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Abstract

State-of-the-art neural network architectures such as

ResNet, MobileNet, and DenseNet have achieved outstand-

ing accuracy over low MACs and small model size coun-

terparts. However, these metrics might not be accurate for

predicting the inference time. We suggest that memory traf-

fic for accessing intermediate feature maps can be a factor

dominating the inference latency, especially in such tasks

as real-time object detection and semantic segmentation of

high-resolution video. We propose a Harmonic Densely

Connected Network to achieve high efficiency in terms of

both low MACs and memory traffic. The new network

achieves 35%, 36%, 30%, 32%, and 45% inference time re-

duction compared with FC-DenseNet-103, DenseNet-264,

ResNet-50, ResNet-152, and SSD-VGG, respectively. We

use tools including Nvidia profiler and ARM Scale-Sim to

measure the memory traffic and verify that the inference la-

tency is indeed proportional to the memory traffic consump-

tion and the proposed network consumes low memory traf-

fic. We conclude that one should take memory traffic into

consideration when designing neural network architectures

for high-resolution applications at the edge.

1. Introduction

Convolutional Neural Networks (CNN) have been pop-

ular for computer vision tasks, ever since the explosive

growth of computing power has made possible training

complex networks like AlexNet [22,23], VGG-net [32], and

Inception [34] in a reasonable amount of time. To bring

these fascinating research results into mass use, performing

a neural network inference on edge devices is inevitable.

However, edge computing relies on limited computation

power and battery capacity. How to increase computation

efficiency and reduce the power consumption for neural net-

work inference at the edge has therefore become a critical

issue.

Reducing model sizes (the number of parameters or

weights of a model) is a hot research topic in improving

both computation and energy efficiency, since a reduced

model size usually implies fewer MACs (number of

multiply-accumulate operations or floating point opera-

tions) and less dynamic random-access memory (DRAM)

traffic for read and write of model parameters and feature

maps. Several researches have steered toward maxi-

mizing the accuracy–parameters ratio. State-of-the-art

networks such as Residual Networks (ResNets) [16],

SqueezeNets [20], and Densely Connected Networks

(DenseNets) [18] have achieved high parameter efficiency

that have dramatically reduced the model size while main-

taining a high accuracy. The model size can be reduced

further through compression. Han et al. [15] showed

that the large amount of floating-point weights loaded

from DRAM may consume more power than arithmetic

operations do. Their Deep Compression algorithm employs

weight pruning and quantization to reduce the model size

and power consumption significantly.

In addition to the power consumption, DRAM accesses

can also dominate system performance in terms of inference

time due to the limited DRAM bandwidth. Since we have

observed that the size summation of all the intermediate

feature maps in a CNN can be ten to hundred times larger

than its model size, especially for high resolution tasks

such as semantic segmentation using fully convolutional

networks [27], we suggest that reducing DRAM accesses

to feature maps may lead to a speedup in some cases.

Shrinking the size of feature maps is a straightforward

approach to reduce the traffic. While there are only a few

papers addressing lossless compression of feature maps,

lossy compression of feature maps has been intensively

studied in research of model precision manipulation and

approximation [8, 11, 14, 28, 29]. The quantization used in

these works for model compression can usually reduce the

feature map size automatically. However, like other lossy

compression methods such as subsampling, they usually

penalize accuracy. In this paper, we explore how to reduce

the DRAM traffic for feature maps without penalizing

accuracy simply by designing the architecture of a CNN

carefully.
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To design such a low DRAM traffic CNN architecture,

it is necessary to measure the actual traffic. For a general-

purpose Graphics Processing Unit (GPU), we use Nvidia

profiler to measure the number of DRAM read/write bytes.

For mobile devices, we use ARM Scale Sim [30] to get

traffic data and inference cycle counts for each CNN ar-

chitecture. We also propose a metric called Convolutional

Input/Output (CIO), which is simply a summation of the in-

put tensor size and output tensor size of every convolution

layer as equation (1), where c is the number of channels and

w and h are the width and height of the feature maps for a

convolution layer l.

