
978-1-4673-0186-2/12/$31.00 ©2012 IEEE

HardNoC: A Platform to Validate Networks on
Chip through FPGA Prototyping

Guilherme Heck, Ricardo Guazzelli, Fernando
Moraes, Ney Calazans

Faculdade de Informática - PUCRS
Porto Alegre, Brazil

{guilherme.heck, ricardo.guazzelli}@acad.pucrs.br
{fernando.moraes, ney.calazans}@pucrs.br

Rafael Soares

CDTec - UFPel
Pelotas, Brazil

rafael.soares@inf.ufpel.edu.br

Abstract – The use of intrachip buses is no longer a consensus
to build interconnection architectures for complex integrated
circuits. Networks on chip (NoCs) are a choice in several real
designs. However, the distributed nature of NoCs, the huge
amount of wires and interfaces of large NoCs can make sys-
tem/interconnection architecture debugging a nightmare. This
work accelerates the NoC validation process using FPGA
prototyping. HardNoC is a platform based on simple modules
to inject traffic and collect basic statistics of NoCs. It can be
used to early validate NoC designs and to provide initial nu-
merical results for NoC evaluation and design.

Keywords – NoC, Prototyping, FPGA, GALS, Emulation.

I. INTRODUCTION
Networks on chip or NoCs are an emerging paradigm for

communication architectures within large VLSI systems
implemented on a single silicon chip, which are named
Systems on Chip or SoCs. The proposition of NoCs for
modern and future systems on chip capitalizes on the fol-
lowing features: (1) energy efficiency and reliability [1]; (2)
scalability of bandwidth when compared to traditional bus
architectures; (3) reusability; (4) distributed routing deci-
sions [1] [2]. In a NoC-based SoC, modules such as proces-
sor cores, memories and other specialized IP blocks ex-
change packetized data using the NoC as a subsystem for
data transport. Network interfaces, routers and point-to-
point links define a NoC. Debugging NoCs is time-
consuming and complex, especially when the NoC is large.

This paper presents HardNoC, a hardware platform to
facilitate prototyping and evaluating NoCs in hardware.
HardNoC allows traffic programming without hardware
changes. The user feeds HardNoC with data, informing a set
of (synthetic) traffic parameters. Next, the user initiates the
HardNoC platform execution. After execution, the user may
verify if all packets were correctly transmitted and analyze
latency values (minimal, maximal and average).

The effects of specific traffic patterns in system perfor-
mance can be greater than the effect of changing NoC struc-
tural parameters [3]. To account for this, HardNoC allows
exercising NoCs with more than one type of traffic distribu-
tion. The available synthetic traffic distributions are Con-
stant Bit Rate (CBR) and Pareto on-off, which allows eva-
luating NoCs under distinct traffic scenarios.

This paper is organized as follows. Section II describes
related work. Section III describes some NoC assumptions
built in the HardNoC platform, while Section IV describes
the general HardNoC architecture. Section V discusses the
platform traffic configuration and results evaluation. Section

VI presents some experimental results of mapping two quite
distinct NoCs to HardNoC. One is a well known synchron-
ous NoC and another is a globally asynchronous locally
synchronous (GALS) NoC designed for low power con-
sumption. Finally, Section VII presents a set of conclusions
and describes relevant ongoing work.

II. RELATED WORK
Several approaches have been developed to improve the

performance of NoC evaluation. Some of these are based on
hardware emulation, particularly through the use of FPGAs,
to prevent the high costs in simulation time incurred by the
use of HDL software simulators.

