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Abstract We show that, if P �= NP, there is a constant c0 > 1 such that there is no c0-
approximation algorithm for the crossing number, even when restricted to 3-regular
graphs.
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1 Introduction

A drawing of a graph G is a mapping D associating a point D(v) ∈ R
2 to each

vertex v ∈ V (G) and a simple, polygonal path D(e) to each edge e ∈ E(G) with the
following properties:

• for any two distinct vertices u,v ∈ V (G), D(u) �= D(v);
• for every edge uv ∈ E(G), the endpoints of the path D(uv) are D(u) and D(v);
• for every edge e ∈ E(G) and every vertex u ∈ V (G), the (relative) interior of the

path D(e) is disjoint from D(u).

A crossing in a drawing D of a graph G is a pair ({e, e′},p), where e and e′ are
distinct edges of G, and p ∈ R

2 is a point that belongs to the interior of the paths
D(e) and D(e′). The number of crossings of a drawing D is denoted by cr(D) and is
called the crossing number of the drawing. The crossing number cr(G) of a graph G

is the minimum cr(D) taken over all drawings D of G. A drawing without crossings
is an embedding.

Garey and Johnson [10] showed that the following optimization problem is NP-
hard.
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CROSSINGNUMBER

Instance: A graph G.
Feasible solutions: Drawings of G.
Measure: Crossing number of the drawing.
Goal: Minimization.

This result has been extended in several directions. Hliněný [12] proved that the prob-
lem remains NP-hard for cubic graphs (3-regular graphs). This was reproved using
crossing numbers with rotation systems by Pelsmajer et al. [16]. In a recent paper
with Mohar [4] we have shown that computing the crossing number for near-planar
graphs is NP-hard. A graph is near-planar if it is obtained from a planar graph by
adding one edge.

None of the these proofs implies inapproximability of CROSSINGNUMBER under
the assumption that P �= NP. However, under stronger assumptions, inapproximabil-
ity can be obtained from known results. More precisely, the NP-hardness proof of
Garey and Johnson [10] is from LINEARARRANGEMENT, and it implies that any in-
approximability result for LINEARARRANGEMENT carries into an inapproximability
result for CROSSINGNUMBER. Ambühl et al. [1] have recently shown that there is
no polynomial-time approximation scheme (PTAS) for LINEARARRANGEMENT, un-
less NP-complete problems can be solved in randomized subexponential time. (The
precise assumption is that SATISFIABILITY cannot be solved in probabilistic time
2nǫ

for any constant ǫ > 0.) This directly implies that there is no PTAS for CROSS-
INGNUMBER, unless NP-complete problems can be solved in randomized subexpo-
nential time. Although the NP-hardness proofs for cubic graphs by Hliněný [12] and
Pelsmajer et al. [16] also use reductions from LINEARARRANGEMENT, they do not
imply any inapproximability because the value of the optimal linear arrangement is a
lower-order term in the crossing number of the graphs constructed in the reduction.

In this paper we show that, if P �= NP, there is some constant c0 > 1 such that
there is no c0-approximation for CROSSINGNUMBER. The result holds also for cubic
graphs. Therefore, we strengthen the result mentioned in the previous paragraph by
weakening the hypothesis. Moreover, our reduction also implies inapproximability
for cubic graphs, which was not known before under any assumption. We also provide
a conceptually new proof of NP-hardness because we reduce from MULTIWAYCUT.
As noted by Hliněný [12], for cubic graphs, the minor crossing number is equal to
the crossing number. Thus, we also obtain inapproximability results for the minor
crossing number.

On the positive side, the best approximation algorithm for CROSSINGNUMBER,
by Chuzhoy [6], has an approximation factor of O(n9/10 poly(� logn)) for graphs
with n vertices and maximum degree �. It is worth noting that computing the cross-
ing number is fixed-parameter tractable with respect to the crossing number itself [11,
14]. Research on crossing number has been very active. Vrt’o [17] lists over 600 ref-
erences.

2 Preliminaries

Edge Weights Our construction will be easier to describe if we work with weighted
edges. The weights will always be positive integers. Assume that G is an edge-
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weighted graph where the weight of each edge e is denoted by we ∈ N. The intuition
is that we tells how many parallel edges are represented by e. The crossing number of
a drawing for such an edge-weighted graph is defined by taking the sum of we · we′ ,
over all crossings ({e, e′},p) of the drawing. Again, the crossing number of such an
edge-weighted graph is defined as the minimum of the crossing numbers over all
drawings.