CIO =
∑

l

(c
(l)
in

×w
(l)
in

× h
(l)
in

+ c
(l)
out ×w

(l)
out × h

(l)
out) (1)

CIO is an approximation of DRAM traffic proportional

to the real DRAM traffic measurement. Please note that the

input tensor can be a concatenation, and a reused tensor can

therefore be counted multiple times. Using a lot of large

convolutional kernels may easily achieve a minimized CIO.

However, it also damages the computational efficiency

and eventually leads to a significant latency overhead

outweighing the gain. Therefore, we argue that maintaining

a high computational efficiency is still imperative, and

CIO dominates the inference time only when the com-

putational density, which is, the MACs over CIO (MoC)

of a layer, is below a certain ratio that depends on platforms.

For example, under a fixed CIO, changing the channel

ratio between the input and output of a convolutional layer

step by step from 1:1 to 1:100 leads to reductions of both

MACs and latency. For the latency, it declines more slowly

than the reduction of MACs, since the memory traffic re-

mains the same. A certain value of MoC may show that,

below this ratio, the latency for a layer is always bounded

to a fixed time. However, this value is platform-dependent

and obscure empirically.

In this paper, we apply a soft constraint on the MoC

of each layer to design a low CIO network model with a

reasonable increase of MACs. As shown in Fig. 1, we

avoid to employ a layer with a very low MoC such as a

Conv1x1 layer that has a very large input/output channel

ratio. Inspired by the Densely Connected Networks [18] we

propose a Harmonic Densely Connected Network (HarD-

Net) by applying the strategy. We first reduce most of the

layer connections from DenseNet to reduce concatenation

cost. Then, we balance the input/output channel ratio by

increasing the channel width of a layer according to its

connections.

Figure 1: Concept of MoC constraint. A Conv layer with

MoC below the constraint is avoided.

The contribution of this paper is that we introduce

DRAM traffic for feature map access and its platform-

independent approximation, CIO, as a new metric for eval-

uating a CNN architecture and show that the inference la-

tency is highly correlated with the DRAM traffic. By con-

straining the MoC of each layer, we propose HarDNets that

reduces DRAM traffic by 40% compared with DenseNets.

We evaluate the proposed HarDNet on the CamVid [3], Im-

ageNet (ILSVRC) [9], PASCAL VOC [12], and MS COCO

[26] datasets. Compared to DenseNet and ResNet, HarD-

Net achieves the same accuracy with 30%∼50% less CIO,

and accordingly, 30%∼40% less inference time.

2. Related works

A significant trend in neural network research is ex-

ploiting shortcuts. To cope with the degradation problem,

Highway Networks [33] and Residual Networks [16] add

shortcuts to sum up a layer with multiple preceeding layers.

The stochastic depth regularization [19] is essentially

another form of shortcuts for crossing layers that are

randomly dropped. Shortcuts enable implicit supervision

to make networks continually deeper without degradation.

DenseNets [18] concatenates all preceeding layers as a

shortcut achieving more efficient deep supervision. Short-

cuts have also been shown to be very useful in segmentation

tasks [10]. Jégou et al. [21] showed that without any pre-

training, DenseNet performs semantic segmentation very

well. However, shortcuts lead to both large memory usage

and heavy DRAM traffic. Using shortcuts elongates the

lifetime of a tensor, which may result in frequent data

exchanges between DRAM and cache.

Some sparsified versions of DenseNet have been pro-

posed. LogDenseNet [17] and SparseNet [36] adopt a

strategy of sparsely connecting each layer k with layer

k–2n for all integers n ≥ 0 and k–2n ≥ 0 such that the in-

put channel numbers decrease from O(L2) to O(L logL).
The difference between them is that LogDenseNet applies

this strategy globally, where layer connections crossing
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blocks with different resolutions still follow the log con-

nection rule, while SparseNet has a fixed block output that

regards the output as layer L+ 1 for a block with L layers.

However, both network architectures need to significantly

increase the growth rate (output channel width) to recover

the accuracy dropping from the connection pruning, and the

increase of growth rate can compromise the CIO reduction.

