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Abstract. We show that several problems of compacting orthogonal
graph drawings to use the minimum number of rows or the minimum
possible area cannot be approximated to within better than a poly-
nomial factor in polynomial time unless P = NP. However, there is a
fixed-parameter-tractable algorithm for testing whether a drawing can
be compacted to a given number of rows.

1 Introduction

Orthogonal graph drawing is a widely used graph drawing style for low-degree
graphs, in which each vertex is represented as a point or a rectangle in an integer
grid, and each edge is represented as a polyline composed out of axis-parallel
line segments [4]. When used for nonplanar graphs, orthogonal drawing has
several desirable properties including polynomial area, high angular resolution,
and right-angled edge crossings; the last property, in particular, has been shown
to aid in legibility of graph drawings [6].

Typical orthogonal graph drawing systems employ a multiphase approach [1,4]
in which the input graph is planarized by replacing its crossings with vertices, a
topological embedding of the graph (specifying the ordering of the edges around
each vertex, but not the vertex and edge locations) is found, a flow algorithm is
used to orient the edges in a way that minimizes the number of bends [10], and
vertex coordinates are assigned. If vertices of degree greater than four exist, they
may be expanded to rectangles as another phase of this process [1]. Finally, the
drawing is improved by compaction, a step in which the vertices and bends of
the graph are moved to new locations in order to reduce the area of the drawing
while preserving its edge orientations and other features.

Some positive algorithmic results are known for the final compaction step; for
instance, Bridgeman et al. [2] showed that planar orthogonal drawings in which
the shapes of the faces in the drawing are restricted (so-called turn-regular draw-
ings) may be compacted into optimal area in polynomial time. However, when
drawing nonplanar graphs, it may not be necessary or desirable for the com-
paction phase to preserve a fixed planarization of the graph. If one is compact-
ing one dimension of a drawing at a time, then for planar compaction it is only
possible to map the rows of the drawing monotonically to a smaller set of rows,
while for nonplanar graphs it may also be useful to permute the rows with re-
spect to each other. This greater freedom to choose how to compact the drawing
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Fig. 1. Left: input and output drawings for row-by-row compaction. Right: input and
output drawings for vertex-by-vertex compaction.

may lead to much greater savings in drawing area, but it also leads to greater
difficulty in finding a good compaction.

As Patrignani [9] showed, even for arbitrary planar orthogonal graph draw-
ings, compacting the drawing in a way that minimizes its area, total edge length,
or maximum edge length is NP-hard. Although these results do not directly ex-
tend to the nonplanar case, NP-hardness in that case also follows from results of
Eades et al. on rectilinear (bendless) drawing [3], and Maňuch et al. where certain
restricted cases of rectilinear drawing are considered [8]. But since compaction
is performed primarily for aesthetic reasons (a smaller area drawing allows the
drawing to be viewed at a larger scale, making its features more legible), exact
optimization may not be important as long as a layout with small area can be
achieved. Thus, we are led to the problem of how closely it is possible to ap-
proximate the minimum area layout. The problem of approximate compaction
for nonplanar orthogonal drawings was explicitly listed as open by Eiglsperger
et al. [4], and there appears to have been little progress on it since then.

In this paper we show that nonplanar compaction is hard even to approximate:
there exists a real number c > 0 such that, unless P = NP, no polynomial time
algorithm can find a compaction of a drawing with n features that is within
a factor of nc of optimal. The main idea is to find approximation-preserving
reductions from graph coloring, a problem known to be hard to approximate.
We also find fixed-parameter tractable algorithms for finding compactions that
use very small numbers of grid rows, for drawings for which such a compaction
is possible.

1.1 Variations of the Compaction Problem

In the compaction problems we study, the task is to move vertices and bends
while preserving the axis-parallel orientation (although not necessarily the di-
rection) of each edge, to minimize the number of rows or area of the drawing.
Our results apply either to orthogonal drawings (drawings in which edges may
be polylines with bends, possible for any graph of maximum degree four) or
rectilinear drawings (bendless drawings, only possible for some graphs) [3,5]: the
distinction between bends and vertices is unimportant for our results.