Let G be an edge-weighted graph. We can construct an unweighted graph φ(G)

from G by replacing each edge uv ∈ E(G) with a family Puv of we parallel paths of
length 2 that connect u to v. It is easy to see that cr(G) = cr(φ(G)). Indeed, any
drawing DG of G gives rise to a drawing Dφ(G) of φ(G) with cr(Dφ(G)) = cr(DG)

by drawing each family Pe within a small neighborhood of DG(e). On the other
hand, any drawing Dφ(G) of φ(G) can be used to construct a drawing DG of G with
cr(DG) ≤ cr(Dφ(G)) by drawing each edge e ∈ E(G) along the path of Pe that
participates in fewer crossings.

When the weights we ∈ N, e ∈ E(G), are all bounded by a polynomial in |V (G)|,
then the graph φ(G) can be constructed from G in polynomial time.

Rotation Systems A rotation system in a graph G is a list π = (πv)v∈V (G), where
each πv is a cyclic ordering of the edges of G incident to v. A drawing D of a
graph G agrees with the rotation system π if, for each vertex v ∈ V (G), the clockwise
ordering around D(v) of the drawings of the edges incident to v is the same as the
cyclic ordering πv . For a graph G and a rotation system π in G, we define cr(G,π)

as the minimum of the crossing numbers over all drawings of G that agree with π .
This concept can easily be extended to edge-weighted graphs.

If G is an edge-weighted graph and π is a rotation system in G, we can define a
rotation system φπ (G,π) in φ(G): for each edge uv ∈ E(G), we replace in πu the
edge uv by the edges of Puv incident to u in such a way that the cyclic ordering of the
paths in Puv are opposite at u and v. This implies that the paths of Puv can be drawn
without crossings among themselves. The same argument that was used above shows
that cr(G,π) = cr(φ(G),φπ (G,π)). The rotation φπ (G,π) can be computed in
polynomial time, provided that the edge-weights of G are bounded by a polynomial
in |V (G)|.

A combinatorial embedding of a graph G is a rotation system π such that some
embedding D of G agrees with π . Whitney’s theorem states that a 3-connected, pla-
nar graph has a unique combinatorial embedding [9, Chap. 4].

Consider any graph G and any rotation system π in G. In an optimal drawing of G

that agrees with π , each pair of edges participates in at most one crossing. Indeed, if
the edges e and e′ would participate in two crossings ({e, e′},p) and ({e, e′},p′), we
could obtain another drawing with fewer crossings: we exchange the portions of D(e)

and D(e′) between p and p′ and then perturb the drawing around p and p′ slightly to
avoid the intersection. In particular, for any rotation system π of the complete graph
Kt , we have cr(Kt ,π) ≤ t4.

Multiway Cut Our reduction will be from the following optimization problem about
connectivity:
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MULTIWAYCUT

Instance: A pair (G,T ) where G is a connected graph and T ⊂ V (G).
Feasible solutions: Sets of edges F ⊆ E(G) such that, for each distinct t, t ′ ∈ T , there
is no path in G − F connecting t to t ′.
Measure: Cardinality of F .
Goal: Minimization.

The set T is the set of terminals. Dahlhaus et al. [8] proved that MULTIWAYCUT

is MAX SNP-hard even when restricted to instances with 3 terminals.1 This implies
that there is a constant cM > 1 such that there is no cM -approximation algorithm for
MULTIWAYCUT with 3 terminals, unless P �= NP. (In particular, the problem is APX-
hard for 3 terminals; see [2].) We will only use instances (G,T ) of MULTIWAYCUT

with |T | = 3. We denote by mwc(G,T ) the size of an optimal solution for (G,T ).

Notation We use [3] = {1,2,3}, and, for the rest of the paper, the indices depending
on i are always taken modulo 3.

3 From Multiway Cut to Crossing Number

Let A be the graph defined by

V (A) = {a1, b1, x1, a2, b2, x2, a3, b3, x3, a4},

E(A) =
⋃

i∈[3]

{aibi, aia4, bibi+1, aixi+1, aixi−1}.

The graph A is shown in Fig. 1, where it is clear that A is planar. Furthermore,
it is a subdivision of a 3-connected graph, and thus it has a unique combinatorial
embedding.

