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Abstract. Animal locomotion is generated and control- 

led, in part, by a central pattern generator (CPG), which 
is an intraspinal network of neurons capable of pro- 
ducing rhythmic output. In the present work, it is demon- 
strated that a hard-wired CPG model, made up of four 

coupled nonlinear oscillators, can produce multiple 
phase-locked oscillation patterns that correspond to 
three common quadrupedal gaits - the walk, trot, and 
bound. Transitions between the different gaits are gener- 
ated by varying the network's driving signal and/or 
by altering internal oscillator parameters. The above 
in numero results are obtained without changing the 

relative strengths or the polarities of the system's synap- 
tic interconnections, i.e., the network maintains an in- 
variant coupling architecture. It is also shown that the 
ability of the hard-wired CPG network to produce and 
switch between multiple gait patterns is a model-inde- 
pendent phenomenon, i.e., it does not depend upon the 

detailed dynamics of the component oscillators and/or 
the nature of the inter-oscillator coupling. Three different 
neuronal oscillator models - the Stein neuronal model, 
the Van der Pol oscillator, and the FitzHugh-Nagumo 
model - and two different coupling schemes are incorp- 
orated into the network without impeding its ability to 

produce the three quadrupedal gaits and the aforemen- 
tioned gait transitions. 

1 Introduction 

Legged animals typically employ multiple gaits, i.e., 
phase-locked patterns of limb movements, for terrestrial 
locomotion. Quadrupeds, for example, commonly walk, 
trot, and bound (or gallop) (Dagg 1973; Gambaryan 
1974; Hildebrand 1976, 1977). A number of experimental 

studies have demonstrated that animal locomotion is 

generated and controlled, in part, by a central pattern 
generator (CPG), which is an intraspinal network of 
neurons capable of producing rhythmic output (for re- 
views, see Grillner 1975, 1981, 1985; Shik and Orlovsky 
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1976; Stein 1978). Shik et al. (1966), for instance, Showed 

that mesencephalic cats could exhibit a walking gait on 
a treadmill when an area of the midbrain was electrically 
stimulated. Moreover, they found that such preparations 
could switch from the walk to the trot to the gallop if 

either the strength of the stimulation or the speed of the 
treadmill was increased. 

Although the aforementioned studies established the 

existence of rhythm-generating networks in the central 
nervous system (CNS), a vertebrate CPG for legged loco- 
motion remains to be identified and/or isolated. As a 
result, little is known about the number or specific char- 
acteristics of the neurons or interconnections making 

up a locomotor CPG. Consequently, several researchers 
have resorted to using modelling techniques to gain in- 

sight into the possible functional organization of such 
networks. The most popular approach to date has in- 
volved the construction and analysis of systems of 

coupled nonlinear oscillators (Kopell 1988; Rand et al. 
1988). Bay and Hemami (1987) and Taga et al. (1991), for 
example, utilized coupled-oscillator systems to control 
the movements of segmented bipeds. Many others have 
used networks of four coupled oscillators to represent 
quadrupedal locomotor CPGs (Willis 1980; Stafford and 

Barnwell 1985; Schrner et al. 1990; Yuasa and Ito 1990, 
1992; Collins and Stewart 1992, 1993a; Jeka et al. 1993a). 

Despite joint and independent efforts of experi- 
mentalists and theorists, the neural mechanisms underly- 
ing gait transitions in legged animals remain unclear. 1 In 
the aforementioned oscillator models, gait transitions are 

typically produced by selectively changing either the rela- 
tive strength (Stafford and Barnwell 1985; Yuasa and Ito 

1990) or the polarity (Bay and Hemami 1987) of the 
coupling that acts between the CPG oscillators. Within 
these modelling schemes, the locomotor CPG is essen- 
tially 'rewired' in order to produce different gait patterns. 
This work is aligned with the following statement of 

Grillner (1985, pp 147-148) : 'In tetrapods the need to 

1 For discussions of the possible mechanical and metabolic factors that 
influence gait transitions, see the work of Taylor and colleagues (Taylor 
1978; Hoyt and Taylor 1981; Farley and Taylor 1991). For a detailed 
review of previous neural-modelling studies that deal with gait 
transitions, see Collins (1995) 
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modify limb coordination with walking, trotting, and 
galloping requires [our italics] different sets of co- 
ordinating neurons to combine the limb CPG's in the 
different phase relations required for the particular type 

of gait.' Thus, according to this proposed control strat- 
egy, the trot-to-bound transition, for example, may be 

generated by switching from a set of mutually inhibiting 
coordinating neurons to another set that utilizes mutual 
excitation (Grillner and Wallrn 1985). 

Collins and Stewart (1992, 1993a, b), on the other 

hand, proposed that a 'hard-wired' CPG, i.e., one with 
fixed interconnections between its component oscillators, 
should be capable of generating multiple phase-locked 
oscillation patterns that correspond to different animal 
gaits. Their prediction was based on a group-theoretic 

analysis of various symmetric networks of coupled 
nonlinear oscillators. Specifically, Collins and Stewart 

utilized a symmetry-based approach to investigate the 
universal features of general classes of models for CPGs 
that could control bipedal, quadrupedal, and hexapodal 
locomotion. Gait transitions were modelled as sym- 
metry-breaking bifurcations of various kinds. Within this 

modelling scheme, the respective coupled-oscillator net- 
works could, in principle, be forced to switch between 
different phase-locked oscillation patterns (gaits) by 
varying certain system parameters, such as the amplitude 
of a command driving signal or the internal parameters 

of the individual CPG oscillators. It should also be noted 
that the above abstract results are model-independent, 
i.e., they do not depend upon the mathematical details of 

the oscillators' intrinsic dynamics or the nature of the 
inter-oscillator coupling. 