We distinguish between three variants of the compaction problem, depend-
ing on what vertex motions are allowed. In row-by-row compaction (Figure 1,
left), the compacted layout maps each row of the input layout to a row of the
output; all vertices that belong to the same row must move in tandem. In vertex-
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by-vertex vertical compaction (Figure 1, right), each vertex or bend may move
independently, but only its y-coordinate may change; it must retain its horizon-
tal position. In vertex-by-vertex free compaction, vertices or bends may move
arbitrarily in both coordinate directions. In all three of these problems, edges or
edge segments must stay vertical or horizontal according to their orientation in
the original layout. The compaction is not allowed to cause any new intersection
between a vertex and a feature it was not already incident with, nor is it allowed
to cause any two edges or edge segments to overlap for nonzero length; however,
it may introduce new crossings that were not previously present.

1.2 New Results

We show the following results.

– In the row-by-row compaction problem, it is difficult to compact even a
drawing of a path graph (or a drawing of the two-vertex graph with many
bends): if the drawing has n vertices or bends, then unless P = NP there
is no polynomial time algorithm that can find a compacted drawing whose
number of rows is within O(n1/2−ε) of optimal, or whose area is within
O(n1/2−ε) of optimal, for any ε > 0. Moreover, even finding drawings with a
fixed number of rows is hard: it is NP-complete to determine whether there
exists a compaction with only three rows.

– In vertex-by-vertex vertical compaction, there exist orthogonal graph draw-
ings of maximum degree three such that, unless P = NP, there is no poly-
nomial time algorithm that can find a compacted drawing whose number of
rows is within O(n1/4−ε) of optimal, or whose area is within O(n1/4−ε) of
optimal, where n is the number of features in the drawing, for any ε > 0. The
same result also applies in the vertex-by-vertex free compaction problem.

– For vertex-by-vertex vertical or free compaction of three-dimensional or-
thogonal drawings, it is not possible (unless P = NP) to approximate the
minimum number of layers in any one dimension to within O(n1/2−ε) of op-
timal in polynomial time, for any ε > 0, nor is it possible in polynomial time
to determine whether a three-layer drawing exists.

– In row-by-row and vertex-by-vertex vertical compaction in either two or
three dimensions, there is an approximation algorithm with approximation
ratio O(

√
n), showing that some of our inapproximability bounds are tight.

– In vertex-by-vertex vertical compaction, there is an algorithm for testing
whether an orthogonal graph drawing can be compacted into k rows, whose
running time is O(k!n). Thus, the problem is fixed-parameter tractable.

2 Preliminaries

2.1 Orthogonal Drawing

We define an orthogonal drawing of a graph to be a drawing in which each
vertex is represented as a point in the Euclidean plane (although most of our
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results apply as well to drawings in which the vertices are rectangles), and each
edge is represented as a polyline (a polygonal chain of line segments), with each
line segment parallel to one of the coordinate axes. If each edge is itself a line
segment, the drawing is rectilinear ; otherwise, the segments of a polyline meet
at bends. Each vertex or bend must only intersect the edges that it belongs to,
and no two vertices or bends may coincide. Edges may cross each other, but only
at right angles, at points that are neither vertices nor bends.

It is natural, in orthogonal drawing, to restrict the coordinates of the vertices
and bends to be integers. In this case, the width of a two-dimensional drawing is
the maximum difference between the x-coordinates of any two of its vertices or
bends, the height is the maximum difference between y-coordinates of any two
vertices or bends, and the area is the product of the width and height.

A compaction of a drawing D is another drawing D′ of the same graph, in
which the vertices and bends of D′ correspond one-for-one with the vertices
and bends of D, and in which corresponding segments of the two drawings are
parallel to each other. Typically, D′ will have smaller height or area than D. We
distinguish between three types of compaction:

– In row-by-row compaction, the x-coordinate of each vertex or bend remains
unchanged, and two vertices or bends that have the same y-coordinate in D
must continue to have the same y-coordinate in D′ (Figure 1, left).

– In vertex-by-vertex vertical compaction, the x-coordinate of each vertex or
bend remains unchanged, but the y-coordinates may vary independently of
each other subject to the condition that the result remains a valid drawing
with edge segments parallel to the original drawing (Figure 1, right).

– In vertex-by-vertex free compaction, the x- and y- coordinates of each vertex
or bend are free to vary independently of other vertices or bends.