Nevertheless, these studies did point out a promising

direction to sparsify the DenseNet.

The performance of a classic microcomputer architec-

ture is dominated by its limited computing power and mem-

ory bandwidth [4]. Researchers focused more on enhancing

the computation power and efficiency. Some researchers

pointed out that limited memory bandwidth can dominate

the inference latency and power consumption in GPU-based

systems [25,27], FPGA-based systems [5,13], or custom ac-

celerators [6,7,11]. However, there is no systematic way to

correlate DRAM traffic and the latency. Therefore, we pro-

pose CIO and MoC and present a conceptual methodology

for enhancing efficiency.

3. Proposed Harmonic DenseNet

3.1. Sparsification and weighting

We propose a new network architecture based on the

Densely Connected Network. Unlike the sparsification pro-

posed in LogDenseNet, we let layer k connect to layer

k–2n if 2n divides k, where n is a non-negative integer and

k–2n ≥ 0; specifically, layer 0 is the input layer. Under

this connection scheme, once layer 2n is processed, layer 1
through 2n–1 can be flushed from the memory. The connec-

tions make the network appear as an overlapping of power-

of-two-th harmonic waves, as illustrated in Fig. 2, hence we

name it the Harmonic Densely Connected Network (HarD-

Net). The proposed sparsification scheme reduces the con-

catenation cost significantly better than the LogDenseNet

does. This connection pattern also looks like a Fractal-

Net [24], except the latter uses averaging shortcuts instead

of concatenations.

In the proposed network, layers with an index divided

by a larger power of two are more influential than those

that divided by a smaller power of two. We amplify these

key layers by increasing their channels, which can balance

the channel ratio between the input and output of a layer

to avoid a low MoC. A layer l has an initial growth rate

k, and we let its channel number to be k × mn, where n
is the maximum number satisfying that l is divided by 2n.

The multiplier m serves as a low-dimensional compression

factor. If the input layer 0 has k channels and m = 2, we

get a channel ratio 1:1 for every layer. Setting m smaller

than two is tantamount to compress the input channels into

Figure 2: Illustrations for DenseNet, LogDenseNet,

SparseNet, and the proposed Harmonic DenseNet (HarD-

Net), in which each of the layers is a 3x3 convolution.

fewer output channels. Empirically, setting m between 1.6

and 1.9 achieves a good accuracy and parameter efficiency.

3.2. Transition and Bottleneck Layers

The proposed connection pattern forms a group of layers

called a Harmonic Dense Block (HDB), which is followed

by a Conv1x1 layer as a transition. We let the depth of

each HDB to be a power of two such that the last layer of

an HDB has the largest number of channels. In DenseNet,

a densely connected output of a block directly passes the

gradient from output to all preceding layers to achieve

deep supervision. In our HDB with depth L, the gradient

will pass through at most logL layers. To alleviate the

degradation, we made the output of a depth-L HDB to be

the concatenation of layer L and all its preceeding odd

numbered layers, which are the least significant layers with

k output channels. The output of all even layers from 2 to

L–2 can be discarded once the HDB is finished. Their total

memory occupation is roughly two to three times as large

as all the odd layers combined when m is between 1.6 to

1.9.

DenseNet employees a bottleneck layer before every

Conv3x3 layer to enhance the parameter efficiency. Since

we have balanced the channel ratio between the input and

output for every layer, the effect of such bottleneck lay-

ers became insignificant. Inserting a bottleneck layer for

every four Conv3x3 layer is still helpful for reducing the

model size. We let the output channels of a bottleneck layer

to be
√

cin/cout × cout, where cin is the concatenated in-

put channels and cout is the output channels of the follow-
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(a) (b)

Figure 3: (a) Inverted transition down module,

(b)Depthwise-separable convolution for HarDNet

ing Conv3x3 layer. To further improve the inference time,

these Conv1x1 bottleneck layers can be discarded to meet

our MoC constraint.

