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ABSTRACT In order to facilitate flexible network service virtualization and migration, network func-
tions (NFs) are increasingly executed by software modules as so-called ‘‘softwarized NFs’’ on General-
Purpose Computing (GPC) platforms and infrastructures. GPC platforms are not specifically designed
to efficiently execute NFs with their typically intense Input/Output (I/O) demands. Recently, numerous
hardware-based accelerations have been developed to augment GPC platforms and infrastructures, e.g.,
the central processing unit (CPU) and memory, to efficiently execute NFs. This article comprehensively
surveys hardware-accelerated platforms and infrastructures for executing softwarized NFs. This survey
covers both commercial products, which we consider to be enabling technologies, as well as relevant research
studies. We have organized the survey into the main categories of enabling technologies and research studies
on hardware accelerations for the CPU, the memory, and the interconnects (e.g., between CPU andmemory),
as well as custom and dedicated hardware accelerators (that are embedded on the platforms); furthermore,
we survey hardware-accelerated infrastructures that connect GPC platforms to networks (e.g., smart network
interface cards). We find that the CPU hardware accelerations have mainly focused on extended instruction
sets and CPU clock adjustments, as well as cache coherency. Hardware accelerated interconnects have been
developed for on-chip and chip-to-chip connections. Our comprehensive up-to-date survey identifies the
main trade-offs and limitations of the existing hardware-accelerated platforms and infrastructures for NFs
and outlines directions for future research.

INDEX TERMS Central processing unit (CPU), hardware accelerator, interconnect, memory, software
defined networking (SDN), virtualized network function (VNF).

I. INTRODUCTION

A. TREND TO RUN SOFTWARIZED NETWORK FUNCTIONS

ON GENERAL-PURPOSE COMPUTING (GPC) PLATFORMS

Traditionally, the term ‘‘network function (NF)’’ applied
primarily to functions of the lower network protocol lay-
ers, i.e., mainly the data link layer (e.g., for the data link
layer frame switching NF, virtual local area network NF,
and medium access control security NF) and the network
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layer (e.g., for the datagram routing NF and Internet Protocol
firewall NF). These low-level NFs were usually executed
in specially designed dedicated (and typically proprietary)
networking equipment, such as switches, routers, and gate-
ways. Recently, the definition of an NF has been broadened
to describe networking related tasks spanning from low-
level frame switching and Internet Protocol (IP) routing to
high-level cloud applications [1]–[3]. The area of network-
ing currently undergoes an unprecedented transformation in
moving towards implementing NFs as software entities—
so-called ‘‘softwarized NFs’’—that run on General-Purpose
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FIGURE 1. Illustration of GPC platform hardware to process Network Functions (NFs). An NF can be implemented as a Bare Metal NF, Application NF (not
shown), Virtual NF (VNF), or Container NF (CNF).

Computing (GPC) platforms and infrastructures as opposed
to dedicated networking equipment hardware.
In order to motivate this survey on hardware-accelerated

platforms and infrastructures for softwarized NFs, we briefly
introduce the basic concepts of softwarized NFs, includ-
ing their computation and management on GPC platforms
and infrastructures, in the following paragraphs. We then
explain the need for hardware-acceleration of softwarized
NFs on GPC platforms and infrastructures in Section I-B,
followed by an overview of the contributions of this survey
in Section I-C.

1) NETWORK FUNCTIONS (NFs) AND NETWORK

FUNCTION VIRTUALIZATION (NFV)

The term ‘‘Network Function (NF)’’ broadly encompasses
the compute operations (both logical [e.g., bitwise AND
or OR] and mathematical scalar and vector [e.g., integer and
floating point arithmetic]) related either directly or indirectly
to data link layer (Layer 2) frames, network layer (Layer 3)
datagrams or packets, and network application data (higher
protocol layers above Layer 3). For instance, a packet filter
is a direct logical NF that compares header data to allow or
block packets for further processing, while a jitter and latency
estimator function is an example of an indirect arithmetic NF.
An NF that requires dedicated processing with a strict dead-
line, e.g., an NF to verify a medium access control (MAC)
frame error through a Cyclic Redundancy Coding (CRC)
check, is preferably implemented as a hardware component.
On the other hand, an NF with relaxed timing requirements,
e.g., TCP congestion control, can be implemented as a soft-
ware entity.

The push towards ‘‘softwarized NFs’’ is to reduce the hard-
ware dependencies of NFs for function implementation so as
to maximize the flexibility for operations, e.g., to allow for
the flexible scaling andmigration of NF services. Softwarized
NFs enable compute operations to be implemented as generic
executing programs in the form of applications that can be run
on a traditional OS or isolated environments, such as Virtual
Machines (VMs) [4] or containers [5], on GPC platforms.
Analogous to the broad term ‘‘Network Function (NF)’’,
the term ‘‘Network Function Virtualization (NFV)’’ broadly
refers to NF implementation as a virtualized entity, typically
as an application (which itself could run inside a container),
and running inside a VM (see Fig. 1). Thus, NFV is an
implementation methodology of an NF; while the term NF
broadly refers to compute operations related to general packet
processing. Moreover, the term ‘‘Virtual Network Function
(VNF)’’ refers to an NF that is implemented with the NFV
methodology.

2) ROLE OF SOFTWARE DEFINED NETWORKING (SDN)

IN THE MANAGEMENT OF NFs

Software Defined Networking (SDN) [6]–[9] is a paradigm
in which a logically centralized software entity (i.e., the SDN
controller) defines the packet processing functions on a
packet forwarding node. The notion of centralized decision
making for the function implementation and configuration
of forwarding nodes implies that the network control plane
(which makes the decisions on the packet processing) is
decoupled from the network data plane (which forwards the
packets). Extending the principles of SDN from forwarding
nodes to the broad notion of compute nodes can achieve
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more flexibilities in the deployment of NFs onGPC platforms
in terms of scalability and management [10], [11]. More
precisely, SDN can be applied for two primary purposes:
i) macro-scale NF deployments, where the decisions involve
selecting a specific platform for NF deployments based on
decision factors, such as physical location, capabilities, and
availability, and ii) micro-scale NF deployments, where the
decisions involve reconfiguring the NF parameters during
on-going operations based on run-time requirements, such as
traffic loads, failures and their restoration, as well as resource
utilization.

3) COMPUTE NODES FOR RUNNING NFs

In general, the compute nodes running theNFs as applications
(VMs and containers) can be deployed on platform installa-
tions ranging from large installations with high platform den-
sities (e.g., cloud and data-centers) to distributed and singular
platform installations, such as remote-gateways, clients, and
mobile nodes. The cloud-native approach [12] is the most
common method of managing the platform installations for
the deployment of NFs that are centrally managed with SDN
principles. While the cloud-native approach has proven to be
efficient for resource management in cloud and data center
deployments of NFs, the applicability of the cloud-native
approach to remote gateways, clients, and mobile nodes is
yet to be investigated [13].
The wide-spread adoption of Multi-Access Edge Comput-

ing (MEC) [14] with cloud-native management is accelerat-
ing the trend towards softwarized NFs, which run on GPC
platforms. The MEC aims to deliver low-latency services by
bringing computing platforms closer to the users [15]–[19].
A key MEC implementation requirement is to inherit the
flexibility of hosting a variety of NFs as opposed to a spe-
cific dedicated NF. A GPC platform inherently provides
the flexibility to implement NFs as software entities that
can easily be modified and managed, such as applications,
Virtual Machines (VMs), and containers [20]. In a typical
MEC node deployment, the GPC platform is virtualized by
a hypervisor [21], e.g., Linux Kernel-based Virtual Machine
(KVM), Microsoft HyperV, or VMware ESXi, and then NFs
are instantiated as a VM or container managed by the hyper-
visor. The flexibility of an MEC is achieved by the process
of migrating applications, VMs, and containers to different
locations by an orchestration function [22].

4) MANAGEMENT OF NFs

The NF deployment on a compute node (i.e., physical plat-
form) is typically managed through a logically centralized
decision making entity referred to as ‘‘Orchestrator’’. Based
on SDN principles, the orchestrator defines and sends orches-
tration directives to the applications, VMs, and containers to
run on compute nodes [11], [23]–[28]. OpenStack [29] and
Kubernetes [30], [31] are the mostly commonly adopted ded-
icated orchestration frameworks in the cloud and data-center
management of resources and applications, including VMs
and containers. In addition to flexibility, the softwarization

and virtualization of NFs can reduce CAPEX and OPEX of
the network operator. In particular, the network operator can
upgrade, install, and configure the network with a centralized
control entity. Thus, MEC and virtualization are seen as key
building blocks of future network infrastructures, while SDN
enables efficient network service management.

B. NEED FOR NF HARDWARE ACCELERATION

ON GPC PLATFORM

The NF softwarization makes the overall NF development,
deployment, and performance characterization at run time
more challenging [11]. Softwarized NFs rely on GPC central
processing units (CPUs) to accomplish computations and
data movements. For instance, data may need to be moved
between input/output (I/O) devices, e.g., Network Interface
Cards (NICs), and system memory. However, the GPC plat-
forms, such as the Intel R© x86–64 [32] and AMD R© [33]
CPU platforms, are not natively optimized to run NFs that
include routine packet processing procedures across the I/O
path [34]–[37]. The shortcomings of GPC platforms for
NF packet processing have motivated the development of a
variety of software and hardware acceleration approaches,
such as the Data Plane Development Kit (DPDK) [38],
Field Programmable Gate Array (FPGA), Graphics Process-
ing Unit (GPU), and Application Specific Integrated Circuit
(ASIC) [39], to relieve the hardware CPU from compute-
intensive tasks generated by the NFs, such as data link layer
frame switching, IP look-up, and encryption [40].

The deployment of softwarized NFs on GPC platforms
achieves a high degree of flexibility. However, it is important
to note that critical NF functionalities can be compromised
if the hardware and software functional limitations as well
as operational characteristics and capabilities are not care-
fully considered. Generally, the dynamic CPU characteris-
tics can vary over time. For instance, the cache coherency
during memory accesses can introduce highly variable
(non-deterministic) latencies in NF packet processing [41].
Moreover, the CPU power and thermal characteristics can
vary the base operating frequency, introducing variable pro-
cessing time behaviors [42]–[44]. Therefore, the softwariza-
tion of NFs must carefully consider the various performance
implications of NF acceleration designs to ensure appropriate
performance levels of NFs deployed on hardware-accelerated
GPC platforms. These complex NF performance implications
of hardware-accelerated GPC platforms and infrastructures
motivate the comprehensive survey of this topic area so as to
provide a foundation for the further advancement of the tech-
nology development and research on hardware-accelerated
platforms and infrastructures for NFs.

C. CONTRIBUTIONS AND ORGANIZATION

OF THIS SURVEY

In order to inform the design of hardware acceleration for the
processing of softwarized NFs on GPC platforms, this arti-
cle comprehensively surveys the relevant existing enabling
technologies and research studies. Generally, the processing
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of a software application task is essentially achieved by a set
of hardware interactions. Therefore, understanding hardware
features provides a key advantage in the design of software
applications. In contrast to a generic software application,
an NF involves typically extensive I/O interactions, thus,
the NF compute processing largely depends on hardware
support to achieve high throughput and short latency for NF
packet processing. However, the NF implementation relies
not only on I/O interactions for packet transmission and
reception, but also requires memory for tunneling and encap-
sulation, storage for applications (e.g., store-and-forwarding
of media), as well as computing (e.g., for cryptography and
compression).
This article provides an authoritative up-to-date survey of

the hardware-accelerated platforms and infrastructures that
speed up the processing of NF applications. The term ‘‘plat-
form’’ as used in this survey article consolidates all the physi-
cal hardware components that can be used to build a complete
system to support an Operating System (OS) to drive an
application. The platform includes the Basic Input Output
System (BIOS), CPU, memory, storage, I/O devices, dedi-
cated and custom accelerators, switching fabric, and power
management units. The term ‘‘infrastructure’’ corresponds to
the end-to-end connectivity of platforms, such as network
components, switches, Ethernet, and wireless links. Platform
and infrastructure together constitute a complete hardware
framework to support an NF.
Despite the wealth of surveys on NFs and their usage in a

wide variety of networking contexts, to the best of our knowl-
edge, this present survey article is the first comprehensive
survey of hardware-accelerated platform and infrastructure
technologies and research studies for the processing of NFs.
We give an overview of the related surveys in Section I-D and
provide background on the processing of NFs in Section II.
Section III comprehensively surveys the relevant enabling
technologies for hardware-accelerated platforms and infras-
tructures for processing NFs, while Section IV comprehen-
sively surveys the related research studies. For the purpose
of this survey, we define enabling technologies as designs,
methodologies, and strategies that are currently available in
the form of a product in the market place; enabling tech-
nologies are typically developed by industry or commercially
oriented organizations. On the other hand, we define research
studies as investigations that are primarily conducted to pro-
vide fundamental understanding and insights as well as new
approaches andmethodologies that aim to advance the overall
field; research studies are primarily conducted by academic
institutions, such as universities and research labs.

Section III classifies the enabling technologies accord-
ing to the relevant hardware components that are needed
to support the processing of NFs, namely the CPU, inter-
connects, memory, as well as custom and dedicated accel-
erators on the platforms; moreover, Section III surveys the
relevant infrastructure technologies (SmartNICs and Non-
Transparent Bridging). Section IV categorizes the research
studies into studies addressing the computer architecture,

interconnects, memory, and accelerators on platforms; more-
over, Section IV surveys infrastructure research on Smart-
NICs. Section V summarizes the main open challenges for
hardware-accelerated platforms and infrastructures for pro-
cessing softwarizedNFs and SectionVI concludes this survey
article.

D. RELATED SURVEYS

This section gives an overview of the existing survey articles
on topics related to NFs and their processing and use in
communication networks. Sections I-D1 through I-D5 cover
topic areas that border on our central topic area, i.e., prior
survey articles on topic areas that relate to our topic area in a
wider sense. Section I-D6 focuses on prior survey articles that
cover aspects of our topic area. Section I-D6 highlights our
original survey coverage of hardware-accelerated platforms
and infrastructures for NFs with respect to prior related sur-
vey articles

1) SOFTWARIZATION OF NETWORK FUNCTIONS (NFs)

The NF softwarization can be achieved in different forms,
i.e., an NF can be implemented as a software application,
as a Virtual Machine (VM), or as a container image. The
concept of implementing an NF as a VM has been com-
monly referred to as Virtualized Network Function (VNF),
and Network Function Virtualization (NFV) as a broader
term for the technology of implementing, deploying, and
managing the VNFs. In general, the NFV concept has been
widely discussed in the survey literature [45]–[47]. The tra-
ditional challenges of NFV deployment are associated with
the virtualization process of NFs, such as overhead, isolation,
resource allocation, and function management [48]. Herrera
and Botero [49] have discussed the resource allocation and
placement of applications, VMs, and containers on GPC
platforms. More specifically, Herrera and Botero [49] have
surveyed different schemes for the embedding of virtual
networks over a substrate network along with the chaining
of NFs.
The deployment of an NF as a software application,

VM, or container image in the cloud and public networks
poses critical security challenges for the overall NFV service
delivery. The security aspects and challenges of NFs have
been discussed by Yang and Fung [50] and Farris et al. [51]
for threats against NFs on Internet of Things (IoT) net-
works; while threat-based analyses and countermeasures
for NFV security vulnerabilities have been discussed by
Pattaranantakul et al. [52]. Furthermore, Lal et al. [53] have
presented best practices for NFV designs against security
threats.

2) SOFTWARE DEFINED NETWORKING (SDN) FOR NFs

Software Defined Networking (SDN) provides a cen-
tralized framework for managing multiple NFs that are
chained together to form a network Service Function
Chain (SFC) [54]–[56]. SDN controllers can be used to
monitor the resources across multiple platforms to allocate
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resources for new SFCs, and to manage the resources during
the entire life time of a service. The SDNmanagement strate-
gies for NFs have been summarized by Li and Chen [11].
SDN also provides a platform for the dynamic flow control
for traffic steering and the joint optimization of resource
allocation and flow control for NFV. The main challenges of
SDN-based management is to achieve low control overhead
and latency while ensuring the security during the reconfigu-
ration [57]. In contrast to surveys of independent designs of
SDN and NFV, Bonfim et al. [58] have presented an overview
of integratedNFV/SDNarchitectures, focusing on SDN inter-
faces and Application Programming Interfaces (APIs) spe-
cific to NFV management.

3) NETWORK FUNCTION VIRTUALIZATION (NFV) AND

NETWORK SLICING

5th Generation (5G) [59]–[61] is a cellular technology
that transforms the cellular infrastructure from hardware-
dependent deployment to software-based hardware-
independent deployment. 5G is envisioned to reduce cost,
lower the access latencies, and significantly improve through-
put as compared to its predecessors [62]–[64]. VNFs are an
integral part of the 5G infrastructure as NFs that realize the
5G based core network functionalities are implemented as
VNFs. In addition to NFV, 5G also adopts SDN for the cen-
tralized management of the NFV resources. Yang et al. [65]
have presented a survey of SDN management of VNFs
for 5G networks, while Nguyen et al. [66] have discussed
the relative benefits of different SDN/NFV-based mobile
packet core network architectures. Bouras et al. [67] have
discussed the challenges that are associated with SDN and
NFV based 5G networks, such as scalability and reliability.
Costa-Perez et al. [68] have summarized efforts to homoge-
neously coordinate resource allocation based on SDN and
NFV across both fronthaul and backhaul networks in the 5G
infrastructure.
In conjunction with SDN and NFV, the technique of

network slicing provides a framework for sharing com-
mon resources, such as computing hardware, across multiple
VNFs while isolating the different network slices from each
other. Afolabi et al. [69] have surveyed the softwarization
principles and enabling technologies for network slicing.
As discussed in the survey by Foukas et al. [70] for VNFs
in 5G, for the design of 5G infrastructure, network slic-
ing provides effective management and resource allocation
to multiple tenants (e.g., service providers) on the same
physical infrastructure. A more general survey on network
slicing for wireless networks (not specific to 5G wireless net-
works) has been presented by Richart et al. [71]. The surveys
[72]–[75] have discussed network slicing and the manage-
ment of resources in the context of 5G based on both SDN
and NFV.

4) NFV IN MULTI-ACCESS EDGE COMPUTING (MEC)

In contrast to the deployment of VMs and containers in cloud
networks, fog and edge networks bring the network services

closer to the users, thereby reducing the end-to-end latency.
Yi et al. [76] have presented a survey of NFV techniques as
applied to edge networks. Some of the NFV aspects that are
highlighted by Yi et al. [76] in the context of fog and edge
networks include scalability, virtualization overhead, service
coordination, energy management, and security. As an exten-
sion of fog and edge networks, Multi-Access Edge Com-
puting (MEC) generalizes the compute infrastructure at the
edge of the access network. A comprehensive MEC survey
has been presented by Tanaka et al. [77], while the role of
NFV in MEC has been surveyed by Taleb et al. [78]. The
use of both SDN and NFV provides strategies for effective
management ofMEC resources in edge networks as described
by Baktir et al. [79] and Blanco et al. [80].

5) NFV ORCHESTRATION

NFV service orchestration involves the management of soft-
ware applications, VMs, and containers which implement
NFs. The NFV management constitutes the storage of VNF
images, the allocation of resources, the instantiation of VNFs
as runtime applications, the monitoring of the NFV perfor-
mance, the migration of the VNFs between different hosts,
and the shutting down of VNFs at the end of their life time.
De Sousa et al. [81] have presented a survey of various meth-
ods for managing NFV services. In contrast to NFV manage-
ment, the orchestration of service function chaining (SFC)
addsmore complexity since an SFC involves themanagement
of multiple VNFs for a single network service. The SFC com-
plexities, such as compute placement, resource monitoring,
and flow switching have been outlined in a survey article by
Mechtri et al. [82]. Duan et al. [83] have presented a survey
on SDN-based orchestration studies for NFV management.

6) ACCELERATION OF NFs

NFs typically require the routine processing of packets
involving intense Input/Output (I/O) activities into and out of
the compute platform [84]. Since GPC platforms are not fun-
damentally designed for packet processing, GPC platforms
require additional acceleration techniques for effective high-
speed packet processing [85]. Linguaglossa et al. [86] have
provided a tutorial introduction to the broad NFV field and
the overall NFV ecosystem, including tutorial introductions
to software acceleration (inclusive of the related ecosys-
tem of software stacks) and hardware acceleration of NFV.
The hardware acceleration section in [86] focuses mainly
on a tutorial introduction to the general concept of hard-
ware offloading, mainly covering the general concepts of
offloading to commodity NICs and SmartNICs; an earlier
brief tutorial overview of hardware offloading had appeared
in [87]. However, a comprehensive detailed survey of specific
hardware offloading technologies and research studies is not
provided in [86]. Zhang [88] has presented an overview of
NFV platform designs; whereby, Zhang defines the term
‘‘NFV platform’’ to broadly encompass all hardware and
software components involved in providing an NFV ser-
vice (in contrast, we define the term ‘‘platform’’ to only
refer to the physical computing entity). Zhang [88] mainly
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covers the VNF software and management aspects, i.e.,
Management and Orchestration (MANO) components [89],
that are involved in NFV deployments. Zhang [88] covers
hardware acceleration only very briefly, with only about ten
references in one paragraph. In contrast to [86] and [88],
we provide a comprehensive survey of hardware-accelerated
platforms and infrastructures for NF processing. We compre-
hensively cover the technologies and research studies on the
hardware acceleration of CPUs, interconnects, and memory,
as well as the accelerator devices on platforms, and fur-
thermore the hardware acceleration of infrastructures (which
in our classification encompass SmartNICs) that benefit
NF processing.
FPGAs can be programmed with different functions,

thereby increasing design flexibility. FPGA-based acceler-
ation in terms of application performance is limited by
the transistor-gate density and CPU-to-I/O transactions.
Additionally, the FPGA configuration time is relatively
longer than initiating the running of a compiled executable
on a GPU or CPU. While GPUs are beneficial for run-
ning numerous parallel, yet simple computations, the FPGA
advantages include the support for complex operations which
can be a differentiating factor for compute-intensive work-
loads [90]. NF applications that require specialized compute-
intensive functions, such as security, can achieve superior
performance with FPGAs as compared to GPUs and CPUs.
Niemiec et al. [91] have surveyed FPGA designs for accel-
erating VNF applications covering the use cases that require
compute-intensive functions, such as IPSec, intrusion detec-
tion systems, and deep packet inspection [92]. The Niemiec
et al. survey [91] includes FPGA internals, virtualization and
resource slicing of FPGA, as well as orchestration and man-
agement of FPGA resources specifically for NFV deploy-
ments. In contrast, our survey includes FPGAs operating in
conjunction with CPUs, i.e., FPGAs as platform capability
enhancements, to assist in accelerating general NF applica-
tions (that are not limited to NFV deployments, but broadly
encompass arbitrary NF applications, including e.g., bare-
metal applications).

II. BACKGROUND ON NF IMPLEMENTATION

In this section we provide background on Network Func-
tions (NFs), discuss various forms of NF implementation,
and common acceleration strategies. An NF is a compute
operation on a packet of an incoming traffic stream in a
compute host. NF examples range, for instance, from a sim-
ple IP header look-up for packet forwarding to complex
operations involving security negotiations of an end-to-end
connection. NFs can also be indirect functions, such as sta-
tistical analysis of traffic, network port management, and
event monitoring to detect a Denial-of Service (DoS) attack.
Traditionally, an NF is implemented with dedicated hardware
and software components (see Sec. II-A). Recently, with the
softwarization of NFs, the trend is towards implementing NFs
as software running on General-Purpose Computing (GPC)
platforms. A softwarized NF running on a GPC platform

can be designed as: a bare-metal (BM) implementation on
a native OS (as user application) or as a part of the OS
(as kernel module) (see Sec. II-B), as application running
on an OS, i.e., as user application, or as kernel module as
part of the OS (see Sec. II-C), as Virtual Machine (VM) on
a hypervisor (see Sec. II-D), or as container running on a
container engine (see Sec. II-E). Brief background on general
acceleration strategies for NFs running on GPC platforms is
given in Sec. II-F.

Before we delve into the background on NFs, we give
a brief overview of the terminology used for structures on
GPC processor chips. The term ‘‘package’’ refers to several
hardware components (e.g., CPU, memory, and I/O devices)
that are interconnected and packed to form a system that
is integrated into a single unit with metallic finishing for
physical mounting on a circuit board. That is, a package is
a typical off-the-shelf product that is available as a full hard-
ware module and that can be plugged into a server-chassis.
A package is often a combination of CPU and non-CPU
components, such as memory (DRAMmodules), I/O devices,
and accelerators. The multiple components in a package are
usually interconnected with silicon vias or metallic wires. A
GPC platform consists typically of multiple packages.

Typically, a commercially available ‘‘chip’’, such as a
processor chip or a RAM chip, is a full System-on-Chip
(SoC). A GPC processor chip is typically, in the socket form-
factor. We may therefore use the terminology ‘‘CPU chip’’
and ‘‘socket’’ interchangeably; synonymous terminologies
are ‘‘CPU socket’’ and ‘‘CPU slot’’. Generally, a package
contains only a single CPU socket (plus other non-CPU
components). Also, a given CPU socket consists generally of
only a single CPU chip. A given CPU chip contains typically
a single CPU die, which in turn consists typically of multiple
CPU cores. (Possibly, a CPU chip could contain multiple
CPU dies that are interconnected with an embedded multi-die
interconnect bridge, see Sec. IV.B.) A die is a single silicon
entity that is etched in one shot during fabrication.

A. DEDICATED HARDWARE BASED NF IMPLEMENTATION

1) OVERVIEW

The traditional implementation of an NF was through the
design of dedicated hardware and software, such as off-
the-shelf network switches, routers, and gateways [93]–[95].
Hardware based systems are driven by an embedded
software (firmware, microcode), with microprocessor, micro-
controller, Digital Signal Processor (DSP), or Application-
Specific Integrated Circuit (ASIC) modules. Embedded
software for hardware control is generally written in low-level
languages, such as C or assembly. The designs are tightly
focused on a specific prescribed (dedicated) task. For
instance, if the design is to route packets, the embedded
hardware and software components are programmed to route
the packets. Hence, dedicated hardware NF implementations
are fixed implementations that are designed to perform a
dedicated task, except for the management configuration of
the device and NF.
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2) BENEFITS

Implementation with dedicated hardware and software
achieves the best performance for the dedicated task due to
the constrained nature of task processing. As opposed to the
processes and task scheduling in an OS, processes running
on dedicated hardware use static (fixed) resource allocation,
thereby achieving a deterministic packet processing behavior.
Dedicated NF hardware units are also energy efficient as no
processing cycles are wasted for conversions, e.g., privileges
of execution, modes of operation, and address translations, in
OSs and hypervisors.

3) SHORTCOMINGS

A main shortcoming of NF hardware implementation is
very limited flexibility. Reconfigurations require additional
efforts, such as intervention by a network administrator.
Moreover, NF hardware (HW) is typically locked into ven-
dors due to proprietary designs, procedures, and proto-
cols. The overall cost of dedicated hardware products could
be relatively high since the deployment and maintenance
require specialized skills and specialized vendor assistance.

B. BARE-METAL (BM) NF IMPLEMENTATION

1) OVERVIEW

Hardware resources that directly host software tasks, e.g.,
applications, for computing and I/O without any additional
abstraction (except for the OS that directly hosts the software
task) are referred to as Bare-Metal (BM) hardware [96].
In contrast to BM hardware, the other forms of hardware
include abstracted hardware (i.e., virtualized HW). In the-
ory and practice, there can be multiple layers of abstrac-
tion, achieving nested virtualization [97], [98]. Abstraction
of hardware resources reduces the complexity of operating
and managing the hardware by the application which can
help the application to focus on task accomplishment instead
of managing the hardware resources. The BM implementa-
tion can provide direct access to hardware for configurabil-
ity, reducing the overheads for computing and for hardware
interactions for I/O. The application performance on BM as
compared to abstracted hardware, i.e., on a VM or container,
has been examined in Yamato [99].

2) BENEFITS

The BM implementation of NFs can achieve relatively higher
performance as compared to NFs running on virtualized and
abstracted environments [99]. The high BM performance
is due to the low overhead during NF compute tasks. The
instruction and memory address translations required by
abstractions are avoided by BM implementations. The BM
implementation also provides direct access to OS resources,
such as the kernel, for managing the memory allocation,
prioritizing the scheduling processing, and controlling I/O
transactions.