Motivated by the aforementioned theoretical predic- 
tions of Collins and Stewart, we designed a series of 
computer experiments to test two hypotheses: (1)a 
hard-wired CPG can produce multiple phase-locked 

oscillation patterns that correspond to natural animal 
gaits; and (2) the production of multiple phase-locked 
oscillation patterns by a hard-wired CPG is a model- 
independent phenomenon. In order to address the former 

hypothesis, we modelled a quadrupedal locomotor CPG 
as a system of four coupled nonlinear oscillators and 
tested the ability of such a network to produce three 

common quadrupedal gaits - the walk, trot, and bound. 
We attempted to generate transitions between the differ- 
ent gaits by changing the network's driving signal and/or 
by altering the internal parameters of the component 
CPG oscillators. In order to address the latter hypothe- 

sis, we analyzed and compared the effects of using three 
different neuronal-oscillator models - the Stein neuronal 

model, the Van der Pol oscillator, and the FitzHugh- 
Nagumo model - as the unit oscillators for the aforemen- 
tioned locomotor CPG. 

2 Background and methods 

2.1 Quadrupedal gaits 

Quadrupeds can adopt a number of different gaits, de- 
pending upon their speed of locomotion and the terrain 
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Fig. 1. Phase relations for three common quadrupedal gaits: (a) walk, 
(b) trot, and (e) bound 

(Dagg 1973; Gambaryan 1974; Hildebrand 1976, 1977). 
In this study, we considered three of the more common 

quadrupedal gaits - the walk, trot, and bound. These 
gaits are shown schematically in Fig. 1. In the walk, 

which is a slow-speed gait, the limbs move a quarter 
period out of turn, in a figure-eight wave. In the trot, 
which is a medium-speed gait, diagonal limbs, e.g., right 
front and left hind, move together and in phase, and pairs 

of diagonal limbs move half a period out of phase with 
one another. (The pace is another medium-speed gait; in 

this case, ipsilateral limbs move together and in phase, 
and left and right limbs move 180 ~ out of phase with each 
other.) The bound, which is a fast-speed gait, is similar to 

the trot, except that front and hind limbs, respectively, 
move together and in phase. (The gallop, which is also 
a fast-speed gait, resembles the bound, except the limbs of 
the front and hind pairs are slightly out of phase with 

each other.) Other quadrupedal gaits, such as the canter, 
pronk, and half-bound, exist (Collins and Stewart 1993a), 
but they are less common and were not considered in this 
investigation. 

In the present study, a CPG model was considered to 
be in a particular gait mode if the relative phases of the 
respective oscillator output signals were within 10% of 
a gait cycle of those expected for the ideal gait (Fig. 1). 
The above criterion was considered reasonable given the 
variability of natural animal gaits (e.g., Afelt et al. 1983; 
Alexander and Jayes 1983). 

2.2 CPG network architecture 

We modelled a quadrupedal locomotor CPG as a net- 
work of four coupled nonlinear oscillators. Each oscil- 
lator controlled the stepping movements of a single limb 
of a model animal (Arshavsky et al. 1965), e.g., when the 

output signal of a CPG oscillator reached its maximum 
value, the limb controlled by that oscillator initiated its 
next step. In the present study, we were not concerned 
with the patterns of muscle activity within each limb; we 
were only interested in interlimb coordination, i.e., the 
relative phases between the limbs (CPG oscillators) of the 
model quadruped. Interlimb coordination resulted from 
the coupling, and hence dynamic interactions, of the 
component CPG oscillators. 

We considered the network shown in Fig. 2. Oscil- 
lators 1, 2, 3 and 4 control the timing of the left front (LF), 
left hind (LH), right hind (RH), and right front (RF) 
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Fig. 2. Graphical representation of the locomotor central pattern 
generator (CPG) network of coupled nonlinear oscillators. Oscillators 
1, 2, 3, and 4 control the timing for the left front, left hind, right hind, 
and right front limbs of a model quadruped, respectively. Solid lines 

between oscillators represent inhibitory coupling, with the filled circle 

next to the inhibited oscillator 

limbs, respectively. Solid lines between oscillators repres- 
ent inhibitory interconnections (Pearson 1993), with the 
filled circle next to the inhibited oscillator (Fig. 2), e.g., 
oscillator 1 inhibits oscillator 2. The CPG network of 
Fig. 2 is thus a ring network with Z4 symmetry, i.e., the 
system has unidirectional coupling. This relatively simple 
coupling architecture was held fixed throughout the com- 
puter experiments, i.e., neither the polarity nor the rela- 
tive strength of the respective synaptic interconnections 
was modified in order to generate the different gait pat- 
terns. 

2.3 Neuronal-oscillator models 

Here, we consider three different neuronal-oscillator 
models - the Stein neuronal model, the Van der Pol 
oscillator, and the FitzHugh-Nagumo model. 