Wen et al. for example [4], developed a platform that
generates online traffic for testing the performance of differ-
ent NoC architectures. They suggest the use of IP modules
called online configurable traffic generators (OCTGs) that
emulate the local IP connected to each router in a 2D mesh
NoC. According to the authors, the platform allows the user
to directly set and reconfigure traffic generators through a
JTAG port. This feature avoids stopping the prototyping
session to restart a new configuration. Together with the
NoC and OCTGs connected to it, the platform uses a dedi-
cated configuration engine based on an Altera Nios II soft
core processor. This interface acts as an intermediary be-
tween the JTAG and the OCTG modules. The implementa-
tion uses Altera Stratix II FPGAs. The paper describes an
experiment prototype with a 3x3 NoC. Results compare
injection rates to both packet latency and throughput, for
different traffic scenarios produced by OCTGs. Also, the
system supports several traffic modes and allows selecting
the routing algorithm, both at runtime. But using embedded
processors may lead to significant area overhead, reducing
the maximum NoC dimension that is viable to emulate.

Lotlikar et al. [5] propose AcENoCs, a mixed software-
hardware environment for NoC emulation. In the software
part, the platform may use one or two Xilinx Microblaze
soft core processors. The number of processors depends on
the application for which to generate traffic. The hardware
consists in a register bank that acts as interface between the
software environment and the NOC under verification.
AcENoCs allows selecting either the use of uniform traffic
generation by the soft core or specific application traces
stored in memory. According to the authors, it is possible to
run simulations of NoCs with up to dimension 5x5, when
using a Xilinx XC5VLX110 Virtex 5 FPGA. AcENoCs
authors report speedups in the range of 10,000 to 12,000
times when comparing emulation and HDL simulation.
Nonetheless the proposed architecture is subject to reduced

emulation speed due to the centralized software-based traffic
generation scheme. Because of this the authors suggest the
use of a second processor to satisfy the throughput require-
ments for demanding traffic scenarios. A distinctive feature
of AcENoCs is the support to GALS as well as synchronous
NoCs. Clock generation relies on software which is flexible,
but potentially slow. Also, the authors mention that clock
generation is limited to mesochronous schemes, where all
clock frequencies are the same, but phases vary. Unfortu-
nately, this is not quite generic for GALS systems, since it
does not support the use of arbitrary frequencies in the NoC.

Tan et al. [6] present a design flow to generate FPGA
emulation platforms for NoCs. The flow generates a NoC on
FPGA for traffic evaluation from parameterized synchron-
ous NoC structures, given that the NoC HDL description is
available and can be implemented on FPGAs. It is possible
to choose the number of routers, buffer sizes, routing algo-
rithms, and select which nodes will receive traffic generators
and traffic receptors. Experiments use the Xilinx ML506
evaluation board, with a XC5VSX50 Virtex 5 Xilinx FPGA.
Results are comparisons of area overhead and package la-
tency using different routing algorithms for the Hermes NoC
[7]. The goal of comparisons seems to be to decide the best
routing algorithm for a specific application. Unfortunately,
no detail is available on how traffic generators can be confi-
gured or on how to collect data from traffic receptors.

Hou et al. [8] show a performance evaluation system for
virtual channel NoCs in real applications. The authors pro-
pose a module attached to routers that monitor data traveling
through the router. It allows the user to evaluate perfor-
mance parameters such as average latency and throughput.
The data presented in these monitors can be accessed
through a JTAG connection. Data are generated by six
ARM cores (one at each node) which inject real traffic pro-
vided by a real application running on each core. To proto-
type a 2x3 NoC with two virtual channels the authors em-
ploy an Altera EP2S180 Stratix II FPGA device. Practical
results executing multiple JPEG applications simultaneously
demonstrate that the use of virtual channels improves
throughput by 65%. Again high area overhead is caused by
each ARM local IP. Accordingly, the NoC size is small and
the approach is clearly costly to emulate large NoCs.

Unlike most reviewed emulation systems, HardNoC
does not waste FPGA area with soft or hard processors. It
uses small and simple dedicated traffic generators. Although
this certainly reduces flexibility, the described evolution of
the approach does not (See Section VII). Another advantage
is the straightforward programming and results collection
scheme. It employs a UART port connected to the NoC
under emulation, coupled to the use of very simple data
structures to interact with the external environment. This
potentially allows that HardNoC operates at speeds closer to
those of the final system, compared to other approaches.