As can be seen in Figure 1, we allow compaction to introduce new edge cross-
ings and to reverse the directions of edge segments. These concepts generalize
straightforwardly to three dimensions.

2.2 Graph Coloring and Inapproximability

In the graph coloring problem, we are given as input a graph and seek to color
the vertices of the graph with as few colors as possible, in such a way that the
endpoints of each edge are assigned different colors. Our results on the difficulty
of compaction are based on known inapproximability results for graph coloring,
one of the triumphs of the theory of probabilistically checkable proofs.

Lemma 1 (Zuckerman [11]). Let ε > 0 be any fixed constant. Then, unless
P = NP, there is no polynomial time algorithm that can color a given n-vertex
graph using a number of colors within a factor of n1−ε of the optimal number.

Our proofs use approximation-preserving reductions from coloring to compaction:
given a graph G to be colored, we will construct a different graph G′ and a draw-
ing D of G′ such that the layers in a compaction D′ of D necessarily correspond



Approximate Compaction for Nonplanar Drawings 371

to the colors in a coloring of G. With a reduction of this type, the approxima-
tion ratio for compacting D cannot be better than the approximation ratio for
coloring G. However, D will in general have many more vertices and bends than
the number of vertices in G: the size of D will be at least proportional to the
number of edges in G, which is quadratic in its number of vertices. Therefore,
although the approximation ratio will remain unchanged as a number by our
reduction it will be expressed as a different function of the input size.

2.3 Notation

We write nG, nD, or (where unambiguous) n for the number of vertices in a
graph G or drawing D and mG, mD, or m for its number of edges. Additionally,
bD stands for the number of bends in drawing D, λ(D) is the number of rows
in a vertex-by-vertex compaction of D, and λ̄(D) is the number of rows in a
row-by-row compaction. χ(G) represents the chromatic number of graph G.

3 Hardness of Row-by-Row Compaction

As a warm-up, we start with a simplified path compaction problem in which
every pair of objects on the same row of the drawing must move in tandem. Our
proof constructs a drawing of a path graph such that the valid row assignments
for our drawing are the same as the valid colorings of a given graph G.

Lemma 2. Given a graph G we can construct in polynomial time a rectilinear
drawing D of a path graph with O(mG) vertices, such that λ̄(D) = χ(G).

Proof. Find a Chinese postman walk for G; that is, a walk that starts at an
arbitrary vertex and visits each edge at least once, allowing vertices to be visited
multiple times. Such a walk may be found, for instance, by doubling each edge
of G and constructing an Euler tour of the doubled graph. Let uivi be the ith
edge in the walk, where vi = ui+1, and let k ≤ 2mG be the number of edges in
the walk. Additionally, choose arbitrary distinct integer numbers for the vertices
of G with �(v) being the number for the vertex v.

To construct the drawing D, for i from 0 to k, place vertices in the plane
at the points (i, �(ui)) and (i + 1, �(ui)), connected by a unit-length horizontal
edge. Additionally, for i from 0 to k − 1 draw a vertical edge from (i + 1, �(ui))
to (i + 1, �(vi)). See Figure 2 for an example of such a construction.

Two rows in the drawing conflict if and only if the corresponding vertices in
G are adjacent. For every coloring of G, we may compact D by using one row
for the vertices of each color, and conversely for every row-by-row compaction
of D we may color G by using one color class for each row of the compaction
(Figure 3). Therefore, λ̄(D) = χ(G). Also, nD = 2k + 2 = O(mG). ��

The same drawing D can equivalently be viewed as an orthogonal drawing of the
two-vertex graph K2 with O(mG) bends. In the restricted model of compaction
used in this section, horizontal compaction is disallowed, so optimizing the area
of a compaction of D is the same as optimizing its number of rows.
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Fig. 2. Path constructed from a graph G using the walk 1, 5, 3, 2, 5, 4, 3, 5, 6
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Fig. 3. The rows of a compacted drawing correspond to the colors in a coloring of G

Theorem 1. Let ε > 0 be any positive fixed constant, and suppose that P �= NP.
Then there does not exist a polynomial time algorithm that approximates the
number of layers or the area in an optimal row-by-row compaction of a given
orthogonal or rectilinear drawing D to within a factor of (nD + bD)1/2−ε.