The transition layer proposed by DenseNet is a Conv1x1

layer followed by a 2x2 average pooling. As shown in Fig.

3a, we propose an inverted transition module, which maps

input tensor to an additional max pooling function along

with the original average pooling, followed by concatena-

tion and Conv1x1. This module reduces 50% of CIO for

the Conv1x1 while achieving roughly the same accuracy at

the expense of model size increase.

3.3. Detailed Design

To compare with DenseNet, we follow its global dense

connection strategy that bypasses all the input of an HDB

as a part of its output and propose six models of HarDNet.

The detailed parameters are shown in Table 1. We use

a 0.85 reduction rate for the transition layers instead

of the 0.5 reduction rate used in the DenseNet, since a

low-dimensional compression has been applied to the

growth rate multiplier as we mentioned before. To achieve

a flexible depth, we partition a block into multiple blocks

with 16 layers (20 when bottleneck layers are counted).

We further propose a HarDNet-68, in which we re-

move the global dense connections and use MaxPool for

down-sampling, and we change the BN-ReLU-Conv order

proposed by DenseNet into the standard order of Conv-BN-

ReLU to enable the folding of batch normalization. The

dedicated growth rate k for each HDB in the HarDNet-68

enhances the CIO efficiency. Since a deep HDB has a

larger number of input channels, a larger growth rate helps

to balance the channel ratio between the input and output

of a layer to meet our MoC constraint. For the layer

distribution, instead of concentrating on stride-16 that is

adopted by most of the CNN models, we let stride-8 to have

the most layers in the HarDNet-68 that improves the local

feature learning benefiting small-scale object detection. In

contrast, classification tasks rely more on the global feature

learning, so concentrating on the low resolution achieves a

higher accuracy and a lower computational complexity.

96s/L 117s/L 138s/L 68 39DS

k 20/26 26/30 30/32 -

m 1.6 1.6/1.65 1.7 1.6

red 0.85 -

bottleneck Y N

Stride 2
7x7, 64, stride=2

3x3, 32,

stride=2

3x3, 24,

stride=2

3x3, 64 1x1, 48

Stride 4
8 (HDB

depth)
8 8

8, k=14

t=128

4, k=16

t=96

Stride 8 16 16 16

16, k=16

t=256

16, k=20

t=320

16, k=20

t=320
-

Stride 16 16×2 16×3 16×3
16, k=40

t=640

8, k=64

t=640

Stride 32 16 16 16×2
4, k=160

t=1024

4, k=160

t=1024

Table 1: Detailed implementation parameters. A “3x3, 64”

stands for a Conv3x3 layer with 64 output channels, and the

leading numbers below Stride 2 stand for an HDB with how

many layers, followed by its growth rate k and a transitional

Conv1x1 with t output channels.

The depth separable convolution that dramatically re-

duces model size and computational complexity is also

adoptable on the HarDNet. We propose a HarDNet-39DS

with pure depth-wise-separable (DS) convolutions except

the first convolutional layer by decomposing a Conv3x3

layer into a point-wise convolution and a depth-wise con-

volution as shown in Fig. 3b. The order matters in this

case. Since every layer in an HDB has a wide input and

a narrow output, inverting the order increases the CIO dra-

matically. Please note that CIO may not be a direct pre-

diction of inference latency for the comparison between a

model with standard Conv3x3 and a model with depth-wise

separable convolutions, because there is a huge difference

of MACs between them. Nevertheless, the prediction can

still be achieved when there is a weighting applied on the

CIO for the decomposed convolution.

