ure 4. We assumed tasks with normal distributions, with the same

characteristics as in the previous experiment. The 100% energy is

the energy obtained by running all tasks as fast as possible and exe-

cuting NOPs when no tasks are supposed to run. We assumed that

the NOP instruction consumes only 20% of the average power, as

in [20]. The virtual processor used for these experiments has 14

voltage levels, with clock frequencies varying between f=100MHz

and 11MHz. A power-down mode is also available, in which the

processor consumes 5% of the highest frequency average energy.

The curves named “Upper Bound” depict the upper bound of the

energy reduction possibilities. These were obtained in a post-execu-

tion analysis, by considering that the tasks are uniformly stretched

up to maximum processor utilization as computed in sub-section

2.2.2. This limit is hardly achievable in practice, since the actual

execution patterns for all task instances are never available before-

hand. Moreover, this optimum obtained by uniformly stretching all

instances may violate some deadlines, being therefore useless in

practice. A more realistic bound is given by the “Ideal stretch.”

The curves named “Offline+1stretch” were obtained by using only

the off-line stretching method and the 1stretch method mentioned

in sub-section 2.2.3. The “All” labeled curves were obtained by

using the off-line strategy, the on-line strategy with “mean propor-

tional” slack distribution (sub-section 2.3), plus the stochastic

execution task model (mode 3 in Figure 1). The curves labeled

“Ideal stretch” were obtained by using the same method as the “All”

curves, except using an ideal-stretch task execution model (mode 1

in Figure 1). Note that this method implies knowing the actual exe-

cution time at a task arrival, which is unlikely in reality. For the last

three methods, “Offline+1stretch,” “All,” and “Ideal-stretch,” when-

ever the processor is idle, it goes to a power down mode.

We also tested our scheduling policy on randomly generated task

sets of 50 and 100 tasks. The task sets were generated as follows.

For each set, the task periods (and deadlines) were selected using a

uniform distribution in 100..5000 and 100..10000 respectively. The

worst case execution times were then randomly generated such that

the task set would yield approximately 0.67 processor utilization,

for the fastest clock. The average utilization after off-line stretching

turned out to be 0.92 for the sets of 50 tasks, and 0.85 for the sets of

100 tasks. Using the same processor type as in the previous experi-

ment, we simulated the runtime behavior of several scheduling

methods. We also used post-simulation data to obtain the upper

bounds, as in the previous experiment. The values depicted in Fig-

ure 5 are averages over one hundred sets of tasks. As results from

these experiments, our policy (“All”) performs best, when little

information on task execution is available.

4. CONCLUSIONS
We presented and analyzed a scheduling policy for hard real-time

tasks running on a dynamic voltage supply processor, with the final

purpose of reducing the energy consumption. The policy is

designed for sets of tasks with fixed priorities assigned in a rate/

deadline monotonic manner. It consists of both off-line and on-line

scheduling decisions, taken both at task and task set levels. The off-

line decisions use exact timing analysis to derive off-line voltage

scaling factors for each task. The on-line policy distributes available

processor time on priority basis, using slack levels and statistics.

Task-level voltage schedules are built using stochastic data, with the

goal of minimizing the average case energy consumption. The

paper also contains a proof that our scheduling policy meets all

deadlines. Our method can be fully implemented in the RTOS,

without appealing to special compilers or changing the software.

Yet, combined with the afore mentioned methods, our approach

may yield even greater energy reductions. The experimental results

show that our policy can be successfully used to reduce the energy

consumption in a hard real-time system.

Levels

 95.5%
 90.8%
 86.1%
 81.4%
 76.6%

0.1
0.3

0.5
0.7

0.9

11.522.53

70%

75%

80%

85%

90%

95%

100%

BCE/WCE

Allowed/WCE

S
to

ch
as

ti
c

sc
h
ed

u
le

 e
n
er

g
y

co
m

p
ar

ed
 t

o
 W

C
E

-s
tr

et
ch

Figure 3. The average energy consumption of a stochastic voltage

schedule vs. the energy consumption of a WCE- stretch schedule.

0

20%

40%

60%

80%

100%

0.1 0.3 0.5 0.7 0.9

E
n

e
rg

y
 r

e
d

u
c
ti

o
n

BCE/WCE

Upper Bound

Ideal stretch

Offline+1stretch

All

0.1 0.3 0.5 0.7 0.9
BCE/WCE

70

75

80

85

90

95

100

Upper Bound

Ideal stretch

All

Offline+1stretch

a) avionics, 17 tasks b) CNC, 8 tasks

Figure 4. The energy reduction for an a) avionics application [15] and

b) a controller CNC [9]. In b) the area between 70-100% is enlarged.

5. ACKNOWLEDGMENTS
This work was funded by ARTES - A network for Real-Time

research and graduate Education in Sweden1. The author would like

to thank Petru Eles, Kris Kuchcinski, and Per Larsson-Edefors for

their helpful comments.

6. REFERENCES
[1] Benini, L. and DeMicheli, G. System-level power

optimization: techniques and tools, in ACM Trans. on Design

Automation of Electronic Systems, No. 2, Vol. 5, April 2000,

115-192.

[2] Burd, T., Pering, T., Stratakos, A., and Brodersen, W. A

dynamic voltage scaled microprocessor system in IEEE

Journal of Solid-State Circuits, No. 11, Vol. 35, November

2000, 1571-1580.

[3] Chandrakasan, A., Gutnik, V., and Xanthopoulos, T. Data

driven signal processing: an approach for energy efficient

computing in Proceedings of ISLPED’96, 347-352.