Proof. Suppose for a contradiction that algorithm A can solve the row-by-row
compaction problem to within a factor ρ ≤ (nD +bD)1/2−ε of optimal. Let A′ be
an algorithm for coloring an input graph G by performing the following steps:

1. Use Lemma 2 to construct a path drawing D from the given graph G.
2. Use algorithm A to compact D.
3. Color G using one color for each row of the compacted drawing.

Then the approximation ratio of algorithm A′ for coloring is the same number
ρ as the approximation ratio of algorithm A for compaction, whether measured
by area or by number of rows. However,

ρ ≤ (nD + bD)1/2−ε = O(m1/2−ε
G ) = O(n1−2ε

G ),

an approximation ratio that contradicts Lemma 1. ��
The same reduction, together with the NP-completeness of graph 3-colorability,
shows that it is NP-complete to determine whether a given drawing D has a
row-by-row compaction that uses at most three rows; we omit the details.

4 Hardness of Vertex-by-Vertex Compaction

Our hardness result for vertex-by-vertex vertical compaction follows roughly
the same outline as Theorem 1: translate graph vertices into drawing features
such that two features can be compacted onto the same row if and only if the
corresponding graph vertices can be assigned the same color. However, direct
overlaps between pairs of features would only let us represent interval graphs,
which are easily colored, so instead we use an edge gadget depicted in Figure 4
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A

B

Fig. 4. Edge gadget

to represent an edge between two vertices of the input
graph. This gadget has six vertices and six line segments;
the two vertices A and B of the gadget may be placed on two
line segments representing vertices of the input graph. This
connection forces the two line segments containing A and
B to be placed on different rows of any compacted draw-
ing, even if these two line segments have no vertical overlap with each other:
one of the two line segments must be above the central rectangle of the gadget,
and the other must be below the central rectangle, although either of these two
orientations is possible.

The use of these edge gadgets leads to a second difficulty in our reduction:
the number of rows in the compacted drawing will depend both on the features
coming from input graph vertices and the rows needed by the edge gadgets
themselves. In order to make the first of these two terms dominate the total, we
represent an input graph vertex by a bundle of θ parallel line segments, for some
integer θ > 0. The edge gadgets may be modified to enforce that all segments in
one bundle be in different rows from all segments of a second bundle, as shown
in Figure 5, while only using a constant number of rows for the gadget itself.

Figure 6 shows the complete reduction, for a graph G with five vertices and
six edges, and for θ = 1. Each vertex of G is represented as a horizontal black line
segment (or bundle of segments, for θ > 1), and each edge of G is represented
by an edge gadget. The vertices of G are numbered arbitrarily from 1 to nG,
and these numbers are used to assign vertical positions to the corresponding
bundles of segments in the drawing. The edge gadgets are given x-coordinates
that allow them to attach to the two vertex bundles they should be attached to,
and y-coordinates that place them between these two vertex bundles.

Lemma 3. Given a graph G and a parameter θ we can construct in polyno-
mial time an orthogonal drawing D such that the vertices of D have maximum
degree 3, nD = O(n2

Gθ), and

χ(G)θ ≤ λ(D) ≤ χ(G) + O(nG)2.

Ai

Bi

Fig. 5. The full edge gadget for θ = 5.
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Fig. 6. Example of the complete reduction for θ = 1

Proof. The construction of D is as described above. It is straightforward to
verify the bounds on nD and on the degree. If G has a coloring with χ colors, it
is possible to assign the vertex bundles of D to χ sets of θ rows each, according
to those colors, with an additional O(nG) rows between any two such sets to
allow room for the edge gadgets to be placed without interference with each
other. Therefore, λ(D) ≤ χ(G) + O(nG)2.

If D′ is a compacted drawing of D, acyclically orient the edges of G from
the vertex whose bundle is below the edge gadget to the vertex whose bundle
is above the edge gadget, and assign each vertex v in G a color indexed by the
length of the longest path from a source to v in this acyclic orientation. Then
the number of colors needed equals the number of vertices in the longest path,
and the number of rows in D′ needed just for the vertices in this path is θ times
the number of vertices of G in the path. Therefore, χ(G)θ ≤ λ(D). ��

Theorem 2. If P �= NP, then no polynomial time algorithm approximates the
number of layers or the area in an optimal vertex-by-vertex vertical compaction
of a given orthogonal graph drawing to within a factor of (nD + nB)1/4−ε.