4. Experiments

4.1. CamVid Dataset

To study the performance of HDB, we replace all the

blocks in a FC-DenseNet with HDBs. We follow the ar-

chitecture of FC-DenseNet with an encoder-decoder struc-

ture and block level shortcuts to create models for se-

mantic segmentation. For fair comparison, we made two

reference architectures with exactly the same depth for
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SegNet [2] 224 29.5 702 3.7 68.7 52.0 87.0 58.5 13.4 86.2 25.3 17.9 16.0 60.5 24.8 46.4 62.5

FCN8 [27] 143 135 318 4.9 77.8 71.0 88.7 76.1 32.7 91.2 41.7 24.4 19.9 72.7 31.0 57.0 88.0

FC-DenseNet56 [21] 60 1.4 1351 6.1 77.6 72.0 92.4 732. 31.8 92.8 37.9 26.2 32.6 79.9 31.1 58.9 88.9

FC-DenseNet67 [21] 140 3.5 2286 10.2 80.2 75.4 93.0 78.2 40.9 94.7 58.4 30.7 38.4 81.9 52.1 65.8 90.8

FC-DenseNet103 [21] 134 9.4 2150 11.4 83.0 77.3 93.0 77.3 43.9 94.5 59.6 37.1 37.8 82.2 50.5 66.9 91.5

LogDenseNet-103 [17] 137 4.7 2544 - 81.6 75.5 92.3 81.9 44.4 92.6 58.3 42.3 37.2 77.5 56.6 67.3 90.7

FC-DenseNet-ref100 142 3.5 3337 15.2 81.1 77.1 92.9 77.7 40.8 94.3 58.1 35.2 37.0 81.5 48.9 65.8 90.9

FC-SparseNet-ref100 223 3.2 2559 11.8 83.3 78.3 93.3 78.9 42.5 94.5 57.5 33.1 41.6 82.9 46.9 66.6 91.7

FC-HarDNet-ref100 151 3.6 2076 10 82.6 75.5 92.8 78.3 43.2 95.4 59.2 34.9 38.9 85.1 52.6 67.1 91.7

FC-HarDNet68 15 1.4 473 3.1 80.8 74.4 92.7 76.1 40.6 93.3 47.9 29.3 33.3 78.3 45.7 62.9 90.2

FC-HarDNet76 54 3.5 932 4.9 82.0 75.8 92.7 76.8 42.6 94.7 58.0 30.9 37.6 83.2 49.9 65.8 91.2

FC-HarDNet84 100 8.4 1267 6.7 81.4 76.2 92.9 78.3 48.9 94.6 61.9 37.9 38.2 80.5 54.0 67.7 91.1

Table 2: Results on CamVid dataset. The GPU inference time results are the accumulated measurements of CamVid test-set

(233 pics) with a single-image batch size, running on pytorch-1.0.1 framework with a single NVIDIA TitanV GPU.

each block and roughly the same model size and MACs,

named FC-HarDNet-ref100 and FC-DenseNet-ref100, re-

spectively. We trained and tested both networks on the

CamVid dataset with 800 epochs and 0.998 learning rate

decay on exactly the same environments, and followed the

batch sizes of the two passes used in the original work

[21]. Table 2 shows the experiment results in mean IoU

of both overall and per-classes. Comparing these two net-

works, FC-HarDNet-ref100 achieved a higher mean IoU

and 38% less CIO. When running inference testing on a

single NVIDIA TitanV GPU, we observed 24% and 36%

inference time savings using tensorflow and Pytorch frame-

works, respectively. Since FC-HarDNet-ref100 consumes

slightly more MACs than FC-DenseNet-ref100 does, the in-

ference time saving should come from the memory traffic

reduction.

Compared with other sparsified versions of DenseNet,

Table 2 shows that FC-LogDenseNet103 gets a worse

CIO number than the FC-DenseNet103 due to the long

1st

Conv
BLK depth Growth Rate m

FC-D 103 48 4, 5, 7, 10 , 12, 15 16 -

FC-D ref100 48 8, 8, 8, 8, 8, 8 10 -

FC-S ref100 48 8, 8, 8, 8, 8, 8 26 -

FC-H ref100 48 8, 8, 8, 8, 8, 8 10 1.54

FC-H 68 8 4, 4, 4, 4, 8, 8 4, 6, 8, 8, 10, 10 1.7

FC-H 76 24 4, 4, 4, 8, 8, 8 8,10,12,12,12,14 1.7

FC-H 84 32 4, 4, 8, 8, 8, 8 10,12,14,16,20,22 1.7

Table 3: Parameters of FC-HarDNet and other reference

networks, where FC-D, FC-S, and FC-H stand for FC-

DenseNet, FC-SparseNet, and FC-HarDNet, respectively.

lifetime of the first half of layers caused by its global

transition. On the other hand, SparseNets uses a localized

transition layer such that it can reduce the tensor lifetime

better than LogDenseNet. Therefore, we implemented

a FC-SparseNet-ref100 for comparison and trained it in

the same environment for five runs, and then we picked

the best result. The result shows that FC-SparseNet can

also reduce GPU inference time, but not as much as

FC-HarDNet-ref100 does.