3) SHORTCOMINGS

The BM implementation of an NF does not provide a secure
and isolated environment to share the hardware resources
with other NFs on the same BM. If multiple NFs run on the
same BM hardware, multiple NFs can interfere with each
other due to the contention for resources, such as CPU, cache,
memory, and I/O resources, resulting in non-deterministic
behaviors. Running a low number of NFs to avoid interfer-
ence amongNFs can result in low resource utilization. Hence,
the management of applications could incur additional com-
puting as well as a higher management cost. NF implementa-
tion on BM with hardware-specific dependencies can result
in reduced scalability and flexibility.

C. APPLICATION AND KERNEL BASED NF

IMPLEMENTATION

1) OVERVIEW

In general, NFs are mainly deployed as applications which
implement the overall packet processing functionality. In con-
trast to the NF implementation as a user-space application,
NF tasks can also be embedded into the kernel as a part of the
OS. Generally, there are two types of processes that are run
by the OS on the CPU: i) applications that use the user-space
memory region, and ii) more restrictive kernel (software)
modules that use the kernel-space memory region. However,
a kernel-based NF provides little or no control to the user for
management during runtime. Therefore, NFs are mainly run
as applications in the user-space execution mode in an OS.

The user-space has limited control over scheduling poli-
cies, memory allocation, and I/O device access. However,
NFs in the user-space are given special permissions through
kernel libraries and can access kernel-space resources
(i.e., low-level hardware configurations). Some NF appli-
cations, such as authentication, verification, and policy
management, may not always require hardware interac-
tions and special kernel-space access. Therefore, the design
of NF applications should consider the hardware require-
ments based on the nature of the task, i.e., whether an
NF is time-sensitive (e.g., audio packets), memory inten-
sive (e.g., database management), or compute intensive
(e.g., encryption/decryption). Some examples of high-level
NF applications with low resource dependencies are data
validation, traffic management, and user authentication.

2) BENEFITS

Application based NFs have simple development, deploy-
ment, and management. Most NFs are designed and deployed
as user-space application in an OS. User-space applica-
tions generally consume lower compute, memory, and I/O
resources compared to abstraction and isolation based imple-
mentations, such as container and VMs.

3) SHORTCOMINGS

NF applications that are implemented in the user-space are
vulnerable to security attacks due to limited OS protection.
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Also, user-space applications are not protected from mutual
interference of other NF applications, thus there is no iso-
lation among tasks, resulting in non-deterministic execution
of NF tasks. Moreover, user-space applications fall short
for networking tasks that require near real-time reaction as
the requests propagate through memory regions and follow
traditional interrupt mechanisms through I/O hardware.

D. VIRTUAL MACHINE (VM) BASED NF IMPLEMENTATION

1) OVERVIEW

To flexibly manage NFs with effective resource utilization
and isolation properties, NFs can be implemented as an
application running on a Virtual Machine (VM). A VM is
typically implemented as a guest OS over a host OS. The host
OS abstracts the hardware resources and presents a virtual-
ized hardware to the guest OS. The software entity (which
could be part of the host OS) that abstracts and manages
the hardware resources is referred to as a hypervisor. An NF
can then be implemented as a kernel module or as a user-
space application on the guest OS. A host OS/hypervisor can
support multiple guest OSs through sliced resource allocation
to each guest OS, thus providing a safe virtual environment
for the NF execution.

2) BENEFITS

VM based NF implementation provides a high degree of flex-
ibility in terms of deploying and managing the NFs. Multiple
instances of the same NF can be instantiated through duplica-
tion of VM images for scalability and reliability. VM images
can also be transported easily over the network for the instan-
tiation at a remote site. Additionally, multiple NFs can be
hosted on the same host OS, increasing the effective resource
sharing and utilization. A VM is a complete OS, and all
the dependent software necessary for the execution of an
NF application is built into the VM, which improves the
compatibility across multiple host OSs and hypervisors.

3) SHORTCOMINGS

In general, the performance of an NF implemented as a VM is
lower than BM and OS based implementation, since virtu-
alization incurs both compute and memory overhead [99].
Since a VM is also a fully functional OS, the overall memory
usage and execution processes are complex to design and
manage as compared to a user-application based NF running
on an OSwithout virtualization. NF software implementation
issues are complex to trace and debug through multiple layers
of abstraction. Deployment cost could be higher due to the
need for specialized support for the VM management [100].

E. CONTAINER BASED NF IMPLEMENTATION

1) OVERVIEW

The VM based NF implementation creates a large overhead
for simple NFs, such as Virtual Private Network (VPN)
authentication gateways. Scaling andmigrating VMs requires
large memory duplications, which result in overall long

latencies for creating and transportingmultiple VM instances.
The concept of workload containerization originated for
application management in data centers and the cloud to
overcome the disadvantages of VMs [101]. Containers have
been designed to create a lightweight alternative to VMs.
A key difference between a VM and a container is that a
container shares the host OS kernel resources with other
containers, while a VM shares the hardware resources and
uses an independent guest OS kernel. The sharing of host
OS resources among containers is facilitated by a Container
Engine (CE), such as Docker. NFs are then implemented as
a user-space application running on a container [102]. The
primary functions of a CE are:

i) Provides Application Programming Interfaces (APIs)
and User Interfaces (UIs) to support interactions
between host OS and containers.

ii) Container image management, such as storing and
retrieving from a repository.

iii) Configuration to instantiate a container and to schedule
a container to run on a host OS.

2) BENEFITS

The primary benefits of containerization are the ease of
NF scalability and flexibility. Containers are fundamentally
designed to reduce the VMmanagement overhead, thus facil-
itating the creation of multiple container instances and trans-
porting them to different compute nodes. Container based
NFs support cloud-native implementation, i.e., to inherently
follow the policies applied through a cloud management
framework, such as Kubernetes. Containerization creates a
platform for NFs to be highly elastic to support scaling based
on the demand during run time, resulting in Elastic Network
Functions (ENFs) [103].

3) SHORTCOMINGS

Critical shortcomings of containerization of an NF are:

i) Containers do not provide the high levels of security and
isolation of VMs.

ii) A container can run on BM hardware; whereas, a VM
can run both on a hypervisor and on BM hardware.

iii) Only the subset of NF applications that support a modu-
larized software implementation and have low hardware
dependencies can be containerized.

iv) Containers do not provide access to the full OS envi-
ronment, nor access to a Graphic User Interface (GUI).
Containers are limited to a web-based user interface that
provides simple hypertext markup language (HTML)
rendering for applications that require user interactions,
e.g., for visualizations and decisions based on traffic
analytics.

F. ACCELERATION STRATEGIES FOR NF IMPLEMENTATION

NF softwarization should carefully consider different design
strategies as one design strategy does not fit all application
needs. In addition to the discussed software implementation
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designs (Sections II-B– II-E), we need to consider acceler-
ation techniques to facilitate the NF application to achieve
optimal performance in terms of overall system throughout,
processing latency, resource utilization, energy, and cost,
while preserving scalability and flexibility. Towards these
goals, acceleration can be provided in either software or
hardware.

1) SOFTWARE ACCELERATION METHODS

a: OVERVIEW

Typically, an NF on a GPC infrastructure requires an applica-
tion running on a traditional OS, such as Linux or Windows,
whereby, an application can also be hosted inside a VM
or container for abstraction, security, and isolation require-
ments. However, traditional OSs are not natively designed
towards achieving high network performance. For instance,
an OS network driver typical operates in interrupt mode.
In interrupt mode, a CPU is interrupted only when a packet
has arrived at the Network Interface Card (NIC), upon which
the network driver process running on the CPU executes a
subroutine to process the packet waiting at the NIC. If the
CPU is in a power-saving deep sleep state due to inactivity,
waking the CPU would take several cycles which severely
lengthens the overall packet processing latency. An alterna-
tive to the interrupt mode is polling. However, polling of the
NIC would significantly reduce the ability of the CPU to
perform other tasks. Thus, the interruptmode incurs relatively
long latencies, while keeping the CPU and power utilization
low. However, the interrupt mode generally does not maxi-
mize the overall throughput (total packets processed by the
CPU per second), which requires the batching of packets and
is more readily achieved with polling [104].
Some of the examples of software acceleration strate-

gies are:

i) Polling strategies of I/O devices for offloading task
completions and I/O requests.

ii) Continuous memory allocation, and reduction in
memory copies between processes and threads.

iii) Reduced virtual to physical address translations.
iv) Maintaining cache coherency during memory accesses.
iv) Scheduling strategies for resource monitoring and

allocation.

b: BENEFITS

One of most prominent benefits of software acceleration is
the low cost of adoption in the market, which also reduces the
development to deployment cycle time. Software acceleration
requires only very small or no modifications of the exist-
ing infrastructure. Software optimizations also pave the way
to an open source architecture model of software develop-
ment. The overall development and deployment of software
acceleration reduces the complexity and need for sophisti-
cated traditional hardware acceleration designs; and maxi-
mizes the performance and utilization of existing hardware
infrastructures.

c: SHORTCOMINGS

Software acceleration may not provide the best possible sys-
tem throughput as compared to hardware acceleration to fully
utilize the system capacity as the software overhead may
cause bottlenecks in the system, e.g., for memory and I/O
device accesses. Software implementation also increases the
overall energy consumption for a given acceleration as the
processing is done by the CPU through a generic instruction
set. Higher access control (e.g., root privileges) for user-space
applications to achieve software acceleration generally does
not go well with isolation and has security implications in
terms of privacy as multiple applications could interfere with
each other [53]. Also, additional layers of software abstrac-
tions for acceleration add more latency for the overall task
processing as compared to hardware acceleration.

2) HARDWARE ACCELERATION METHODS

a: OVERVIEW

Although software optimizations provide acceleration of
NFs, software is fundamentally limited by the CPU availabil-
ity (i.e., contention with other processes), load (i.e., pending
tasks), and utilization (i.e., average idle time) based on the
active task computing that the CPU is trying to accomplish.
NFs typically require routine tasks, such as IP look-up for
network layer (Layer 3) forward routing operations. For data
link layer (Layer 2) operations, the MAC look-up and port
forwarding that needs to be performed for every frame creates
a high I/O bound workload. Similarly, the encapsulation and
decapsulation of every packet needed for tunnel-based for-
warding constitutes a high memory bound workload. A more
CPU intensive type of task is, for instance, encryption and
decryption of IP packets for security. In order to maximize the
performance, the CPU has to frequently monitor the NIC and
has to process the IP packets as part of an NF; both of these
actions consume large numbers of CPU cycles. Therefore,
hardware based acceleration is critical for NF development
and deployments.

Hardware acceleration can be broadly categorized into
custom acceleration and dedicated acceleration. Custom
acceleration is generic and programmable according to the
application requirements either at run-time or preloaded
based on the need. Examples of custom acceleration are
Graphic Processing Unit (GPU) and Field Programmable
Gate Arrays (FPGA). In contrast, dedicated hardware accel-
eration is designed and validated in hardware for a defined
function, with little or no programming flexibility to change
the behavior of the hardware at run-time. On the other
hand, custom hardware acceleration is cost effective and easy
to configure which helps in developing new protocols and
behaviors that are adapted to the applications.

b: BENEFITS

As compared to software acceleration, hardware acceler-
ation provides more robust advantages in terms of sav-
ing CPU cycles that execute the NF processing tasks than
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FIGURE 2. Classification taxonomy of enabling technologies for hardware-accelerated platforms and infrastructures for processing softwarized NFs: The
main platform related categories are hardware accelerations for the CPU, interconnects, and memory, as well as custom and dedicated hardware
accelerators that are embedded on the platform; the infrastructure hardware accelerations focus on network interface cards and bridging.

implementation as a software. Overall, hardware accelerators
significantly improve the system throughput and task latency
as well as energy efficiency for NF implementations [105].

c: SHORTCOMINGS

The main shortcomings of hardware accelerations are:

i) Longer time frame for development cycle than for soft-
ware acceleration development.

ii) For every hardware component there is an associated
software component that needs to be developed and
maintained.

iii) Introduction of new technologies, newer specifications
and skills to manage the hardware.

iv) Higher cost of implementation and adoption intomarket.
v) Infrastructure upgrades with new hardware components

are difficult
vi) Locked-in vendors for hardware and maintenance

support.

III. ENABLING TECHNOLOGIES FOR

HARDWARE-ACCELERATED PLATFORMS AND

INFRASTRUCTURES FOR NF IMPLEMENTATION

This section comprehensively surveys the enabling technolo-
gies for hardware-accelerated platforms and infrastructures
for implementing NFs. This section is structured according
to the classification structure of the enabling technologies
in Fig. 2, whereby a subsection is dedicated to each of the
main categories of enabling technologies, i.e., CPU, intercon-
nects, memory, custom accelerators, dedicated accelerators,
and infrastructure.

A. CENTRAL PROCESSING UNIT (CPU)

Traditionally in the current deployments, the CPU performs
nearly all the computing required by an NF. While most NF
computing needs can be met by a CPU, an important question
is to decide whether a CPU is the ideal resource to perform the
NF tasks. For instance, a polling function only continuously
monitors a hardware register or a memory location; a CPU
may not be well suited for such a polling function. This
section comprehensively surveys the enabling technologies
for accelerating the operation of the CPU hardware for pro-
cessing NFs.

1) INSTRUCTION SET ACCELERATION (ISAcc)

An instruction is a fundamental element that defines a CPU
action. A CPU action can be a basic operation to perform
an arithmetic or logic operation on two variables, to store
or to retrieve data from memory, or to communicate with
an external I/O device. The instruction set (IS) is a set of
instructions that are pre-defined; the IS comprehensively lists
all the CPU operations. In the computing literature, the IS
is also commonly referred to as Instruction Set Architec-
ture (ISA); for brevity, we use the terminology ‘‘Instruc-
tion Set (IS)’’ and define the acronym ‘‘ISAcc’’ to mean
‘‘Instruction Set Acceleration’’. The properties of the IS list
distinguish the type of CPU, typically as either Reduced
Instruction Set Compute (RISC) or Complex Instruction Set
Compute (CISC) [106]. Generally, RISC has a very basic set
of limited operations, while CISC includes a comprehensive
set of instructions targeted at complex operations. RISC is
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TABLE 1. CPU Instruction Set Acceleration (CPU-ISAcc) extensions:
AES-NI, DRNG, and AVX-512. CPU-ISAcc optimizes hardware
implementations of software functions, such as random number
generation, cryptographic algorithms, and machine learning, in terms of
power and performance.

power and silicon-space efficient. However, the limited set
of RISC operations generates large amounts of translated
machine opcodes from a high-level programming language
which will reduce performance for complex operations, such
as encryption or compression. On the other hand, CISC can
implement a complex operation in a single CPU instruction

which can result is smaller machine opcodes, improving the
performance for complex operations. However, CISC gener-
ally consumes higher power and requires more silicon-space
than RISC.
Tensilica [107] is an example of a low-power DSP pro-

cessor based on the RISC architecture which is optimized
for floating point operations [108]. Tensilica processors are
typically used in the design of I/O devices (e.g., NIC) and
hardware accelerators in the form of new IS definitions and
concurrent thread execution to implement softwarized NFs.
The IS extensions have been utilized to accelerate hashing
NFs [109], [110] and dynamic task scheduling [111]. Similar
IS extensions have accelerated the complex network coding
function [112], [113], [193] in a hardware design [114].
ISAcc [115], [116] provides an additional set of instruc-

tions for RISC and CISC architectures. These additional
instructions enable a single CPU instruction to perform a spe-
cific part of the computation that is needed by an application
in a single CPU execution cycle. The most important CPU
instructions that directly benefit NF designs are:

a: ADVANCED ENCRYPTION STANDARD-NEW

INSTRUCTIONS (AES-NI)

Advanced Encryption Standard-New Instructions (AES-NI)
[117], [118], see Table 1, include IS extensions to compute the
cryptography functions of the Advance Encryption Standard
(AES); in particular, AES-NI includes the complete encryp-
tion and decryption flow for AES, such as AES-GCM (AES-
GCM is a type of AES algorithm, and AES-ENC is used
internally for GCM encryption). AES-NI has been widely
used for securing HTTPS connections needed for end-to-
end NFV instances over networks. HTTP uses the Transport

Layer Security (TLS) Secure Sockets Layer (SSL) protocol
(which incorporates AES) to generate and exchange keys as
well as to perform encryption and decryption. SSL implemen-
tations, such as OpenSSL, provide the interface and drivers to
interact with the AES-NI CPU acceleration instructions.

b: DIGITAL RANDOM NUMBER GENERATOR (DRNG)

The Digital Random Number Generator (DRNG) [119] with
the RDRAND instruction can be used for generating public
and private cryptographic keys. The RSEED instruction can
be used for seeding software-based Pseudorandom Number
Generators (PRNGs) used in cryptography protocols. DRNG
is also extensively used in modeling, analytics for random
selections, large scale system modeling to introduce ran-
domization, natural disturbances, and noises in encryption
and control loop frameworks, which are applicable to SDN
controller-based NF designs.

c: ADVANCED VECTOR EXTENSIONS (AVX)

The Advanced Vector Extensions (AVX) [120], [121], see
Table 1, implement an advanced data processing IS for
machine learning, encryption, and signal processing [122].
The vectorization of the CPU processing significantly
improves the data computations for large vector data
sets [123].

d: STREAMING SIMD EXTENSIONS (SSE)

The Streaming SIMD Extensions (SSE) [124], [125] imple-
ment accelerations aimed at string and text character process-
ing, which is essential for searches and comparisons. NFs rely
on JavaScript Object Notation (JSON), extensible markup
language (XML), and text parsing protocols to perform man-
agement functions. SSE instructions play an important role
in achieving near-real-time decisions based on text look-up
and comparisons. SSE instructions also implement compute
functions for 32 bit Cyclic Redundancy Checks (CRC32)
which are commonly used in data transfer and external
storage NFs.

e: CPU IDentification (CPUID)

The CPU IDentification (CPUID) [126] instruction provides
the details of CPU specifications, enabling software to make
decisions based on the hardware capabilities. A user can write
a predefined value to the EAX CPU register with the CPUID
instruction to retrieve the processor specific information that
is mapped to the value indicated by the EAX CPU register.
A comprehensive list of CPU specifications can be enumer-
ated bywriting values in sequence to the EAX and reading the
EAX (read back the samewrite register), as well as the related
EBX, ECX, and EDX CPU registers. For instance, writing
0x00h to the EAX provides the CPU vendor name, whereas
writing 0x07h gives information about the AVX–512 IS
capability of the CPU. NF orchestration can use the CPUID
instruction to identify the CPU specifications along with the
ISAcc capabilities to decide whether an NF can be run on the
CPU or not.
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f: VIRTUAL MACHINE EXTENSIONS (VMX)

The Virtual Machine Extensions (VMX) [127]–[129] pro-
vide advanced CPU support for the virtualization of the
CPU, i.e., the support for virtual CPUs (vCPUs) that can
be assigned to VMs running on a Virtual Machine Monitor
(VMM) [194], [195]. In the virtualization process, the VMM
is the host OS which has direct controlled access to the
hardware. VMX identifies an instruction as either a VMX
root operation or a VMX non-root operation. Based on the
instruction type provided by the VMX, the CPU executes a
VMX root operation with direct hardware access, while a
VMX non-root operation is executed without direct hardware
access. The two most important aspects in virtualization are:
a) VM entries, which correspond to VMX transitions from
root to non-root operation, and b) VM exits, which correspond
to VMX transitions from non-root to root operation. NFs
implemented on a virtual platform should be aware of the
VMX principles and whether an NF requires root operations
to take the advantage of performance benefits in root-based
operations.

g: DEEP LEARNING (DL) BOOST

The Deep Learning (DL) Boost IS acceleration on Intel R©

CPUs [32] targets machine learning and neural network com-
putations. The traditional implementation of floating point
operations results in extensive Arithmetic and Logic Unit
(ALU) computations along with frequent accesses to regis-
ters, caches, and memory. DL Boost transforms floating point
operations to integer operations, which effectively translates
the higher precision floating point multiply and addition oper-
ations to lower precision integer calculations. The downside
is the loss of computation accuracy. However, for machine
learning and neural network computations, a loss of accuracy
is often tolerable. DL Boost can transform Floating Point
32 bit (FP32) operations to FP16, INT8, and further down
to INT2. DL boost reduces the multiply-and-add operations,
which increases system throughput while reducing latency
and power consumption. An NF that requires low precision
floating operation for prediction, estimation, and machine
learning applications can benefit from DL Boot acceleration
of the CPU IS.

2) CPU PINNING

CPU pinning is a resource allocation strategy that allocates
and pins a specific workload to a specific physical CPU
core. Traditionally, in the OS, application threads and pro-
cesses are dynamically scheduled on the CPU cores based
on their relative priorities and processing states, such as wait
and ready-to-run. As opposed to the OS management of
CPU resources, the dedicated and static allocation of CPU
core resources for the execution of application threads and
processes improves the performance of the pinned applica-
tion [130], [131]. In addition to no-contention of resources,
the performance benefits of CPU pinning are attributed to the
data cache coherency, especially at the L1 and L2 cache levels

(which reside within the CPU core), when only one applica-
tion accesses a memory location from a given CPU core.

In virtualization, the VMM scheduler allocates the CPU
resources to VMs, i.e., the conversion of instructions to a
virtual CPU (vCPU) to an actual physical CPU (pCPU)
is achieved dynamically at run time. However, the VMM
scheduler may impact the overall performance when there
is resource contention by other VMs running on a VMM;
in addition, VM based cache coherency issues may arise.
Therefore, CPU pinning is an important aspect to consider for
the CPU resource allocation (vCPU or pCPU) to a virtualized
NF (VNF) via CPU pinning.

3) CACHE COHERENCY

Caches play an important role in the overall software execu-
tion performance by directly impacting the latency of mem-
ory accesses by the CPU. The memory access flow from
a CPU first performs an address translation from a virtual
address to a physical address. If the address translation fails,
then a page fault is registered and a page walk process is
invoked. If the address translation succeeds, then cache levels
are checked. If there is a cache hit, then the data is read from
or written to the cache; whereas, if there is a cache miss,
then an external memory read or write is performed. A cache
miss or an address translation failure page walk significantly
increase the latency and severely impede theNF performance.
Therefore, NF designs have to carefully consider the cache
coherency of data accesses.

a: CACHE HIERARCHY

The cache hierarchy has been commonly organized as
follows:

i) The level L1 cache for code is normally closest to the
CPU with the lowest latency for any memory access.
A typical L1 cache for code has a size of around
64 kilobytes (KB), is shared between two cores, and
has 2-way access freedom. The L1 cache for code is
commonly used to store opcodes in the execution flow,
whereby a block of opcodes inside a loop can greatly
benefit from caching.

ii) The level L1 cache for data is a per-core cache which
resides on the CPU itself. The L1 data cache typically
stores the data used in the execution flow with the
shortest access latency on the order of around 3–4 clock
cycles.

iii) A typical level L2 cache is shared between two cores
and has a size of around 1–2 MB. The access latency is
typically around 21 clocks with 1 read for 4 clock cycles
and 1 write for 12 clock cycles.

iv) The level L3 cache is generally referred to as shared
Last Level Cache (LLC), which is shared across all
cores. The L3 cache is typically outside the CPU die,
but may still reside inside the processor die. A typical
processor die consists of core and uncore elements [132]
(see Fig. 3). Uncore elements refer to all the non-CPU
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FIGURE 3. Components inside processor chips are generally functionally
separated into core (i.e., CPUs) and uncore elements. Uncore elements
are non-core components, such as clock, memory controllers, integrated
accelerators, interrupt controllers, and interconnects.

components in the processor die, such as clock, Platform
Controller Hub (PCH), Peripheral Component Inter-
connect express (PCIe) root complex, L3 cache, and
accelerators.

b: DATA-DIRECT IO (DDIO)

The Data-Direct IO (DDIO) [133] is a cache access advance-
ment I/O technology. The DDIO allows I/O devices, such as
the PCIe based NIC, GPU, and FPGA, to directly read and
write to the L3 shared LLC cache, which significantly reduces
the latency to access the data received from and sent to I/O
devices. Traditionally, I/O devices would write to an external
memory location which would then be accessed by the CPU
through a virtual to physical address translation and a page
look-up process. NF applications require frequent I/O trans-
actions, especially to read and write packets between NIC
and processor memory. With DDIO, when a packet arrives
at the NIC, the NIC directly writes to the cache location that
is indexed by the physical address of the memory location in
the shared L3 cache. When the CPU requests data from the
memory location (which will be a virtual address for CPU
requests), the address is translated from virtual to physical,
and the physical address is looked up in the cache, where
the CPU finds the NIC packet data. The DIDO avoids the
page walk and memory access for this packet read operation.
ACPUwrite to theNIC for a packet transmission executes the
same steps in reverse. Thus, NF implementations with intense
I/O can greatly benefit from the DDIO cache management.

4) CPU CLOCK

One of the critical aspects of an NF is to ensure adequate
performance when running on a GPC platform. In addition to
many factors, such as the transistor density, memory access
speeds, and CPU processing pipeline, the CPU operational
clock frequency is a major factor that governs the CPU
throughput in terms of operations per second. However, in a
GPC platform, the CPU clock frequency is typically dynami-
cally scaled to manage the thermal characteristics of the CPU
die [134]. The CPU clock frequency directly impacts the total
power dissipated as heat on the CPU die.

a: BASE FREQUENCY

The base frequency [135] is the normal CPU operational fre-
quency suggested by the manufacturer to guarantee the CPU
performance characteristics in terms of number of operations
per second, memory access latency, cache and memory read
and write performance, as well as I/O behaviors. The base
frequency is suggested to achieve consistent performance
with a nominal power dissipation to ensure sustainable and
tolerable thermal features of the CPU die.

b: TURBO FREQUENCY

The turbo frequency technique [136] automatically increases
the platform and CPU operational frequency above the base
frequency but below a predefined maximum turbo frequency.
This frequency increase is done opportunistically when other
CPUs in a multi-core system are not active or operating at
lower frequencies. The turbo frequency is set according to the
total number of cores running on a given CPU die, whereby
the thermal characteristic of the CPU die is determined by
the aggregated power dissipated across all the cores on the
CPU die. If only a subset of the cores on the CPU die
are active, then there is an extra thermal budget to increase
the operational frequency while still meeting the maximum
thermal limits. Thus, the turbo frequency technique exploits
opportunities for automatically increasing the CPU core fre-
quencies for achieving higher performance of applications
running on turbo frequency cores.

c: OVER-CLOCKING

Over-clocking [137] manually increases the CPU clock fre-
quency above and beyond the manufacturer’s suggested max-
imum attainable frequency, which is typically, higher than
the maximum turbo frequency. Over-clocking changes the
multipliers of the fundamental CPU clock frequency. A clock
multiplier on the uncore part of the CPU die generally con-
verts the lower fundamental frequency into the operating
base and turbo frequencies. Over-clocking manually alters
the multipliers of the clock frequency to reach the limits
of thermal stability with an external cooling infrastructure.
The thermal budget of the CPU die is forcefully main-
tained through a specialized external cooling infrastructure
(e.g., circulating liquid nitrogen) that constantly cools the
CPU die to prevent physical CPU damage from overheat-
ing. The highest CPU performance can be achieved through
successful over-clocking procedures; however, the cost and
maintenance of the cooling infrastructure limit sustained
over-clocked operations. Hence only few applications can
economically employ over-clocking on a consistent basis.

d: DYNAMIC VOLTAGE AND FREQUENCY SCALING (DVFS)

Dynamic Voltage and Frequency Scaling (DVFS)
[138]–[140] defines a system and a set of procedures that
control the operational frequency and voltage in a CPU
subsystem. Typically, CPU manufacturers provide several
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FIGURE 4. Processor states are broadly classified as CPU states (C-States)
which indicate the overall CPU state; additionally, when the CPU is active
(i.e., in C0), then core-specific Power states (P-States) indicate the
operational frequencies of the cores that are actively executing
instructions.

operational states (see Fig. 4) including: C0: CPU is actively
executing instructions; C1: CPU in halt state with no instruc-
tion execution, capable of instantaneously transitioning into
C0 state; C2: Stop-Clock, transition to C1 and C0 takes
longer; C3: C3 and higher CPU states can be defined as sleep
states without power.
In addition to the C states, which define the CPU power

characteristics, P states define the performance characteris-
tics of the individual CPU cores, typically when the CPU
is in C0. The P states include: P0: CPU core is operating
in turbo frequency mode, the highest performance can be
achieved by a specific core; P1: CPU core is operating at a
guaranteed (base) frequency, a sustained performance can be
achieved by all cores; P2: CPU core is operating in OS man-
aged lower frequency and voltage, i.e., in low performance
modes for P2 and subsequent P states; T : Thermal control
is applied to the CPU cores, as the CPU die has reached the
limits of the safe operating temperature.
The transitions between different C states and P states are

managed by the DVFS subsystem. The DVFS, in conjunction
with the OS and BIOS through the Advanced Configuration
and Power Interface (ACPI) [141], tries to attain the best
performance for the lowest possible power consumption.

e: SPEED SELECT TECHNOLOGY-BASE FREQUENCY (SST-BF)

The Intel R© Speed Select Technology-Base Frequency
(SST-BF) [142] enhances the application performance by
increasing the base frequency of the CPU. SST-BF increases
the base frequency on demand so as to adaptively boost the
application performance. SST-BF is thus particularly well
suited for NF acceleration, e.g., for quickly handling bursty
network traffic through increasing the base frequency when
a traffic burst occurs. In contrast to the turbo frequency
technique (see Section III-A4.b), which increases the CPU
frequency opportunistically, SST-BF increases the CPU fre-
quency deterministically when there is a need. AnNF running
on a GPC platform is susceptible to variations of the CPU
clock frequency; thus, running an NF application with the
opportunistic turbo frequency technique cannot guarantee the
Quality-of-Service (QoS) for the NF.Most NFV deployments

require prescribed worst case performance guarantees in
order to deliver the services to the users [143]. A high deter-
ministic CPU clock frequency as achieved by SST-BF is an
important factor to guarantee the QoS performance.
SST-BF segregates the CPU cores into SST-BF supported

and non-supported cores based on their relative distance in
terms of their thermal characteristics. A system configuration
during the start-up enables SST-BF on the supported cores.
When the application requests an increased base frequency,
the OS sends a configuration command to the supported
cores to increase their base frequency (could be maximum
supported value as suggested by the manufacturer). At the
same time, the operating frequencies of the SST-BF non-
supported CPU cores are reduced so as to maintain the over-
all average frequency of the cores and to keep the thermal
budget of the CPU die within the safe operational range.
For instance, if there are 6 cores in a CPU die operating
with a normal base frequency of 2.3 GHz (see Fig. 5), and
2 of the SST-BF supported cores request an increased base
frequency, the operational frequencies for these two cores
would be changed to the maximum base frequency, e.g.,
2.7 GHz, while reducing the operational frequencies of the
other 4 cores to 2.1 GHz. The OS and the orchestrator can
decide which applications to run on the SST-BF supported
cores and when to switch the operational frequencies to the
supported maximum base frequency on the supported cores.