2.3.1 Stein neuronal model. The Stein neuronal model 
(Stein et al. 1974a), which is capable of producing oscilla- 
tory output, is defined by the following set of coupled 
differential equations: 

[ 1 1 2i = a.  -x~ + 1 + exp(-fci - by~ + bzi) 

y i = x i - - P y i  (1) 

Zi = Xi - -  q z i  

for i = 1, 2, 3, 4 where x~ represents the membrane poten- 
tial (or the firing rate) of the ith neuronal oscillator, a is 
a rate constant affecting the frequency of the oscillations, 
f~i is the driving signal for oscillator i, b allows the model 
to adapt to a change in stimulus, and p and q control the 
rate of this adaption (Stein et al. 1974a). Adaption, in this 
case, refers to the time-dependent decline in the firing rate 
of the model following the application of a step change in 
the driving stimulus (Stein et al. 1974a). 

Inhibitory coupling between the CPG oscillators was 
achieved by decreasing the magnitude of the inhibited 
oscillator's driving signal by an amount proportional to 
the inhibiting oscillator's signal. [This method for imple- 
menting coupling was modified from Stein et al. (1974b).] 
The driving signal fa,  which, in the present study, was 
assumed to have both a steady-state (tonic) component 
and a periodic (phasic) component, thus took the form: 

f ~ i = f  �9 [ l + k l  sin(k2t) + i 2ji" x J  (2) 
j = l  

where f  is an amplitude parameter, kz and k2 control the 
amplitude and frequency, respectively, of the periodic 
component of the driving signal, 2ji is a coupling term 
that represents the strength of oscillator j ' s  effect on 
oscillator i, and xj is the membrane potential of oscillator 
j. The value of 2j~ was set to - 0 . 2  if oscillator j inhibited 
oscillator i (see Fig. 2), and its value was set to 0.0 if 
oscillator j did not affect oscillator i. With the exception 
of the coupling term in (2), the driving signals to the 
respective CPG oscillators were identical. 

2.3.2 Van der Pol oscillator. Van der Pol oscillators 
have been used extensively in physiological modelling 
studies (e.g., see Winfree 1990). The Van der Pol oscil- 
lators considered in the present investigation were de- 
fined by the following equation modified from Bay and 
Hemami (1987): 2 

fC i + # .  (X2i _ p2) .  Xi q- g 2 .  X a  i = q. [1 + kl sin(k2t)] (3) 

for i = 1, 2, 3, 4 where xi is the output signal from oscil- 
lator i, xai is the same signal affected by the coupling [see 
(4) below],/~ controls the degree of the nonlinearity of the 
oscillator (and thereby affects the shape of its waveform), 
p controls the amplitude of the oscillations, g influences 
the frequency of the oscillations, q is an amplitude para- 
meter, and kl and k2 control the amplitude and fre- 
quency, respectively, of the periodic component of the 
driving signal. 

Coupling was introduced in the manner proposed by 
Bay and Hemami (1987), where: 

4. 

xai = xi + ~ )tji" xj (4) 
j = l  

where 2i~ is a coupling term that represents the strength 
of oscillator j 's effect on oscillator i, and xj is the output 
signal from oscillatorj. As with the Stein CPG model, the 
value of 2ji was set to -0 .2  if oscillator j inhibited 
oscillator i, and its value was set to 0.0 if oscillator j did 
not affect oscillator i. The synaptic interconnectivity for 
the Van der Pol CPG model had to be reversed from that 
shown in Fig. 2, e.g., oscillator 2 inhibited oscillator 1 in 
the Van der Pol CPG model. With the coupling arrange- 
ment of Fig. 2, the Van der Pol CPG model produced 

2 In the present study, the CPG driving signal was modified to include 
a steady-state component and a periodic component. Flaherty and 
Hoppensteadt (1978) offer a detailed treatment of periodically forced 
Van der Pol oscillators 



378 

a 'backwards' walk, i.e., the limbs of the model quadru- 
ped moved in the order LF, LH, RF, and RH, as opposed 
to the desired LF, RH, RF, and LH (Fig. 1). The Van der 
Pol CPG model could produce a 'forwards' walk (see 
Sect. 3.2.1) if the coupling interconnections were rever- 
sed. The need for this directional change, which did not 
alter the network's symmetry, was likely due to the differ- 
ent coupling method. 

2.3.3 FitzHugh-Nagumo model. The FitzHugh-Nagumo 
model, which was developed and analyzed by FitzHugh 
(1961) and Nagumo et al. (1962), is defined by the follow- 
ing equations (Edelstein-Keshet 1988): 

2 i=C"  y i + x i + ~  

Yi = -(xi  - a + b. yl)/c 

for i = 1, 2, 3, 4, where xi is the membrane potential of 
the ith neuronal oscillator, 3 fci is the driving signal for 
oscillator i, and a, b, and c are constants that do not 
correspond to any particular physiological parameters 
(FitzHugh 1961). 