Proof. If an algorithm could achieve this approximation ratio for compaction,
we could get an O(n1−4ε) ratio for coloring by applying Lemma 3 with θ = n2

G,
compacting the resulting drawing, and using the coloring derived from the com-
paction in the proof of Lemma 3. But this would contradict Lemma 1. ��

5 Hardness of Vertex-by-Vertex Free Compaction

In the reduction from the previous section, allowing the vertices to move hori-
zontally as well as vertically does not make any difference in how much verti-
cal compaction is possible. However, if we want to prove inapproximability for
minimal-area compaction, we also need to worry about horizontal compaction.
By making the width incompressible we may make the vertical compaction factor
the same as the area compaction factor.

Lemma 4. From a drawing D a drawing D′ can be constructed by adding at
most O(nD) vertices, such that λ(D′) = λ(D) + 1 and D′ is incompressible in
the horizontal direction. If D has maximum degree three, then so does D′.



Approximate Compaction for Nonplanar Drawings 375

Fig. 7. Adding a row to D pre-
vents horizontal compaction

Proof. Place a line of vertices on a new row be-
low D; for each set of vertices with a given x-
coordinate in D, add a vertex on the new row at
the same x-coordinate. Connect the added vertices
with horizontal edges, and add a vertical edge to
connect these vertices to D at the point of D that
is rightmost on its bottom row, as shown in Fig-
ure 7. This added layer conflicts with all existing
horizontal layers, and forces D′ to be incompress-
ible in the horizontal direction. ��

Theorem 3. Unless P = NP, it is impossible to find vertex-by-vertex free com-
pactions with area within a factor of n

1/4−ε
D of optimal in polynomial time.

6 Hardness of Three-Dimensional Compaction

Our hardness result for three-dimensional compaction follows from the construc-
tion of a drawing whose valid two-dimensional layer assignments are the same
as the valid colorings of a graph G. We assign to each vertex in G a horizontal
layer containing an L-shaped pair of line segments, such that when projected
vertically onto a plane every two of these L shapes cross each other. For each
edge in G we place a vertical edge in the drawing connecting the L shapes that
correspond to the endpoints of the edge. Figure 8 shows an example.

Lemma 5. Given a graph G we can construct in polynomial time a 3D orthogo-
nal drawing D with maximum degree three such that nD = 3nG +2mG = O(n2

G),
and such that the number of layers in an optimal y-compaction is χ(G).

Theorem 4. If P �= NP, then there does not exist a polynomial time algorithm
that approximates the number of layers in an optimal layer compaction of a given
three dimensional orthogonal drawing to within a factor of n

1/2−ε
D .

We omit the proofs, which follow the same lines as the previous results.

1

2 3

4

1

2

3

4

Fig. 8. Reduction from coloring to three-dimensional compaction where y is the vertical
direction
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7 Approximation Algorithm

In this section we show that several versions of compaction can be approximated
to within a ratio of O(

√
n) of optimal in polynomial time. Our intent in present-

ing this is not so much to describe a useful compaction algorithm but rather to
show that our Ω(n1/2−ε) inapproximability bounds are nearly tight.

Our approximation method applies to both row-by-row and vertex-by-vertex
vertical compaction, in two or three dimensions, with the optimization criterion
being minimizing the number of rows or layers. In each case, we may form an
incompatibility graph, where the vertices of the incompatibility graph represent
sets of drawing features that must move in tandem: rows or layers, in row-by-row
compaction, or connected components of the subgraph of the drawing formed
by horizontal edges, in vertex-by-vertex vertical compaction. Two vertices of the
incompatibility graph are connected by an edge when the drawing features they
represent cannot be compacted to the same layer of the drawing, that is, when
they contain parts of the drawing that are directly above one another.

Our approximation algorithm is, essentially, a standard greedy graph color-
ing algorithm applied to the incompatibility graph. Specifically, it performs the
following steps.

1. Construct the incompatibility graph G from the given drawing D.
2. Find a degeneracy ordering of G by initializing an empty list L, and then

repeatedly finding and adding to the end of L the vertex v minimizing the
number of neighbors of v that do not already belong to L.