[4] Dave, B.P., Lakshminarayana, G., and Jha, N.K. COSYN:

hardware-software co-synthesis of embedded systems in

Proceedings of the 34th DAC 1997, 703-708.

[5] Gruian, F., and Kuchcinski, K. Low-energy directed

architecture selection and task scheduling for system-level

design in Proceedings of the 25th Euromicro Conference,

1999, pp. 296-302.

[6] Gruian, F., and Kuchcinski, K. LEneS: task scheduling for

low-energy systems using variable voltage processors in

Proceedings of ASP-DAC2001, 449-455.

[7] Hong, I., Potkonjak, M., and Srivastava, M.B. On-line

scheduling of hard real-time tasks on variable voltage

processor in Digest of Technical Papers of ICCAD’98, 653-

656.

[8] Ishihara, T., and Yasuura, H. Voltage scheduling problem for

dynamically variable voltage processors in Proceedings of

ISLPED’98, 197-202.

[9] Kim, N., Ryu, M., Hong, S., Saksena, M., Choi, C.-H., and

Shin, H. Visual assessment of a real-time system design: a

case study on a CNC controller, The 17th IEEE Real-Time

Systems Symposium, 1996, 300-310.

[10] Lee, Y.-H., and Krishna, C.M. Voltage-clock scaling for low

energy consumption in real-time embedded systems in

Proceedings of the 6th International Conference on Real-Time

Computing Systems and Applications, 1999, 272-279.

[11] Lee, S., and Sakurai, T. Run-time voltage hopping for low-

power real-time systems in Proceedings of the 37th DAC,

2000, 806-809.

[12] Lehoczky, J., and Ramos-Thuel, S. An optimal algorithm for

scheduling soft-aperiodic tasks in fixed-priority preemptive

systems in Proceedings of RTSS’92, 110-123.

[13] Lehoczky, J., Sha, L., and Ding, Y. The rate monotonic

scheduling algorithm: exact characterization and average case

behavior in Proceedings of RTSS’89, 166-171.

[14] Liu, C.L., and Layland, J.W. Scheduling algorithms for

multiprograming in a hard real time environment in JACM 20

(1), 1973, 46-61.

[15] Locke, C.D., Vogel, D.R., and Mesler, T.J. Building a

predictable avionics platform in Ada: a case study in

Proceedings of RTSS’91, 181-189.

[16] Mossé, D., Aydin, H., Childers, B., and Melhem, R.,

Compiler-assisted dynamic power-aware scheduling for real-

time applications. Worksop on Compilers and Operating

Systems for Low-Power, October 2000.

[17] Pedram, M. Power optimization and management in

embedded systems, Proceedings of ASP-DAC 2001, 239-244.

[18] Pering, T., Burd, T., and Brodersen, R., The simulation and

evaluation of dynamic voltage scaling algorithms in

Proceedings of ISLPED’98, 76-81.

[19] Pering, T., Burd, T., and Brodersen, R., Voltage scheduling in

the lpARM microprocessor system in Proceedings of

ISLPED’00, 96-101.

[20] Shin, Y., and Choi, K. Power conscious fixed priority

scheduling for hard real-time systems in Proceedings of the

36th DAC, 1999, 134-139.

[21] Shin, D., Kim, J., and Lee, S. Intra-task voltage scheduling for

low-energy hard real-time applications, Special Issue of IEEE

Design and Test of Computers, October 2000.

[22] Suzuki, K., Mita, S., Fujita, T., Yamane, F., Sano, F., Chiba,

A., Watanabe, Y., Matsuda, K., Maeda, T., and Kuroda, T. A

300MIPS/W RISC core processor with variable supply-

voltage scheme in variable threshold-voltage CMOS,

Proceedings of the ICC’97, 587-590.

[23] Weiser, M., Welch, B., Demers, A., and Shenker, S.

Scheduling for reduced CPU energy in Proceedings of the

First Symposium on Operating Systems Design and

Implementation, November 1994.

[24] Yao, F., Demers, A., and Shenker, S. A scheduling model for

reduced CPU energy in Proceedings of the 36th Symposium

on Foundations of Computer Science, 1995, 374-382.

[25] http://www.transmeta.com

1http://www.artes.uu.se/

0

50%

60%

70%

80%

90%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Upper Bound

Offline+1stretch

Ideal stretch
All

BCE/WCE

E
n
er

g
y
 r

ed
u
ct

io
n

Figure 5. The energy reduction using different strategies for sets of

50 tasks above and sets of 100 tasks bellow. The value are averages

over a hundred task sets.

30%

40%

50%

60%

70%

80%

90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Offline+1stretch

All
Ideal stretch

Upper Bound

E
n
er

g
y
 r

ed
u
ct

io
n

BCE/WCE

sets of 50 tasks

sets of 100 tasks

	Keywords
	1. Introduction
	2. RT Scheduling for Low-Energy
	2.1 Task-level Scheduling Decisions
	Figure 1. Voltage scheduling modes for tasks: 1) ideal schedule, 2) WCET oriented schedule, 3) st...
	Figure 2. Two stochastic voltage schedules for a task with normal distribution execution time and...

	2.2 Off-line Task Stretching
	Table 1: Numerical Example for Off-line Stretching

	2.3 On-line Slack Distribution

	3. Experimental Results
	Figure 3. The average energy consumption of a stochastic voltage schedule vs. the energy consumpt...
	Figure 4. The energy reduction for an a) avionics application [15] and b) a controller CNC [9]. I...
	Figure 5. The energy reduction using different strategies for sets of 50 tasks above and sets of ...

	4. Conclusions
	5. AcknowledgmentS
	6. References
	Hard Real-Time Scheduling for Low-Energy Using Stochastic Data and DVS Processors