Inhibitory coupling was implemented in a manner 
similar to that for the Stein CPG model, i.e., the coupling 
served to decrease the driving signal acting on the inhib- 
ited oscillator. The driving signal f~i, which, as with the 
Stein and Van der Pol CPG models, was assumed to 
have a tonic component and a periodic component, 4 thus 

took the form: 

fci = fa + fb " [k 1 sin(k2t) + ~ 2j~. xj] (6) 
j = l  

wherefa is the steady-state value of the driving signal, fb is 
an amplitude parameter that affects the magnitude of the 
variable component of the driving signal, kl and k2 con- 
trol the amplitude and frequency, respectively, of the 
periodic component of the driving signal, 2ji is a coupling 
term that represents the strength of oscillatorfs effect on 
oscillator i, and xj is the membrane potential of oscillator 
j. As with the other two CPG models, the value of 2j~ was 
set to -0.2 if oscillator j inhibited oscillator i, and its 
value was set to 0.0 if oscillatorj did not affect oscillator i. 
The coupling arrangement of Fig. 2 was utilized in the 
FitzHugh-Nagumo CPG model. 

2.4 Numerical analysis 

The respective differential equations governing the Stein, 
Van der Pol, and FitzHugh-Nagumo CPG models were 
solved numerically using the fourth-order Runge-Kutta 
integration method with a stepsize equal to 0.005 s. 
Smaller stepsizes produced the same results for the re- 
spective CPG models; a stepsize of 0.005 s was thus used 

Table 1. Representative parameter  values for the walking, trotting, 

and bounding gaits of the three CPG models. For the Stein C P G  

model, p, b, and q were held fixed at values of 10.0, -2000.0,  and 30.0, 

respectively. For the Van der Pol CPG model, g2 and # were held 

constant  at values of 20.0 and 1.0, respectively. For the FitzHugh- 

Nagumo CPG model, a and b were held fixed at values of 0.1 and 0.5, 

respectively 

CPG model Parameter  Walk Trot Bound 

Stein a 10.0 12.0 16.0 

f 40.0 40.0 50.0 

kl 0.0 0.1 0.1 

k2 0.0 57.0 59.0 

Van der Pol p2 3.0 3.0 10.0 

q 0.0 - 25.0 - 25.0 

kl 0.0 5.0 5.0 

k2 0.0 7.5 7.5 

F i tzHugh-Nagumo c 0.75 1.5 1.5 

fa 0.0 0.0 1.0 

fb 1.0 1.0 1.5 
kl 0.0 2.0 2.0 

k 2 0.0 1.0 1.0 

for reasons of computational efficiency. All testing was 
conducted on a 386 IBM-compatible personal computer. 

3 Results 

3.1 Stein CPG model 

3.1.1 Production of multiple gait patterns. With a tonic 
driving signal, the Stein CPG model could produce either 
the walk or the bound from a random set of initial 
relative-phase conditions. The production of the respect- 
ive gaits depended upon the specific values of the system 
parameters. For example, with the parameter values 
given in the first column of Table 1, the Stein CPG model 
generated the walking gait, whereas with larger values for 
parameter a, it produced the bounding gait (from a ran- 
dom set of initial relative-phase conditions). Moreover, 
the system could be switched from the walk to the bound 
simply by increasing the rate constant a (and thereby 
increasing the intrinsic frequency) of all four neuronal 
oscillators. 5 (However, as noted in Sect. 3.1.2, the reverse 
transition, i.e., the bound-to-walk transition, could not be 
obtained by returning parameter a to its original value.) 

If a periodic component was added to the system's 
driving signal, then the model could also move from the 
walk to the trot. Once in the trotting mode, the CPG 
model could be switched into the bound by increasing 
the value of the amplitude parameter ( f )  of the driving 
signal and/or by increasing the value of a. Thus, in short, 
the hard-wired Stein rCPG model was capable of produ- 
cing phase-locked oscillation signals corresponding to 

3 As with the Stein neuronal model, the F i tzHugh-Nagumo model is 

capable of exhibiting oscillatory behavior (Edelstein-Keshet 1988) 

4 For a more extensive treatment of F i tzHugh-Nagumo equations with 

periodic forcing, see Alexander et al. (1989) 

s In the computer  experiments described in Sects. 3.1 and 3.2, the values 

of the respective parameters for each of the four component  oscillators 

were changed in identical ways, e.g., the parameter values for an 

individual CPG oscillator were not  selectively modified 
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Fig. 3. Output patterns from the Stein CPG model corresponding to: 
(a) the walking gait, (b) the trotting gait, and (e) the bounding gait. 
These results were generated using the parameter values listed in 
Table 1 
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the walk, trot, and bound (Fig. 3). 6 Table 1 provides 
a listing of the parameter values that were used to gener- 
ate the results given in Fig. 3. 

Since the value of a increased from the walk to the 
trot to the bound (Table 1), the oscillator's frequency, 
and thus the model animal's stepping frequency, in- 
creased as the Stein CPG model switched to 'faster' gaits. 
The parameter k2, which controlled the frequency of the 
sinusoidal component of the driving signal, also in- 
creased from the trot to the bound (Table 1), although 
this change was not needed to switch the system into the 
bounding gait. When a periodic component was present 
in the driving signal, the CPG oscillators became en- 
trained to the sine wave such that they completed one 
cycle for every two driving-signal cycles. The values of 57 
and 59 for k2 were chosen for the trot and bound, 

6 The output signals for the trot (Fig. 3b) did not correspond exactly to 
those expected for the ideal gait (Fig. 1): there were small phase 
differences (less than 10% of the gait cycle) between the output signals 
of diagonal oscillators. These slight phases differences, which were 
observed experimentally by Afelt et al. (1983) in trotting dogs, were 
likely due to the inhibition from oscillators 2 and 3 that acted on 
oscillators 4 and 1, respectively (Fig. 2) 

Fig. 4. Output patterns from Stein CPG model demonstrating: (a) the 
walk-to-trot transition, (b) the walk-to-bound transition, (e) the trot- 
to-walk transition, and (d) the trot-to-bound transition. Arrow in each 
plot indicates the point at which the system parameters were changed 

respectively, because the resulting frequencies of the driv- 
ing signal were close to twice the natural frequencies of 
the trotting and bounding CPG models (for the respect- 
ive sets of representative parameter values given in 
Table 1). 