III. NOC ASSUMPTIONS
One of the goals of the HardNoC platform is to support

different NoC architectures. Obviously, it is not possible to
support any NoC structure. Some architectural assumptions
define the class of NoCs supported: (i) 2D direct topologies
such as 2D mesh or 2D torus, given the used traffic address
generation scheme; (ii) 16-bit flit size, due to the format of
traffic generation; (iii) credit-based control flow; (iv) priori-
ties, the platform supports up to two flow priorities. All such

assumptions are to be overcome in future versions of the
platform, by developing a parameterizable platform genera-
tion tool, annex to the ATLAS NoC generation-validation
environment [9] [10]. The NoC under prototyping may, on
the other hand, use any routing algorithm, arbitration policy,
buffering scheme and router control scheme (centralized or
distributed). Thus, HardNoC is a good system to evaluate
the effect of several parameters in state of the art NoCs.

IV. HARDNOC ARCHITECTURE
Figure 1 illustrates the HardNoC architecture, through an

instance implementation. The instance has a 2x3 2D mesh
NoC. It includes a Serial IP providing bidirectional commu-
nication between the system and a host, and several Injec-
tor-Collector IPs, for sending and receiving packets during
the traffic execution phase. The number of Injector-
Collector IPs is a function of the NoC size.

rxd

txd

Host Computer

HardNoC System

FPGA

NoC

start

Injector-
Collector

IP 01

Injector-
Collector

IP 21

Injector-
Collector

IP 10

Injector-
Collector

IP 20

Injector-
Collector

IP 11

Serial
IP 00

Figure 1. HardNoC system block diagram.

The physical external interface of HardNoC is very sim-
ple. It comprises only four wires: reset and clock for initiali-
zation and synchronization, and rxd and txd to provide an
RS-232 bidirectional, serial interface to the host computer.

A. Serial IP
The Serial IP Core follows an RS-232 protocol using a

standard serial interface. Figure 2 presents the Serial IP core
two external interfaces. The signals at the top of the Figure
connect the module with the host computer through FPGA
pins. The signals at the bottom of the Figure, except the start
one, connect the Serial IP Core with the NoC. Notice that
this is just an example interface for a specific NoC. A dif-
ferent interface is available for each supported NoC. The
start signal is a sideband signal that goes from the Serial IP
Core to all Injector-Collectors IPs. The start signal synchro-
nizes the traffic injection in all routers. This global signal
ensures that all Injector-Collector IPs start their respective
traffic generation processes at the same time. After the syn-
chronization, interactions with the Injector-Collectors IPs
must be avoided until the end of the simulation. This avoids
that the Serial IP use the NoC architecture to provide com-
munication between the user and the Injector-Collectors IPs.
Not following this procedure may corrupt traffic evaluation
during simulation. The basic function of the Serial IP is to
assemble and disassemble NoC packets. When information
comes from the host, the Serial IP may create a valid NoC
packet. When the Serial IP receives a flit from the NoC it
disassembles this flit and sends it serially to the host.

Serial IP

txd rxd

tx data_out credit_i data_in credit_orx

16 16

lane_tx lane_rx

2 2 2 2

clock_tx clock_rx start

Figure 2. Serial IP two external interfaces.

Currently, the Serial IP accepts four command types.
The host computer originates three of these: (1) read, a
request for obtaining the contents of a specific memory
region inside an Injector-Collector IP; (2) write, used for
writing data to the Injector-Collector IP local memory; (3)
start, which initializes the platform traffic execution. The
fourth command accepted by the serial IP comes from the
NoC and is called read return. This command contains the
response to a read command generated by the host-Serial IP.

B. Injector-Collector IP
The Injector-Collector IP is a master/slave core that

transmits and receives packets from the NoC. Its structure
contains a Traffic Injector (TI) Module, a Traffic Collector
(TC) Module and a Local Memory Block, as Figure 3 de-
picts. The TC module is responsible for receiving packets
from other cores, computing packet latency values and stor-
ing theses values. The TI module is responsible for reading
traffic parameters, generating packets and sending these
packets to the NoC.