FIGURE 5. The Intel R© Speed Select Technology-Base Frequency (SST-BF)
technology [142] deterministically modifies the operating base frequency
on specific cores to increase or decrease the base frequencies of the
cores at run-time based on the need to provide adequate performance to
NF applications running on the cores. In the depicted example scenario,
the operating base frequency of two cores is increased to 2.7 GHz while
four cores slowed down to 2.1 GHz such that the average operating base
frequency across all six cores remains around 2.3 GHz.

5) ARM ARCHITECTURES IN HIGH PERFORMANCE

COMPUTING (HPC)

RISC and CISC compute architectures with ISAcc sup-
port have recently been merging their boundaries to achieve
the benefits from both architectures. The demand for low
power consumption while achieving high performance has
prompted RISC architectures to support High Performance
Computing (HPC) capabilities. For instance, the ARMv7
RISC architecture contains the THUMB2 extensions for
16-bit instructions similar to CISC, and the x86 ISAcc per-
forms micro-operation translations that are similar to RISC.
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FIGURE 6. Overview of ARM R© Nervosa N1 architecture [144]: (a) Illustration of ARM CPU functional blocks along with CPU interconnect, Memory
Management Unit (MMU), power management, and security components in relation to third-party memory and I/O components. Nervosa N1 can be
extended to server-scale deployments with specifications of Server Base System Architecture (SBSA), Server Base Boot Requirements (SBBR), and
Advanced Microcontroller Bus Architecture (AMBA) [149]. ARM Neoverse N1 CPU sits on the ARM SoC backplane (uncore) along with Coherent Mesh
Network (CMN) and power control kit. Memory and I/O are third-party modules that interface with ARM designs through interfaces (green and blue
blocks are from ARM, while brown and gray color blocks are third-party blocks). The left part of (a) shows the general template arranged as layers of
components, such as backplane, ARM CPUs, memory, and I/O devices; while the right part shows the actual scalable view, with a flexibly scalable
number of CPUs on top of the CMN, supported by common functional blocks, such as virtualization, security, and power control. (b) Layout overview of
N1 CPU cores supported by CMN, with extensions to memory controller and PCIe controllers for external memory and I/O device interfaces. (c) Two-tuple
N1 CPU cores and system level cache surrounded by Mesh Cross Points (XPs). (d) Hardware interconnect and interface extensions along with PCIe
protocol operations to connect external hardware accelerators with N1 CPUs. (e) Overview of N1 CPU with 64 KB L1 data and instruction cache,
512 KB/1 MB private L2 cache, mesh connect, and debug-and-trace components.

Yokoyama et al. [116] have surveyed the state-of-the-art
RISC processor designs for HPC computing and compared
the performance and power consumption characteristics of
the ARMv7 based server platforms to the Intel server plat-
forms. The results from over 400 workload executions indi-
cate that the state-of-the-art ARMv7 platform is 2.3-fold
slower than the Sandy Bridge (Intel), 3.4-fold slower than
Haswell (Intel), and nearly 7% faster than Atom (Intel).
However, the Sandy Bridge (Intel) platform consumes
1.2-fold more power than the ARMv7.

Figure 6 presents an overview of the Neoverse N1 [144]
CPU architecture targeted for edge and cloud infrastructures
to support hyper-scale computing. The N1 platform can scale
from 8 to 16 cores per chip for low computing needs, such
as networking, storage, security, and edge compute nodes,
whereas, for server platforms the architecture supports more
than 120 cores. For instance, a socket form factor of N1
consists of 128 cores on an 8×8mesh fabric. The chip-to-chip
connectivity (e.g., between CPU and accelerator) is enabled
by the CCIX R© (see Sec. III-B2.e) through a Coherent Mesh
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Network (CMN) interfacing with the CPU. The latency over
the CMN is around 1 clock cycle per Mesh Cross Point (XP)
hop. The N1 supports 8 DDR channels, up to 4 CCIX links,
128MB of L3 cache, 1MB of private cache along with 64 KB
I-cache and 64 KB D-cache. The performance improve-
ments of N1 as compared to the predecessor Cortex-A72 are:
2.4-folds for memory allocation, 5-folds of object/array ini-
tializations, and 20-folds for VM initiation. The Neoverse N1
has been commercially deployed on Amazon Graviton [145]
servers, where the workload performance per-vCPU shows
an improvement of 24% for HTTPS load balancing with
NGNIX and 26% for X.264 video encoding as compared to
the predecessor M5 server platforms of Amazon Graviton.

6) SUMMARY OF CPU

In summary, the CPU provides a variety of options to control
and enable the features and technologies that specifically
enhance the CPU performance for NF applications deployed
on GPC platforms. In addition to the OS and hypervisors
managing the CPU resources, the NF application design-
ers can become aware of the CPU capabilities through the
CPU instruction CPUID and develop strategies to run the
NF application processes and threads on the CPU cores
at desired frequency and power levels to achieve the per-
formance requirements of the NF applications. In general,
a platform consists of both CISC and RISC computing archi-
tectures, whereby CISC architectures (e.g., x86 and AMD)
are predominantly used in hyper-scale computing opera-
tions, such as server processors, and RISC architectures are
used for compute operations on I/O devices and hardware
accelerators.
The CPU technologies discussed in Sec. III-A along with

the general CPU technology trends in support of diverse
application demands [196], [197] enable increasing numbers
of cores within a given silicon area such that the linear scaling
of CPU resources could—in principle—improve the overall
application performance. However, the challenges of increas-
ing the core density (number of cores per die) include core-to-
core communication synchronization (buffering and routing
of messages across interconnects), ensuring cache coherency
across L3 caches associated with each core, as well as thread
scheduling such that the cache coherency is maximized and
inter-core communication is minimized. Another side effect
of the core-density increase is the higher thermal sensitivity
and interference in multi-core computing, i.e., the load on
a given core, can impact the performance and capacity of
adjacent cores. Therefore, in a balanced platform, the com-
pute (processes and threads) scheduling across different cores
should consider several external aspects in terms of spatial
scheduling for thermal balancing, cache coherency, and inter-
core communication traffic.

B. INTERCONNECTS

An interconnect is a physical entity for a point-to-point
(e.g., link) connection between two hardware components,
or a point-to-multi-point (e.g., star, mesh, or bus) connection

between three or more hardware components. Commonly,
an interconnect, which can exist within a given chip
(i.e., on-chip) or between multiple chips (i.e., chip-to-chip),
is a physical path between two discrete entities for data
exchanges. On the other hand, an interface is a logical stateful
connection between two components following a common
protocol, such as the Universal Serial Bus (USB) or PCIe
protocol, to exchange data among each other. (Interfaces
have mainly been defined for point-to-point; the PCIe has
some point-to-multi-point broadcast messages, however only
for control and enumeration of devices by the OS.) More
specifically, an interface is the logical stateful connection,
e.g., a time slot structure, that exists on a physical path
(i.e., the interconnect) between two discrete physical compo-
nents. For instance, there exists a USB interface on a physical
USB interconnect; similarly, there exists a logical PCIe inter-
face (e.g., slot structure) on a PCIe interconnect [200].

Physical interconnects between hardware components
often limit themaximum achievable performance of the entire
system due to bottlenecks, e.g., the memory transaction path
limits the access of applications to shared resources. The NF
design should pay close attention to interconnects and inter-
faces since NF application can easily saturate an interconnect
or interface between hardware components, limiting the NF
performance. Several interconnect and interface technologies
can connect different components within a die, i.e., on-chip,
and connect components die-to-die, i.e., external to the chip.

1) ON-CHIP INTERCONNECTS

On-chip interconnects, which are also referred to as on-die
interconnects, connect various hardware components within
a chip, such as core, accelerator, memory, and cache, that
are all physically present inside the chip. On-die intercon-
nects can be broadly categorized into core-to-core, core-to-
component, and component-to-component, depending on the
end-point use cases. The typical design of an on-die inter-
connect involves a mesh topology switching fabric built into
the silicon die, which allows multiple components to simul-
taneously communicate with each other. The mesh topology
switching fabric achieves high overall throughout and very
low latency.

a: SCALABLE DATA FABRIC (SDF) & SCALABLE

CONTROL FABRIC (SCF)

The Infinity Scalable Data Fabric (SDF) and Scalable Control
Fabric (SCF) [33] (see Fig. 7) are the AMD R© proposed
switching fabrics for on-die component communications.
SDF and SCF are responsible for the exchange of data and
control messages between any endpoint on the chip. The
separation of data and control paths allows the fabric to prior-
itize the control communications. The SCF functions include
thermal and power management on-die, built-in self-tests,
security, and interconnecting external hardware components
(whereby a hardware component is also sometimes referred
to as a hardware Intellectual Property (IP) in this field). SDF
and SCF are considered as a scalable technology supporting
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FIGURE 7. Overview of AMD R© Zen core and Infinity core-to-core
Fabric [198]. The Infinity Fabric defines a Scalable Data Fabric (SDF) as
on-die core-to-core interconnect. The SDF extends the connectivity from
on-die (on-chip) to chip-to-chip (i.e., socket-to-socket) connectivity
though the Coherent AMD Socket Extender (CAKE), resulting in an Infinity
Fabric Inter-Socket (IFIS). In addition to inter-socket, CAKE enables
intra-socket connections for die-to-die (on-package) with Infinity Fabric
On-Package (IFOP) extensions. An SDF extension to connect with multiple
I/O devices is enabled through an I/O Master Slave component. Similarly,
the Cache-Coherent Master (CCM) on the SDF directly connects the cores
(on-die) that are associated with the L3 caches coherently, while the
Unified Memory Controller (UMC) extends the connectivity to the DRAM.
CAKE interfaces can also be extended to I/O with support for PCIe.

large numbers of components to be interconnected on-die.
Similarly, Infinity Fabric On-Package (IFOP) provides die-
to-die communication within a CPU socket i.e., on the same
package.

b: 2D MESH

The Intel R© 2D mesh [146] (see Fig. 8) interconnects mul-
tiple core components within a socket. A core component
along with a Cache Homing Agent (CHA), Last Level Cache
(LLC), and Snoop Filter (SF) corresponds to a ‘‘Tile’’ in the
CPU design. A tile is represented as a rectangular block that
includes a core, CHA, and SF as illustrated in the Xeon R©

CPU overview in Fig. 8. The 2D mesh technology imple-
ments a mesh based interconnect to connect all the cores on
a given die, i.e., single CPU socket.
In previous Intel R© core architecture generations, the Home

Agent (HA) was responsible for the cache management.
In the current generation, each mesh stop connects to a
tile, enumerated as logical number, i.e., as tile0/CHA0,
tile1/CHA1, and so on; thereby effectively moving from a
centralized HA to distributed CHA agents. When a memory
address is accessed by the CPU, the address is hashed and
sent for processing by the LLC/CHA/SF residing at the active
mesh stop that is directly connected to the tile that makes
the memory request. The CHA agent then checks the address
hash for data presence in an LLC cache line, and the Snoop
Filter (SF) checks the address hash to see if the address
is cached at other LLC locations. In addition to cache line
and SF checks, the CHA makes further memory read/write
requests to the main memory and resolves address conflicts
due to hashing.

FIGURE 8. Intel R© Xeon R© CPU overview [199]: The Intel R© Xeon CPU in a
single-socket package consisting of single die with 22 cores and 2
Memory Controllers (MCs) on either side of the die extending to DDR
interfaces. The cores are arranged in a rectangular grid supported by a 2D
mesh interconnect that connects all cores within a single socket. Each
core component is interconnected with uncore components, such as
Cache and Homing Agent (CHA) to apply cache policies, Snoop
Filter (SF) to detect cached addresses at multiple caches to maintain
coherency, and Last Level Cache (LLC) to store data values. Interconnects,
such as the Ultra-Path Interconnects (UPI), enable communication
between multiple sockets, the DDR enables communication between
DRAM and CPU, and the Peripheral Component Interconnect
express (PCIe) enables communications between external components
and the CPU.

In summary, the Infinity Fabric SDF and SCF (Fig. 7),
and the 2D mesh (Fig. 8) are part of core-to-core and core-
to-component designs which directly interact with the CPU
on-die. On the other hand, most accelerator hardware compo-
nents are external to CPUs and come as discrete components
that can be (i) embedded on the CPU die (on-chip), but are
(ii) externally connected to the CPU through I/O interfaces,
such as PCIe.

c: NETWORK ON CHIP (NoC)

A Network on Chip (NoC) [147] (see Fig. 9) implements an
on-die communication path similar to the network switch-
ing infrastructure in traditional communication networks.
On-die communications over a switching fabric uses a custom
protocol to package and transport data between endpoints;
whereas, the NoC uses a common protocol for the transport
and physical communication layer transactions. The data is
commonly packetized, thus supporting variably bit-widths
through serialization. AnNoC provides a scalable and layered
architecture for flexible communication among nodes with
a high density on a given die area. An NoC has three lay-
ers: i) transaction, which provides load and store functions;
ii) transport, which provides packet forwarding, and iii) phys-
ical, which constitutes wires and clocks. A pitfall to avoid is
excessive overhead due to high densities of communicating
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FIGURE 9. Overview of Network on Chip (NoC) [147] where each Compute
Element (CE) connects to a router: The NoC comprises a fabric of
interconnects that provides on-chip communication to compute and
memory elements which are connected to routers. The NoC provides
homogeneous connection services as opposed to heterogeneous
interconnects based on different technologies, such as DDR and PCIe for
on-chip components. The NoC fabric is extensible and can be easily
scaled as the number of compute elements increases.

nodes on the NoC which can impact the overall throughput
performance due to overhead. Additionally, an NoC can pose
a difficult challenge to debug in case of a transaction error.

d: Intel R© ON-CHIP SYSTEM FABRIC (IOSF)

The Intel R© On-Chip System Fabric (IOSF) [148] provides
a proprietary hierarchical switching fabric that connects
multiple hardware components for on-chip communications.
The IOSF characteristics include: i) Modular design: The
IOSF can be applied and extended to multiple devices and
applications by reusing and extending the IOSF design in
the hardware components of the devices and applications;
ii) Compatibility with the PCIe: The IOSF can convert PCIe
transaction packets to IOSF packets by using a PCIe compat-
ible switch; and iii) IOSF provides a sideband interface for
error reporting and Design for Test/Debug (DFX) procedures.

e: ADVANCED eXtensible INTERFACE (AXI)

The Advanced eXtensible Interface (AXI) as defined in
the ARM R© Advanced Micro-controller Bus Architecture
(AMBA) AXI and AXI-Coherency Extension (ACE) speci-
fication [149] provides a generic interface for on-chip com-
munication that flexibly connects various on-die components
(see Fig. 10). The AXI interconnect provides master and
slave based end-to-end connections; operations are initiated
by the master, and the slaves respond to the requested oper-
ation. As opposed to operations, transfers on AXI can be
mutually initiated. Dedicated channels are introduced for
multiple communication formats, i.e., address and data. Each
channel is essentially a bus that is dedicated to send the
message of similar type: i) Address Write (AW), ii) Address
Read (AR), iii) Write Data (W), iv) Read Data (R), and
v) Write Response (WR). These dedicated channels provide
an asynchronous data transfer framework that allows con-
currency in read and write requests simultaneously between
master and slave. If there are multiple components with
caches associated with each IP, ACE provides an extension
to AXI that provides cache coherency between multiple IPs

FIGURE 10. Overview of Advanced eXtensible Interface (AXI) [149]: The
AXI provides an on-chip fabric for communication between components.
The AXI operates in a master and slave model, the slave nodes read and
write data between components as directed by master nodes. The AXI
also provide cache coherency with the AXI-Coherency Extension (ACE)
specification [149] to keep the device cache coherent with CPU cores.

(i.e., components on-die) by maintaining coherence across
multiple caches. Cache coherency is only applied to compo-
nents that act as the master in the AXI transactions.

2) CHIP-TO-CHIP

While on-chip interconnects provide connectivity between
hardware components inside a chip or a die, chip-to-chip
interconnects extend physical interconnects outside the chip
for extending communication with an external IP component,
i.e., hardware block present on another chip.

a: ULTRA PATH INTERCONNECT (UPI)

The Intel R© Ultra Path Interconnect (UPI) [150], [151] imple-
ments a socket-to-socket interconnect that improves upon
its predecessor, the Quick Path Interconnect (QPI). The
UPI allows multiple processors to access shared addresses
with coordination and synchronization, which overcomes the
QPI scalability limitations as the number of cores increases.
In coordination with the UPI, a Caching and Home Agent
(CHA) maintains the coherency across the cores of multiple
sockets, including the management of snoop requests from
cores with remote cache agents Thus, the UPI provides a scal-
able approach to support high socket densities on a platform
while supporting cache coherency across all the cores. The
UPI supports 10.4 Giga Transfers per second (GT/s), which
is effectively 20.8 GB/s. The UPI can interconnect processor
cores over multiple sockets in the form of 2-way, 4-way, and
8-way Symmetric Multiprocessing (SMP), with 2 or 3 UPI
interconnects on each socket, as illustrated in Fig. 11 for
Intel R© Skylake processors.

b: INFINITY FABRIC InterSocket (IFIS)

The Infinity Fabric InterSocket (IFIS) [33], [152]–[154]
of AMD R© implements package-to-package (i.e., socket-
to-socket) communication to enable two-way multi-core
processing, see Fig. 12. A typical IFIS interconnect has
16 transmit-receive differential data lanes, thereby providing
bidirectional connectivity with data rates up to 37.93 GB/s.
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FIGURE 11. Overview of Skylake Scalable Performance (SP) [150], [151]
with Intel R© Ultra Path Interconnect (UPI): The UPI is a point-to-point
processor interconnect that enables socket-to-socket
(i.e., package-to-package) communication. Thus, with the UPI, a single
platform can employ multiple CPU sockets: (a) 2 socket platform
inter-connected by 2 or 3 UPI links per CPU socket, (b) 4 socket platform
interconnected by 2 or 3 UPI links per CPU socket, and (c) 8 socket
platform interconnected by 3 UPI links per CPU socket.

FIGURE 12. Overview of AMD R© Infinity Fabric [33], [152]–[154] for
on-chip and chip-to-chip interconnects: (a) shows the overview of
interconnects between CPU and GPU through the Scalable Control Fabric
(SCF), (b) shows the interconnects from core-to-core within a die for
relative comparison, and (c) shows the overall fabric extensions at the
socket, package, and die levels.

IFIS is implemented with a Serializer-Deserializer (SerDes)
for inter-socket physical layer transport whereby data from a
parallel bus of the on-chip fabric is serialized to be transported
over the IFIS interconnect; the deserializer then parallelizes
the data for the on-chip fabric. One key IFIS property is to
multiplex data from other protocols, such as PCIe and Serial
Advanced Technology Attachment (SATA), which can offer
transparent transport of PCIe and SATA packets over multiple
sockets.

Due to their high physical complexity and cost, UPI
and IFIS are only employed for inter-socket communica-
tion between CPU sockets. However, the vast majority of
the compute pipeline hardware components, such as mem-
ory and I/O devices, could lie outside of the CPU socket
chip, depending on the compute package design of the GPC
platform. Therefore, it is critical for NF performance to con-
sider general chip-to-chip interconnects beyondCPU sockets.
The dominant general state-of-the-art hardware chip-to-chip
interconnects are the Peripheral Component Interconnect
express (PCIe) and Compute eXpress Link (CXL) which are
summarized below.

FIGURE 13. Overview of Peripheral Component Interconnect express
(PCIe) [155] interface which is an extension to PCI technology: PCI
operated as a parallel bus with limited throughput due to signal
synchronization among the parallel buses. The PCIe implements a serial
communication per bus without any synchronization among parallel
buses, resulting in higher throughput. The PCIe is a universal standard for
core-to-I/O device communications. The PCIe protocol defines a
point-to-point link with transactions to system memory reads and writes
by the I/O devices, which are referred to as ‘‘end points’’ and controlled
by the Root Port (RP). The RP resides at the processor as an uncore
component (see Fig. 3). The PCIe switches extend a primary PCIe bus to
multiple buses for connecting multiple devices and route messages
between source and destination. A PCIe bridge extends the bus from PCIe
to PCI so as to accommodate legacy PCI I/O devices.

c: PERIPHERAL COMPONENT INTERCONNECT

EXPRESS (PCIe)

The Peripheral Component Interconnect express (PCIe) [155]
(see Fig. 13) is a chip-to-chip interconnect and interface pro-
tocol that enables communication with an external system-
on-chip component, e.g., the PCIe enables a non-CPU chip
(such as NIC or disk) to connect to a main CPU socket.
The PCIe can connect almost any I/O device, including
FPGA, GPU, custom accelerator, dedicated accelerator (such
as ASIC), storage device, and networking device (including
NIC). The current PCIe specification generation is 5.0 which
offers a 4 GB/s speed for each directional lane, and an aggre-
gated total throughput over 16 lanes of 128 GB/s, as shown
in Table 2.
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TABLE 2. Summary of PCIe lane rates compared across technology
generations from Gen 1.1 through Gen 5: The raw bitrate is in Giga
Transfers per second, and the total bandwidth in Giga Byte per second is
given for 16 parallel lanes in both directions for application payload
(without the PCIe transaction, link layer, and physical layer overheads).

The PCIe follows a transactional protocol with a top-
down tree hierarchy that supports serial transmissions and
unidirectional links running in either direction of the PCIe
link. The PCIe involves three main types of devices: Root
Complex (RC): A RC is a controller that is responsible for
direct memory access (DMA), address look-up, and error
management; End Point (EP): An endpoint is a device that
connects to the PCIe link; and Switch: A switch is an exten-
sion to the bus to which an endpoint (i.e., device) can be
connected. The system BIOS enumerates the PCIe devices,
starting from the RC, and assigns identifiers referred to
as ‘‘Bus:Device:Function’’ or ‘‘BDF’’ for short, a 3 tuple
to locate the device placement in the PCIe hierarchy. For
instance, a system with a single root complex could have the
identifier of 00:00:1, with bus ID 00, device ID 00, and
function 1.
The PCIe does not support sideband signaling; hence, all

the communication has to be conducted in a point-to-point
fashion. The predecessor of the PCIe was the PCI, which
had lower throughput due to skew across the parallel bus
width; however, tomaintain backward compatibility, the PCIe
allows PCI devices to be connected via a PCIe-to-PCI bridge.
There are almost no PCI devices in the recent platforms, as the
PCIe provides both cost efficiency and performance benefits.
However, the OS recognizes PCIe switches as bridges to
keep backward compatibility with the software drivers and
hence can be seen in the enumeration process of the PCIe.
Essentially, every switch port is a bridge, and hence appears
so in the OS listing of all PCIe devices.

d: COMPUTE eXpress LINK (CXL)

The Compute eXpress Link (CXL) [156] (see Fig. 14)
presents a PCIe compliant interconnect focusing primarily on
providing cache coherency across either side of the CXL link.
The CXL link is targeted for accelerators on the platform as
current chip-to-chip interconnects that connect accelerators
do not support cache-to-cache coherency between the CPU
LLC and the local cache of the accelerator. As the computing
demands increase, there will be accelerators with large pro-
cessing units (i.e., local CPU), large local memory (i.e., local
to accelerator), and an associated local cache. As the PCIe
does not provide any support to manage the coordination
between the main CPU, memory, and cache, on the one hand,

FIGURE 14. Overview of Compute eXpress Link (CXL) [156] interconnect
(which uses the PCIe as its interface): The CXL provides a protocol
specification over the PCIe physical layer to support memory extensions,
caching, and data transactions from I/O devices, while concurrently
supporting the PCIe protocol. I/O devices can use either the PCIe protocol
or the CXL. The CXL transactions include CXL.io which provides the
instructions for traditional PCIe I/O transactions, i.e., Memory Mapped I/O
(MMIO), CXL.cache which provides the instructions for cache coherency
and management, and CXL.mem which provides the instructions for
memory read and write between I/O device memory and system memory.

and the accelerator-local CPU, memory, and cache, on the
other hand, the CXL extends the PCIe function to coordi-
nate resources on either side of the CXL link. As a result,
a diverse range from compute-intensive to memory-intensive
accelerators can be flexibly supported over the CXL without
compromising performance. The CXL provides speeds up to
3.938 GB/s for 1 lane and 63.01 GB/s for 16 lanes.

The CXL provides different protocol sets to coordinate
data I/O, memory, and cache while being fully compatible
with the PCIe. The CXL.io protocol defines the PCIe trans-
action procedures which are also used for discovery, enu-
meration, and error reporting, CXL.mem for memory access,
and CXL.cache for caching mechanisms. Low latency and
high bandwidth access to system resources are the key CXL
advantages over the traditional PCIe. The CXL specifica-
tions also define a Flex Bus which supports a shared bus to
commonly transport the CXL and PCIe protocols. The Flex
Bus [157] mode of operation is negotiated during boot up as
requested by the device/accelerator (an external component
to the CPU). The Flex Bus operates on the PCIe electrical
signal characteristics as well as the PCIe form factors of an
add-in card.

e: CCIX R©: CACHE COHERENT INTERCONNECT

FOR ACCELERATORS

One factor that limits the hardware accelerator performance
in accelerating softwarized NFs is the memory transaction
bottleneck between system memory and I/O device. Data
transfer techniques between system memory and I/O device,
such as DDIO (see Sec. III-A3), utilize a system cache to
optimize the data transactions between the system memory
and I/O device. For I/O transactions, a cache reduces the
latencies of memory read and write transactions between
the CPU and system memory; however, there is still a cost
associated with the data transactions between the I/O device

132040 VOLUME 8, 2020



P. Shantharama et al.: Hardware-Accelerated Platforms and Infrastructures for NFs

FIGURE 15. Overview of coherent interconnects for hardware accelerators supporting cache coherency across common switching fabric: (a) Cache
Coherent Interconnect for Accelerators (CCIX) R© [158] defines a protocol to automatically synchronize caches between CPU and I/O devices.
(b) and (c) Gen-Z [159] defines a common interface and protocol supporting coherency for various topologies ranging from on-chip and chip-to-chip to
long-haul platform-to-platforms. The media/memory controller is moved from the CPU complex to the media module such that Gen-Z can independently
support memory transfers across Gen-Z switches and the Gen-Z fabric. (d) Open Coherent Accelerator Processor Interface (OpenCAPI) [160]
homogeneously connects devices to a host platform with a common protocol to support coherency with memory, host interrupts, and exchange
messages across devices.

and system memory. This cost can be reduced through a
local device-cache on the I/O device, and by enabling cache
coherency to synchronize between the CPU-cache and the
device-cache.