3 . 1 . 2  G a i t  t r a n s i t i o n s .  By changing the network's driv- 
ing signal and/or by varying the internal parameters of 
the component oscillators (e.g., as indicated by the differ- 
ent sets of parameters listed in Table 1), four different 
gait transitions - the walk-to-trot, walk-to-bound, trot- 
to-walk, and trot-to-bound transitions - could be ob- 
tained with the Stein CPG model (Fig. 4). As observed in 
real animals (Jayes and Alexander 1978), transitions be- 
tween the walk and trot could be either gradual or 
abrupt. With the CPG model, the nature of the 
transitions depended upon the nature of the parameter 
variation. For example, if the amplitude (kz) of the peri- 
odic component of the driving signal was increased 
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slowly (gradually), then a gradual walk-to-trot transition 
was produced. If, on the other hand, kl was increased 
instantaneously, then the resulting walk-to-trot 
transition was completed within a single gait cycle. 7 

Transitions from the bound, however, could not be 
induced via parameter variation. Once the Stein CPG 
model was in the bounding gait, it maintained that gait 
even if the system parameters were returned to their 
original values for either the walk or the trot. Conse- 
quently, we explored other possible mechanisms for 
generating transitions from the bound; this work is de- 
scribed in Sect. 3.3. 

3.2 Van der Pol and FitzHugh-Nagumo CPG models 

3.2.1 Production of multiple gait patterns. As with the 
Stein CPG model, the walking, trotting, and bounding 
gaits could be produced with the hard-wired Van der Pol 
and FitzHugh-Nagumo CPG models. Representative 
output patterns from the two models are shown in Figs. 5 
and 6, respectively. Table 1 lists the parameter values that 
were utilized to generate these patterns. 

The representative parameter values for the walking 
gait of the Van der Pol CPG model (Table 1) were 
adapted from those used by Bay and Hemami (1987). 
Since Van der Pol oscillators are capable of self-sustained 
oscillations, an external input was not needed to generate 
and maintain the walk, i.e., q was set to 0.0. However, 
a driving signal was added to the system in order to move 
the CPG model from the walk to the trot (Table 1). (As 
with the Stein CPG model, the frequency of the periodic 
component of the driving signal was approximately twice 
the natural frequency of the model's trotting mode, as 
defined by the parameters given in Table 1.) The Van der 
Pol CPG model could then be switched from the trot to 
the bound by increasing parameter p. As the system 
moved to 'faster' gaits, its output frequency could 
be increased by increasing parameter g; this change, 
however, was not needed to produce the different 

gait patterns. 
The FitzHugh-Nagumo CPG model could be 

switched from the walk to the trot by increasing para- 
meter c (which served to increase the stepping frequency 
of the model animal) and adding a periodic component 
to the driving signal. [As with the Stein and Van der Pol 
CPG models, the value of kz was chosen such that the 
frequency of the periodic component of the driving signal 
was approximately twice the oscillators' natural fre- 
quency for the representative set of trotting parameters 
(Table 1).] If the amplitude parameters for the steady- 
state (fa) and variable (fb) components of the driving 
signal were then increased (Table 1), the model could 

7 A change in parameter a, as suggested by Table 1, was not necessary 

for the walk-to-trot and trot-to-walk transitions. Parameter a was 

increased from the walk to the trot in the set of representative para- 
meter values (Table 1) only to ensure that the 'faster' gait had a higher 
stepping frequency. Similarly, an increase in the amplitude parameter 
f (Table 1) was not necessary for the walk-to-bound transition, al- 
though this change did facilitate the transition, e.g., it reduced the 

switching time 
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Fig. 5. Output patterns from the Van der Pol CPG model correspond- 

ing to: (a) the walking gait, (b) the trotting gait, and (c) the bounding 

gait. These results were generated using the parameter values listed in 

Table 1 

move from the trot to the bound. As the system switched 
from the trot to the bound, its output frequency could be 
raised by increasing parameter c; however, this change 
was not needed to produce the bounding gait. 

The respective phase-locked oscillation patterns 
for the trotting gait of the Van der Pol (Fig. 5b) and 
FitzHugh-Nagumo (Fig. 6b) CPG models were neither 
identical nor exactly in-phase. However, given our as- 
sumptions that the present locomotor CPG networks 
only regulate the relative timing of the limbs of a model 
quadruped and that a step would be initiated when the 
output signal of a limb's CPG oscillator reached its 
maximum value (Sect. 2.1), these oscillation signals met 
our criterion for establishing a trotting gait. That is, the 
maximum values of the output signals of diagonal CPG 
oscillators were separated in time by less than 10% of 
a gait cycle. 