The Injector-Collector IP has a Clock Cycles Counter
(CCC) used to compute latency. This counter works as a
general reference clock to all Injector-Collector IPs in the
HardNoC system. All CCCs receive the same global start
signal so that they are always synchronized to each other,
even if different routers and/or Injector-Collector IPs display
any combination of clock frequencies and phases. This is
essential to enable a generic capability to deal with GALS
systems. The Local Memory Block stores the parameters of
the traffic to be injected by the TI in each router during
traffic execution. Figure 3 also shows the external interface
of the Injector-Collector, including the global start signal,
the clock_ref signal and the two router interfaces (TX/RX).

Injector-
Collector

IP
tx data_out lane_rx data_in lane_tx rx credit_i clock_rx

Clock Cycles
Counter

Simulation
Results

Traffic
Parameters
(defined by user)

data
read/write/return_read

Traffic
Collector

Traffic
Injector

data

BlockRAM
start

16 2 2 162 2
credit_oclock_tx

clock_ref

TX RX

Figure 3. Injector-Collector IP external interface and internal structure.

The Injector-Collector IP accepts four command types,
encapsulated in NoC packets:
• write: writes the local memory with data sent from the

Serial IP.
• data: used at traffic execution time. The Injector-

Collector IP may receive or transmit data packets.
• read: command issued by the Serial IP requesting con-

tents from the local memory.

• return read: response to a read request by the Serial IP.
When a given router receives a data packet, the TC

module in the Injector-Collector IP computes the packet
latency according to Equation (1).

 (1)

The insertion time corresponds to the time instant in
which the packet is generated and is ready to enter the NoC.
The source IP core includes this time in the data packet
payload. The reception time corresponds to the CCC value
when the last flit of the packet leaves the NoC at the destina-
tion Injector-Collector IP. The target IP of the packet cap-
tures this time and computes the received packet latency.

After calculating the packet latency, the Injector-
Collector IP updates the values of accumulated, maximum
and minimal latency and the number of received packets.
These values are stored in four 64-bit word registers (located
in the 16 lasts positions in the IP memory map).

V. TRAFFIC CONFIGURATION AND EVALUATION
The Injector-Collector IP may generate two traffic dis-

tributions: Constant Bit Rate (CBR) and Pareto on-off. The
CBR model generates packets at a fixed rate. Applications
such as digital non-compacted voice, audio and non-
compacted video are typical examples of CBR traffic. The
CBR traffic distribution is defined according to Figure 4,
and the resulting bandwidth (in bits per second or bps) is
obtained according to equation (2), where: (i) packet_size is
the size of the packet in flits; (ii) flit_width is given in bits
(16 bits for HardNoC); (iii) fc is the number of clock cycles
to transmit one flit (1 in HardNoc); (iv) idle_time, interval
between consecutive packets; (v) T, clock period.

Ttimeidlefcsizepacket
widthflitsizepacketbandwidth

∗+∗
∗=

)_)_((
)__((2)

Figure 4. Definition of parameters describing CBR traffic generation.

The Pareto distribution is an on-off process, which alter-
nate periods of traffic generation activity and inactivity, as
Figure 5 depicts. An on-off model using Pareto distribution
function is useful to characterize applications like MPEG-2
video and internet traffic. During activity periods, the traffic
source produces fixed-length packets at regular intervals,
while during inactive periods there is no packet generation.
The packet size and the number of packets at each burst may
be defined for each Injector-Collector IP, and the length of
the (ON+OFF) period is parameterizable.

time
(cycles)

P0 P1 P2 P3 P4 P5 P6 P7

ON period OFF period ON period

burst #0 burst #1

Figure 5. Definition of parameters describing the on-off traffic model.