While the CXL/PCIe based protocols define the oper-
ations supporting cache coherency between the CPU and
I/O devices, the CXL/PCIe protocols define strict rules
for CPU/core and I/O device endpoint specific opera-
tions. The Cache Coherent Interconnect for Accelerators
(CCIX R©) [158] (pronounced ‘‘See 6’’) is a new interconnect
design and protocol definition to seamlessly connect comput-
ing nodes supporting cache coherency (see Fig. 15(a)).
Another distinguishing CCIX feature (with respect to

CXL/PCIe) is that the CCIX defines a non-proprietary pro-
tocol and interconnect design that can be readily adopted by
processors and accelerator manufacturers. The CCIX proto-
col layer is similar to the CXL in terms of the physical and
data link layers which are enabled by the PCIe specification;
whereas, the transactions layer distinguishes between CCIX
and PCIe transactions.While the cache coherency of the CXL
protocol is managed by invoking CXL.cache instructions,
the CCIX protocol automatically synchronizes the caches
such that the operations are driver-less (no software interven-
tion) and interrupt-less (i.e., no CPU attention required). The
automatic synchronization reduces latencies and improves
the overall application performance. The CCIX version 1.1
supports the maximum bandwidth of the PCIe 5.0 physical
layer specification of up to 32 Giga Transactions per second
(GT/s). Figure 15(a) illustrates the protocol layer operations
in coexistence with the PCIe, and shows the different possible
CCIX system topologies to flexibly interconnect processors
and accelerators.

f: GENERATION-Z (GEN-Z)

The Gen-Z Consortium [159] (see Fig 15(b)) has proposed
an extensible interconnect that supports on-chip, chip-to-
chip, and platform-to-platform communication. As opposed
to the CXL and CCIX, Gen-Z has defined: i) direct connect,
ii) switched, and iii) fabric technologies for homogeneously
connecting compute, memory, and I/O devices. For cross-
platform connections, Gen-Z utilizes networking protocols,
such as InfiniBand, to enable connections via traditional opti-
cal Ethernet links. More specifically, Gen-Z supports DRAM
memory extensions through persistent memory modules with
data access in the form of byte addressable load/store, mes-
saging (put/get), and I/O block memory. Gen-Z provides
management services formemory disaggregation and pooling
of shared memory, allowing flexible resource slicing and
allocations to the OS and applications. In contrast to other
interconnects, Gen-Z inherently supports data encryption as
well as authentication for access control methods to facilitate
the long-haul of data between platforms. Gen-Z preserves
security and privacy through Authenticated Encryption with
Associated Data (AEAD), whereby AEAD encryption is
supported by the AES-GCM-256 algorithm. To support a
wide range of connections, the Gen-Z interconnect supports
variable speeds ranging from 32 GB/s to more than 400 GB/s.

g: OPEN COHERENT ACCELERATOR PROCESSOR

INTERFACE (OpenCAPI)

The Open Coherent Accelerator Processor Interface
(OpenCAPI) [160] (see Fig. 15(c) and (d)) is a host-
agnostic standard that defines procedures to coherently con-
nect devices (e.g., hardware accelerator, network controller,
memory module, storage controller) with a host platform.

VOLUME 8, 2020 132041



P. Shantharama et al.: Hardware-Accelerated Platforms and Infrastructures for NFs

TABLE 3. Comparison of Cache Coherent Interconnects [201].

A common protocol is applied across all the coherently
connected device memories to synchronize with the sys-
tem memory to facilitate accelerator functions with reduced
latency. In addition to cache coherency, OpenCAPI supports
direct memory access, atomic operations to host memory,
messages across devices, and interrupts to the host plat-
form. High frequency differential signaling technology [161]
is employed to achieve high bandwidth and low latency
connections between hardware accelerators and CPU. The
address translation and coherency cache access constructs
are encapsulated by OpenCAPI through serialization which
is implemented on the platform hardware (e.g., CPU socket)
to minimize the latency and computation overhead on the
accelerator device. As compared to the CXL, CCIX, and
Gen-Z, the transaction as well as link and physical layer
attributes in OpenCAPI are aligned with a high-speed Seri-
alizer/Deserializer (SerDes) concept to exploit parallel com-
munication paths on the silicon. Another aspect of OpenCAPI
is the support for virtual addressing, whereby the translations
between virtual to physical addresses occur on the host CPU.
OpenCAPI supports speeds up to 25 Gb/s per lane, with
extensions up to 32 lanes on a single interface. The CXL,
CCIX R©, GenZ, and OpenCAPI interconnects are compared
in Table 3.

3) SUMMARY OF INTERCONNECTS AND INTERFACES

Interconnects provide a physical path for communication
between multiple hardware components. The characteristics
of on-chip interconnects are very different from chip-to-chip
interconnects. NF designers should consider the aspects of
function placement, either on the CPU die or on an exter-
nal chip. For instance, an NoC provides a scalable on-chip
fabric to connect the CPU with accelerator components,
and also to run a custom protocol for device-to-device or
device-to-CPU communication on top of the NoC trans-
port and physical communication layers. The PCIe provides
a universal physical interconnection system that is widely
supported and accepted; whereas, the CXL provides cache
coherency functionalities if needed at the device (i.e., accel-
erator component).
One of the key shortcomings of existing interconnects and

interfaces is the resource reservation and run-time reconfigu-
ration. As the density of platform hardware components, such

as cores, memory modules (i.e., DRAM), and I/O devices,
increases, the interconnects and interfaces that enable phys-
ical connections are multiplexed and shared to increase the
overall link utilization. However, shared links can cause per-
formance variations at run-time, and can result in intercon-
nect and interface resource saturation during high workloads.
Current enabling technologies do not provide a mechanism
to enforce Quality-of-Service (QoS) for the shared intercon-
nect and interface resources. Resource reservation strategies
based on workload (i.e., application) requirements and link
availability should be developed in future work to provide
guaranteed interconnect and interface services to workloads.

C. MEMORY

Although the expectation with high-speed NICs, large CPU
compute power, as well as large and fast memory is to achieve
improved network performance, in reality the network perfor-
mance does not scale linearly on GPC platforms. The white
paper [202] has presented a performance bottleneck analysis
of high-speed NFs running on a server CPU. The analy-
sis has identified the following primary reasons for perfor-
mance saturation: i) interrupt handling, buffer management,
and OS transitions between kernel and user applications,
ii) TCP stack code processing, and iii) packet data moves
between memory regions and related CPU stalls. Towards
addressing these bottlenecks, factors that should be consid-
ered in conjunction with memory optimizations that relate to
data transfers between I/O devices and system memory are:
a) interrupt moderation, b) TCP checksum offloading and
TCP Offload Engine (TOE), and c) large packet transfer
offloading.We proceed to survey efficient strategies formem-
ory access (i.e., read and write) which can mitigate the per-
formance degradations caused by packet data moves.

1) DIRECT MEMORY ACCESS (DMA)

Memory transactions often take many CPU cycles for routine
read andwrite operations from or tomainmemory. TheDirect
Memory Access (DMA) alleviates the problem of CPU over-
head for moving data between memory regions, i.e., within a
RAM, or between RAM and an I/O device, such as a disk or
a PCIe device (e.g., an accelerator). The DMA offloads the
job of moving data between memory regions to a dedicated
memory controller and engine. The DMA supports the data
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movement from the main system memory to I/O devices,
such as PCIe endpoints as follows. The system configures a
region of the memory address space as Memory Mapped I/O
(MMIO) region. A read or write request to the MMIO region
results in an I/O read and write action; thereby supporting the
I/O operations of write and read to and from external devices.

a: I/O ACCELERATION TECHNOLOGY (I/OAT)

The Intel R© I/O Acceleration Technology (I/OAT), as part
of the Intel R© QuickData Technology (QDT) [162], advances
the memory read and write operations over I/O, specifically
targeted for NIC data transfers. I/OAT provides the NIC
direct access to the system DMA for read write access in
the main memory region. When a packet arrives to the NIC,
traditionally, the packet is copied by the NIC DMA to the
system memory (typically at the kernel space). Note that
this DMA is present on the I/O device/endpoint (an external
entity) and then an interrupt is sent to the CPU. The CPU
then copies the packet into application memory, which could
be achieved by initiating a second DMA request, this time
on the system DMA, for which the packet is intended. With
the proposed QDT, the NIC can request that the system DMA
further copies the data onto the application memory without
CPU intervention, thus reducing a critical bottleneck in the
packet processing pipeline. DMA optimizations have also
been presented as part of the Intel R© QuickData Technology
(QDT) [162].

2) DUAL DATA RATE 5 (DDR5)

As technologies that enable NFs, such as NICs, increase their
network connectivity data speeds to as high as 100–400 Gb/s,
data processing by multiple CPUs requires very fast main
memory access. Synchronous Dynamic Random Access
Memory (SDRAM) enables a main system memory that
offers high-speed data access as compared to storage I/O
devices. SDRAM is a volatile memory which requires a clock
refresh to keep the stored data persistently in the memory.
The Dual Data Rate (DDR) improves the SDRAM by allow-
ing memory access on both the rise and fall edges of the
clock, thus doubling the data rate compared to the baseline
SDRAM. The DDR 5th Generation is the current technology
of DDR-SDRAM that is optimized for low latency and high
bandwidth, see Table 4. The DDR5 addresses the limitations
of the DDR4 mainly on the bandwidth per core, as multiple
cores share the bandwidth to the DDR.

The higher DDR5 data rate is achieved through several
improvements, including improvements of the Duty Cycle
Adjuster (DCA) circuit, oscillator circuit, internal reference
voltages, and read training patterns with dedicated mode
registers [163]. The DDR5 also increases the total num-
ber of memory bank groups to twice of the DDR4, see
Table 4. Overall, the DDR5 maximum data rate is twice
the DDR4 maximum data rate, see Table 4. The DDRs are
connected to a platform in the form of Dual In-line Memory
Module (DIMM) cards with 168-pins to 288-pins. In addition

TABLE 4. Summary of Double Data Rates (DDR) Synchronous Data
Random Access Memory (SDRAM) rates. The buffer size indicates the
multiplying factor to the Single Data Rate SDRAM prefetch buffer size. The
chip density corresponds to the total number of memory-cells per unit
chip area, whereby each memory cell can hold a bit. The DDR rates are in
Mega Transfers per second (MT/s). For DDR4 and DDR5, the access to
DRAM can be performed in the group of memory cells which are logically
referred to as memory banks. That is, a single read/write transaction to
DRAM can access the entire data present in a memory bank.

to memory modules, DIMMs are a common form of connec-
tors for high speed storage modules to CPU cores.

3) NON-VOLATILE NAND (NV-NAND)

In general, memory (i.e., DRAM) is expensive, provides
fast read/write access by the CPU, and offers only small
capacities; whereas, storage (i.e., disk) is relatively cheap,
offers large capacities, but only slow read/write access by the
CPU. Read/write access by the CPU to DRAM is referred to
as memory access; while disk read/write access follows the
procedures of I/O mechanisms requiring more CPU cycles.
The slow disk read/write access introduces an I/O bottleneck
in the overall NF processing pipeline, if the NF is storage
and memory intensive. Some NF examples that require inten-
sive memory and storage access are Content Distribution
Networks (CDN) and MEC applications, such as Video-on-
Demand and Edge-Live media content delivery.

The Non-Volatile NAND (NV-NAND) technology [164]
strives to address this bottleneck through so-called Persis-
tent Memory (PM), whereas NV-RAM is a type of Random
AccessMemory (RAM) that uses NV-NAND to provide data-
persistence. In contrast to DRAM, which requires a syn-
chronous refresh to keep the memory active (persistent) on
the memory cells, NV-NAND technology retains the data in
the memory cells in the absence of a clock refresh. Therefore,
NV-NAND technology has been seen as solution to growing
demand for larger DRAM and faster access to disk storage.
Non-Volatile DIMMs (NVDIMMs) in conjunction with the
3D crosspoint technology can create NAND cells with high
memory cell density in a given package [165], achieving
memory cell densities that are many folds higher as com-
pared to the baseline 2D NAND layout design. PM can be
broadly categorized into: i) Storage Class Memory (SCM)
1 Level Memory (1LM), i.e., PM as a linear extension of
DRAM, ii) Storage Class Memory (SCM) 2 Level Memory
(2LM), i.e., PM as main memory and DRAM as cache,
iii) Application-Direct mode (DAX), i.e., PM as storage in
NVDIMM form over DDR interface, and iv) PM as external
storage, i.e., disk over PCIe.

NVDIMMs can operate as both modes of memory,
i.e., DRAM and storage, based on the application use.
As opposed to actual storage, the Storage Class Memory
(SCM) is a memory featured in NVDIMMs that provides
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the DRAM class operational speeds at storage size. SCM
targets memory-intensive applications, such as Artificial
Intelligence (AI) training and media content caching. The
memory needs could further differ in terms of use, for
instance, AI applications are transactions-driven due to CPU
computations, while media content caching is storage driven.
Therefore, SCM is further categorized into 1LM and 2LM.

a: 1 LEVEL MEMORY (1LM)

In the 1LM memory [166], [167] operational mode, the OS
sees NVDIMMPMmemory as an available range of memory
space for reads and writes. The CPU uses normal load and
store instructions that are used for DRAM-access to access
the PM NVDIMM memory. However, the data reads and
writes over the PM are significantly slower compared to the
DDR DRAM access.

b: 2 LEVEL MEMORY (2LM)

In the 2LM [167] mode (see Fig. 16), the DRAM is used
as cache which only stores the most frequently accessed
data, while the NVDIMM memory is seen as larger capacity
alternative to the DRAM with the Byte-Addressable Per-
sistent Memory (B-APM) technique. The caching operation
and management are provided by the memory controller of
the CPU unit. Although data stored in NVDIMM is per-
sistent, the memory controller invalidates the memory upon
power loss or at an OS restart while operating in memory
mode. 2LM technologies are also the type of Storage Class
Memory (SCM) that is used for data-persistent storage usage
of memory, as they provide large storage capacities while
operating at close to memory speeds.

FIGURE 16. Overview of Intel R© Optane DC persistent Memory configured
as 2 Level Memory (2LM) where the DRAM is used as cache to store only
the most frequently accessed data and NVDIMM is used as an alternative
to the DRAM with the Byte-Addressable Persistent Memory (B-APM)
technique.

c: APPLICATION-DIRECT (DAX)

In the Application-Direct (DAX) [167], [168] mode,
the NVDIMMs are seen as an independent PM memory
type that can be used by the OS. The Non-Volatile RAM
(NV-RAM) memory regions can be directly assigned to
applications for direct access of memory through block-
level memory access by the memory controller to support
the OS file system. In DAX mode, the applications and OS
have to be PM memory aware such that dedicated CPU

load and store instructions specific to PM memory access
are used for the transactions between CPU and NVDIMMs.
Essentially, applications on the OS see PM NVDIMMs in
DAX mode as a storage memory space in the platform for
OS file-system store usage. Traditional disk access by the
application involves a kernel mode transition and disk I/O
request and interrupt on completion of the disk read process
which adds up as a significant overhead for storage-intensive
applications. Therefore, PM offers an alternative to storage
on NVDIMMs with block memory read capabilities close to
the DDR DRAM access speeds.

d: EXTERNAL STORAGE

In contrast to PM, NVM express (NVMe) is also NAND
based storage which exists in a PCIe form factor and has
an on-device memory controller along with I/O DMA. Since
NVMe operates as an external device to the CPU, the OS
has to follow the normal process of calling kernel procedures
to read the external device data [169]. Therefore, storage
devices in the NVDIMM form factors outperform NAND
based Solid State Disks (SSDs) because of utilizing the DDR
link instead of the standard PCIe based I/O interface, as well
as the proximity of the DIMMs to the CPU cores.

e: ASYNCHRONOUS DRAM REFRESH (ADR)

Asynchronous DRAM Refresh (ADR) [170] is a platform
feature in which the DRAM content can be backed up within
a momentary time duration powered through super capacitors
and batteries just before and after the power state is down on
the system platform. The ADR feature targets DDR-SDRAM
DIMMs to save the last-instant data by flushing the data
present in buffers and cache onto SDRAM and putting the
SDRAM on self-refresh through power from batteries or
super capacitors. The ADR is an OS-aware feature, where
the data is recovered for the analysis of a catastrophic error
which brought down the system, or to update the data back
to the main memory when the power is restored by the OS.
Three types of data need to be saved in case of a catastrophic
error or power outage are: i) CPU cache ii) data in thememory
controller, and iii) I/O device cache, which will be saved to
the DRAM during the ADR process. In case of NVDIMMs,
the DRAM contents can be flushed to PM storage such
that the data can be restored even after an extended power-
down state.

4) SUMMARY OF MEMORY

The networking workloads that run on GPC platforms depend
on memory for both compute and storage actions. The overall
NF performance can be compromised due to saturation on
the memory I/O bus and high read/write latencies. Therefore,
in this section we have surveyed state-of-art strategies that
directly improve the memory performance so as to aid NFs.
DMA strategies help haul packets that arrive at the NIC (an
external component) to memory, and DDR memory offers
DIMMs based high-speed low-latency access to the CPU for
compute actions on the packet data. For storage and caching
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based network applications, the PM based NVDIMM can
offer very largememory for storage at close toDRAMspeeds.
The pitfalls that should be considered in the NF design are

the asymmetric memory latency speeds between DRAM and
NVDIMM PM. Also, the 2LM memory mode of operations
needs to be carefully considered, when there is no require-
ment for caching, but a need for very low latency transactions.
The shortcomings of memory enabling technologies

include asymmetric address translation and memory read
latencies arising from the non-linear characteristics of
address caching (Translation Lookahead Buffers [TLB]) and
data caching (e.g., L3 cache). The asymmetric read and
write latencies cause over-provisioning of DRAM and cache
resources (for VM deployments) to ensure a minimum per-
formance guarantee. In addition, the memory controller is
commonly shared among all the cores on a CPU die, whereby
the read/write requests are buffered to operate and serve the
requester (CPU or I/O devices) at the DDR rates. Hence,
as an enhancement to current enabling technologies, there
is a need for memory controller based resource reservation
and prioritization according to the workload (application)
requirements.

D. CUSTOM ACCELERATORS

This section surveys hardware accelerator devices that are
embedded on the platforms or infrastructures to speed up
NF processing; typically, these hardware accelerators relieve
the CPU of some of the NF related processing tasks that are
compute intensive. The major part of the NF software still
runs on the CPU, however, a characteristic, i.e., a small part
of the NF (e.g., compression or cryptography) is offloaded
to the hardware accelerator, i.e., the hardware accelerator
implements a small part of the NF as a characteristic. In a
custom accelerator, a software program is typically loaded on
a GPU or FPGA to perform a specific acceleration function
(e.g., a cryptography algorithm), which is a small part of the
overall NF software.

1) ACCELERATOR PLACEMENT

Hardware accelerator devices (including GPU and FPGA)
can be embedded on the platforms and infrastructures with
various placements based on the design requirements. The
hardware design of an acceleration device includes an Intel-
lectual Property of the Register Transistor Logic (RTL) logic
circuit, processors (e.g., RISC) for general purpose com-
puting, along with firmware and microcodes to control and
configure the acceleration device, as well as internal memory
and cache components. In general, all the components that
realize an acceleration function in a hardware acceleration
device are commonly referred to as ‘‘acceleration IP’’.
The acceleration IP (a blue print of the hardware acceler-

ator device) can be embedded on a silicon chip with differ-
ent placements: i) on-core, ii) on-CPU-die, iii) on-package
(socket chip), iv) on-memory, or v) on-I/O device (e.g., sup-
ported by PCIe or USB), as illustrated in Figure 17. The
on-core, on-CPU-die, and on-package accelerator placements
are referred to as an ‘‘integrated I/O device’’. Regardless of

FIGURE 17. Hardware accelerator devices can be realized on silicon in
different placements: i ) on-core, whereby the accelerator device is placed
right next to a CPU core; ii ) on-CPU-die, whereby the accelerator device is
placed around the CPU mesh interconnects; iii ) on-package, whereby the
accelerator device is placed right on-package and external to CPU-die;
iv ) on-memory, whereby the accelerator function is placed on the
memory module; v ) on-I/O device, whereby the accelerator device is
placed on an external (to CPU) I/O device via a physical interconnect.

the accelerator device placement, the CPU views the hard-
ware accelerator as an I/O device (during OS enumeration
of the accelerator function) to maintain the application and
software flexibility.

The placement of a hardware accelerator is governed
by i) the original ownership of the acceleration IP, and
ii) the IP availability and technical merit to the CPU and
memory manufacturers to have an integrated device embed-
ded with the CPU or memory module. The placement of
an accelerator I/O device as an external component to the
CPU has the disadvantages of longer latencies and lower
bandwidths as compared to the on-core, on-die, on-package,
or on-memory placement of a hardware acceleration device as
an integrated I/O device. On the other hand, the integrated I/O
device requires area and power on the core, die, or package,
which is expensive to design and manufacture.

2) GRAPHIC PROCESSING UNIT (GPU)

CPUs have traditionally been designed to work on a serial
set of instructions on data to accomplish a task. Although
the computing requirements of most applications fit the
computation method of CPUs. i.e., the serial execution of
instructions, some applications require a high degree of par-
allel executions. For instance, in graphic processing, the dis-
play rendering across the time and spatial dimensions are
independent for the display data for each pixel. Serialized
execution of instructions to perform computations on each
independent pixel would be inefficient, especially in the time
dimension.

Therefore, a new type of processing unit, namely,
the General-Purpose Graphic Processing Unit (GP-GPU) was
introduced to perform a large number of independent tasks
in parallel, for brevity, we refer to a GP-GPU as a ‘‘GPU’’.
A GPU has a large number of cores, supported by dedicated
cache andmemory for a set of cores; moreover, a global mem-
ory provides shared data access, see Fig. 18. Each GPU core
is equippedwith integer and floating point operational blocks,
which are efficient for arithmetic and logic computations on
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FIGURE 18. Overview of typical Graphics Processing Unit (GPU) architecture: (a) Illustration of Arithmetic Logic Units (ALUs) specific to each core in a CPU
as compared to a GPU; a GPU has a high density of cores with ALUs with relatively simple capabilities as opposed to the more capable ALUs in the
relatively few CPU cores, and (b) Overview of memory subsystem of Fermi architecture with a single unified memory request path for loads and stores,
one L1 cache per streaming multiprocessor (SM), and a unified L2 cache. (c) Overview of Fermi Streaming Microprocessor (FSM) which implements the
IEEE 754–2008 floating-point standard, with a Fused Multiply-Add (FMA) instruction for single and double precision arithmetic. (d) Overview of CUDA
architecture that enables Nvidia GPUs to execute C, C++, and other programs. Threads are organized in thread blocks, which in turn are organized into
grids [171].

vectored data. CPUs are generally classified into RISC and
CISC in terms of their IS features. In contrast, GPUs have a
finite set of arithmetic and logic functions that are abstracted
into functions and are not classified in terms of RISC or CISC.
A GPU is generally considered as an independent type of
computing device.
To get a general idea of GPU computing, we present

an overview of the GPU architecture from Nvidia [171]
(see Fig. 18) which consists of Streaming Multiproces-
sors (SMs), Compute Unified Device Architecture (CUDA)
cores, Load/Store (LD/ST) units, and Special Function Units
(SFUs). A GPU is essentially a set of SMs that are configured
to execute independent tasks, and there exist several SMs
(e.g., 16 SMs) in a single GPU. An SM is an individual
block of the execution entity consisting of a group of cores
(e.g., 32 cores) with a common register space
(e.g., 1024 registers), and shared memory (e.g., 64 KB)
and L1 cache. A core within an SM can execute multiple
threads (e.g., 48 threads). Each SM has multiple (e.g., 16)
Load/Store (LD/ST) units which allow multiple threads to
perform LD/ST memory actions per clock cycle. A GPU
thread is an independent execution sequence on data. A group
of threads is typically executed in a thread block, whereby the
individual threads within the group can be synchronized and
can cooperate among themselves and with a common register
space and memory.
For GPU programming, the CPU builds a functional unit

called ‘‘kernel’’ which is then sent to the GPU for instan-
tiation on compute blocks. A kernel is a group of threads
working together to implement a function, and these kernels

are mapped to thread blocks. Threads within a block are
grouped (e.g., 32 threads) into warps and an SM schedules
these warps on cores. The results are written to a global
memory (e.g., 16 GB per GPU) which can be then copied
back to the system memory.

Special Function Units (SFUs) execute structured arith-
metic or mathematical functions, such as sine, cosine, recip-
rocal, and square root, on vectored data with high efficiency.
An SFU can execute only one function per clock cycle, per
thread, and hence should be shared among multiple threads.
In addition to SFUs, a Texture Mapping Unit (TMU) per-
forms application specific functions, such as image rotate,
resize, add distortion and noise, and performs 3D plane object
movements.

Packet processing is generally a serialized execution pro-
cess because of the temporally ordered processing of packets.
However, with several ongoing flows whereby each flow
is an independent packet sequence, GPUs can be used for
parallelized execution of multiple flows. Therefore, NF appli-
cations which operate on large numbers of packet flows that
require data intensive arithmetic and logic operations can
benefit from GPU acceleration.

Traditionally, GPUs have been connected through a PCIe
interface, which can be a bottleneck in the overall system
utilization of the GPU for parallel task computing [203].
Therefore, Nvidia has proposed a new NVlink intercon-
nect to connect multiple GPUs to a CPU. Additionally,
the NVSwitch is a fabric of interconnects that can connect
large numbers of GPUs for GPU-to-GPU and GPU-to-CPU
communication.
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FIGURE 19. (a) Overview of FPGA architecture: Configurable logic blocks (CLBs) are interconnected in a two-dimensional programmable routing grid,
with I/O blocks at the grid periphery. (b) Illustration of a traditional island-style (mesh based) FPGA architecture with CLBs; the CLBs are ‘‘islands in a sea
of routing interconnects’’. The horizontal and vertical routing tracks are interconnected through switch boxes (SB) and connection boxes (CB) connect
logic blocks in the programmable routing network, which connects to I/O blocks. (c) Illustration of Hierarchical FPGA (HFPGA) with recursively grouped
clusters of logic blocks, whereby SBs ensure routability depending on the topologies [172].

3) FIELD PROGRAMMABLE GATE ARRAYS (FPGA)

CPUs and GPUs provide a high degree of flexibility through
programming frameworks and through executing compiled
executable code at run-time. To support such programming
frameworks, CPUs and GPUs are built to perform general-
purpose computing. However, in certain applications, in addi-
tion to programming flexibility there is a greater requirement
for performance which is typically achieved by dedicated
hardware. Field Programmable Gate Array (FPGA) architec-
tures attempt to address both requirements of programmabil-
ity and performance [172]. As illustrated in Fig. 19, the main
architectural FPGA blocks are: i) logic blocks, ii) routing
units, and iii) I/O blocks. Logic blocks are implemented
as Compute Logic Blocks (CLBs) which consist of Look-
up Tables (LUTs) and flip-flops. These CLBs are internally
connected to form a matrix of compute units with a pro-
grammable switching and routing network which eventually
terminates at the I/O blocks. The I/O blocks, in turn, connect
to external system interconnects, such as the PCIe, to com-
municate with the CPU and other system components.
The FPGA programming technology determines the type

of device and the relative benefits and disadvantages. The
standard programming technologies are: i) Static RAM,
ii) flash, and iii) anti-fuse. Static-RAM (SRAM) is the most
commonly implemented and preferred programming tech-
nology because of its programming flexibility and CMOS
silicon design process for the FPGA hardware. In SRAM
based FPGA, static memory cells are arranged as an array
of latches which should be programmed on power up. The
SRAM FPGAs are volatile and hence the main system must
load a program and configure the FPGA computing block to
start the task execution.
The flash technique employs non-volatile memory cells,

which do not require the main system to load the config-
uration after a power reset. Compared to SRAM FPGAs,

flash-based FPGAs are more power efficient and radiation
tolerant. However, flash FPGAs are cost ineffective since
flash does not use standard CMOS silicon design technology.

In contrast to the SRAM and flash techniques, the anti-fuse
FPGA can be programmed only once, and offers lower size
and power efficiency. Anti-fuse refers to the programming
method, where the logic gates have to be burned to conduct
electricity; while ‘‘fuse’’ indicates conduction, anti-fuse indi-
cates the initial FPGA state in which logic units do not exhibit
conduction.