We propose FC-HarDNet84 as specified in Table 3

for comparing with FC-DenseNet103. The new network

achieves CIO reduction by 41% and GPU inference time

reduction by 35%. A smaller version, FC-HarDNet68,

also outperforms FC-DenseNet56 by a 65% less CIO

and 52% less GPU inference time. We investigated the

correlations among accuracy, DRAM traffic, and GPU

inference time. Fig. 4a shows that HarDNet achieves the

best accuracy-over-DRAM-traffic than other networks. Fig.

4b shows that GPU inference time is indeed correlated with

DRAM traffic much more than MACs. It also shows that

CIO is a good approximation to the real DRAM traffic,

except that FCN8s is an outlier due to its use of large

convolutional kernels.

To verify the correlation between inference time and

memory traffic on hardware platforms differ from GPU,

we employ ARM Scale Sim for the investigation. It is a

cycle-accurate simulation tool for ARM’s systolic array or

Eyeriss. Note that this tool does not support deconvolution

and regards these deconv layers as ordinary convolutional

layers. Fig. 4c shows that the correlation between DRAM

traffic and inference time on the Scale Sim is still high,

and FC-HarDNet-84 still reduces inference time by 35%
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(a) (b) (c)

Figure 4: Correlation among accuracy, DRAM traffic, and GPU inference time for CamVid test set @ 360x480 running on a

Nvidia Titan V with Cuda 9.0. (a) Mean IoU vs. DRAM traffic measured by Nvidia Profiler, where the concat-free sets stand

for the case if the explicit memory copy for tensor concatenation can be completely removed. The two reference networks

are not compared. (b) GPU inference time vs. DRAM traffic and CIO on Pytorch 1.0.1 framework. (c) Inference time vs.

DRAM traffic measured by the simulation of Scale Sim.

compared to FC-DenseNet-103. However, it also shows

that the relative inference time of SegNet is much worse

than on GPU. Thus, it confirmed that the relative DRAM

traffic can be very different among platforms.

Pleiss et al. have mentioned that there is a concatena-

tion overhead with the DenseNet implementation, which is

caused by the explicit tensor copy from existing tensors to a

new memory allocation. Therefore, it causes an additional

DRAM traffic. To show that HarDNet still outperforms

DenseNet when the overhead is discounted, we subtract the

measured DRAM traffic volume by the traffic for tensor

concatenation as the concat-free cases shown in Fig. 4a,

where the DRAM traffic of concatenation is measured by

Nvidia Profiler and broken down to the CatArrayBatched-

Copy function. Fig. 4a shows that FC-DenseNet can reduce

more DRAM traffic by discounting the concatenation than

that for FC-HarDNet, but the latter still outperforms the for-

mer.

4.2. ImageNet Datasets

To train the six models of HarDNet for the ImageNet

classification task, we reuse the torch7 training environment

from [16, 18] and align all hyperparameters with them. To

compare with other advanced CNN architectures such as

ResNeXt and MobileNetV2 [31], we adopt more advanced

hyperparameters such as the cosine learning rate decay and

a fine-tuned weight decay. The HarDNet-68/39DS models

are trained with a batch size of 256, an initial learning rate

of 0.05 with cosine learning rate decay, and a weight decay

of 6e-5.

Investigating the accuracy over CIO, it shows that

HarDNet can outperform both ResNet and DenseNet while

accuracy over model size is in between them as shown

in Fig. 5(a)(b). Fig. 5c shows the GPU inference time

results on Nvidia Titan V with torch7, which is quite

similar to the trend of Fig. 5a and once again showing the

high correlation between CIO and GPU inference time.