3.2.2 Gait transitions. As with the Stein CPG model, 
four gait transitions - the walk-to-trot, walk-to-bound, 
trot-to-walk, and trot-to-bound transitions - could be 
obtained with the Van der Pol and FitzHugh-Nagumo 
CPG models by varying system parameters (e.g., between 
the respective sets of values given in Table 1). In each 
case, the above transitions could be generated by 
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Fig. 6. Output patterns from the FitzHugh-Nagumo CPG model cor- 
responding to: (a) the walking gait, (b) the trotting gait, and (e) the 
bounding gait. These results were generated using the parameter values 
listed in Table 1 

changing the nature of the network's driving signal s 

and/or by modifying the internal parameters of the com- 

ponent C P G  oscillators. Moreover, as before, transitions 

from the bounding gait could not be induced via para- 

meter variation. 

3.3 Al ternat ive  gait- transit ion mechanisms  

3.3.1 'Lead-leg'  strategy. As discussed above, gait 

transitions from the bound via parameter  variation were 

not possible with any of the three C P G  models. In an 

at tempt to generate the elusive bound-to-walk and 

bound-to-trot  transitions, we developed a strategy 

whereby one of the four oscillators making up the net- 

work was selectively hyperstimulated. Specifically, we 

increased the amplitude parameter  of the driving signal 

for one C P G  oscillator by at least 100%o for time periods 

ranging from 10% to 240% of a gait cycle. When the 

increased driving signal was returned to its original 

s For the Van der Pol CPG model, the walk-to-trot transition was 
sensitive to the time in the gait cycle when the periodic component was 
added to the driving signal, i.e., under certain circumstances, the CPG 
model moved into the pace or the bound instead of the trot 

value, the system parameters were then simultaneously 

switched from those of the bound to those of the desired 

gait, i.e., either the walk or the trot (Table 1). It  was hoped 

that this approach, which we referred to as the 'lead-leg' 

strategy, 9 would cause the C P G  oscillators in the front 

and hind pairs, respectively, to shift from an in-phase 

state to an antiphase state. 

However, when the 'lead-leg' strategy was applied to 

any one of the four neuronal oscillators making up the 

three C P G  models, gait transitions from the bound were 

never obtained. In all cases, the unaffected pair of in- 

phase oscillators, i.e., either the front pair or the hind 

pair, forced the hyperstimulated oscillator and the fourth 

C P G  oscillator back into phase with each other follow- 

ing the hyperstimulation period. Thus, the bounding gait 

could not be 'broken'  by selectively stimulating only one 

of the C P G  oscillators. 

3.3.2 'Power-pair '  s trategy.  The 'lead-leg' strategy failed 

to generate transitions from the bound largely because 

selective stimulation of a single C P G  oscillator left a pair 

of in-phase oscillators essentially unaffected. Conse- 

quently, we implemented an alternate approach, which 

we referred to as the 'power-pair '  strategy, whereby two 

of the component  oscillators, i.e., a front-limb oscillator 

and a hind-limb oscillator, were subjected to an increased 

driving stimulus. As with the 'lead-leg' strategy, the am- 

plitude parameters of the driving signals for the selected 

oscillators were increased by at least 100%o for brief time 

periods; the increased driving signals were then returned 

to their original values, and the system parameters were 

simultaneously switched from those of the bound to 

those of either the walk or the trot (Table 1). 

The 'power-pair '  strategy was successful in generating 

the bound-to-walk and bound-to-trot  transitions in all 

three C P G  models 1~ (e.g., see Fig. 7). In most  cases, the 

transitions were completed within one or two gait cycles. 

Similar results were obtained whether ipsilateral or diag- 

onal pairs of oscillators were selectively hyperstimulated. 

It was also found that the success of the 'power-pair '  

strategy in producing transitions from the bounding gait 

depended upon the relative values of the unaffected C P G  

oscillators at the time the increased driving signals were 

returned to their original values. Figure 8 presents results 

from a series of tests in which the right-limb oscillators 

(oscillators 3 and 4) of the Stein C P G  model were hyper- 

stimulated. In these tests, the C P G  model consistently 

switched from the bound to the walk if the amplitude of 

the output signal of oscillator 1 was greater than that of 

oscillator 2 when the increased driving signals for oscil- 

lators 3 and 4 were returned to their original values 

9 This approach was motivated, in part, by the work of Deuel and 
Lawrence (1987), who documented a laterality or 'handedness' in the 
galloping gaits of horses. Given that a quadruped may favor one limb, 
we speculated that the favored limb (and its associated CPG oscillator) 
may be used to break the tight phase-locking of the bounding gait. 
lo With the Van der Pol CPG model, the system parameters had to be 
switched (from those of the bounding gait to those of the desired gait) 
at the initiation, instead of the termination, of the hyperstimulation 
period 
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Walk 

(b) Bound-to-trot transition 

Trot 

time (arbitmy units) 