Fig. 1 The graph A

1In Dahlhaus et al. [8] the problem was called multiterminal cut, but most recent works refer to it as
multiway cut.
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Fig. 2 Left: a graph G with vertices T = {t1, t2, t3} marked with filled-in squares. Right: the correspond-
ing graph H = H(G,T ). Thicker edges have weight n5 = 305 , and the other edges have weight 1. The
rotation system of the drawing is a possible π

Consider any instance (G,T ) to MULTIWAYCUT with |T | = 3. We will use n =

|V (G)| and n2 as a rough upper bound to |E(G)|. We construct an edge-weighted
graph H = H(G,T ) as follows:

(i) Construct A and assign weight n5 to its edges.
(ii) Construct the graph H ′ = G ∪ A, where the edges of G have weight 1.

(iii) We identify each vertex of T with a distinct vertex xi of A. That is, if T =

{t1, t2, t3}, then, for each i ∈ [3], identify xi and ti .

This finishes the construction of H . See Fig. 2 for an example. Let π be any rotation
system for H such that:

• the restriction of π to A is the unique combinatorial embedding of A.
• for each i ∈ [3], the edges xiai−1 and xiai+1 are consecutive in the cyclic order-

ing πxi
. That is, any edge of H −E(A) incident to xi is between xiai+1 and xiai−1

in the rotation system πxi
.

In the next two lemmas we obtain bounds relating cr(H) and cr(H,π) to
mwc(G,T ). Our bounds are not tight, but this does not affect our eventual results.

Lemma 1 We have

cr(H,π) ≤ n5 · mwc(G,T ) + 3n4.

Proof Let F be an optimal solution to MULTIWAYCUT for (G,T ). Thus, we have
|F | = mwc(G,T ). For each i ∈ [3], let Gi be the connected component of G−F that
contains xi . By the optimality of F , we have G = (

⋃

i∈[3] Gi) + F . Indeed, if there
would be another connected component, any edge of F connecting that component
to any other connected component could be removed from F and obtain a better
solution.

We construct a drawing D of H as follows. Firstly, take an embedding A without
any crossings; such embedding is shown in Fig. 1. Then, for each i ∈ [3], draw the
component of Gi inside the region limited by xiai−1a4ai+1xi respecting the rotation
system π and with the minimum number of crossings. Finally, draw each edge of F
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Fig. 3 Sketch of the drawing in
Lemma 1. The dashed arcs

represent edges of F

optimally in the current drawing. In such drawing, an edge connecting Gi to Gj will
be drawn crossing the edge a4ak , where k �= i, j . See Fig. 3 for a sketch. Let D be
the resulting drawing.

We now bound the number of crossings in the drawing D. The restriction D(A)

has no crossings by construction. For each i ∈ [3], the restriction D(Gi) has at most
|V (Gi)|

4 crossings because, as mentioned in Sect. 2, for any rotation system π ′ of the
complete graph Kt , we have cr(Kt ,π

′) ≤ t4. Each single edge of F can be drawn
with n5 + 2n2 crossings. Indeed, if vivj ∈ F connects Gi to Gj and we denote by k

the element of [3] \ {i, j}, there is an arc from vi to any point on D(a4ak) that crosses
at most |E(Gi)| + |F | edges, and there is an arc connecting any point in D(a4ak) to
vj with at most |E(Gj )| + |F | crossings. The described drawing of vivj has, using a
very rough estimate,

(∣

∣E(Gi)
∣

∣ + |F |
)

+ n5 +
(∣

∣E(Gj )
∣

∣ + |F |
)

≤ n5 + 2
∣

∣E(G)
∣

∣ ≤ n5 + 2n2

crossings. We conclude that

cr(D) =
∑

i∈[3]

∣

∣V (Gi)
∣

∣

4
+

∑

e∈F

(

n5 + 2n2)

≤ n4 + |F | · n5 + 2 · |F | · n2

≤ mwc(G,T ) · n5 + 3n4. �

The following result is independent of rotation systems.

Lemma 2 From any drawing D of H we can obtain a feasible solution F to

MULTIWAYCUT(G,T ) such that |F | ≤ cr(D)/n5 in time that is polynomial in the

size of the description of D. In particular,

n5 · mwc(G,T ) ≤ cr(H).

Proof Consider any drawing D of H . We can compute cr(D) in time that is polyno-
mial in the size of the description of D. If cr(D) is larger than n7, we can just take
F = E(G) because it satisfies |F | ≤ n2 ≤ cr(D)/n5. If cr(D) is smaller than n7,
we proceed as follows. The restriction of D to A is an embedding because each edge
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of A has weight n5. For each i ∈ [3], let Ci denote the cycle a4ai−1bi−1bi+1ai+1a4.
In the embedding D(A) the cycle Ci separates xi = ti from xj = tj whenever i �= j .