The programmable switching and routing network inside
an FPGA realizes connectivity among all the involved
CLBs to complete a desired task through a complex logic
operation. As illustrated in Fig. 19, the FPGA switch-
ing network can be categorized into two basic forms:
i) island-style routing (Fig. 19(b)), and ii) hierarchical routing
(Fig. 19(c)). In island-style routing, Switch Boxes (SBs) con-
figure the interconnecting wires, and connect to a Connection
Box (CB). CBs connect CLBs, whereas SBs connect CBs.
In a hierarchical network, multiple levels of CLBs connect to
a first level of SBs, and then to second level in a hierarchical
manner. For better performance and throughput, the island-
style is commonly used. State-of-the-art FPGA designs have
transceiver I/O speeds above 28 Gb/s, RAM blocks, and
Digital Signal Processing (DSP) engines to implement signal
processing routines for packet processing.

NFs can significantly benefit from FPGAs due to their
high degree of flexibility. An FPGA can be programmed
to accelerate multiple protocols or part of a protocol in
hardware, thereby reducing the overall CPU load. However,
the data transactions between the FPGA, NIC, and CPU
need to be carefully coordinated. Importantly, the perfor-
mance gain from FPGA acceleration should exceed the over-
head of packet movement through the multiple hardware
components.
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4) SUMMARY OF CUSTOM ACCELERATORS

Custom accelerators provide the flexibility of programma-
bility while striving to achieve the hardware performance.
Though there is gap in the degree of flexibility and perfor-
mance, technological progress has produced hybrid solutions
that approach the best of both worlds.
The GPU implementation [204] of NF applications is

prudent when there are numerous independent concurrent
threads working on independent data. It is important to keep
in mind that GPU implementation involves a synchronization
overhead when threads want to interact with each other.
A new GPU compute request involves a kernel termination
and the start of a new kernel by the CPU which can add
significant delays if the application was to terminate and
restart frequently, or regularly triggered for each packet event.
FPGA implementation provides a high degree of flexibility

to define a custom logic on hardware. However, most FPGAs
are connected to the CPU through the PCIe, which can be a
bottleneck for large interactive computing between host CPU
and FPGA [205]. The choice of programming technology, I/O
bandwidth, compute speed, and memory requirements of the
FPGA determines which NF applications can be accelerated
on an FPGA to outperform the CPU.
A critical shortcoming of current custom accelerator tech-

nologies is their limited effective utilization of GPUs and
FPGAs on the platform during the runtime of application
tasks resulting from the heterogeneous application require-
ments. The custom accelerators that are programmed with
a characteristic (small part of an overall NF) to assist the
NF (e.g., TCP NF acceleration) are limited to perform the
programmed acceleration until they are reprogrammed with
a different characteristic (e.g., HTTPS NF acceleration).
Therefore, static and dynamic reconfigurations of custom
accelerators can result in varying hardware accelerator uti-
lization. One possible solution is to establish an open-source
marketplace for acceleration libraries, software-packages,
and application-specific binaries, to enable programmable
accelerators which can be reconfigured at runtime to begin
acceleration based on dynamicworkload demands. One effort
in this direction are the FPGA designs to support dynamic
run-time reconfiguration through binary files which are com-
monly referred to as partial reconfiguration [206] for run-
time reconfiguration processes, and personas [207] for binary
files. A further extension of partial reconfiguration and per-
sonas is to enable applications to dynamically choose per-
sonas based on application-specific hardware acceleration
requirements for both FPGAs and GPUs, and to have com-
mon task scheduling between CPUs and custom accelerators.

E. DEDICATED ACCELERATORS

Custom GPU and FPGA accelerators provide a platform
to dynamically design, program, and configure the accel-
erator functionalities during the system run-time. In con-
trast, the functionalities of dedicated accelerators are fixed
and built to perform a unique set of tasks with very high
efficiency. Dedicated accelerators often exceed the power

efficiency and performance characteristics of CPU, GPU, and
FPGA implementations. Therefore, if efficiency is of highest
priority for an NF implementation, then the NF computations
should be offloaded to dedicated accelerators. Dedicated
hardware accelerators are implemented as an Application
Specific Integrated Circuit (ASIC) to form a system-on-chip.
ASIC is a general technology for silicon design which is
also used in the FPGA silicon design; therefore, ASICs can
be categorized as: i) full-custom, which has pre-designed
logic circuits for the entire function acceleration, and
ii) semi-custom, where only certain logic blocks are designed
as an ASIC while allowing programmability to connect and
configure these logic blocks, e.g., through an FPGA.

A dedicated accelerator offers no programming flexibility
due to the hardware ASIC implementation. Therefore, dedi-
cated accelerators generally implement a set of characteristics
(small parts of overall NFs) that can used by heterogeneous
applications. For instance, for hardware acceleration of the
AES-GCM encryption algorithm, this specific algorithm can
be programmed on an FPGA or GPU; in contrast, on a
dedicated accelerator there would be a list of algorithms that
are supported, and we select a specific algorithm based on the
application demands.

A wide variety of dedicated hardware accelerators have
been developed to accelerate a wide range of general com-
puting functions, e.g., simulations [208] and graph process-
ing [209]. To the best of our knowledge, there is no prior
survey of dedicated hardware accelerators for NFs. This
section comprehensively surveys dedicated NF hardware
accelerators.

1) CRYPTOGRAPHY AND COMPRESSION

ACCELERATOR (CCA)

Cryptography encodes clear (plain-text) data into cipher-text
with a key such that the cipher-text is almost impossible to
decode into clear data without the key. As data communi-
cation has become an indispensable part of everyday living
(e.g., medical care and business activities), two aspects of
data protection have become highly important: i) privacy,
to protect data from eavesdropping, and to protect the sender
and receiver information; and ii) data integrity to ensure
the data was not modified by anyone other than sender or
receiver. One of the most widely known cryptography appli-
cations in NF development is HTTPS [173] for securing
transmissions of content between two NFs, such as VNF to
VNF, Container Network Function (CNF) to CNF, and CNF
toVNF.While cryptographymechanisms address privacy and
integrity, compression addresses the data sparsity in binary
form to reduce the size of data by exploiting the source
entropy. Data compression is widely used from local storage
to end-to-end communication for reducing disk space usage
and link bandwidth usage, respectively. Therefore, cryptog-
raphy and compression have become of vital importance
in NF deployment. However, the downside of cryptography
and compression are the resulting computing requirement,
processing latency, and data size increase due to encryption.
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FIGURE 20. Block diagram of Nitrox cryptography and compression
accelerator [174]: 64 Giga cipher cores offer high throughput due to
parallel processing, coupled with dedicated compression engines. The
Nitrox hardware accelerator is external to the CPU and interfaces with the
CPU via a PCIe interconnect.

a: CAVIUM NITROX R©

Nitrox [174] is a hardware accelerator from Cavium (now
Marvell) that is external to the CPU and connects via the PCIe
to the CPU for accelerating cryptography and compression
NFs, see Fig. 20. The acceleration is enabled through a soft-
ware library that interfaces via APIs with the device driver
and applications. The APIs are specifically designed to sup-
port application and network protocol specific security and
compression software libraries, such as OpenSSL, OpenSSH,
IPSec, and ZLib. In a typical end-to-end implementation,
an application makes a function call (during process/thread
execution on CPUs) to an application-specific library API,
which then generates an API call to the accelerator-specific
library, which offloads the task to the accelerator with the help
of an accelerator-device driver on the OS. Nitrox consists of
64 general-purpose RISC processors that can be programmed
for different application-specific algorithms. The processor
cores are interconnected with an on-chip interconnect (see
Sec. III-B) with several compression engine instances to
achieve concurrent processing. Nitrox acceleration per device
achieves 40 Gb/s for IPsec, 300K Rivest-Shamir-Adleman
(RSA) Operations/second (Ops/s) for 1024 bit keys, and
25 Gb/s for GZIP/LZS compression along with support
for Single Root-Input/Output Virtualization (SR-IOV) [84],
[175] virtualization.

b: INTEL R© QUICK ASSIST TECHNOLOGY R©

Similarly, to address the cryptography and compression
computing needs, the Intel R© Quick Assist Technology R©

(QAT) [176] provides a hardware acceleration for both cryp-
tography and compression specifically focusing on network
security, i.e., encryption and decryption, routing, storage, and
big data processing. The QAT has been specially designed to
perform symmetric encryption and authentication, asymmet-
ric encryption, digital signatures, Rivest-Shamir-Adleman
(RSA), Diffie-Hellman (DH), and Elliptic-curve cryptogra-
phy (ECC), lossless data compression (such as DEFLATE),
and wireless standards encryption (such as KASUMI,
Snow3G and ZUC) [177]. The QAT is also used for L3 proto-
col accelerations, such as IPSec, whereby the packet process-
ing for encryption and decryption of each packet is performed

TABLE 5. Summary of Data Stream Accelerator (DSA) opcodes.

FIGURE 21. Illustration of high-level blocks within the Intel R© DSA device
at a conceptual level. In DSA, the receiving of downstream work requests
from clients and upstream work requests, such as read, write and address
translation operations, are accessed with the help of I/O fabric interfaces.
The inclusion of configuration registers and Work Queues (WQ) helps in
holding of descriptors by software, while arbiters implement QoS and
fairness policies. Batch descriptors are processed through the batch
processing unit by reading the array of descriptors from the memory and
the work descriptor is composed of multiple stages to read memory,
perform data operations, and write data output [178].

by the QAT. A key differentiation of the QAT from Nitrox
is the QAT support for CPU on-die integrated device accel-
eration, such that the power efficiency and I/O performance
can be higher with the QAT as compared to the CPU-external
Nitrox accelerator.

2) DATA STREAMING ACCELERATOR (DSA)

The management of softwarized NF entities depends mainly
on the orchestration framework for the management of soft-
warized NFs. The management of softwarized NFs typically
includes the instantiation, migration, and tear-down (termi-
nation) of NFs on GPC infrastructures. These NF manage-
ment tasks are highly data driven as the management process
involves the movement of an NF image in the form of an
application executable, Virtual Machine (VM) image, or a
container image from a GPC node to another GPC node.
Such an NF image movement essentially results in a memory
transaction operation on a large block of data, such as copy,
duplicate, and move, which is traditionally performed by a
CPU. Therefore, to assist in these CPU intensive memory
operations, a dedicated hardware Data Streaming Accelerator
(DSA) [178] has been introduced. The DSA functions are
summarized in Table 5, and the internal DSA blocks have
been illustrated in Fig. 21.
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The DSA functions that are most relevant for NF manage-
ment are:

i) The memory move function helps with moving an NF
image from one memory location to another within the
DRAM of a system, or on an external disk location.

ii) The dualcast function helps with simultaneously copy-
ing a NF image on memory to multiple locations, for
instance, for scaling up of VMs or containers to multiple
locations for load balancing.

iii) The memory compare function compares two mem-
ory regions and provides feedback on whether the two
regions match or not, and where (memory location) the
first mismatch occurs. This feature is useful for check-
ing if a VM or container image has been modified or
updated before saving or moving the image to a different
location.

iv) The delta record creator function creates a record of
differences between two memory regions, which helps
with capturing the changes between two VM images.
For instance, the delta record function can compare a
running VM or container with an offline base image on
a disk. The offline base image will be made to run by the
OS, which has the running context. Then, we can save
the VM or container as a new ‘‘base’’ image, so as to
capture changes during run-time to be used later.

v) The delta record merge function applies the delta-
record generated by the delta record create func-
tion consisting of differences between two memory
regions to equate two of the involved memory regions.
This function helps with VM and container migration,
whereby the generated delta-record can be applied to
the VM/Container base image to equate between run-
ning image at one node/location to another, essentially
migrating a VM/container.

3) HIGH BANDWIDTH MEMORY (HBM)

The memory unit (i.e., DDR) is the closest external com-
ponent to the CPU. The memory unit typically connects
to the CPU with a very high speed interconnect as com-
pared to all other external interconnects (e.g., PCIe) on the
platform. While the scaling of computing by adding more
cores is relatively easy to design, the utilization of larger
memory hardware is fundamentally limited by the memory
access speed over the interconnect. Therefore, increasing
the bandwidth and reducing the latency of the interconnect
determines the effective utilization of the CPU computing
capabilities. High BandwidthMemory (HBM) [179] has been
introduced by AMD R© to increase the total capacity as well
the total access bandwidth between the CPU and memory,
see Fig. 22. For instance, the DDR5 with two memory chan-
nels supports peak speeds of 51.2 GB/s per DRAM module;
whereas, the latest HBM2E version is expected to reach peak
speeds of 460 GB/s. The increase in memory density and
speed is achieved through vertical DRAM die-stacking, up to
8 DRAM dies high. The resulting 3D memory store cube is

FIGURE 22. Illustration of high-bandwidth memory (HBM) with low
power consumption and ultra-wide bus width. Several HBM DRAM dies
are vertically stacked (to shorten the propagation distance) and
interconnected by ‘‘Through-Silicon Vias (TSV)’’, while ‘‘microbumps’’
connect multiple DRAM chips [179]. The vertically stacked HBMs are
plugged into an interposer, i.e., an ultra-fast interconnect, which connects
to a CPU or GPU [179].

interconnected by a novel Through-SiliconVias (TSVs) [180]
technology.

4) PROCESSING IN-MEMORY (PIM) ACCELERATOR

Likewise to memory, bandwidths and latencies of external
interconnects (e.g., PCIe) define the overall benefit of an
accelerator (especially considering that the computing capac-
ity of an accelerator can be relatively easily scaled up). The
system data processing pipeline also involves the memory
transactions between external components and the system
memory unit (i.e., DRAM), which involves two intercon-
nects, namely between the DDR and CPU, and between
CPU and external component (e.g., PCIe). If the application
that is being accelerated by an external hardware is data
intensive and involves largememory transactions between the
DRAM and the external hardware, then significant amounts
of CPU/DMA cycles are needed for the data movement.

Processing-In-Memory (PIM) [181], [182] envisions to
overcome the data movement problem between accelera-
tor and memory by implementing an acceleration function
directly on the memory. This PIM may seem to be a simple
solution that solves many problems, including memory move
and interconnect speeds. However, the current state-of-art of
PIM is limited to basic acceleration functions that can be
implemented on memory units under consideration of the
packaging and silicon design challenges which require the
3D integration of acceleration function units onto the mem-
ory storage modules [183]. The current applications of PIM
accelerations are large-scale graph processing with repeated
memory updates as part of machine learning computations as
well as neural network coefficient updates with simple opera-
tions involving multiplications and additions of data in static
memory locations (for the duration of application run-time),
such as matrix operations [184]. A PIM architecture proposed
by Ahn et al. [181] achieved ten-fold throughput increases
and saved 87% of the energy. NF application can potentially
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greatly benefit from in-memory computation which avoids
packet movements between memory and accelerators.

5) HARDWARE QUEUE MANAGER (HQM)

The normal OS and application operations involve inter-
actions of multiple processes and threads to exchange
information. The communication between processes and
threads involves shared memory, queues, and dedicated soft-
ware communication frameworks. NF applications share the
packet data between multiple threads to process multiple
layers of the networking protocol stack and applications. For
instance, the TCP/IP protocol functions are processed by
one process, while the packet data is typically exchanged
between these processes through dedicated or shared queues.
Dedicated queues require large memory along with queue
management mechanisms. On the other hand, shared queues
require synchronization between multiple threads and pro-
cesses while writing and reading from the shared queue.
Allocating a dedicated queue to every process and thread
is practically impossible; therefore, in practice, despite the
synchronization requirement, shared queues are extensively
used because of their relatively easy implementation and effi-
cient memory usage. However, as the number of threads and
processes accessing a single shared queue increases, the syn-
chronization among the threads to write and read in sequence
incurs significant delays and management overhead.
The Hardware Queue Manager (HQM) accelerator

[185], [186] proposed by Intel R© implements the shared and
dedicated queues in hardware to exchange data and informa-
tion between threads and processes. The HQM implements
hardware queue instances as required by the applications such
that multiple producer threads/processes write to queues,
and multiple consumer threads/processes read from queues
without requiring software synchronization. Producer
threads/processes generate the data that can be intended for
multiple consumer threads/processes. The HQM delivers the
data then to the consumer threads for data consumption fol-
lowing policies that optimize the consumer thread selection
based on power utilization [187], workload balancing, and
availability. The HQM can also assist in the scheduling of
accelerator tasks by the CPU threads and processes among
multiple instances of hardware accelerators.

6) SUMMARY OF DEDICATED ACCELERATORS

Dedicated accelerators provide the highest performance both
in terms of throughput and latency along with power savings
due to the efficient ASIC hardware implementation as com-
pared to software execution. The common downsides of hard-
ware acceleration are the cost of the accelerator support and
the lack of flexibility in terms of programming the accelerator
function.
A critical pitfall of dedicated accelerators is the limitation

of hardware capabilities. For instance, a dedicated cryptog-
raphy and compression accelerator only supports a finite set
of encryption and compression algorithms. If an applica-
tion demands a specific algorithm that is not supported by
the hardware, then acceleration has to fallback to software

execution which may increase the total execution cost even
with the accelerator.

Another key pitfall is to overlook the overhead of the hard-
ware offloading process which involves memory transactions
from the DRAM to the accelerator for computing and for stor-
ing the result. If the data computation that is being scheduled
on an accelerator is very small, then the total overhead of
moving the data between the accelerator and memory might
outweigh the offloading benefit. Therefore, an offload engine
has to determinewhether it is worthwhile to use an accelerator
for a particular computation.

Dedicated accelerators perform a finite set of operations
very efficiently in hardware as opposed to software imple-
mentations running on the CPU. Therefore, the limitations
of current dedicated accelerators are: i) acceleration support
for only a finite set of operations, and ii) finite acceleration
capacity (i.e., static hardware resources). One way to address
these limitations is to design heterogeneous modules within a
dedicated hardware accelerator device to support a large set of
operations. Also, the dedicated hardware accelerator device
should have increased hardware resources; however, the actu-
ally utilized hardware modules (within the device) should be
selected at run-time based on the application requirements to
operate within supported I/O link capacities (e.g., PCIe).

F. INFRASTRUCTURE

1) SmartNIC

The Network Interface Card (NIC, which is also referred to
as Network Interface Controller) is responsible for transmit-
ting and receiving packets to and from the network, along
with the processing of the IP packets before they are deliv-
ered to the OS network driver for further processing prior
to being handed over to the application data interpretation.
Typical network infrastructures of server platforms connect
a GPC node with multiple NICs. The NICs are external
hardware components that are connected to the platform via
the PCIe interfaces. NICs implement standard physical (PHY,
Layer 1), data link (MAC, Layer 2), and Internet Protocol
(IP, Layer 3) protocol layer functions. The IP packets are
transported from the local memory of the PCIe device to the
systemmemory as PCIe transactions in the network downlink
direction (i.e., from the network to the application).

If there is an accelerator in the packet processing pipeline,
e.g., for decrypting an IP Security (IPSec) or MAC Secu-
rity (MACSec) packet, the packet needs to be copied from
the system memory to the accelerator memory once the
PCIe DMA transfer to the system memory is completed.
The system memory to accelerator memory copying adds an
additional memory transfer step which contributes towards
the overhead in the overall processing pipeline. Embedding
an acceleration function into the NIC allows the packets to
be processed as they arrive from the network at the NIC
while avoiding this additional memory transfer step, thereby
improving the overall packet processing efficiency.

A Smart-Network Interface Controller (SmartNIC)
[188], [189] not only implements dedicated hardware
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FIGURE 23. Overview of Linux server with Non-Transparent Bridges
(NTBs) [192]: The memory regions of servers A and B can be inter-mapped
across platforms to appear as their own physically addressed memory
regions. An NTB physically interconnects platforms in 1:1 fashion through
a PCIe physical interface. In contrast to the traditional PCIe Root Port (RP)
and Switch (SW) based I/O device connectivity, the NTB from one platform
connects non-transparently to the NTB interface on another platform,
which means that either side of the NTB appears as end-point to each
other, supporting memory read and write operations, without having
transparency on either side. In contrast, a normal PCIe switch functions
essentially as a non-Non-Transparent-Bridge, i.e., as a transparent bridge,
by giving transparent views (to CPU) of I/O devices, PCIe Root Port, and
switches. On the other hand, the NTB hides what is connected beyond the
NTB, a remote node only sees the NTB, and the services offered by the
NTB, such as reading and writing to system memory (DRAM) or disk (SSD
PCIe endpoint) without exposure of the device itself.

acceleration at the NIC, but also general-purpose custom
accelerators, such as FPGA units, which can be programmed
to perform user defined acceleration on arriving packets.
FPGAs on SmartNICs can also be configured at run-time,
resulting in a dynamically adaptive packet processing engine
that the responsive to application needs. An embedded-
Switch (eSwitch) is another acceleration function that imple-
ments a data link layer (Layer 2) switch function on the
SmartNIC to forward MAC frames between NIC ports. This
method of processing the packets as they arrive at the NIC
is also termed ‘‘in-line’’ processing, whereas the traditional
methodwith the additional memory transfer to the accelerator
memory is termed ‘‘look-aside’’ processing. In addition to
programmability, the current state-of-the-art SmartNICs are
capable of very high-speed packet processing on the order of
400 Gb/s [190] while supporting advanced protocols, such as
Infiniband and Remote-DMA (RDMA) [191].

2) NON-TRANSPARENT BRIDGE (NTB)

A PCIe bridge (or switch) connects different PCIe buses and
forwards PCIe packets between buses, whereby buses are
typically terminated with an endpoint. As opposed to a PCIe
bridge, a Non-Transparent Bridge (NTB) [192] extends the
PCIe connectivity to external platforms by allowing two dif-
ferent platforms to communicate with each other, see Fig. 23.
The ‘‘Non-Transparent’’ properties are associated with the
NTB in that CPUs that connect to anNTB appear as endpoints
to each other More specifically, for the regular bridge, all
components, e.g., memory, I/O devices, and system details,
on either side of the regular bridge are visible to either side
across the regular bridge. In contrast, with the non-transparent
bridge, one side can only interact with the CPU on other
side; CPUs on either side do not see any I/O devices, nor

the Root Ports (RPs) at the other side. However, the ‘‘non-
transparent bridge’’ itself is visible to the OS running on
either side.

A PCIe memory read or write instruction translates to a
memory access from a peer node, thereby enabling platform-
to-platform communication. The NTB driver on an OS can
be made aware to use doorbell (i.e., interrupt) notifications
through registers to gain the remote CPU’s attention. A set
of common registers are available to each NTB endpoint as
shared memory for management.

The NTB benefits extend beyond the support of the
PCIe connectivity across multiple platforms; more generally,
NTB provides a low-cost implementation of remote memory
access, can seek CPU attention on another platform, can
offload computations from one CPU to another CPU, and
gain indirect access to remote peer resources, including accel-
erators and network connectivity. The NTB communication
over the underlying PCIe supports higher line-rate speeds
and is more power efficient than traditional Ethernet/IP con-
nectivity enabled by NICs; therefore NTB provides an eco-
nomical solution for short distance communication via the
PCIe interfaces. One of the key application of NTB for
NF applications is to extend the NTB to support RDMA
and Infiniband protocols by running as a Non-Transparent
RDMA (NTRDMA).

3) SUMMARY OF INFRASTRUCTURE

Infrastructure enables platforms to communicate with exter-
nal computing entities through Ethernet/IP, SmartNIC, and
NTB connections. As NF applications are highly depen-
dent on communication with other nodes, the communica-
tion infrastructure should be able to flexibly reconfigure the
communications characteristics to the changing needs of
applications. The SmartNIC is able to provide support for
both NIC configurability and acceleration to offload CPU
computations to the NIC. However, the SmartNIC should
still be cost efficient in improving overall adaptability. The
programmability of custom acceleration at the NIC should
not incur excessive hardware cost to support a wide range of
functions ranging from security to switching, and to packet
filtering applications.

In contrast to the SmartNIC, the NTB is a fixed implemen-
tation that runs on the PCIe protocol which supports much
higher bandwidths than point-to-point Ethernet connections;
however, the NTB is limited to a very short range due to the
limited PCIe bus lengths. Additional pitfalls of acceleration
at the SmartNIC include misconfiguration and offload costs
for small payloads.

Traditionally, infrastructure design has been viewed as an
independent development domain that is decoupled from the
platform components, mainly CPU, interconnects, memory,
and accelerators. For instance, SmartNIC design considera-
tions, such as supported bandwidth and protocol technolo-
gies (e.g., Infiniband), traditionally do not consider the CPU
architectural features, such as Instruction Set Acceleration
(ISAcc, Section III-A1), or systemmemory capabilities, such
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as NV-NAND persistent memory (Section III-C3). As a
result, there is a heterogeneous landscape of platform and
infrastructure designs, whereby future infrastructure designs
are mainly focused on programmable data paths and sup-
porting higher bandwidth with lower latencies. An inter-
esting future development direction is to exploit synergies
between platform component and infrastructure designs to
achieve cross-component optimizations. Cross-component
design optimizations, e.g., in-memory infrastructure process-
ing or ISAcc for packet and protocol processing, could poten-
tially improve the flexibility, latency, bandwidth, and power
efficiencies.

G. SUMMARY AND DISCUSSION

In Sec. III we have surveyed enabling technologies for plat-
form and infrastructure components for the deployment of
NFs on GPC infrastructures. A critical pitfall of NF soft-
warization is to overlook strict QoS constraints in the designs;
QoS constraints are critical as software entities depend on
OSs and hypervisors for resource allocation to meet per-
formance demands. OSs are traditionally designed to pro-
vide best effort services to applications which could severely
impede the QoS of NF applications in the presence of satu-
rated workloads on the OS.
CPU strategies, such as ISAcc, CPU pinning, and CPU

clock frequency speed-ups enable NFs to achieve adequate
performance characteristics on GPC platforms. Along with
CPU processing enhancements, memory access to load and
store data for processing by the CPU can impact the overall
throughput and latency performance. Memory access can be
improved with caching and higher CPU-to-memory inter-
connect bandwidth. Cache coherency is a strategy in which
caches at various locations, such as multiple cache levels
across cores and PCIe device caches, are synchronized with
the latest updates of modified data across all the caches.
Cache coherency across multiple cores within the same
socket is maintained by 2D mesh interconnects (in case of
Intel R©) and Scalable Data Fabric (SDF) (in case of AMD R©).
Whereas, coherency across sockets is achieved through UPI
interconnects, and for I/O devices through AXI ACE or
CXL links.

The DDR5 and PCIe Gen5 provide high bandwidths
for large data transactions to effectively utilize compute
resources at CPUs as well as custom and dedicated accel-
erators. NV-NAND technology provides cost effective solu-
tions for fast non-volatile memory that can be used as an
extension to DRAM, second-level memory for DRAM, or as
a storage unit assisting both CPU and accelerators in their
computing needs. In-Memory accelerators extend the mem-
ory device to include accelerator functions to save the data
transfer time between accelerator and memory device. A cus-
tom accelerator GPU provides programmability for high per-
formance computing for concurrent tasks, while an FPGA
provides close to hardware-level performance along with
high degrees of configurability and flexibility. In contrast to
custom accelerators, dedicated accelerators provide the best

performance at the cost of reduced flexibility. Based on all the
enabling technologies offered on a platform, an NF function
design should comprehensively consider the hardware sup-
port to effectively run the application to achieve the best
performance.

IV. RESEARCH STUDIES ON HARDWARE-ACCELERATED

PLATFORMS AND INFRASTRUCTURES FOR

NF IMPLEMENTATION

This section surveys the research studies on hardware-
accelerated platforms and infrastructures for implementing
NFs. While the enabling technologies provide the underlying
state-of-the-art techniques to accelerate NFs, we survey the
enhancements to the enabling technologies and the investi-
gations of the related fundamental trade-offs in the research
domain in this section. The structure of this section fol-
lows our classification of the research studies as illustrated
in Fig. 24.

A. COMPUTING ARCHITECTURE

The computing architecture advances in both CISC and RISC
directly impact the execution of software, such as appli-
cations and VMs that implement NFs. The CISC architec-
ture research has mainly focused on enhancing performance,
while the RISC architecture research has mainly focused on
the power consumption, size of the chip, and cost of the
overall system.

1) CISC

Generally, computing architecture advances are driven by
corporations that dominate the design and development of
computing processors, such as AMD R©, Intel R©, and ARM R©.
One such enhancement was presented by Clark et al. of
AMD R© [210], [211] who designed a new Zen computing
architecture to advance the capabilities of the x86 CISC archi-
tecture, primarily targeting Instruction Set (IS) computing
enhancements. The Zen architecture aims to improve CPU
operations with floating point computations and frequent
cache accesses. The Zen architecture includes improvements
to the core engine, cache system, and power management
which improve the instruction per cycle (IPC) performance
up to 40%. Architecturally, the Zen architecture core com-
prises one floating point unit and one integer engine per core.
The integer clusters have six pipes which connect to four
Arithmetic Logic Units (ALUs) and two Address Generation
Units (AGUs), see Fig. 25.