However, the result also shows that for small models, there

is no improvement of GPU inference time for HarDNet

compared with ResNet, which we supposed to be due to the

number of layers and the concatenation cost. We also argue

that, once a discontinuous input tensor can be supported by

a convolution operation, the inference time of DenseNet

and HarDNet and be further reduced.

In Fig. 5d, we compare the state-of-the-art CNN model

ResNeXt with our models trained with cosine learning rate

decay. Although ResNeXt achieves a significant accuracy

improvement with the same model size, there is still an

inference time overhead with these models. Since there is

no increase of MACs with the ResNeXt, the overhead can

be explained by its increase of CIO.

In Table 4, we show the result comparison sorted by

CIO for ImageNet, in which HarDNet68/39DS are also

included. With the reduced number of layers, the can-

cel of global dense connections, and the BN-reordering,

HarDNet-68 achieves a significant inference time reduction

from the ResNet-50. For further comparing CIO between a

model using standard convolutions and a model mealy using
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(a) (b)

(c) (d)

Figure 5: (a) ImageNet error rate vs. CIO. (b) Error rate vs. model size. (c) Error rate vs. GPU inference time on a single

TitanV with torch7. For GPU time of HarDNet-68, please refer to Table 4. (d) Further comparison among HarDNet-cosine

that is trained with cosine learning rate decay and ResNeXt.

depth-wise-separable convolutions, we can apply a weight-

ing such as 0.6 on the CIO of the latter. After the weighting,

CIO can still be a rough prediction of inference time when

comparing among the two very different kinds of model.

4.3. Object Detection

We evaluate HarDNet-68 as a backbone model for a Sin-

gle Shot Detector (SSD) and train it with PASCAL VOC

2007 and MS COCO datasets. Aligned with the SSD-VGG,

we attach an ImageNet-pretrained HarDNet-68 to SSD at

the last layers in stride 8 and 16, respectively, and the HDB

in stride 32 is discarded. We insert a bridge module af-

ter the HDB on stride 16. The bridge module comprises a

3x3 max pooling with stride 1, a 3x3 convolution dilated

by 4, and a point-wise convolution, in which both convolu-

tional layers have 640 output channels. We train the model

with 300 and 150 epochs for VOC and COCO datasets, re-

spectively. The initial learning rate is 0.004 and decayed

by 10 times at epochs 60%, 80%, 90% of the maximum

epoch. The results in Table 5 show that our model achieve a

similar accuracy with SSD-ResNet101 despite its lower ac-

curacy in ImageNet, which shows the effectiveness of our

enhancement on stride 8 with 32 layers that improve the

local feature learning for the small-scale objects. Further-

more, HarDNet-68 is much faster than both VGG-16 and

ResNet-101, which make it very competitive in real time

applications.

5. Discussion

There is an assumption with the CIO, which is a CNN

model that is processed layer by layer without a fusion.

In contrast, fused-layer computation for multiple convolu-

tional layers has been proposed [1], in which intermediate

layers in a fused-layer group will not produce any memory

traffic for feature maps. In this case, the inverted residual

module in MobileNetV2 might be a better design to achieve

low memory traffic. Furthermore, the depth-wise convolu-

tion might be implemented as an element-wise operation

right before or after a neighboring layer. In such case, the

CIO for depth-wise convolution should be discounted.