Define the set of edges

F =
{

e ∈ E(G) | D(e) intersects D(C1), D(C2) or D(C3)
}

.

Note that F can be computed in polynomial time from D. Since each edge of F

crosses (at least once) some edge of A, we have

cr(D) ≥ n5 · |F |.

Furthermore, F is a feasible solution to MULTIWAYCUT for (G,T ) because, for each
path P in G that connects ti to tj , i �= j , the drawing D(P ) has to cross the cycle
D(Ci) and thus P has an edge in F .

The bound n5 · mwc(G,T ) ≤ cr(H) is obtained by considering an optimal draw-
ing D∗ of H . Such a drawing D∗ gives a feasible solution F that satisfies

n5 · mwc(G,T ) ≤ n5 · |F | ≤ cr

(

D
∗
)

= cr(H).

The result follows. �

We next explain how to construct a cubic graph H̃ = H̃ (G,T ) such that

n5 · mwc(G,T ) ≤ cr(H̃ ) ≤ n5 · mwc(G,T ) + 3n4.

The idea is a straightforward adaptation of the technique used by Pelsmajer et al. [16];
we include the details for the sake of completeness.

In a first step, we construct the unweighted graph H ′ = φ(H) and the rotation
system π ′ = φπ (H(G,T ),π) in H ′, as described in Sect. 2. It holds that cr(H ′) =

cr(H) and cr(H ′,π ′) = cr(H,π).
In a second step, we replace each vertex v ∈ H ′ by a cubic grid Cv of width

degH ′(v) and height 8n7; see Fig. 4. (The cubic grid of width d and height h is
obtained from a regular, rectangular grid of width 2d and height h where the ver-
tical edge connecting (i, j) to (i, j + 1) is removed whenever i + j is odd.) If

Fig. 4 The solid edges form a
cubic grid of width 6 and
height 6. The dashed edges

show how the edges ev
1 , ev

2 , . . .

get attached to Cv
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ev
1, . . . , ev

degH ′ (v) are the edges incident to v in H ′ ordered as in the cyclic ordering

π ′
v , then we attach the edges ev

1, . . . , ev
degH ′ (v)

to the degree-two consecutive vertices
of the cubic grid Cv that are on the higher row. Finally, we make the graph cubic by
removing vertices of degree 1 and contracting some edges incident to vertices of de-
gree 2. This finishes the construction of H̃ = H̃ (G,T ). Note that the construction of
H̃ can be made in polynomial time because the weight of each edge of H is bounded
by n5.

Lemma 3 We have

n5 · mwc(G,T ) ≤ cr(H̃ ) ≤ n5 · mwc(G,T ) + 3n4.

Furthermore, from any drawing D̃ of H̃ we can obtain a feasible solution F to

MULTIWAYCUT(G,T ) such that |F | ≤ cr(D̃)/n5 in time that is polynomial in the

size of the description of D̃.

Proof It is clear that any drawing D′ of H ′ with rotation system π ′ can be converted
into a drawing of H̃ by a local replacement around D′(v), for each v ∈ V (H ′), with-
out introducing additional crossings. Therefore,

cr(H̃ ) ≤ cr

(

H ′,π ′
)

= cr(H,π) ≤ n5 · mwc(G,T ) + 3n4

because of Lemma 1.
To see the other inequality, consider an optimal drawing D̃ of H̃ . The first part

of the proof implies that cr(D̃) < 4n7. Therefore, in each cubic grid Cv , v ∈ V (H ′),
there is at least one horizontal row, let us call it Rv , that does not participate in any
crossing of D̃. For each vertex v ∈ V (H ′), there are degH ′(v) vertex-disjoint paths
P v

i in Cv , i = 1, . . . ,degH ′(v), connecting the endvertex of ev
i to a vertex of Rv . We

contract the row Rv to a point and remove from the drawing all the edges of Cv ,
but those participating in the paths P v

1 , . . . ,P v
degH ′ (v). Repeating this for each vertex

v ∈ V (H ′), we obtain a drawing D′ of a subdivision of H ′ with at most cr(D̃)

crossings. This implies that cr(H) = cr(H ′) ≤ cr(D̃) = cr(H̃ ). By Lemma 2 it
follows that

cr(H̃ ) ≥ cr(H) ≥ n5 · mwc(G,T ).