Fig. 7. Output patterns from the Stein CPG model demonstrating: 
(a) the bound-to-walk transition and (b) the bound-to-trot transition. 
These gait transitions were produced with the 'power-pair' strategy. 
Arrow in each plot indicates the point at which the hyperstimulation 
period was initiated 
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Fig. 8. The effects of the relative values of the unaffected CPG oscil- 
lators (at the termination of the hyperstimulation period) on the success 
of the 'power-pair' strategy in producing the bound-to-walk transition. 
These results were obtained from sets of multiple trials conducted with 
the Stein CPG model. In each trial, oscillators 3 and 4 were subjected to 
an increased driving signal; thus, oscillators 1 and 2 were the unaffected 
oscillators. Light bars indicate the percentage of trials for which the 
bound-to-walk transition was successful, whereas dark bars indicate the 
percentage of trials for which the transition was not successful, i.e., the 
CPG model remained in the bound 

4 Discussion 

We demonstrated that it was possible for a single, hard- 
wired CPG to produce multiple phase-locked oscilla- 
tion patterns that correspond to three common quadru- 
pedal gaits - the walk, trot, and bound. Transitions 
between the different gaits were generated by varying the 
driving signal and/or by altering oscillator parameters. 
Importantly, the above results were obtained without 
changing the relative strengths or the polarities of the 
system's synaptic interconnections, i.e., the network 
maintained an invariant coupling architecture.' ' We also 
showed that the ability of a hard-wired CPG to produce 
and switch between multiple gait patterns was a model- 
independent phenomenon, i.e., it did not depend upon 
the detailed dynamics of the component oscillators 
and/or the nature of the inter-oscillator coupling. (In- 
stead, this general feature was likely due to the symmetry 
of the network itself.) Three different neuronal oscillator 
models - the Stein neuronal model, the Van der Pol 
oscillator, and the FitzHugh-Nagumo model - and two 
different coupling schemes (Sect. 2.3) were incorporated 
into the network without impeding its ability to produce 
the three quadrupedal gaits and the aforementioned gait 
transitions. These numerical results thus support the the- 
oretical predictions of Collins and Stewart (1992,1993a, b) 
and thereby demonstrate that abstract mathematical 
work can, in some cases, lead to testable hypotheses. 

Although our work establishes the plausibility of util- 
izing a hard-wired CPG for quadrupedal locomotion, it 
obviously does not confirm the existence of such net- 
works in the vertebrate CNS. Similarly, this investigation 
does not rule out the possibility that locomotor CPGs 
are reconfigured in order to produce different animal 
gaits, as suggested by Grillner (1981, 1985) and others. 
For instance, the notion that supraspinal centers may call 
upon functionally distinct sets of coordinating inter- 
neurons to generate different gait patterns is also plaus- 
ible, although not yet experimentally established. In 
addition, from a slightly different but relevant perspect- 
ive, it has been shown that rhythm-generating neuronal 
networks can be modulated, e.g., reconfigured, via the 
actions of neuroamines and peptides and thereby enabled 
to produce several different motor patterns (for reviews, 
see Harris-Warrick 1988; Getting 1989; Harris-Warrick 
and Marder 1991). This work, however, has largely been 
limited to invertebrate preparations. Thus, it is unclear 
whether similar neuromodulatory mechanisms are utiliz- 
ed in vertebrate motor systems. 

(Fig. 8). If, on the other hand, the amplitude of the output 
signal of oscillator 1 was less than that of oscillator 
2 when the hyperstimulation period was terminated, then 
the CPG model sometimes remained in the bound 
(Fig. 8). Similar results were obtained with the bound- 
to-trot transition. Interestingly, the success of the 
'power-pair' strategy did not depend upon the initiation 
time or the duration of the hyperstimulation period. 

"Earlier, Beer (1990) designed a hard-wired network for controlling 
hexapodal locomotion. In Beer's model, each leg of a model cockroach 
was controlled by a circuit made up of one pacemaker neuron, two 
sensory neurons, and three motor neurons. The pacemaker neurons of 
adjacent leg-controller circuits mutually inhibited one another. If the 
pacemaker neurons of the network were identical, then the model could 
generate the tripod gait. In order to produce metachronal-wave gaits, 
Beer varied the intrinsic frequencies of the component pacemaker neurons 
such that the natural frequency of the back-leg pacemakers was lower than 
that of the middle-leg pacemakers, which correspondingly was lower than 
that of the front-leg pacemakers. The present results were generated 
with a much simpler model made up of identical neuronal oscillators 



From a physiological standpoint, the gait-transition 
mechanisms adopted in the present study are reasonable. 
Four of the six possible transitions - the walk-to-trot, 
walk-to-bound, trot-to-walk, and trot-to-bound 
transitions - could be produced by changing internal 
oscillator parameters and/or by varying the nature of the 
network's driving signal. The former mechanism, which 
largely amounted to modifying the excitability and/or 
intrinsic activity of the neuronal oscillators making up 
the rhythm-generating network, is supported by the fact 
that the excitability of a real neuron can be readily 
modified via changes to its membrane ion channels 
(Kaczmarek and Levitan 1987). The latter mechanism, on 
the other hand, is supported by several experimental 
studies which have shown that the output of a locomotor 
CPG can be modified via changes to its descending 
inputs. In particular, as noted in Sect.l, Shik et al. (1966) 
demonstrated that decerebrate cats could be forced to 
switch from the walk to the trot to the gallop by increas- 
ing the strength of a midbrain stimulation signal. It 
should also be pointed out that the study by Afelt et al. 
(1983) provides experimental data which indirectly sup- 
port the 'power-pair' strategy for generating gait 
transitions from the bound. Specifically, Afelt et al. found 
that the initiation of the gallop-to-trot transition in dogs 
was characterized by changes in the kinematics of a single 

pair of diagonal limbs. Moreover, as predicted by the 
'power-pair' strategy, these changes always took place 
during a specific phase in the gait cycle. In general, 
further experimental studies are needed to document the 
relative-phase changes that characterize gait transitions 
in quadrupeds, e.g., see Kelso and Jeka (1992) and Jeka et 
al. (1993b) for experiments that deal with four-limb 
movements in humans. Work of this nature could shed 
additional insight into the neural mechanisms underlying 
gait transitions. 