The ALUs collaborate with the L1-Data (L1D) cache
to perform the data computations, while the Address Gen-
eration Units (AGUs) collaborate with the L1-Instruction
(L1-I) cache to perform the address computations. Table 6
compares the cache sizes and access ways of different state-
of-the-art x86 CISC architectures. The enhancements of the
Zen architecture are applied to the predecessor family of
cores referred to as AMD R© Bulldozer; the Zen implements
address computing to access system memory based on AGUs
with two 16-byte loads and one 16-byte store per cycle
via a 32 KB 8-way set associative write-back L1D cache.
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FIGURE 24. Classification taxonomy of research studies on hardware-accelerated platforms and infrastructures for processing softwarized NFs.

TABLE 6. Cache technologies directly impact the memory access times
which are critical for latency-sensitive networking applications as well as
for delivering Ultra Low Latencies (ULL) as outlined in the 5G standards.
The state-of-art enhancements to cache technologies are compared in the
table, whereby larger cache sizes and larger cache access ways improve
the capabilities of the processor to support low latency workloads. The L1
Instruction (L1I) cache allows the instructions that correspond to NF
application tasks to be fetched, cached, and executed locally on the core,
while the L1 Data (L1D) cache supports the corresponding data caching.

The load/store cache operations in the Zen architecture have
exhibited lower latency compared to the AMD R© Bulldozer
cores. This unique Zen cache design allows NF work-
loads to run in both high precision and low precision arith-
metic based on the packet processing computing needs. For
instance, applications involving low precision computations,
such as packet scheduling, load balancing, and randomization
can utilize the integer based ALU; while high precession
computing for traffic shaping can run on the floating
point ALUs.

2) RISC

In contrast to the CISC architectures which focus typically
on large-scale general-purpose computations, e.g., for laptop,
desktop, and server processors, the RISC architectures have
typically been adopted for low-power processors for applica-
tions that run on hand-held and other entertainment devices.
Concomitantly, the RISC architecture has typically, also been
adopted for small auxiliary computing units for module
controllers and acceleration devices. The RISC architecture
provides a supportive computing framework for designing
acceleration computing units that are traditionally imple-
mented as custom accelerators, such as the Intel R© QAT R© and
DSA (see Sec. III-E), due to the power and space efficient
RISC architectural characteristics.
Typically, network applications involve direct packet pro-

cessing at the NIC to support line-rate speeds. To address the
present needs of NFs, specifically with the proliferation of
Software Defined Networking (SDN), reconfigurable com-
pute hardware is almost a necessity. However, reconfigurable
computing infrastructures reserve a fraction of the hard-
ware resources to support flexibility while dedicated com-
puting infrastructures (i.e., proprietary networking switches
and gateways) utilize the entire hardware resources for com-
puting purposes. To address this challenge of retaining flex-
ibility to reconfigure as well as achieving effective hardware

132054 VOLUME 8, 2020



P. Shantharama et al.: Hardware-Accelerated Platforms and Infrastructures for NFs

FIGURE 25. (a) Overview of ZEN Micro architecture [210], [211]: The Zen
micro architecture has 3 modules: i ) Front End Module, ii ) Integer and
Floating-Point Modules, and iii ) Memory Subsystem Module. Each core
performs instruction fetching, decoding (decodes 4 instructions/cycle into
the micro-op queue), and generating Micro-Operation (Micro-Ops) in the
front end module. Each core is independent with its own floating-point
and integer units. The Zen micro architecture has split pipeline design at
the micro-op queue which runs separately to the integer and floating
point units, which have separate schedulers, queues, and execution units.
The integer unit has multiple individual schedulers which split the
micro-ops and feed them to the various ALU units. The floating-point unit
has a single scheduler that handles all the micro-ops. In the memory
subsystem module, the data from the Address Generation Units (AGUs) is
fed into the execution units via the load and store queue. (b) The Zen
architecture has a single pipeline cache hierarchy for each core which
reduces the overall memory access latency.

resource utilization, Pontarelli et al. [212] have proposed a
Packet Manipulation Processor (PMP) specifically targeting
line-rate processing based on the RISC architecture. The
RISC compute architecture is adapted to perform fast match
operations in an atomic way, while still being able to recon-
figure (update) the matching table, thus allowing programma-
bility of routing and forwarding functions. Fig. 26 illustrates
the RISC based PMP processor functional blocks tailored
to perform packet processing. A given packet is parsed and
passed through several matching tables before finally being
processed by the PMP array to be transmitted over the link.
The PMP array feeds back the criteria for matching and
selection to the ingress input mixer.
Moving routine software tasks, such as NF packet process-

ing, from the CPU to dedicated hardware lowers overheads
and frees up system resources for general-purpose applica-
tions. However, large scale distributed applications, such as
big data analysis and data replications, are considered as user

FIGURE 26. An overview of the RISC based Packet Manipulation
Processor (PMP) [212] which implements a programmable packet header
matching table based on atomic operations. The table can be dynamically
updated by multiple processes running on the CPU without impacting the
matching operations.

space applications, and decoupled from the packet processing
framework (e.g., Ethernet, switches and routers). As a result,
the replication of data across a large number of compute and
storage network platforms would consume large amounts of
network bandwidth and computing resources on the given
platform involved in data replication, storage, and process-
ing tasks. To address this problem, Choi et al. [213] have
proposed a data-plane data replication technique that utilizes
RISC based processors to perform the data replication. More
specifically, a SmartNIC consisting of 56 RISC processors
implements data plane functions to assist in the overall end-
to-end data-replication at the application layer. The proposed
framework involves three components: i) a master node that
requests replications using store and retrieve, ii) a client
node that assists in maintaining connections, and iii) data
plane witnesses that store and retrieve the actual data. The
RISC computations are optimized to perform the simultane-
ous operations of replication, concurrent with packet parsing,
hashing, matching, and forwarding. A testbed implementa-
tion showed significant benefits from the RISC based Smart-
NIC approach as compared to software implementation: the
data path latency is reduced to nearly half and the overall
system throughput is increased 6.7-fold.

Focusing on validation and function verification of NF
application hardware architectures, Herdt et al. [214] have
proposed a framework to test software functions (which can
be extended to NFs) on RISC architectures. The proposed
Concolic Testing Engine (CTE) enumerates the parameters
for the software functions which can be executed over an
instruction set simulator on a virtual prototype emulated as
a compute processor. The evaluations in [214] employed
the FreeROTS TCP/IP network protocol layer stack for NF
testing to effectively identify security vulnerabilities related
to buffer overflows.

NFs are supported by OS services to meet their demands
for packet processing. As a result, NF applications running on
computing hardware (i.e., a CPU) rely on OS task scheduling
services. However, as the number of tasks increases, there
is an increased overhead to align the tasks for scheduling
to be run on CPU based on scheduling policies, especially
in meeting strict latency deadlines for packet processing.
Some of the mitigation techniques of scheduling overhead
involve using simple scheduling strategies, such as round
robin and random selection, or to accelerate the scheduling
in hardware. While hardware accelerations are promising,
the communication between the CPU and the acceleration

VOLUME 8, 2020 132055



P. Shantharama et al.: Hardware-Accelerated Platforms and Infrastructures for NFs

component would be a limiting factor. One way to reduce the
communication burden between the CPU and the acceleration
component is to enable the CPU to implement scheduling
using Instruction Set (IS) based accelerations as proposed by
Morais et al. [215]. Morais et al. [215] have designed a RISC
based CPU architecture with a custom instruction as part of
the IS to perform scheduling operations for the tasks to be run
by the OS on the CPU. A test-bed implementation demon-
strated latency reductions to one fifth for an 8-core CPU
compared to serial task executions. NF applications typically
run in containers and VMs on a common infrastructure that
require highly parallel hardware executions. The proposed IS
based optimization of task scheduling can help in enforcing
time critical latency deadlines of tasks to run on CPUs with
low overhead.

3) MULTI-CORE OPTIMIZATION

Most systems that execute complex software functions are
designed to run executions in concurrent and parallel fashion
on both single and multiple computing hardware compo-
nents (i.e., multi-core processors). A key aspect of efficient
multi-core systems is to effectively schedule and utilize
resources. Optimization techniques are necessary for the
effective resource allocation based on the system and appli-
cation needs. On a given single core, Single Instruction
Multiple Data (SIMD) instructions within a given compute
architecture (i.e., RISC or CISC) allow the CPU to operate on
multiple data sets with a single instruction. SIMD instructions
are highly effective in the designs of ultra-fast Bloom filters
which are used in NF applications, such as matching and
detecting operations relevant to the packet processing [216].
Due to the nature of multiple data sets in the SIMD instruc-
tion, the execution latency is relatively longer compared to
single data sets.
In an effort to reduce the execution latency, Zhou et al. [217]

have proposed a latency optimization for SIMD operations
in multi-core systems based on Ant-Colony Optimization
(ACO). The Zhou et al. [217] ACO maps each core to
an ant while the tour construction is accelerated by vector
instructions. A proportionate selection approach named
Vector-based Roulette Wheel (VRW) allows the grouping
of SIMD lanes. The prefix sum for data computations is
evaluated in vector-parallel mode, such that the overall per-
formance execution time can be reduced across multiple
cores for SIMD operations. The evaluations in [217] indicate
50-fold improvements of the processing speed in comparison
to single-thread CPU execution. NF applications can greatly
benefit from SIMD instructions to achieve ultra-low latency
in packet processing pipelines.

Latencies in multi-core systems affect the overall system
performance, especially for latency-critical packet processing
functions. In multi-core systems, the processing latencies
typically vary among applications and cores as well as across
time. The latencies in multi-core systems depend strongly on
the Last Level Cache (LLC). Therefore, the LLC design is a
very important issue in multi-core systems. Wang et al. [218]

have proposed a Latency Sensitivity-based cache Partitioning
(LSP) framework. The LSP framework, evaluates a latency-
sensitivity metric at runtime to adapt the cache partitioning.
The latency-sensitivity metric considers both the cache hit
rates as well as the latencies for obtaining data from off-chip
(in case of cache misses) in conjunction with the sensitivity
levels of applications to latencies. The LLCpartitioning based
on this metric improves the overall throughput by an average
of 8% compared to prior state-of-the-art cache partitioning
mechanisms.

4) CORE POWER AND PERFORMANCE

While it is obvious that multi-core systems consume higher
power compared to single-core systems, the system manage-
ment and resource allocation between multiple cores often
results in inefficient power usage on multi-core systems.
Power saving strategies, such as power gating and low power
modes to put cores with no activity into sleep states, can mit-
igate energy wastage. NF applications require short response
times for processing the incoming packets. Short response
times can only be ensured if the processing core is in an active
state to immediately start the processing; whereas, from a
sleep state, a core would have to go through a wake-up that
would consume several clock cycles.

The energy saving technique proposed by
Papadimitriou et al. [219] pro-actively reduces the voltage
supplied to the CPUs (specifically, ARM R© based cores) of
a multi-core system without compromising the operational
system characteristics. In the case of too aggressive reduction
of the voltage level supplied to CPUs, uncorrectable system
errors would lead to system crashes. Therefore, a sustainable
level of voltage reduction just to keep the core active at all
times even when there is no application processing can be
an identified by analyzing the system characterizations. The
evaluations in [219] based on system characterizations show
that energy savings close to 20% can be achieved, and close to
40% savings can be achieved if a 25% performance reduction
is tolerated.

A more robust way to control the power characteristics is
through dynamic fine-grained reconfiguration of voltage and
frequency. However, the main challenge in dynamic reconfig-
uration is that different applications demand different power
scaling and hence the requirements should be averaged across
all applications running on a core. Dynamic runtime recon-
figuration of voltage and frequency is typically controlled
by the OS and the system software (i.e., BIOS, in case of
thermal run-off). On top of reconfiguration based on averaged
requirements, there would still be some scope to improve
the overall voltage and frequency allocations if the run-time
load can be characterized in advance before the processes are
scheduled to run on the cores. Bao et al. [220] have proposed
several such techniques where the power profile is character-
ized specifically for each core, which is then used for voltage
and frequency estimations based on the application needs.
Subsequently, Bao et al. [220] have evaluated power savings
based on profiling of both core power characterizations and
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the application run-time requirements. The evaluations have
shown significant benefits compared to the standard Linux
power control mechanism.
More comprehensive search and select algorithms for the

optimal voltage and frequency settings for a given core have
been examined by Begum et al. [221]. Begum et al. [221]
have broadly classified the algorithms into: i) search meth-
ods: exhaustive and relative, and ii) selection methods: best
performance and adaptive. Exhaustive search sweeps through
the entire configuration space to evaluate the performance.
Relative search modifies the current configuration and mon-
itors the relative performance changes with the overall goal
to incrementally improve the performance. In the best per-
forming selection, the configuration is tuned in a loop to
identify the configuration that results in the best performance;
whereas, in adaptive selection, the tuning is skipped, and con-
figuration values are applied to achieve a performance within
tolerable limits. NF applications can utilize these techniques
based on the application needs so as to meet either a strict or
a relaxed deadline for packet processing.
Other strategies to support the power and performance

characteristics of NF applications, in addition to dynamic
voltage and frequency include CPU pinning, as well as hor-
izontal and vertical scaling. CPU pinning corresponds to the
static pinning of applications and workloads to a specific
core (i.e., no OS scheduling of process). Horizontal scaling
increases the resources in terms of the number of allocated
systems (e.g., number of allocated VMs), while vertical scal-
ing increases the resources for a given system (e.g., VM)
in terms of allocated CPU core, memory, and storage.
Krzywda et al. [222] have evaluated the relative power
and performance characteristics for a deterministic workload
across voltage, frequency, CPU pinning, as well as horizontal
and vertical scaling. Their evaluations showed a marginal
power improvement of about 5% for dynamic voltage and fre-
quency in underloaded servers; whereas on saturated servers,
20% power savings can be achieved at the cost of com-
promised performance. Similarly, CPU pinning was able to
reduce the power consumption by 7% at the cost of com-
promised performance. The horizontal and vertical scaling
reduced latencies, however only for disproportionately large
amounts of added resources. Krzywda et al. also found that
load balancing strategies have a relatively large impact on
the tail latencies when horizontal scaling (i.e., more VMs)
is employed.
Power and performance is a critical aspect to NF applica-

tions in meeting the latency demands, and therefore should be
carefully considered while balancing between power savings
and achieving the highest performance. Aggressive power
saving strategies can lead to system errors due to voltage
variations, which will cause the system to hang or reboot.
Allowing applications to control the platform power can cre-
ate isolation issues. For instance, a power control strategy
applied by one application, can affect the performance of
other applications. This vulnerability could lead to catas-
trophic failures of services as multiple isolated environments,

FIGURE 27. Taiga computing architecture with reconfigurable design
using FPGA [223]. The compute logic units, such as ALU, BRanch unit (BR),
Multiply (MUL), and Division (DIV), are implemented with independent
circuitry, i.e, with Instruction Level Parallelism (ILP). Block RAM (BRAM)
and BRanch PREDiction (BR PRED) assist in the ILP opcode fetch. The
numbers on top of the logic units are processing latencies in terms clock
cycles, and below are the throughputs in number of instructions per clock
cycle. The + indicates that numbers shown are minimum latency and
throughput values, whereas / indicates dual instruction flow paths for
execution.

such as containers and VMs, could fail due to an overall
system failure.

5) CPU-FPGA

Reconfigurable computing allows compute logic to be mod-
ified according to the workload (application) needs to
achieve higher efficiency as compared to instruction set (IS)
based software execution on a general-purpose processor.
Matthews and Shannon [223] (see Fig. 27) have proposed
a design enhancement called Taiga for the RISC-V (pro-
nounced ‘‘RISC-Five’’) architecture, an open source RISC
design. In their design enhancement, the IS processor core
is integrated with programmable custom compute logic
(i.e., FPGA) units, which are referred to as reconfigurable
function units. The processor supports a 32 bit base IS capable
of multiply and divide operations. Reconfigurable function
units can be programmed to have multiple functions that can
be defined during run time, and can then be interfaced with
the main processors. This approach can lead to a high degree
of Instruction Level Parallelism (ILP) supported by a fetch
logic and load store unit that are designed with Translation
Look-aside Buffers (TLBs) and internal cache support. Dif-
ferent variants have been proposed, e.g., a full configuration
version which has 1.5× the minimum configuration version
resources based on the overall density of Look Up Tables
(LUTs), hardware logic slices, RAM size, and DSP blocks.
The evaluations in [223] successfully validated the processor
configurations and identified the critical paths in the design:
The write-back data path is the critical path in the mini-
mum configuration system, and the tag hit circuit for address
translations through the TLB is the critical path for the full
configuration version.

An FPGA component can be interfaced with the main
compute component (i.e., core) in the CPU through multiple
interfaces. If the FPGA is placed on the fabric that connects
to the core, then the applications can benefit from the data
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locality and cache coherency with the DRAM and CPU.
If the FPGA is interfaced with the compute component (core)
through a PCIe interface, then there is a memory decoupling,
i.e., the device-specific FPGA internal memory is decoupled
from CPU core memory (system memory DRAM). Hence,
there are significant latency implications in each model of
FPGA interfacing with the CPU based on FPGA presence on
the core-mesh fabric or I/O interfaces, such as PCIe and USB.
Choi et al. [224] have quantitatively studied the impact of
the FPGA memory access delay on the end-to-end process-
ing latency. Their study considers the Quick Path Intercon-
nect (QPI) as FPGA-to-core communication path in case of
FPGA presence on the processor die (coherent shared mem-
ory between CPU and FPGA) and the PCIe interface (private
independent memory for both CPU and FPGA) for the exter-
nal (FPGA) device connectivity. Their evaluations provide
insights into latency considerations for meeting application
demands. In summary, for the PCIe case, the device to CPU
DMA latency is consistently around 160µs. For the QPI case,
the data access through the (shared) cache results in latencies
of 70 ns and 60 ns for read and write hits, respectively. The
read and write misses correspond to systemmemory accesses
which result in 355 ns and 360 ns for read and write miss,
respectively. The latency reduction from 160 µs down to the
order of 70 to 360 ns is a significant improvement to support
NF applications, especially NF applications that require ultra-
low latencies on the order of sub-microseconds.

FIGURE 28. Illustration of heterogeneous scheduling between CPU and
FPGA where different tasks are commonly scheduled relative to number
of clock cycles [225]: Solutions 1 and 2 are possible scheduling paths for
tasks (T1–T7) among CPUs and FPGA homogeneously. The optimization
algorithm evaluates all possible paths and estimates the best path in
terms of lowest overall processing latency and power.

Abdallah et al. [225] (see Fig. 28) have proposed an inter-
esting approach to commonly schedule the tasks among het-
erogeneous compute components, such as CPU and FPGA.
This approach allows a software component to use the com-
pute resources based on the relative deadlines and com-
pute requirements of the applications. Genetic algorithms,
such as chromosome assignment strategies and a Modified
Genetic Algorithm Approach (MGAA), have been utilized to
arrive at combinatorial optimization solutions. The goal of
the optimization is to allocate tasks across Multi-Processor
SoC (MPSoC) for maximizing the resource utilization and
minimizing the processing latency of each task. Their
evaluations show that common scheduling across heteroge-
neous compute processors not only improves the applica-
tion performance, but also achieves better utilization of the

computing resources. Their work can be extended to different
types of computing resources other than FPGA, such as GPU
and ASICs.

NF applications are particularly diverse in nature with
requirements spanning from high throughput to short latency
requirements; effectively utilizing the heterogeneous com-
puting resources is a key aspect in meeting these diverse
NF demands. For instance, Owa et al. [226] have proposed
an FPGA based web search engine hardware acceleration
framework, which implements the scoring function as a deci-
sion tree ensemble. A web search engine involves process-
ing pipelined functions of computing, scoring, and ranking
potential results. The optimization of these pipelines involves
reducing intermediate data transfers and accelerating pro-
cesses through hardware. Evaluations based on optimizations
on FPGA based hardware accelerations show a two-fold per-
formance improvement compared to CPU solutions.

In another example, Kekely et al. [227] proposed an FPGA
based packet classification (matching) hardware accelera-
tion to increase the system throughput. Typically, the packet
processing pipelines are implemented in parallel to match
several packets in one clock cycle so as to decrease the
processing latency. However, parallel computations require
dedicated resources when accelerating on FPGA, decreasing
the overall system throughput. Therefore, Kekely et al. [227]
have implemented a hashing based exact match classification
on FPGA which can match packets in parallel while utilizing
less resources (e.g., memory). As compared to the baseline
FPGA implementation, the results show up to 40% memory
savings while achieving 99.7% of the baseline throughput.
The performance of an end-to-end application running on

an FPGA accelerated system depends on both software and
hardware interactions. The overall performance is dictated by
the bottlenecked functions which may exist in both software
and hardware sub-components. Since it is challenging to
run an application and then profile the performance metrics
across various processing stages, Karandikar et al. [228] have
proposed FirePerf, an FPGA-Accelerated hardware simula-
tion framework. FirePerf performs a hardware and software
performance profiling by inserting performance counters in
function pipelines such that processing hot spots can be
identified so as to find the system bottleneck. FirePerf is
an out-of-band approach in which the actual simulation pro-
cess does not impact the running application. The capabil-
ities of FirePerf were demonstrated for an RISC-V Linux
kernel-based optimization process which achieved eight-fold
improved network bandwidth in terms of application packet
processing.

6) CPU-GPU

Similar to the study by Abdallah et al. [225], Nie et al. [229]
(see Fig. 29) have proposed a task allocation strategy to
schedule tasks between heterogeneous computing resources,
specifically, CPU and GPU. While a GPU is a general-
purpose compute processor designed to execute parallel
threads that are independent of each other, not all workloads
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FIGURE 29. Overview of dynamic task scheduling framework [229] for
CPU-GPU heterogeneous architecture: Tasks are partitioned into
parallel (GPU) execution tasks and single-threaded (CPU) execution tasks
and are then scheduled as GPU and CPU slave processes. The streams
organize the tasks such that the inter-scheduling intervals of tasks are
minimized.

(application requirements) are suited for parallel execution.
For instance, NF applications that simultaneously perform
relatively simple operations on multiple packet flows can
run in parallel processing threads entirely on GPUs [230].
However, the performance characterizations by Yi et al. [230]
considered the performance of a GPU alone to show the
benefits in comparison to a CPU (but not the performance
of the GPU in conjunction with a CPU).
Generally, a given workload cannot be categorized into

either fully parallel threaded or fully single threaded in a strict
sense. Therefore, there is a scope for task partitioning into
parallel and single-threaded sub-tasks [231]; whereby a given
task is split into two different task types, namely task types
suitable for GPU (parallel threaded) execution and task types
for CPU (single-threaded) execution. The evaluation of the
task partitioning method proposed in [231] considers adap-
tive Sparse Matrix-Vector multiplication (SpMV). A given
task is divided into multiple slave processes and these slave
processes are scheduled to run either on a CPU or on a GPU
depending on the needs of these slave processes. The task
computing on the GPU is limited by the data movement
speeds between CPU system memory (DRAM) and GPU
global memory. To overcome this limitation, the proposed
architecture involves double buffering in either direction of
the data flow (into and out of the GPU) as well as on either
side of thememory regions, i.e., CPUDRAMandGPUglobal
memory. The evaluations indicate 25% increases in the total
number of (floating point) operations. Sparse matrix compu-
tations are widely used in NF applications, specifically for
anomaly detection in traffic analysis [231] which is applied
in packet filtering and DoS attack mitigation.

7) SUMMARY OF COMPUTING ARCHITECTURES

The computing architecture of a platform defines its com-
puting performance for given power characteristics. Some
applications, such as data collection and storage, can tolerate
some performance degradations (resulting from CPU load)
and are not latency sensitive; whereas, other applications,
e.g., the sensor data processing for monitoring a critical
event, are both latency and performance sensitive. Generally,
the power constraints on the platform are decoupled from the
applications. More specifically, the platform initiatives, such
as changes of the CPU characteristics, e.g., reduction of the
CPU operational frequency to conserve battery power, are
generally not transparent to applications running on the CPU.

As a result, the applications may suffer from sudden changes
of the platform computing performance without any prior
notifications from the platform or the OS. Future research
should make the platform performance characteristics trans-
parent for the application such that applications could plan
ahead to adapt to changing platform characteristics.

Typically, the platform cores are designed following a
homogeneous computing architecture type, i.e., either CISC
or RISC. Accordingly, the applications are commonly com-
piled to run optimally on a specific architecture type. Several
studies [299]–[301] have investigated heterogeneous archi-
tectures that combine both CISC and RISC computing in a
single CPU, resulting in a composite instruction set archi-
tecture CPU. While heterogeneous architectures attempt to
achieve the best of both the RISC (power) and CISC (perfor-
mance) architecture types, identifying threads based on their
requirements and scheduling the threads appropriately on the
desired type of core is critical for achieving optimal perfor-
mance. Therefore, multi-core optimizations should consider
extensions to heterogeneous CPUs, as well as GPUs and
FPGAs.

B. INTERCONNECTS

Interconnects allow both on-chip and chip-to-chip compo-
nents to communicate with short latencies and high band-
width. To put in perspective, the I/O data rate per lane
on the DDR1 was 1 Gb/s and for the DDR5 it is 5 Gb/s
(see Table 4), whereby there are 16 lanes per DDR chip.
These data rates are scaled significantly with 3D stacking
of memory [as in the case of High Bandwidth Memory
(HBM), see Section III-E3]; for example, the total bandwidth
scales up to 512 Gb/s for a 4 stack die with 128 Gb/s band-
width per die [302]. Therefore, the support for these speeds
on-chip and chip-to-chip in an energy-efficient manner is
of utmost importance. Towards this goal, Mahajan et al.

[303], [304] have proposed a Embedded Multi-Die Intercon-
nect Bridge (EMIB) to support high die-to-die interconnect
bandwidth within a given package. The key differentiator
of EMIB is the confined interconnect area usage inside
the package. EMIB allows interconnects to be run densely
between silicon endpoints, enabling very high data rates
(i.e., aggregated bandwidth). EMIB uses thin pieces of sili-
conwithmulti-layer Back-End-Of-Line (BEOL)which could
be embedded within a substrate to enable localized dense
interconnects. NF applications benefit from highly efficient
interconnects in supporting both high throughput and short
latencies. For instance, Gonzalez et al. [305] have adapted
PCIe links to flexibly interface the accelerators with the
compute nodes (25 Gb/s) to support NF applications, such
as cognitive computing.

1) RECONFIGURABLE INTERCONNECT

Existing interconnect designs do not support configurability,
mainly due to performance issues and design complex-
ities. The compiler complexity increases when translat-
ing programs onto reconfigurable Function Units (FUs)
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FIGURE 30. HyCUBE [232] is an extension to Coarse-Grained Reconfigurable Arrays (CGRAs) to support multi-hop (distant) single clock cycle routing
between Function Units (FUs): (a) Illustration of 4 × 4 CGRA interconnected by 2D mesh, (b) FU placement on routing fabric with bidirectional link
support. (c) Logical overview of routing fabric between the FUs in HyCube, where each FU node can communicate with every other node within 1 clock
cycle. (d) Illustration of routing fabric internals showing interconnect links (e.g., L20, L02), and their interfaces to FUs. The direct paths from top FUs to
bottom FUs are register paths, and the paths between link interconnects and FUs are ‘‘to’’ and ‘‘from’’ interfaces to link and FUs.

on an underlying static fabric (which imposes con-
straints on the placement of inter-communicating FUs).
Karunaratne et al. [232] have proposed HyCUBE, a recon-
figurable multi-hop interconnect, see Fig. 30. HyCUBE is
based on a Coarse-Grained Reconfigurable Array (CGRA),
which consists of a large array of Function Units (FUs) that
are interconnected by a mesh fabric [233]. An interconnect
register based communication, in place of buffer queues,
can provide single cycle communication between distant
FUs. HyCUBE achieves 1.5× the performance-per-watt as
compared to a standard NoC and 3× as compared to a static
CGRA. The reconfigurability of the interconnect in HyCUBE
allows application-based interconnect design between the
FUs to be captured through the compiler and scaled according
to the NF application needs.