To obtain from a drawing D̃ of H̃ a feasible solution F with |F | ≤ cr(D̃)/n5, we
proceed as follows. We compute cr(D̃) in time that is polynomial in the size of the
description of D̃. If cr(D̃) ≥ n7, we just return F = E(G). Otherwise we construct
the drawing D′ of H ′ from D̃, as described above. As discussed in Sect. 2, from the
drawing D′ of H ′ = φ(H) we can obtain a drawing D of H with cr(D) ≤ cr(D′).
Finally, from the drawing D of H we can use Lemma 2 to extract a feasible solution
F to MULTIWAYCUT(G,T ) such that

|F | ≤ cr(D)/n5 ≤ cr

(

D
′
)

/n5 ≤ cr(D̃).

Since all the steps can be carried out in polynomial time, the result follows. �
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Theorem 4 There is a constant c0 > 1 such that, if P �= NP, there is no c0-

approximation algorithm for CROSSINGNUMBER, even when restricted to cubic

graphs.

Proof Let cM > 1 be a constant such that it is NP-hard to compute a cM -
approximation to MULTIWAYCUT when |T | = 3. (See the discussion in Sect. 2.)
Take c0 = cM − ε for an arbitrary constant ε with 0 < ε < cM − 1. We will see that it
is NP-hard finding a c0-approximation to CROSSINGNUMBER in cubic graphs.

Assume, for the sake of contradiction, that there is a c0-approximation algorithm
for CROSSINGNUMBER in cubic graphs. We can then obtain a cM -approximation
to MULTIWAYCUT(G,T ) in polynomial time as follows. Let n = |V (G)|. If n is
smaller than 3c0/ε, which is a constant, we run any brute force algorithm. Otherwise,
we construct in polynomial time the cubic graph H̃ = H̃ (G,T ), as described above,
use the c0-approximation algorithm to compute a drawing D̃ of H̃ with cr(D̃) ≤

c0 · cr(H̃ ), use Lemma 3 to find a feasible solution F to MULTIWAYCUT(G,T ),
and return F . We next argue that this algorithm is a cM -approximation algorithm for
MULTIWAYCUT.

Because of Lemma 3, F is a feasible solution with |F | ≤ cr(D̃)/n5. On the
other hand, cr(D̃) ≤ c0 · cr(H̃ ) because D is a c0-approximation to cr(H̃ ). Us-
ing Lemma 3, we obtain

|F | ≤
cr(D̃)

n5

≤ c0 ·
cr(H̃ )

n5

≤ c0 ·
n5 · mwc(G,T ) + 3n4

n5

≤ c0 · mwc(G,T ) + 3c0/n

≤ c0 · mwc(G,T ) + ε

≤ (c0 + ε) · mwc(G,T )

= cM · mwc(G,T ).

Thus, returning F , we obtain a cM -approximation to mwc(G,T ), which is not possi-
ble unless P �= NP. �

Bokal et al. [3] introduced the concept of minor crossing number. Hliněný [12]
noted that for cubic graphs, the crossing number and the minor crossing number have
the same value. We thus obtain the following.

Corollary 5 There is a constant c0 > 1 such that, if P �= NP, there is no c0-

approximation algorithm for the minor crossing number.
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4 Conclusions

Since there are constant-factor approximation algorithms for MULTIWAYCUT, a
more careful reduction from MULTIWAYCUT will not bring us beyond hardness of
constant-factor approximations. Nevertheless, it seems hard to believe that there is an
O(1)-approximation algorithm for CROSSINGNUMBER. As mentioned in the intro-
duction, the currently best approximation factor is roughly O(n9/10).

A natural approach to improve the inapproximability result would be to reduce
from a problem that is known to be harder. The problems 0-extension and MetricLa-

beling are generalizations of MULTIWAYCUT, and stronger inapproximability results
are known [7, 13, 15]. However, we have not been able to obtain fruitful reductions
from those problems to CROSSINGNUMBER.

It remains a tantalizing open problem whether CROSSINGNUMBER can be solved
in polynomial time for graphs with bounded treewidth. An obstacle is that we do not
know whether LINEARARRANGEMENT is NP-hard for graphs of bounded treewidth.
If that were the case, then the reduction of Garey and Johnson [10] would in-
crease the treewidth by a constant. On the other hand, MULTIWAYCUT is solvable
in polynomial-time for graphs of bounded treewidth: Chopra and Rao [5] discuss
treewidth 2, and Dahlhaus et al. [8] note that it works for any bounded treewidth.
Thus, the approach of this paper cannot lead to an NP-hardness proof of CROSS-
INGNUMBER for graphs of bounded treewidth.
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