A. Platform Initialization
The process of programming HardNoC has four steps. In

the first, the reset signal is activated to initialize the plat-
form. In the second step, the user adjusts the transmis-
sion/reception data rate through the host. To achieve this,
the host sends one or more bytes with the hexadecimal value
x“55” (binary pattern “01010101”) to the Serial IP. This
procedure is needed each time the HardNoC is initialized. In
the third step, the host writes traffic parameters in the Injec-
tor-Collectors IP local memories using the write command.
The first address (Address 0) defines the traffic distribution
type and the second address (Address 1) informs the number
of times to generate that traffic. The other parameters de-
pend on the adopted traffic distribution (CBR or Pareto on-
off). Refer to Figure 6 and Figure 7.

Each CBR traffic specification may contain up to n dif-
ferent flows, with n stored in the third position of memory
(Address 2). The parameters that define each flow are:

• Flow priority: assume values 0 (low) or 1 (high);
• Flow target: target Injector-Collector address to which

this Injector-Collector sends the flow;
• Packet size;
• Number of packets of the current flow;
• Idle time (IT): number of clock cycles between the

sending of two consecutive packets (see Figure 4).

Address Data Description
0 0 CBR distribution
1 5 Number of repetitions
2 2 Number of flows
3 0 Flow priority
4 11 Flow target
5 20 Packet size
6 20 Number of packets
7 0 Idle time
8 1 Flow priority
9 11 Flow target

10 50 Packet size
11 10 Number of packets
12 50 Idle time

1

2

5x

Figure 6. Example memory organization to specify a CBR traffic. The
instance describes a traffic that repeats 5 times two distinct CBR flows,

one of low priority and one with high priority.

The Pareto traffic comprises only one flow type. Figure
7 displays an example flow. In Pareto distributions, the
insertion time is stored in memory and directly included in
each data packet, instead of being calculated as in CBR
traffic distributions. The relevant parameters are:

Address Data Description
0 1 Pareto distribution
1 5 Number of repetitions
2 10 Number of packets
3 1 Flow priority
4 11 Flow target
5 50 Packet size
6 6 Insertion time
7 106 Insertion time
8 206 Insertion time
9 306 Insertion time

10 406 Insertion time
11 506 Insertion time
12 606 Insertion time
13 706 Insertion time
14 2350 Insertion time
15 2450 Insertion time

10

5x

Figure 7. Example memory organization to specify a Pareto on-off traffic.

• Number of packets of the current flow;
• Flow priority: assume values 0 (low) or 1 (high);

• Flow target: target IP core address to which the flow
will be sent;

• Packet size;
• Insertion time: time at which the packet was created.

The fourth step of using HardNoC consists initializing
the traffic execution by Injector-Collector IPs. For this, the
Serial IP must receive the start command from the host,
which causes the activation of the start global signal. As a
result, all Injector-Collectors begin to produce and send
packets (traffic) to the NoC.

B. Traffic Collection
After the HardNoC traffic execution is done, the user

may collect statistical data produced by the platform. As
mentioned before, the accumulated, maximum and minimal
latency, as well as the number of received packets are stored
in the last 16 local memory of the Injector-Collector IP. In
this way, the host requests this address range for each Injec-
tor-Collector IP. Figure 8 shows the low level graphic inter-
face developed to work with the serial interface. The exam-
ple shows the software requesting data from the Injector-
Collector IP 11 and receiving latency data and the number
of received packets.

minimal latency

number of received packets

maximum latency
accumulated latency

Figure 8. Serial software interface sending the debug file to the Injector-

Collector IP 11 and receiving its response information.

VI. EXPERIMENTS
This Section shows two case studies of NoC evaluation

with HardNoC. The first is Hermes-2VC [11] a synchronous
NoC with two virtual channels per port, generated by the
Atlas environment [10]. The second one is Hermes-GLP, a
GALS NoC [12] designed for low power applications.

A. Hermes-2VC validation
This validation uses a 2x3 instance of the Hermes-2VC

NoC. Hermes is a parameterizable infrastructure used to
implement low area overhead packet switching NoCs with
2D mesh topology, allowing the selection of flit size, buffer
depth, and number of virtual channels (VCs), among other
parameters [7]. Figure 9 shows practical data on the physical
synthesis of the developed prototype.