3. Process the vertices of G in the reverse of the ordering given by L. For each
vertex, in this order, assign it the smallest positive integer that is distinct
from the integers assigned to its already-processed neighbors.

4. Use the numbers assigned to the vertices in G as the coordinates of the
corresponding features in a compaction of D.

To analyze this algorithm, we consider the degeneracy δ of G [7]. If we orient
G from earlier vertices to later vertices in the degeneracy ordering described
above, δ is the maximum outdegree of a vertex in the orientation. Alternatively,
δ is the smallest number with the property that every set S of vertices in G
includes a vertex that has at most δ neighbors in S. Let κ denote the largest
number of features of D that can be pierced by a vertical line through a vertex
or bend. As we now show, δ ≤ √

2(nD + bD)κ. For, if |S| ≤ √
(nD + bD)κ,

then clearly all vertices have at most
√

2(nD + bD)κ neighbors in S. And, if
|S| ≥ √

2(nD + bD)κ, then there are at most (nD + bD)k edges in G (each
vertex or bend of D contributes at most k incompatibilities) so by an averaging
argument there is a vertex in S with degree at most 2(nD + bD)k/|S| ≤ δ.

Theorem 5. For 2d or 3d row-by-row or vertex-by-vertex vertical compaction,
the algorithm described above computes a valid compaction whose number of rows
or layers is within an O(

√
nD + bD) factor of optimal.

Proof. No two features can overlap in the compacted drawing: for, if two features
do not overlap vertically in D, they cannot overlap no matter how they are
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compacted, and if two features do overlap vertically then the corresponding
nodes in G will be adjacent and will be assigned distinct coordinate values.
Therefore, the result of the algorithm is a valid compaction.

Any valid compaction must have at least κ layers. But as we have seen, each
vertex in G has O(

√
(nD + bD)κ) earlier neighbors in the order and each of

these neighbors can only eliminate one choice from the set of possible coordinate
values, so its coordinate value in the compaction is O(

√
(nD + bD)κ). Therefore,

the approximation ratio is O((
√

(nD + bD)κ)/κ) = O(
√

nD + bD). ��

8 Fixed-Parameter Tractability of Vertex-by-Vertex
Vertical Compaction

Lemma 6. Given an orthogonal drawing D we can compact D into k layers in
O(k!(b + n)) time, if such a compaction is possible.

Proof. We construct local assignments of the features into k rows via a left-
to-right plane sweep. The drawing may be assumed to be in a n × n grid, so
the features can be sorted in linear time. While sweeping the plane we maintain
a set of those features intersecting the sweep line along with a record of valid
assignments of these features into the k rows.

When a feature first intersects the sweep line we try to place it into the
collection of valid assignments. If there are � features intersecting the sweep line
prior to the insertion, we have at most �!

(
k
l

)
valid assignments to consider. In

each of these valid assignments there are k − � free rows. Altogether at most k!
configurations will be considered for each feature insertion. When the sweep line
moves past a feature its row is freed for future use.

If at any point we cannot find any valid assignment for a new feature, we
conclude that a compaction into k rows is not possible. On the other hand if
the last feature can be placed into a valid assignment, then a compaction into
k layers is possible. To recover the global assignment of horizontal features into
rows, we may backtrack through the sets of local assignments. ��

Theorem 6. An optimal vertex-by-vertex vertical compaction of an orthogonal
drawing D can be found in O(λ!(b + n)) time where λ = λ(D).

Proof. Apply Lemma 6 for k = 1, 2, 3, . . . until finding a value of k for which a
valid layering exists. ��

9 Conclusions

Our investigations have determined upper and lower bounds for several different
approximation and fixed-parameter versions of the compaction problem. In some
cases, our bounds are tight: we have upper and lower bounds on the approxi-
mation ratio with the same exponent. In some other cases, there remain gaps,
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the most important of which is in the problem with the greatest relevance for
practical graph drawing: vertex-by-vertex free compaction of two-dimensional
orthogonal drawings to minimize area. For this problem, we have an Ω(n1/4−ε)
lower bound on the approximation ratio, and no upper bound. Can our O(

√
n)

approximation algorithms be extended to cover this case? Can the exponent in
the lower bound be improved? We leave these questions open for future research.
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