Further studies could also consider other mecha- 
nisms for generating the bound-to-walk and bound-to- 
trot transitions. The goal of such investigations could be 
to produce these transitions without selectively stimulat- 
ing a limited number of the CPG oscillators (as was done 
with the 'power-pair' strategy). One possible strategy 
could consist of adding noise to various components of 
the network, e.g., the driving signal, coupling terms, etc. 
The addition of noise may serve to make the bound 
sufficiently unstable such that the CPG model could 
switch to the other gaits. (The presence of noise may also 
serve to reduce the switching times for these and other 
gait transitions.) A related study could consider the ef- 
fects of replacing the periodic component of the system's 
driving signal with a pseudoperiodic component (Pecora 
and Carroll 1991). Again, such a modification may pro- 
mote the 'elusive' bound-to-walk and bound-to-trot 
transitions in a homogeneously stimulated CPG model, 
e.g., by simplifying the overall shape of the bound's basin 
of attraction.12 

12 In a preliminary investigation, we were able to produce transitions 

from the bound with a pseudoperiodic component in the driving signal. 
However, the switching times for these transitions were unrealistically 
long, e.g., 20 gait cycles. This issue requires further study 
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In each of the present CPG models, the network 
driving signal had both a tonic component and a phasic 
component. 13 However, the exact form of the driving 
signal(s) acting on a quadrupedal locomotor CPG is 
unknown. Similarly, it is unclear how externally applied 
stimulation signals are transmitted to locomotor CPGs, 
e.g., such signals may be significantly modified before 
reaching a CPG. For example, although the stimulation 
signal in the Shik study was amplitude modulated (in 
order to produce gait transitions), this does not necessar- 
ily mean that the resulting descending signals were also 
amplitude modulated. In addition, although the results 
obtained in the Shik study were largely independent of 
the stimulation frequency, there is some evidence that 
frequency-modulated stimulation signals can also modify 
the output of locomotor CPGs (Davis and Kennedy 
1972; Lennard and Stein 1977). Lennard and Stein (1977), 
for instance, electrically stimulated the dorsolateral fu- 
niculus in spinal and intact turtles and found that an 
increase in the stimulus frequency resulted in an in- 
creased repetition rate of hindlimb swimming move- 
ments. (Interestingly, they also found that the frequency 
of hindlimb swimming movements could be increased by 
an increase in the stimulus amplitude.) Finally, along 
similar lines, it should be remarked that it is most likely 
erroneous to assume (as it has been in a number of 
previous CPG modelling studies) that the net driving 
signal of a locomotor CPG consists only of descending 
influences from supraspinal centers - it may also consist 
of afferent inputs from peripheral sensory organs 
(Delcomyn 1980; B~issler 1986). 14 A number of recent 
experimental studies have shown, for example, that the 
locomotor rhythm in cats can become entrained to 
phasic afferent inputs (e.g., Andersson and Grillner 1983; 
Pearson et al. 1992). From the above discussion, it is clear 
that further work is needed to clarify the nature of the 
peripheral and central inputs that influence the output of 
a locomotor CPG. 

The present in numero results could be tested and 
possibly validated in other experimental settings. For 
example, analogous electronic circuits of coupled nonlin- 
ear oscillators (e.g., Ashwin 1990) could be constructed 
and utilized to examine the possibility of generating 
transitions between different phase-locked oscillations 
signals with strategies that are functionally equivalent to 
those proposed in Sect. 3. Hard-wired circuits of this sort, 
if shown to be feasible, could eventually serve as valuable 
components in the control systems of walking robots 
(Beer et al. 1992; Chiel et al. 1992). In a more ambitious 
project, a network of four neurons could be constructed 
and analyzed in vitro (Kleinfeld et al. 1990; Syed et al. 
1990; Sharp et al. 1992, 1993). The respective neurons 

13 Each of the CPG models could, however, produce oscillatory output 
with only a tonic driving signal. Thus, it is possible that a more 
complex, hard-wired CPG model, e.g., one with non-identical coupling 

between ipsilateral and diagonal oscillators, may be able to produce the 
three quadrupedal gaits with only a tonic activation signal. 
14 In the present CPG models, both scenarios are equivalent provided 

the resultant signals are distributed identically to the component neur- 
onal oscillators 
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could be coupled via artificial, inhibitory synapses (Sharp 
et al. 1992, 1993), according to the arrangement of Fig. 2. 
It would be interesting to investigate such a network's 
capability for producing multiple phase-locked output 
patterns that correspond to different quadrupedal gaits. 
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