Device Utilization Summary:

Selected Device: 2vp30ff896-7

Number of occupied Slices: 11,923 out of 13,696 87%
Total Number Slice Registers: 7,471 out of 27,392 27%
Number of 4 input LUTs: 20,291 out of 27,392 74%
 Number used as logic: 17,510
 Number used as a route-thru: 1,501
 Number used for Dual Port RAMs: 1,280
Number of bonded IOBs: 4 out of 556 1%
Number of Block RAMs: 10 out of 136 7%
Number of GCLKs: 4 out of 16 25%
Number of DCMs: 1 out of 8 12%

Figure 9. HardNoC physical synthesis report for a 2x3 Hermes-2VC.

The prototype used a Xilinx University Program Virtex-
II Pro Development System (XUP-V2PRO) [13]. This board
is built around one Xilinx XC2VP30 Virtex-II Pro FPGA.
The HardNoC system used around 87% of the available
slices and around 74% LUTs of the FPGA device, as depicts
the physical synthesis area report of Figure 9.

One important step for achieving good prototyping re-
sults is to define the chip floorplan. Figure 10 illustrates the
HardNoC layout after applying floorplan constraints and
performing the physical synthesis. Each color corresponds
to a given HardNoC IP.

Hermes-2VC
NoC

Injector-
Collector

10

Injector-
Collector

20

Injector-
Collector

11

Injector-
Collector

21

Injector-
Collector

01

Serial-IP
00

Figure 10. HardNoC final IP floorplanning after producing constraints and
physically synthesizing the design. The drawing is illustrative of a typical-
ly correct synthesis process. The grey rectangles in the middle of the chip

represent the (unused) PowerPC processors.

To test functionality the HardNoC was programmed
with the simple traffic configuration presented in Figure 11:
(1) Injector-Collector IP 01 transmits packets to Injector-
Collector IP 11, which transmits packets to Injector-
Collector IP 01; (2) Injector-Collector IP 10 transmits pack-
ets to Injector-Collector IP 20, which transmits packets to
the Injector-Collector IP 10; (3) Injector-Collector IP 21
transmits packets to Injector-Collector IP 10.

All Injector-Collectors IPs were programmed with a
CBR traffic that contains the parameters presented in Figure
6, only changing the flow target for each distinct Injector-
Collector. The obtained performance results of the test ap-
pear in Table I. All results are correct, given the injected
traffic. Note that to improve the predictability of the test,
there is no traffic conflict present, except at the local port of
router 10. We immediately notice the effect of such a con-
flict, a large increase in average and maximum latencies for
packets arriving at router 10.

20 10 00

21 01 11

Figure 11. Example of traffic spatial distribution for Injector-Collector IPs

in HardNoC.

TABLE I. RESULTS OBTAINED FROM THE APPLIED TRAFFIC. ALL RESULTS
ARE CORRECT.

Tester IP Description Value

10

Number of Packets 300
Minimal Latency 32
Average Latency 112
Maximum Latency 789

20

Number of Packets 150
Minimal Latency 32
Average Latency 53
Maximum Latency 75

01

Number of Packets 150
Minimal Latency 32
Average Latency 52
Maximum Latency 73

11

Number of Packets 150
Minimal Latency 32
Average Latency 53
Maximum Latency 78

21

Number of Packets 0
Minimal Latency 0
Average Latency 0
Maximum Latency 0

Using FPGA prototyping should improve execution time
significantly. To measure this, a simulation of the same
traffic distribution was run using Modelsim 10.0c in a 4-
core, 3.2 GHz Xeon CPU with 32GB RAM, running Red-
Hat 5.1. The speedup of the XUP-V2PRO prototype is
around 2,200 times, compared to the HDL simulation time.