One way to improve the reconfigurable computing effi-
ciency of FPGAs is to effectively manage the data flow
between the FUs on the FPGAs. Jain et al. [234] have pro-
posed a low-overhead interconnect design to improve the
data movement efficiency. The design reduces overheads by
re-balancing the FU placement based on Data Flow Graph
(DFG) strategies. Also, the design exploits interconnect
flexibility (i.e., programmability) to effectively counter the
data movement inefficiencies, e.g., by funneling data flows
through linearized processing layers, i.e., in a single direc-
tion, either horizontal or vertical, with a minimum number
of hops. The proposed design has been applied to develop
a DSP compute acceleration methodology, namely a DSP-
based efficient Compute Overlay (DeCO). DeCO evaluations
indicate up to 96% reduced Look Up Table (LUT) require-
ments as compared to standard DSP based FPGA imple-
mentation, which translates to reduced interconnect usage
between FUs.Most NF applications that involve data process-
ing, such as traffic analysis, event prediction, and routing path
computation, would require DSP operations. Therefore, DSP
function acceleration is an important aspect of NF application
deployment.

Yazdanshenas and Betz [235] have studied the impact
of interconnect technologies in the case of virtualization
of FPGAs in data centers. NF applications in cloud-native

deployments use FPGAs in virtualized environments, there-
fore understanding the relative interconnect performances
helps in designing virtualized NF deployments on FPGA
based computing nodes with desired interconnect features.
Typical challenges in the virtualization of FPGAs are the
inherent FPGA features, such as board-specific character-
istics, system-level integration differences, and I/O timing,
which should be abstracted and hidden from the applica-
tions. Towards this end, a shell based approach abstracts
all the FPGA component, except the FUs and interconnect
fabric, which results in an easy and common interface for
virtualization and resource allocation to applications. More
specifically, a shell consists of components, such as external
memory controller, PCIe controller, Ethernet, power and sub-
systemmanagement units. Several interconnect technologies,
such as soft (i.e. programmable) NoC and hard (i.e., non-
programmable) NoC, have been considered in the perfor-
mance evaluation of shell virtualization in [235]. The eval-
uations show that shell based virtualization of the traditional
bus-based FPGA interconnects results in a 24% reduction of
the operating frequency and a 2.78× increase of the wire
demand as well as significant routing congestion. With the
soft NoC, the operating frequency can be increased compared
to the traditional bus-based implementation, but the increased
wire demand and routing congestion remain. However, the
hard NoC system outperforms both the soft NoC and the
bus-based FPGA implementation. The hard NoC is therefore
recommended for data center deployments.

2) 3D ON-CHIP INTERCONNECT

3D chip design allows for the compact packaging of SoCs to
effectively utilize the available chip area. However, the higher
density of chip components in a SoC comes at the cost of
complex interconnect designs. Through Silicon Vias (TVS)
is an interconnect technology that runs between stacked
chip components. Using TVS technology, Kang et al. [236]
have proposed a new 3D Mesh-of-Tree (MoT) interconnect
design to support the 3D stacking of L2 cache layers in a
multi-core system, see Fig. 31. The 3D MoT switches and
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FIGURE 31. (a) Overview of Mesh-of-Trees (MoT) based interconnect over
3D multi-core cluster with L2 cache stacking facilitated by TSVs. Each
simple core in the multi-core cluster contains its own L1 instruction cache
and data cache (DC). Multiple SRAM banks that are connected with the
3D MoT interconnect through a TSV bus form a multi-bank stacked L2
cache. The miss bus handles instruction misses in a round robin manner.
(b) Geometric view of 3D multi-core cluster which balances the memory
access latency from each core by placing the MoT interconnect in the
center of the cores [236].

interconnects are designed to be reconfigurable in support-
ing the power-gating (i.e., turn off/on voltage supply to the
component) of on-chip components, such as cores, memory
blocks, and the routing switches themselves. The adaptability
of 3D MoT allows the on-chip components (e.g., L2 cache)
to be modulated as the application demands vary with time.
The evaluations in [236] demonstrate that the reconfigurable
3D MoT interconnect design can reduce the energy-delay
product by up to 77%. As with the dynamic nature of traf-
fic arrivals for the NF processing, the hardware scaling of
resources as the demand scales up and the power gating of
components as demand falls can provide an efficient platform
to design power-efficient NF processing strategies.

3) NoC

As the core count of the traditional computing nodes andMul-
tiprocessor System on Chips (MPSoCs) increases to accom-
modate higher computing requirements of the applications,
the interconnects pose a critical limiting path for overall
performance increases. Typically, the core-to-core com-
munication is established through high-bandwidth single-
and multi-layer bus architecture interconnects. The present
state-of-the-art core-to-core communication involves mesh
architecture-based interconnects. However, for mesh inter-
connects, core-to-core communications have not been specif-
ically designed to support other computing components, such
as memory, cache, and I/O devices (e.g., GPU and FPGA).
A Network-on-Chip (NoC) is able to support both core-
to-core communications and other computing components
through standard interconnects and switches.
The cost-efficient design of NoC interconnects has been

comprehensively discussed in Coppola et al. [237], where
the programmability has been extended to interconnects in
addition to compute units, resulting in an Interconnect Pro-
gramming Unit (IPU). However, traditional NoCs have static

bandwidth for the interconnects which can cause perfor-
mance bottlenecks. Addressing this issue, Tsai et al. [238]
have proposed a Bi-directional NoC (BiNoC) architecture
which supports dynamically self-reconfigurable bidirectional
channels. The BiNoC architecture involves common in-out
ports fed by data in either direction with a self-loop-path
through the internal crossbars while the input flow is sup-
ported by an input buffer. This BiNoC design allows the
traffic to loop-back within the same switch and port. For a
given workload, the bandwidth utilization over the BiNoC
is typically significantly lower than over a traditional NoC.
NF applications that require high data-rate processing can
benefit from the high data-rate I/O through the compute
components provided by the BiNoC.
Goehringer et al. [239] have proposed an adaptive memory

access design to facilitate data movements between mul-
tiple FPGA compute processors (cores). Typically, mem-
ory access to the system memory is serialized, resulting in
increasedmemory read andwrite latencies whenmany clients
try to simultaneously access the memory. In the adaptive
memory access design, the adaptive memory-core manages
the resource allocation to each FPGA core. Each FPGA
core (client) is allocated a priority, whereby the priority of
each processor can be changed dynamically. Additionally,
the number of processors connected to the adaptive memory-
core can vary based on the application demands. The adap-
tive memory-core separates the memory into regions that
are core-specific individually accessed by the NoC fabric.
Also, the adaptive memory-core maintains a separate address
generator for each core, thereby allowing multiple FPGA
cores to simultaneously access memory regions.

4) 3D NoC

Traditional NoCs connect compute nodes on a 2D planar
routing and switching grid, thus limiting the total number
of compute notes that can be supported for a given surface
area. A 3D NoC extends the planar switching network to
the third dimension, thus supporting several 2D planar girds
for a given surface area dimension, increasing the density
of the total number of compute nodes. However, one of
the challenges of the 3D NoC design is the performance
degradation over time due to the aging of circuits primar-
ily from Bias Temperature Instability (BTI) causing gate-
delay degradation. Furthermore, continued operations of a
3D NoC with higher gate-delays could result in the failure
of the interconnect fabric. A potential solution to retain the
3D NoC performance is to increase the voltage; however,
an increased voltage accelerates the circuit aging process.
In addition to an increased voltage, electro-migration (grad-
ual movement of charged particles due to momentum trans-
fer) on the 3D Power Delivery Network (PDN) also reduces
the chip lifetime. Raparti et al. [240] have evaluated the
aging process of the interconnect circuit as well as PDN
network, and proposed a run time framework, ARTEMIS, for
application mapping and voltage-scaling to extend the overall
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FIGURE 32. An example of a 3D package of a 12 (2 × 2 × 3)-core chip
multiprocessor (CMP) with a regular 3D power grid: A 4-thread
application is running in the four bottom layer cores and a new 1-thread
application is to be mapped. Suppose a high Power Delivery
Network (PDN) degradation (high resistance of PDN pillars due to high
currents that supported prior workloads), but also a low circuit-threshold
voltage degradation (i.e., little circuit slowdown due to little Bias
Temperature Instability circuit aging) exists in the red (right front) region
of the middle layer; whereas the green region has a low PDN
degradation, but high voltage degradation. The ARTEMIS aging-aware
runtime application mapping framework for 3D NoC-based chip
multiprocessors [240] considers both PDN and voltage degradations.

chip lifetime. Typically, the use of an 3D NoC is asymmet-
ric due to uneven scheduling of computing tasks, leading
to uneven aging of the 3D NoC, as illustrated in Fig. 32.
ARTEMIS enables the application to use 3D NoC sym-
metrically through an optimization process, thereby spread-
ing out the aging process evenly throughout the 3D NoC
grid. ARTEMIS evaluations show that the chip lifetime
can be extended by 25% as compared to uneven aging of
3D NoC.

Similar to the uneven aging of circuits and PDN network,
a single transistor failure in a 3D NoC impacts the perfor-
mance of the entire chip due to the tight coupling of networks
in a 3D NoC. Therefore, a 3D NoC design should include
resilient features for a large number of transient, intermittent,
and permanent faults in the 3D NoC grid. To this end, Ahmed
and Abdallah [241] have presented a novel routing algorithm
and an adaptive fault-tolerant architecture for multi-core 3D
NoC systems. More specifically, the architecture proposed
by Ahmed et al. [241] implements a Random-Access-Buffer
mechanism to identify the faulty buffers on the switching
network and to isolate them in a routing algorithm that
avoids invalid paths. Though the reliability of the 3D NoC is
improved, the design costs 28% in terms of area and 12.5%
in power overhead.

5) WIRELESS NoC

A Heterogeneous System Architecture (HSA) allows dif-
ferent computing components, such as CPU, GPU, and
FPGA, to co-exist on the same platform to realize a single
system. These heterogeneous components require heteroge-
neous connectivities. Also, the run-time interconnect require-
ments typically change dynamically with the load. Moreover,
when the distance (number of hops in mesh) between two
heterogeneous components increases, the communication

FIGURE 33. Illustration of wireless NoC HyWin [242]: (a) The CPU
subsystem with CPU cores (along with their respective L1 caches) is
connected to a BUS interface; the L2 cache is shared between all CPU
cores. (b) The GPU subsystem with shared L2 cache at the center connects
multiple execution units in a star topology; all shared L2 caches are
connected through a mesh topology. The WI gateway at the center
initiates the communication between the blocks. (c) and (d) The required
program data are stored in the shared cache subsystem and main
memory subsystem.

latency often increases. Gade and Deb [242] have proposed
a Hybrid Wireless NoC (HyWin), as illustrated in Fig. 33,
to address the latency and flexibility of NoC interconnects
for an HSA. The HyWin architecture consists of sandboxed
(i.e., inside a securely isolated environment) heterogeneous
sub-networks, which are connected at a first (underlying)
level through a regular NoC. Processing subsystems are then
interconnected through a second level over millimeter (mm)
wave wireless links. The resource usage of a physical (wired)
link at the underlying level avoids conflicts with the wire-
less layer. The wireless link is especially helpful in estab-
lishing long-range low-latency low-energy inter-subsystem
connectivity, which can facilitate access to system memory
and lower level caches by the processing subsystems. The
CPU-GPU HSA testbed evaluations in [242] show applica-
tion performance gains of 29% and latency reductions to one
half with HyWin as compared to a baseline mesh architec-
ture. Moreover, HyWin reduces the energy consumption by
approximately 65% and the total area by about 17%.A related
hybrid wireless NoC architecture has been proposed in [243],
while other recent related studies have examined scalabil-
ity [244], low-latency [245], and energy efficiency [246].

Similarly, for planar interconnected circuits (commonly
used for chip-to-chip packaging), Yu et al. [247] have pro-
posed a wide-bandwidth G (millimeter) band interconnect
with minimized insertion loss. The proposed interconnect
design is compatible with standard packaging techniques,
and can be extended to THz frequencies supported by a low
insertion loss of 4.9 dB with a 9.7 GHz frequency and 1 dB
bandwidth. Further advances in millimeter wave NoCs have
recently been reviewed in [248].
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A common pitfall for wireless NoC design is to not
consider the wireless errors, as the errors can increase the
end-to-end latency over wireless links, resulting from retrans-
missions. More specifically, the protocols to correct the trans-
mission errors beyond the forward error corrections require
higher layer flow control, with acknowledgment mode oper-
ations (e.g., Automatic Repeat Request protocols or TCP).
The reporting of errors back to the source and receiving
the retransmissions would increase the overall memory-to-
memory transactions (moves or copies) of data through a
wireless NoC.

6) SOFTWARE DEFINED NoC (SD-NoC)

Software Defined Networking (SDN) separates the control
plane from the data plane of routing and forwarding elements.
The control plane is further (logically) centralized to dynami-
cally evaluate the routing policies [306]. The extension of the
SDN principles to an NoC is referred to as Software Defined
NoC (SD-NoC). Application needs can be captured by the
control plane of the NoC routers, which then program the
data-plane routing policies across the interconnects between
the compute components. One of the bottlenecks in SDN
designs is the control plane complexity when there are many
routing elements.
In the case of Chip Multi-Processors (CMP) with sev-

eral thousand cores, the SD-NoC design becomes particu-
larly challenging. Additionally, when the threads running on
each of these cores try to exchange data with each other,
the interconnect usage can saturate, reducing the overall CMP
benefits. Addressing this problem, Scionti et al. [249], [250]
have presented an SD-NoC architecture based on data-driven
Program eXecution Models (PXMs) to reconfigure the inter-
connect while retaining the hard-wired 2D mesh topology.
More specifically, virtual topologies, such as local and global
rings [307], are generated and overlayed on the hard-wired
2D mesh to support changing application demands. This
approach has resulted in power savings of over 70% while
the chip area was reduced by nearly 40%. A related SD-NoC
based on the Integrated Processing NoC System (IPNoCSys)
execution model [308], [309] has been examined in [251].
Generally, the SD-NoC designs are configured to be

specific to an application in use, and cannot be reused
across multiple applications. To overcome this limitation,
Sandoval-Arechiga et al. [252] have proposed an SD-NoC
architecture that enables on-the-fly reconfiguration of the
interconnect fabric. This on-the-fly reconfiguration design
can be adapted to other applications with minimal changes,
reducing the non-recurring engineering cost. The main fea-
ture of their architecture is configurable routing which is
achieved through a two-stage pipeline that can buffer and
route in one clock cycle, and arbitrate and forward in the
other cycle. The controller and switch were designed to
support flow-based routing with flow IDs. Global average
delay, throughput, and configuration time were evaluated for
various simple routing algorithms and a wide range of packet
inject rate patterns. Deterministic/fixed routing between

processing elements was shown to perform better than adap-
tive routing. Deterministic/fixed routing has a map of the
routing path between every source and destination pair; the
routing paths are programmed into the NoC fabric and remain
active for the entire system life time. In contrast, fully adap-
tive routing dynamically adapts the packet routing based on
the injection rates. For high packet inject rates, the path eval-
uations select longer and disjoint paths to effectively spread
the packets throughout the fabric so as to accommodate the
increasing traffic; which may not result in an efficient end-to-
end path for packet flow. In both cases, deterministic/fixed
routing and adaptive routing, the on-the-fly reconfiguration
enables the NoC to be programmed, i.e., the fabric logic to
change according to the traffic demands, so that even the
deterministic/fixed paths are reconfigured based on need.
A distributed SDN architecture for controlling the recon-
figurations in an efficient scalable manner has been
examined in [253].

These advanced reconfigurations of on-chip interconnects
allow NF applications to adapt to varying networking loads
in order to achieve desired processing response latencies for
arriving packet while employing restrictive resource usage to
save power and improve overall efficiency.

7) OPTICAL INTERCONNECTS

Interconnects based on Silicon Photonic (SiPh) technologies
achieve—for the same power consumption—several orders
of magnitude higher throughput than electrical interconnects.
Therefore, optical interconnects are seen as a potential solu-
tion for meeting the demands of applications requiring large
data transactions between computing elements [254]–[256].
SiPh offers solutions for both on-chip and chip-to-chip inter-
connects. For instance, Hsu et al. [257] have proposed a
2.6 Tbits/sec on-chip interconnect with Mode-Division Mul-
tiplexing (MDM)with a Pulse-AmplitudeModulation (PAM)
signal. To achieve the speeds of 2.6 Tbits/sec, 14 wavelengths
in three modes supporting 64 Gb/s are aggregated with hard
decision forward-error-correction threshold decoding.

Gu et al. [258] have proposed a circuit-switched on-chip
Optical NoC (ONoC) architecture providing an optical inter-
connect grid with reuse of optical resources. As compared to a
traditional NoC, an ONoC does not inherently support buffers
within routers to store and forward; therefore, the transmis-
sions have to be circuit switched. The ONoC disadvantages
include high setup-time overhead and contention for the
circuit-switched paths. Gu et al. [258] have proposed a Mul-
tiple Ring-based Optical NoC (MRONoC) design which uses
ring based routing, as well as redundant paths to re-use the
wavelength resources without contentions. (A related circuit-
switched ONoCwith a hierarchical structure based on a Clos-
Benes topology has been examined in [259].) The MRONoC
thus enables ultra-low cost, scalable, and contention-free
communication between nodes.

Wavelength Division Multiplexing (WDM) allocates dif-
ferent modulated wavelengths to each communicating node
to reduce the contention. Hence, in general, an ONoC
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system based on WDM is limited by the number of wave-
lengths; the wavelength reuse in MRONoC mitigates this
limitation. The simulation evaluations in [258] indicate a
133% improvement of the saturated bandwidth compared
to a traditional mesh ONoC. Related statistical multiplexing
strategies for ONoC channels have been investigated in [260],
while NoC wavelength routing has been studied in [261].
Moreover, recent studies have explored the thermal charac-
teristics of ONoCs [262], the interference characteristics in
optical wireless NoCs [263], and the SDN control for optical
interconnects [264].
Further evolutions of integrated photonics and optical

interconnects have been applied in quantum computing tech-
nologies. Wang et al. [265] have developed a novel chip-to-
chip Quantum Photonic Interconnect (QPI) which enables
the communication between quantum compute nodes. The
QPI meets the demands of very high speed interconnects
that are beyond the limits of single-wafer and multi-chip
systems offered by state-of-the-art optical interconnects. The
main challenge that is overcome in QPI is to maintain the
same path-entangled states on either chip. To achieve this,
a two-dimensional grating coupler on each chip transports
the path-entangled states between the communicating nodes.
The simulation evaluations show an acceptable stability of the
QPI on quantum systems with a high degree of flexibility.
As NF applications are ready to exploit quantum technologies
capable of very large computations, the research efforts on
interconnects enable platform designers to build heteroge-
neous systems that exploit the benefits of diverse hardware
infrastructures.

8) SUMMARY OF INTERCONNECTS

In conjunction with computing architecture advancements of
CPUs and I/O devices, whereby both the core numbers and
the processing capacities (operations per second) have been
increasing, the interconnects and interfaces that establish
communication among (and within) I/O devices and CPUs
play an important role in determining the overall platform
performance [310]. Therefore, future interconnect designs
should focus not only on the individual performance of an
interconnect in terms of bandwidth and latency, but also the
flexibility in terms of supporting topologies (e.g., mesh, star,
and bus) and reconfigurability in terms of resource reserva-
tion. 3D interconnects enable vertical stacking of the on-chip
components so as to support high density processing and
memory nodes. However, the high density 3D SoC compo-
nents may have relatively higher failure rates as compared to
2D planar designs, due to aging and asymmetric interconnects
usage.
While physical (wired) interconnects exhibit aging proper-

ties, wireless and optical interconnects appear to be a promis-
ing solution against aging. Wireless interconnects reach
across longer distances and are not limited by the end-to-
end metallic and silicon wires between interconnected com-
ponents. However, the downsides of wireless interconnects
include the design, operation, and management of wireless

transceivers that include decisions on wireless link parame-
ters, such as carrier frequencies, line-of-sight operation, and
spectrum bandwidth. Similarly, optical interconnects have
promising features in terms of supporting high bandwidth and
short latencies using Visible Light Communications (VLC)
and guided optical paths [311]. The design of optical inter-
connects is challenging as it requires extreme precision in
terms of transceiver design and placements which is inte-
grated into SoC components such that there is a guided light
path or line-of-sight operation.

In addition to data path enhancements of the interconnects,
future interconnect designs should address the management
of interconnect resources through dedicated control plane
designs. To this end, Software-Defined Network-on-Chip
(SD-NoC) [253] designs include a dedicated controller. The
dedicated controller could be employed in future research to
reconfigure the NoC fabric in terms of packet (interconnect
data) routing and link resource reservations so as to achieve
multi-interconnect reconfiguration that spans across multiple
segments, e.g., CPU and memory. While such reconfigu-
ration is not supported today, SD-NoC provides a general
framework to enable demand based interconnect resource
allocation between processing (CPUs), memory (DRAM),
and I/O devices (e.g., storage) components. A related future
research direction is to develop Software Defined Wireless
NoC (SD-WNoC), whereby the wireless link properties are
configured based on decisions made by the SDN controller
to meet application requirements and available wireless inter-
connect resources.

C. MEMORY

1) DRAM

Understanding the latency components of DRAM memory
accesses facilitates the effective design of NF applications to
exploit the locality of data within DRAM system memory
with reduced latency. Chang et al. [266] have comprehen-
sively investigated the DRAM access latency components,
which are: i) activation, ii) precharge, and iii) restoration. The
latency variations across these components are due to man-
ufacturing irregularities, which result in memory cells with
asymmetric latency within the same DRAM chip. A short-
coming of the traditional DRAM memory access approaches
is the assumption that all memory cells are accessible with
uniform latency. Chang et al. [266] have performed a quanti-
tative study of DRAM chips to characterize the access laten-
cies across memory cells, and then to exploit their relative
latency characteristics to meet the application needs. Inter-
estingly, the memory cells that exhibit longer latencies also
exhibit spatial locality. Thus, the long-latency memory cells
are in some localized memory regions that can be isolated
and demarcated. Based on this insight, Chang et al. [266] pro-
posed a Flexible-LatencY DRAM (FLY-DRAM) mechanism
that dynamically changes the access to memory regions based
on the application’s latency requirements. The evaluations
in [266] have shown nearly 20% reduction of the average
latencies.
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Utilizing similar techniques to reduce DRAM access
latency, Hassan et al. [267] have proposed a DRAM access
strategy based on the memory controller timing changes so
as to achieve latency reductions up to 9%. Conventionally,
DRAM is accessed row by row. After an initial memory
access in a row, other locations in the same memory row can
be accessed faster due to the precharge (applied during the
initial access) than locations in other rows. The ChargeCache
mechanism proposed in [267] tracks the previously accessed
memory addresses in a table. Then, any new address locations
that map to the same row are accessed with tight timing
constraints, resulting in reduced access latencies.
In terms of increasing the DRAM memory density and

performance, 3D package technology allows memory cells
to be stacked in the third dimension and interconnected by
Through Silicon Vias (TSVs). Jeddeloh and Keeth [180] have
proposed such a 3D stacking technology to stack heteroge-
neous dies close to each other with numerous interconnects
between stack layers, reducing the latencies due to the short
distances that signals propagate.
Bulk transfers of data blocks are common in data pro-

cessing applications. However, data transfers are generally
implemented through the CPU, whereby, data is first moved
from the DRAM source to the CPU and then moved back
to a new DRAM destination. As a result, the applications
suffer from degraded performance due to i) limited DDR
link capacity (whereby the DDR link connects the DRAM
to the CPU bus), and ii) CPU usage for moving the data.
Existing connectivity wires within a DRAM array can pro-
vide a wide internal DRAM bandwidth for data transfers.
However, these data transfers are not possible out of DRAM
arrays. Overcoming this limitation, Chang et al. [268] have
proposed a Low-cost Inter-Linked SubArrays (LISA) scheme
to enable fast inter-subarray data transfers across large mem-
ory ranges. LISA utilizes the existing internal wires, such as
bitlines, to support data transfers across multiple subarrays
with a minuscule space overhead of 0.8% of DRAM area.
Experiments showed that LISA improves the energy effi-
ciency for memory accesses and reduces the latency of work-
loads that involve data movements.
The performance of NF applications depends directly on

the DRAM throughput and latency. The DRAM latency and
throughput are degraded by data-dependent failures, whereby
the data stored in the DRAM memory cells are corrupted
due to the interference, especially when the DRAM has long
refresh intervals. The DRAM-internal scramble and remap-
ping of the system-level address spacemakes it challenging to
characterize the data-dependent failures based on the existing
data and system address space. To address this challenge,
several techniques have been proposed based on the observed
pre-existing data and failures [269], [270]. In addition to
the mapping of data-dependent failures, it is also critical to
dynamically map the failures with respect to the memory
regions with a short time scale (high time resolution) so that
applications as well as the OS and hypervisors can adapt to
the failure characteristics. Hence, to enhance the performance

of NF applications, the memory access reliability should be
improved by minimizing the data-dependent failures.

2) NON-VOLATILE MEMORY (NVM)

In contrast to DRAM, the Non-Volatile Memory (NVM)
retains memory values without having to refresh the mem-
ory cells. NVM is traditionally based on NAND technol-
ogy. Emerging technologies that offer superior performance
of NVM in terms of read and write speeds, memory den-
sity, area, and cost have been discussed by Chen [271].
Some of the NVM technologies that are being considered as
potential solution to the growing needs of applications, such
as neuromorphic computing and hardware security, include
Phase Change Memory (PCM), Spin-Transfer-Torque Ran-
dom Access Memory (STTRAM) [272], Resistive Random
Access Memory (RRAM), and Ferroelectric Field Effect
Transistor (FeFET). The investigative study of Chen [271]
indicated that a scalable selector of the memory module is
a critical component in the architecture design. The NVM
challenges include high-yield manufacturing, material and
device engineering, as well as the memory allocation opti-
mization considering both the NVM technology constraints
and application needs.

As compared to 2D planar NAND technology, 3DVertical-
NAND (V-NAND) technology supports higher density mem-
ory cells and provides faster read/write access speeds.
However, the challenges of further scaling of V-NAND
include poor Word Line (WL) resistance, poor cell charac-
teristics, as well as poor WL-WL coupling, which degrades
performance. Overcoming these challenges, Kang et al. [273]
have proposed a 3rd generation V-NAND technology that
supports 256 GB with 3 b/cell flash memory with 48 stacked
WLs. In particular, Kang et al. [273] have implemented
the V-NAND with reduced number of external components;
also, an external resistor component is replaced by an on-
chip resistor to provide I/O strength uniformity. A temper-
ature sensing circuit was designed to counter the resistor
temperature variation such that resistance characteristics are
maintained relatively constant. Compared to the previous
V-NAND implementation generation, a performance gain
of 40% was observed, with the write throughput reaching
53.3 MB/s and a read throughput of 178 MB/s.

3) SUMMARY OF MEMORY

The NF performance on GPC infrastructures is closely cor-
related with the memory sizes and access speeds (latency).
Therefore, both research and enabling technology develop-
ment (Sec. III-C) efforts have been focused on increasing
memory cell density in a given silicon area, and improving
the access (read and write) speeds of memory cells. Towards
this end, 3D NAND technology improves the memory cell
density through 3D vertical stacking of memory cells as
compared to 2D planar linear scaling. The relatively recent
NV-NAND technology defines persistent memory blocks
that—in contrast to DRAM—retain data without a clock
refresh (i.e., without a power supply) [312]. Without a clock

VOLUME 8, 2020 132065



P. Shantharama et al.: Hardware-Accelerated Platforms and Infrastructures for NFs

refresh, the NV-NAND memory cells can be packed more
densely than DRAM, resulting in large (by many folds com-
pared to regular DRAM) persistent memory blocks. However,
the main downsides of NV-NAND memory components are
the slower read and write access speeds as compared to
DRAM.
In addition to the physical aspects ofmemory, other consid-

erations for memory performance include address translation,
caching, paging, virtualization, and I/O device to memory
accesses. Close examinations of accessing data from DRAM
memory cells have found asymmetric latencies, whereby the
data belonging to the same row of the memory cells can
be accessed faster than rows that have not been accessed in
recent DRAM refresh cycles. These asymmetric latencies can
result in varying (non-deterministic) read and write latencies
for applications with memory-intensive operations, such as
media processing.
The proximity of the DRAM to the CPU determines

the overall computing latency of the applications, therefore,
memory blocks should be integrated in close proximity of the
CPU. For instance, memory blocks can be integrated within
the socket, i.e., on-package, and possibly even on-die. The
tight integration of the DRAM with the CPU impacts the
application performance when there are inter-die and inter-
socket memory transactions due to Non-Uniform Memory
Access (NUMA) [313]. Illustrating the benefits of integrated
DRAM, Zhang et al. [314] have proposed a method to inte-
grate memory cells into compute modules (i.e., CPUs and
accelerators) based on Phase-change Random Access Mem-
ory (PRAM) modules [315]. PRAM is a memory storage cell
type that can be incorporated in the DRAM, but also directly
inside the accelerators and CPUs. For DRAM-less designs,
the PRAMmemory cells are integrated inside the accelerators
and CPUs, resulting in a DRAM-less acceleration framework
that achieves an improvement of 47% as compared to accel-
eration involving DMAs to DRAM [314].