Results show that CIO still failed to predict the actual

inference time in some cases such as comparing two

network models with significantly different architectures.
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Param

(M)

MACs

(B)

CIO

(M)

GPU

Time

(ms)

Mobile

GPU

(ms)

Top1

Acc

HarDNet 39DS 3.5 0.44 8.2 17.8 32.5 72.1

MobileNetV2 3.5 0.32 13.4 23.7 37.9 72.0

HarDNet 68DS 4.2 0.79 15.3 31.7 52.6 74.3

MNetV2 1.4x 6.1 0.59 18.5 33.0 57.8 74.7

ResNet 18 11.7 1.8 4.7 13.0 - 69.6

SqueezeNet 1.0 1.2 0.83 7.9 19.6 - 60.4

HarDNet 68 17.6 4.3 11.5 32.6 - 76.2

HarDNet 96s 9.3 2.5 11.7 36.4 - 74.7

HarDNet 117s 20.9 4.9 16.7 57.6 - 77.0

HarDNet 138s 35.5 6.7 19.6 70.5 - 77.8

ResNet 50 25 4.1 20.7 46.5 - 76.0

DenseNet 121 7.9 2.9 21.9 51.5 - 75.0

VGG-16 138 15.5 22.6 79.3 - 73.4

ResNet 101 44.5 7.6 30.9 76.9 - 77.6

DenseNet 201 20 4.4 31.8 83.9 - 77.4

ResNet 152 60.2 11.3 43.6 109.7 - 77.8

Table 4: Test results for ImageNet models, in which GPU

time is measured on Nvidia GTX1080 with Pytorch 1.1.0

at 1024x1024 and mobile GPU time is measured on Nvidia

Jetson Nano with TensorRT-onnx at 320x320.

Backbone

Model

VOC 2007

mAP

COCO

mAP

SSD512 VGG-16 79.8 28.8

SSD513 ResNet-101 80.6 31.2

SSD512 HarDNet-68 81.5 30.2

Table 5: Results in object detection. The comparison data

is from [35]

As we mentioned before, CIO dominates inference time

only when the MoC is below a certain ratio, which is

a density of computation within a space of data traffic.

In a network model, each of the layers has a different

MoC. In some of the layers CIO may dominate, but for

the other layers, MACs can still be the key factor if its

computational density is relatively higher. To precisely

predict the inference latency of a network, we need to

breakdown to each of the layers and investigate its MoC to

predict the inference latency of the layer.

We would like to emphasize the importance of DRAM

traffic furthermore. Since the quantization has been widely

used for CNN models, both the hardware cost of multiplier

and data traffic can be reduced. However, the hardware

cost reduction of a multiplier from float32 to int8 is much

greater than the reduction of data traffic from the same

thing. When developing hardware platform mainly using

int8 multipliers, computing power can grow more quickly

than the data bandwidth, so data traffic will be even more

important in this case. We argue that the best way to

achieve the traffic reduction is to increase MoC reasonably

for a network model, which might be counter-intuitive

to the widely-accepted knowledge of that using more

Conv1x1 achieves a higher efficiency. In many cases, we

have shown that it is indeed helpful, however.

6. Conclusion

We have presented a new metric for evaluating a

convolutional neural network by estimating its DRAM

traffic for feature maps, which is a crucial factor affecting

the power consumption of a system. When the density of

computation is low, the traffic can dominate inference time

more significantly than the model size and operation count.

We employ Convolutional Input/Output (CIO) as an ap-

proximation of the DRAM traffic, and propose a Harmonic

Densely Connected Networks (HarDNet) that achieve a

high accuracy-over-CIO and also a high computational

efficiency by increasing the density of computation (MACs

over CIO).

Experiments showed that the proposed connection pat-

tern and channel balancing have made FC-HarDNet to

achieve DRAM traffic reduction by 40% and GPU infer-

ence time reduction by 35% compared with FC-DenseNet.

Comparing with DenseNet-264 and ResNet-152, HarDNet-

138s achieves the same accuracy with a GPU inference time

reduction by 35%. Comparing with ResNet-50, HarDNet-

68 achieves an inference time reduction by 30%, which

is also a desirable backbone model for object detections

that enhances the accuracy of a SSD to be higher than

using ResNet-101 in PASCAL VOC dataset while the

inference time is also significantly reduced from SSD-

VGG. In summary, in addition to accuracy-over-model-size

and accuracy-over-MACs tradeoffs, we demonstrated that

accuracy-over-DRAM-traffic-for-feature-maps is indeed an

important consideration when designing neural network ar-

chitectures.
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