B. Hermes-GLP validation
As a second validation case study, a 3x3 Hermes-GLP

NoC with 2 priority levels was prototyped using the Hard-
NoC. Each router receives two different clock frequencies
and operates at the minimum frequency allowed by the
combination of packet priorities at its input ports. If no
packet is present at the inputs, the router enters clock gating.
If only low priority packets are entering the router chooses
the lowest operating frequency to operate. Otherwise it uses
the highest frequency. The concept is extendable to any
number of clocks. Every Hermes-GLP router has bi-
synchronous buffers at each of its ports. The HardNoC pro-
totype employed this time was a Xilinx ML505 Virtex-5
Evaluation Platform. This board is built around a
XC5VLX50T Virtex-5 FPGA. The HardNoC system used
around 80% of the available slices and around 67% of
FPGA LUTs, as Figure 12 details.

Device Utilization Summary:

Selected Device: xc5vlx50tffg1136-1

Number of BSCANs 1 out of 4 25%
Number of BUFGs 6 out of 32 18%
Number of BUFGCTRLs 9 out of 32 28%
Number of DCM_ADVs 1 out of 12 8%
Number of ILOGICs 1 out of 560 1%
 Number of External IOBs 4 out of 480 1%
 Number of LOCed IOBs 4 out of 4 100%

Number of OLOGICs 1 out of 560 1%
Number of RAMB18x2s 9 out of 60 15%
Number of Slices 5760 out 7200 80%
Number of Slices Registers 14125 out of 28800 49%
 Number used as Flip Flops 14124
 Number used as Latches 1
 Number used as LatchThrus 0

Number of Slices LUTS 19439 out of 28800 67%
Number of Slices LUT-Flip Flop pairs 21068 out of 28800 73%

Figure 12. HardNoC physical synthesis report for the 3x3 Hermes-GLP.

As in the previous experiment, a floorplan was made to
enable an efficient implementation. Figure 13 presents the
employed floorplan. The main difference between the two
floorplans is the NoC position. While in the first version the
NoC is a single block, the Hermes-GLP prototype used a tile
architecture with each router and local IP forming a module.

Figure 13. HardNoC final IP placement as a result of using floorplanning

constraints. Each block contains one IP and its respective router.

For this test, a different traffic model was programmed.
Figure 14 shows the corresponding spatial traffic distribu-
tion. Only two Injector-Collector IPs were programmed: (i)
IP 12 transmits packets to IP 10 with low priority; (ii) IP 21
transmits packets to Injector-Collector IP 01 with high prior-
ity. Traffic from IP 12 starts first. Next, starts the traffic
from IP 21. The distribution is such that at some moment
both traffics pass simultaneously by router 11. Also, the
traffic from IP 21 ends first. When router 11 receives pack-
ets only from IP 12, it will work at the lowest frequency,
because it is dealing only with low priority packets. When
router 11 receives packets from both IPs, the highest fre-
quency is used. During the execution routers 00, 02, 22 and
20 are under clock gating, thus dissipating the least power.

20 1000

21 01 11

02 12 22

Figure 14. Sender/receiver relationship graph. The green (vertical) traffic

is low priority, while the blue (horizontal) is high priority. IP 00 is the
Serial IP.

The Injector-Collector IPs 12 and 21 have the following
parameters: (1) Traffic distribution: uniform; (2) Repeti-
tions: 10; (3) Packet size: 200; (4) Number of packets: 50;
(5) Idle time: 200. Table II presents the expected and meas-
ured performance results of the test. Using the same simula-
tion setup described in Section VI.A led to a speedup of
around 7,000 times, with regard to HDL simulation.

TABLE II. EXPECTED RESULTS OF THE TEST.

Tester IP Description Value

01

Number of Packets 500
Minimal Latency 232
Average Latency 233
Maximum Latency 234

10

Number of Packets 500
Minimal Latency 234
Average Latency 235
Maximum Latency 242

VII. CONCLUSIONS AND FUTURE WORK
This paper presented HardNoC, a simple FPGA-based

prototyping platform for NoCs. It was used to validate two

very distinct NoC architectures. Avoiding the use of soft
processors for traffic injection/collection allows increment-
ing the dimension of NoCs that can be emulated.

This first approach of NoC prototyping is evolving in
several directions. First the next version of HardNoC will
support the traffic files generated by the Atlas environment.
It consists in changing Injector-Collector IPs from traffic
injectors to mere injectors-collectors, which read packets
annotated with injection timestamps and sends them to the
NoC. This simplifies IPs further, but requires larger IP
memories. Another ongoing change in HardNoC is substi-
tuting the communication interface from a slow serial inter-
face to a TCP/IP Ethernet port, for improving host commu-
nication speed and enable access to HardNoC from the
Internet. It would be interesting a non-invasive interface,
which allows the user to set and collect information without
interference on the simulation besides adding a new Injec-
tor-Collector IP (replacing the Serial IP). Automating the
HardNoC instance generation process is another goal, to
allow parameterizing values as flit size, topology range, and
flow control.

ACKNOWLEDGEMENTS
This work is partially supported by the CNPq-PNM (un-

der grant 134878/2010-8), and by the BPA-PUCRS Pro-
gram. Professors Moraes and Calazans also acknowledge
the CNPq support under grants 301599/2009-2 and
309255/2008-2, respectively. Authors would like to ac-
knowledge the support granted by CNPq to the INCT-SEC
(National Institute of Science and Technology – Critical
Embedded Systems – Brazil), process no. 573963/2008-8.

REFERENCES
[1] Benini, L; De Micheli, G. “Networks on chip: a new SoC paradigm”,

IEEE Computer, 35(1), pp. 70-78. Jan. 2002.
[2] Guerrier, P.; Greiner, A. “A generic architecture for on-chip packet-

switched interconnections”, in DATE, pp.250-256. Mar. 2000.
[3] Duato, J.; Yalamanchili, S.; Ni, L. “Interconnection Networks”,

Elsevier Science, 600p., 2002.
[4] Wen, H.; Du, C.; Zhang, D.; Geng, L.; Gao, M.; Chen, Y.; Verhoeff,

T. “Design of An On-Line Configurable Traffic Generator for NoC”,
in ASID, pp. 556-559, 2009.

[5] Lotlikar, S.; Pai, V.; Gratz, P. “AcENoCs: A configurable HW/SW
Platform for FPGA Accelerated NoC Emulation”, in VLSI Design,
pp.147-152, 2011.

[6] Tan, J.; Fresse, V.; Rousseau, F. “Generation of emulation platforms
for NoC exploration on FPGA”, in RSP, pp. 186-192, 2011.

[7] Moraes, F. et al. “HERMES: an Infrastructure for Low Area Over-
head Packet-switching Networks on Chip”, Integration, the VLSI
Journal, vol. 38, no. 1. pp. 69-93, Oct. 2004.

[8] Hou, N.; Zhang, D.; Du, G.; Song, Y.; Wen, H. “Design and perfor-
mance evaluation of virtual-channel based NoC”, in ASID, pp. 294-
298, 2009.

[9] Ost, L. et al. “MAIA - A Framework for Networks on Chip Genera-
tion and Verification”. In: ASP-DAC, pp. 49-52, 2005.

[10] GAPH – Grupo de Apoio ao Projeto de Hardware. “Atlas – An
environment for NoC Generation and Evaluation”. Available at
http://www.inf.pucrs.br/~gaph/AtlasHtml/AtlasIndex_us.html,
captured in September, 2008.

[11] Mello, A. et al. “Virtual Channels in Networks on Chip: Implementa-
tion and Evaluation on Hermes NoC”. In: SBCCI, pp. 178-183,
2005.

[12] Pontes, J.; Moreira, M.; Soares, R.; Calazans, N. “Hermes-GLP: A
GALS Network on Chip Router with Power Control Techniques”. in
ISVLSI, pp. 347-352, 2008.

[13] Xilinx, Inc. “Xilinx University Program Virtex-II Pro Development
System”. Hardware Reference Manual, UG069, V1.0, March, 2005,
138 p.