An important memory-related bottleneck that needs to be
addressed in future research is to improve the effective uti-
lization of system memory when shared by multiple plat-
form components, such as CPUs (inter- and intra-socket) and
I/O devices (e.g., hardware accelerators and storage). More
specifically, the interactions between CPUs, I/O devices, and
system memory (DRAM) are shared by a common memory
controller and system bus (DDR). The DRAM allows a single
path data read and write into memory cells, whereby the
memory requests (from both CPUs and I/O devices) are
buffered and serialized at the memory controller when data
is written to and read from the DRAM. One possible future
research direction is to design a parallel request handler,
which enables concurrent reads and writes with the DRAM
memory cells. The concurrent reads and writes enable mul-
tiple CPUs and I/O devices to simultaneously interact with
the memory cells, improving the overall throughput of the
memory access. A key challenge to overcome with this con-
current memory access approach is to ensure synchronization
when the same memory location is concurrently accessed by

multiple components (i.e., memory accesses collide) and to
avoid data corruption. Colliding memory accesses need to be
arbitrated by serializing the memory accesses in a synchro-
nization module. On the other hand, non-colliding concurrent
memory accesses by multiple components to different mem-
ory locations, i.e., concurrent reads and writes to different
DRAM locations, can improve the memory utilization.

D. ACCELERATORS

1) DATA PROCESSING ACCELERATORS

Specialized hardware accelerators can significantly
improve the performance and power efficiency of NFs.
Ozdal et al. [274] have designed and evaluated a hardware
accelerator for graph analytics, which is needed, e.g., for
network traffic routing, source tracing for security, distributed
resource allocation and monitoring, peer-to-peer traffic mon-
itoring, and grid computing. The proposed architecture pro-
cesses multiple graph vertices (on the order of tens of
vertices) and edges (on the order of hundreds of edges) in
parallel, whereby partial computing states are maintained for
vertices and edges that depend on time-consuming computa-
tions. The computations for the different vertices and edges
are dynamically distributed to computation execution states
depending on the computational demands for the different
vertices and edges. Moreover, the parallel computations for
the different vertices and edges are synchronized through a
specialized synchronization unit for graph analytics. Evalua-
tions indicate that the developed graph analytics accelerator
achieves three times higher graph analytics performance than
a 24 core CPU while requiring less than one tenth of the
energy.

While the accelerator of Ozdal et al. [274] is specifically
designed for graph analytics, a generalized reconfigurable
accelerator FPGA logic referred to as Configurable Cloud
for arbitrary packet NFs as well as data center applications
has been proposed by Caulfield et al. [275], [276]. The
Configurable Cloud structure inserts a layer of reconfig-
urable logic between the network switches and the servers.
This reconfigurable logic layer can flexibly transform data
flows at line rate. For instance, the FPGA layer can encrypt
and decrypt 40 Gb/s data packet flows without loading the
CPU. The FPGA layer can also execute packet operations
for Software-Defined Networking (SDN). Aside from these
packet networking related acceleration functions, the FPGA
layer can accelerate some of the data center processing tasks
that are ordinarily executed by the data center CPUs, such as
higher-order network management functions.

Gray [277] has proposed a parallel processor and accel-
erator array framework called Phalanx. In Phalanx, groups
of processors and accelerators form shared memory clus-
ters. Phalanx is an efficient FPGA implementation of the
RISC-V IS (an open source instruction set RISC processor
design), achieving high throughput and I/O bandwidth. The
clusters are interconnected with a very-high-speed Hoplite
NoC [278]. The Hoplite NoC is a 2D switching fabric that
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is reconfigurable (for routing), torus (circular ring), and
directional. Compared to a traditional FPGA routing fabric,
Hoplite provides a better area × delay product. The Phalanx
FPGA processor design was successfully implemented to
boot with 400 cores, run a display monitor, perform billions
of I/O operations, as well as run AES encryption. Platforms
with large numbers of parallel processors and high intercon-
nect bandwidth can perform both many independent tasks as
well as handle large amounts of inter-thread communications.
Such architectures are uniquely positioned to run NF applica-
tions that operate on a flow basis. Thereby, one or more cores
can be dedicated to process a single packet flow, and scale up
the resources based on dynamic flow requirements.
MapReduce performs two operations on a data set: i) map

one form of data to another, and ii) reduce the data size
(e.g., by hashing) and store the reduced data as key-value
pairs (tuples) in a database. MapReduce typically oper-
ates on large data sets and employs a large number of
distributed computing nodes. Networking applications use
MapReduce for various data analysis functions, such as traf-
fic (packet and flow statistics) analysis [279] and network
data analytics (e.g., related to users, nodes, as well as cost
and efficiency of end-to-end paths) [280], especially in the
centralized decision making of SDN controllers. Therefore,
hardware acceleration of MapReduce in a platform further
enhances the performance of NF applications that perform
network traffic and data analytics. Towards this goal, Neshat-
pour et al. [281] have proposed the implementation of big
data analytics applications in a heterogeneous CPU+FPGA
accelerator architecture. Neshatpour et al. have developed
the full implementation of the HW+SW mappers on the
Zynq FPGA platform. The performance characterization with
respect to core processing requirements for small cores
(e.g., Intel R© Atom) and big cores (e.g., Intel R© i7) interact-
ing with hardware accelerators that implement MapReduce
has been quantified. In case of small cores, both SW and
HW accelerations are required to achieve high benchmarking
scores; while in case of big cores, HW acceleration alone
yields improved energy efficiency.

2) DEEP-LEARNING ACCELERATOR

Neural Networks (NNs) have been widely used in applica-
tions that need to learn inference from existing data, and
predict an event of interest based on the learned inference.
NF applications that use NNs for their evaluations include
traffic analysis NFs, such as classification, forecasting,
anomaly detection, and Quality-of-Service (QoS) estima-
tion [282]. Generally, NN computations require large mem-
ory and very high computing power to obtain results in a
short time-frame. To this end, Zhang et al. [283] have pro-
posed a novel accelerator, Cambricon-X, which exploits the
sparsity and irregularity of NN models to achieve increased
compute efficiency. Cambricon-X implements a Buffer Con-
troller (BC) module to manage the data in terms of index-
ing and assembling to feed into Processing Elements (PE)
that compute the NN functions. With sparse connections,

Cambricon-X achieves 544 Giga Operations Per second
(GOP/s), which is 7.2× the throughput of the state-of-the-art
DianNao implementation [284], while Cambricon-X is 6.4×
more energy efficient.

Deep learning and NN based applications require large
numbers of parallel compute nodes to run their inference
and prediction models. To meet this demand, massive num-
bers of high performance CPUs, custom accelerator GPUs
and FPGAs, as well as dedicated accelerators, such as
Cambricon-X [283] have been utilized by the software mod-
els. However, a critical component that limits the scaling
of computing is memory in terms of both the number of
I/O transactions and the capacity. The I/O bound transac-
tions that originate collectively from the large number of
threads running on numerous cores in CPUs, GPUs, and
FPGAs use a Message Passing Interface (MPI) for inter-
thread communications. In some cases, such as large-scale
combinatorial optimization applications, each thread needs
to communicate with every other thread, resulting in a mesh
connection that overloads the MPI infrastructure. Bojnordi
and Ipek [285] have proposed a dedicated hardware accelera-
tor to overcome the memory I/O and capacity bottlenecks that
arise with the scaling of computing resources. In particular,
a hardware accelerator is designed based on the Resistive
Random Access Memory (RRAM) technology [316] to sup-
port the compute and memory requirements of large-scale
combinatorial optimizations and deep learning applications
based on Boltzmann machines. The RRAM based accelerator
is capable of fine-grained parallel in-memory computations
that can achieve 57-fold compute performance improvements
and 25-fold energy savings as compared to traditional multi-
core systems. In comparison to Processing In-Memory (PIM)
systems (see Sec. III-E4), the RRAMbased accelerator shows
6.9-fold and 5.2-fold performance improvement and energy
savings, respectively.

Traditional CISC based IS architecture CPUs are not
optimized to run compute-intensive workloads with mas-
sive data parallelism, e.g., deep learning and data analyt-
ics. Therefore, to supplement the specialized and dedicated
computing infrastructures in the parallel processing of large
data, hardware offloading based on FPGA and GPU can
employed. However, hardware offloading generally comes
with the following challenges: i) application specific for a
given configuration, ii) memory offloading, and iii) recon-
figuration delay. The present reconfigurable hardware com-
ponents, such as FPGA and GPU, require a standardized
programming model, synthesis, and configuration of FPGA
and GPU; this hardware reconfiguration does not support
short (near run-time) time scales. As application require-
ments change much faster than the typical FPGA and GPU
configuration cycles, a CPU based acceleration could offer
faster adaption to changing needs. The Configurable Spa-
tial Accelerator (CSA) [286] architecture (see Fig. 34) was
proposed to accelerate large parallel computations. The CSA
consists of high density floating point and integer arithmetic
logic units that are interconnected by a switching fabric.
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FIGURE 34. Overview of Configurable Spatial Accelerator (CSA) for
supporting CPUs with large data graph computations as required for NF
applications related to deep learning, data analytics, and database
management [286]: Highly energy-efficient data-flow processing
elements (for integer and Fused Multiply-Add (FMA) operations) with
independent buffers are interconnected by multiple layers of switches.

The main CSA advantages are: i) the support of standard
compilers, such as C and C++, which are commonly used
for CPUs, and ii) short reconfiguration times on the order
of nanoseconds to a few microseconds [287]. The CSA can
directly augment existing CPUs, whereby the CSA can use
the CPU memory without having to maintain a separate local
memory for computing as compared to external accelera-
tors. In particular, the CSA can be adopted as an integrated
accelerator in the form of a CSA die next to the CPU die
in the same socket or package; CSA memory read/write
requests will be forwarded through inter-die interconnects
and (intra-CPU die) 2D mesh to the CPU memory controller.
Figure 34 illustrates the architectural CSA components con-
sisting of a switching network, Integer Processing Elements
(Int PEs), and Fused Multiply-Add (FMA) PEs. A large
number of Int PEs and FMA PEs are interconnected via
switches to form a hardware component that can support
compute-intensive workloads. The CSA adapts quickly to
varying traffic demands at fine-grained time-scales so that
NF applications can adapt to changing requirement through
hardware acceleration reconfiguration.
In terms of stress on the interconnects, deep learning and

inference software models implement large numbers of inter-
communicating threads, resulting in significant interconnect
usage. Typically, the thread communication is enabled by
a Message Passing Interface (MPI) provided by the OS
kernel. However, as the numbers of threads and compute
nodes increase, the OS management of the MPI becomes
challenging. Dosanjh et al. [288] have proposed a hardware
acceleration framework for the MPI to assist the CPU with
the inter-thread communications. The MPI hardware accel-
eration includes a fuzzy matching of source and destination
to enable the communication links with a probable partial
truth rather than exact (deterministic) connections at all times.
Fuzzy based hardware acceleration for link creation reduces
the overhead on the interconnect with reduced usage of

communication links for both control and actual datamessage
exchanges between threads. Evaluations of the hardware-
accelerated MPI have shown 1.13 GB in memory (DRAM)
savings, and a matching time improvement of 96% as com-
pared to a software-based MPI library.

3) GPU-RDMA ACCELERATOR

Remote Direct Memory Access (RDMA) enables system
memory access (i.e., DRAM) on a remote platform, usually
either via the PCIe-based NTB (see Sec. III-F2) or Ethernet-
based network connections. The Infiniband protocol embed-
ded in the NIC defines the RDMA procedures for transferring
data between the platforms. Typically, the CPU interacts
with the NIC to establish end-to-end RDMA connections,
whereby the data transfers are transparent to applications.
That is, the external memory is exposed as a self-memory
of the CPU such that if a GPU wants to access the remote
system memory, the GPU requests the data transfer from the
CPU. This process is inefficient as the CPU is involved in the
data transfer for the GPU. In an effort to reduce the burden
on the CPU, Daoud et al. [289] have proposed a GPU-side
library, GPUrdma, that enables the GPU to directly interact
with the NIC to performRDMA across the network, as shown
in Fig. 35(c). The GPUrdma implements a Global address-
space Programming Interface (GPI). TheGPUrdma has been
evaluated for ping-pong and multi–matrix-vector product
applications in [289]. The evaluations showed 4.5-fold faster
processing as compared to the CPUmanaging the remote data
for the GPU.

FIGURE 35. Evolution of GPU-RDMA techniques [289]: (a) Traditional
method of GPU accessing RDMA with assistance from CPU, (b) GPU
accesses RDMA directly from NIC, but CPU still performs the connection
management for the GPU, and (c) GPU interacts with NIC independent of
CPU, thereby reducing the CPU load for GPU RDMA purposes.

4) CRYPTO ACCELERATOR

Cryptography functions, such as encryption and decryption,
are computationally intensive processes that require large
amounts of ALU and branching operations on the CPU.
Therefore, cryptography functions cause high CPU utiliza-
tions, especially in platforms with relatively low computing
power. In mobile network infrastructures, such as in-vehicle
networks, the computing power is relatively lower compared
to traditional servers. In-vehicle networks require secure on-
board data transactions between the sensors and computing
nodes, whereby this communication is critical due to vehicle
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safety concerns. While cryptography is commonly adopted
in platforms with low computing resources, hardware cryp-
tography acceleration is essential. In-vehicle networks also
require near-real-time responses to sensor data, which fur-
ther motivates hardware-based acceleration of cryptography
functions to meet the throughput and latency needs of the
overall system. An in-vehicle network design proposed by
Baldanzi et al. [290] includes a hardware acceleration for
the AES-128/256 data encryption and decryption. The AES
accelerator was implemented on an FPGA and on 45 nm
CMOS technology. The latency of both implementations was
around 15 clock cycles, whereby the throughput of the FPGA
was 1.69 Gb/s and the CMOS achieved 5.35 Gb/s.
Similarly, Intrusion Detection Systems (IDSs) perform

security operations by monitoring and matching the sensor
data. In case of NF applications, this is applicable to network
traffic monitoring. Denial-of-Service attacks target a sys-
tem (network node) with numerous requests so that genuine
requests are denied due to resource unavailability. A CPU-
based software IDS implementation involves i) monitoring of
traffic, and ii) matching the traffic signature for an anomaly,
which is computationally expensive. Aldwairi et al. [291]
have proposed a configurable network processor with string
matching accelerators for IDS implementation. In particu-
lar, the hardware accelerator architecture includes multiple
string-matching accelerators on the network processor to
match different flows. Simulation results showed an overall
performance up to 14 Gb/s at run-time wire speed while
supporting reconfiguration.

Although encryption and decryption hardware accelera-
tion improve the overall CPU utilization, the performance of
hardware offload is significant only for large data (packet)
sizes. For small data sizes, the offload cost can outweigh the
gains of hardware accelerations. To address this trade-off,
Zhong et al. [292] have proposed a Self-Adaptive Encryp-
tion and Decryption Architecture (SAED) to balance the
asymmetric hardware offload cost by scheduling the crypto
computing requests between CPU and Intel R© Quick Assist
Technology R© (a hardware accelerator, see Sec. III-E1).
SAED steers the traffic to processing either by the CPU or
the hardware accelerator based on the packet size. SAED
improves the overall system performance for security appli-
cation in terms of both throughput and energy savings,
achieving around 80% improvement compared to CPU pro-
cessing alone, and around 10% improvement compared to
hardware accelerator processing alone.

5) IN-MEMORY ACCELERATOR

An in-memory accelerator utilizes DRAM memory cells to
implement logical and arithmetic functions, thus entirely
avoiding data movements between the accelerator device
and DRAM (i.e., system memory). The CPU can utilize the
high bandwidth DDR to communicate with the acceleration
function residing at DRAM memory regions. While it is
challenging to design complex arithmetic functions inside the
DRAM, simple logic functions, such as bitwise AND and

OR operations, can be implemented with minimal changes
to existing DRAM designs. Seshadri et al. [293] have pro-
posed a mechanism to perform bulk bitwise operations on a
commodity DRAM using a sense amplifier circuit which is
already present in DRAM chips. In addition, inverters present
in the sense amplifiers can be extended to perform bitwise
NOT operations. These modifications to DRAM require only
minor changes (1% of chip area) to the existing designs.
The simulation evaluations in [293] showed that performance
characteristics are stable, even with these process variations.
In-memory acceleration for bulk bitwise operations showed
32-fold performance improvements and 35-fold energy con-
sumption savings. High Bandwidth Memory (HBM) with 3D
stacking of DRAM memory cells has shown nearly ten-fold
improvements. Bulk bitwise operations are necessary for NF
applications that rely heavily on database functions (search
and lookup). Thus, in-memory acceleration provides a sig-
nificant acceleration potential to meet the latency and energy
savings demands of NFs relying on database functions.

Generally, the DRAM capacity is limited and therefore the
in-memory acceleration capabilities in terms of supporting
large data sets for data-intensive applications fall short in
DRAM. Non-Volatile Memory (NVM) is seen as a poten-
tial extension of existing DRAM memory to support larger
system memory. It is therefore worthwhile to investigate
in-memory acceleration in NVMmemory cells. Li et al. [294]
have presented an overview of NVM based in-memory based
acceleration techniques. NVM can support wider function
acceleration, such as logic, arithmetic, associative, vector, and
matrix-vector multiplications, as compared DRAMdue to the
increased NVM memory and space availability.

For instance, Li et al. [295] have proposed the Pinatubo
processing-in-memory architecture for bulk bitwise opera-
tions in NVM technologies. Pinatubo reuses the existing
circuitry to implement computations in memory as opposed
to new embedded logic circuits. In addition to bitwise logic
operations between one or two memory rows, Pinatubo also
supports one-step multi-row operations which can be used for
vector processing. As a result, Pinatubo achieves 1.12× over-
all latency reductions and 1.11× energy savings compared to
a conventional CPU for data intensive graph processing and
database applications.

6) SUMMARY OF ACCELERATORS

Custom accelerators, such as FPGA and GPU, provide high
degrees of flexibility in terms of programming the function
of the accelerators. In contrast, dedicated accelerators imple-
ment specific sets of functions on the hardware which limits
the flexibility. NFs have diverse sets of function acceleration
requirements, ranging for instance from security algorithm
implementation to packet header lookup, which results in
heterogeneous characteristics in terms of supporting parallel
executions and compute-intensive tasks. Regardless of all
the options available for hardware acceleration, the overall
accelerator offloading efficiency depends on memory trans-
actions and tasks scheduling. One possible future research
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direction towards increasing accelerator utilization is to com-
pile the application with ‘‘accelerator awareness’’ such that
a given task can be readily decomposed into subtasks that
are specific to FPGAs, GPUs, and dedicated accelerators.
Accelerator-specific subtasks can be independently sched-
uled to run on the hardware accelerators to coordinatewith the
main task (application) running on the CPU. Future research
should develop common task scheduling strategies between
hardware accelerators and CPU, which could improve the
utilization of hardware accelerators but also enable appli-
cations to reap the individual benefits of each accelerator
component.
Other open research challenges in the design of accel-

erators include supporting software definable interconnects
and logic blocks [317] with run-time reconfiguration and
dynamic resource allocation. In contrast to an FPGA, a GPU
can switch between threads at run-time and thus can be
instantaneously reconfigured to run different tasks. However,
the GPU requires a memory context change for every thread
scheduling change. To overcome this GPU memory con-
text change requirement, High Bandwidth Memory (HBM)
modules integrated with a GPU can eliminate the memory
transactions overhead during the GPU processing by copy-
ing the entire data required for computing to the GPU’s
local memory. HBM also enables the GPUs to be used as a
remote accelerator over the network [318]–[320]. However,
one limitation of remote accelerator computing is that results
are locally evaluated (e.g., analytics) on a remote node in
a non-encrypted format. The non-encrypted format could
raise security and privacy concerns as most GPU applications
involve database and analytics applications that share the data
with remote execution nodes.
Dedicated accelerators provide an efficient way of accel-

erating NFs in terms of energy consumption and hardware
accelerator processing latency. However, the downsides of
dedicated accelerators include: i) the common task offloading
overheads fromCPU, i.e., copying data to accelerator internal
memory and waiting for results through polling or interrupts,
and ii) themanagement of the accelerators, i.e., sharing across
multiple CPUs, threads, and processes. To eliminate these
overheads, in-memory accelerators have been proposed to
include (embed) the logic operations within the DRAMmem-
ory internals such that a write action to specific memory cells
will result in compute operations on the input data and results
are available to be read instantaneously from memory cells
reserved for output data.While this approach seems to be effi-
cient for fulfilling the acceleration requirements of an appli-
cation, the design of in-memory accelerators that are capable
of arithmetic (integer and floating point) operations is highly
challenging [321], [322]. Arithmetic Logic Units (ALUs)
would require large silicon areas within the DRAM and to
include ALUs at microscopic scale of memory cells is spa-
tially challenging. Another important future direction is to
extend the in-memory acceleration to 3D stacked memory
cells [183] supporting HBM-in-memory acceleration.

FIGURE 36. UniSec implements a unified programming interface to
configure and utilize the security functions implemented on
SmartNICs [297]. SmartNICs implement hardware Security Functions (hSF)
which are exposed to applications by virtual Security Functions (vSF)
through a UniSec Security Function (SF) library.

E. INFRASTRUCTURE

1) SmartNIC

SmartNICs enable programmability of the NICs to assist NFs
by enabling hardware acceleration in the packet processing
pipeline. Ni et al. [296] have outlined performance bene-
fits of SmartNIC acceleration for NF applications. However,
the accessing and sharing of hardware functions on a Smart-
NIC by multiple applications is still challenging due to
software overheads (e.g., resource slicing and virtualiza-
tion). Yan et al. [297] have proposed a UniSec method
that allows software applications to uniformly access the
hardware-accelerated functions on SmartNICs. More specif-
ically, UniSec provides an unified Application Program-
ming Interface (API) designed to access the high-speed
security functions implemented on the SmartNIC hardware.
The security functions required by NF applications include,
for instance, Packet Filtering Firewall (PFW) and Intrusion
Detection System (IDS). The implementation of UniSec is
classified into control (e.g., rule and log management) and
data (i.e., packet processing) modules. Data modules parse
packets and match the header to filter packets. UniSec con-
siders stateless, stateful, and payload based security detection
on the packet flows on a hardware Security Function (hSF).
A virtual Security Function (vSF) is generated through Secu-
rity Function (SF) libraries, as illustrated in Fig. 36. UniSec
reduces the overall code for hardware re-use by 65%, and
improves the code execution (CPU utilization) by 76% as
compared to a software-only implementation.

Traditionally hardware acceleration of software compo-
nents is enabled through custom accelerators, such as GPUs
and FPGAs. However, in large-scale accelerator deploy-
ments, the CPU and NIC could become the bottlenecks
due to increased I/O bound transactions. To reduce the load
on the CPU, SmartNICs can be utilized to process the
network requests to perform acceleration on the hardware
(e.g., GPU). Tork et al. [298] have proposed a Smart-
NIC architecture, Lynx, that processes the service requests
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(instead of the CPU), and delivers the service requests to
accelerators (e.g., GPU), thereby reducing the I/O load on the
CPU. Figure 37 illustrates the Lynx architecture in compar-
ison to the traditional approach in which the CPU processes
the accelerator service requests. Lynx evaluations conducted
by Tork et al. [298] where GPUs communicate with an
external (remote) database through SmartNICs show 25%
system throughput increases for a neural network workload
as compared to the traditional CPU service requests to the
GPU accelerator.

FIGURE 37. (a) Overview of traditional host-centric approach: CPU runs
the software that implements network-server function (for interacting
with remote client nodes) to process the requests from a remote node
(over the network). CPU also runs the Network I/O, which implements the
network stack processing; (b) Overview of Lynx architecture [298]:
SmartNIC implements the network-server (remote requests processing),
network-I/O (network stack processing), and accelerator I/O service
(accelerator scheduling) such that the CPU resources are freed from
network-server, network I/O, and accelerator I/O services.

2) SUMMARY OF INFRASTRUCTURES

Infrastructures consist of NICs, physical links, and network
components to enable platforms to communicate with exter-
nal compute nodes, such as peer platforms, the cloud, and
edge servers. SmartNICs enhance existing NICs with hard-
ware accelerators (e.g., FPGAs and cryptography accelera-
tors) and general purpose processing components (e.g., RISC
processors) so that functional tasks related to packet pro-
cessing that typically run on CPUs can be offloaded to
SmartNICs. For instance, Li et al. [323] have implemented a
programmable Intrusion Detection System (IDS) and packet
firewall based on an FPGA embedded in the SmartNIC.
Belocchi et al. [324] have discussed the protocol accelera-
tions on programmable SmartNICs.

Although state-of-the-art SmartNIC solutions focus on
improving application acceleration capabilities, the process-
ing on the SmartNICs is still coordinated by the CPU. There-
fore, an interesting future research direction is to improve the
independent executions on the SmartNICs with minimized
interactions with the CPU. Independent executions would
allow the SmartNICs to perform execution and respond to
requests from remote nodes without CPU involvement.

F. SUMMARY AND DISCUSSION OF RESEARCH STUDIES
Research studies on infrastructures and platforms provide
perspectives on how system software and NF applications
should adapt to the changing hardware capabilities. Towards
this end, it is important to critically understand both the
advantages and disadvantages of the recent advances of hard-
ware capabilities so as to avoid the pitfalls which may nega-
tively impact the overall NF application performance.

In terms of computing, there is a clear distinction between
CISC and RISC architectures: CISC processors are more
suitable for large-scale computing and capable of support-
ing high-performing platforms, such as servers. In contrast,
RISC processors are mainly seen as an auxiliary computing
option to CISC, such as for accelerator components. There-
fore, NF application designs should decouple their computing
requirements into CISC-based and RISC-based computing
requirements such that the respective strengths of CISC- and
RISC-based computing can be harnessed in heterogeneous
platforms.

As the number of cores increases, the management of
threads that run on different cores becomes more complex.
If not optimally managed, the overheads of operating mul-
tiple cores may subdue the overall benefit achieved from
multiple cores. In addition, extensive inter-thread commu-
nication stresses the core-to-core interconnects, resulting in
communication delay, which in turn decreases the application
performance. Therefore, applications that run on multiple
cores should consider both thread management and inter-
thread communication to achieve the best performance.

The power control of platform components is essential to
save power. However, severe power control strategies that
operate on long time-scales can degrade the performance
and induce uncorrectable errors inside the system. There-
fore, power and frequency control strategies should carefully
consider their time-scale of operation so as not to impact
the response times for the NF applications. A long-time-
scale power control would take numerous clock cycles to
recover from low performance states to high performance
states. Conversely, a short-time-scale power control is highly
reactive to the changing requirements of NF applications
(e.g., changing traffic arrivals); however, short time-scales
result in more overheads to evaluate requirements and control
states.

While several existing strategies can increase both on-
chip and chip-to-chip interconnect capabilities, future designs
should reduce the cost and implementation complexity. The
Network-on-Chip (NoC) provides a common platform, but
an NoC increases the latency as the number of components
increases. In contrast, 2D mesh interconnects provide more
disjoint links for the communications between the compo-
nents. Millimeter wireless and optical interconnects provide
high-bandwidth, long-range, and low-latency interconnects,
but the design of embedded wireless and optical transceivers
on-chip increases the chip size and area. A 3D NoC pro-
vides more space due to the vertical stacking of compute
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components, but power delivery and heat dissipation become
challenging, which can reduce the chip lifespan.

V. OPEN CHALLENGES AND FUTURE

RESEARCH DIRECTIONS

Building on the survey of the existing hardware-accelerated
platforms and infrastructures for processing softwarized NFs,
this section summarizes the main remaining open chal-
lenges and outlines future research directions to address
these challenges. Optimizing hardware-accelerated plat-
forms and infrastructures, while meeting and exceeding the
requirements of flexibility, scalability, security, cost, power
consumption, and performance, of NF applications poses
enormous challenges. We believe that the following future
directions should be pursued with priority to address the most
immediate challenges of hardware-accelerated platforms and
infrastructures for NF applications. The future designs and
methods for hardware-accelerated platforms and infrastruc-
tures can ultimately improve the performance and efficiency
of softwarized NF applications.
We first outline overarching grand challenges for the

field of hardware-accelerated platforms and infrastructures,
followed by specific open technical challenges and future
directions for the main survey categories of CPUs, mem-
ory, interconnects, accelerators, and infrastructure. We close
this section with an outlook to accelerations outside of the
immediate realm of platforms and infrastructures; specifi-
cally, we briefly note the related fields of accelerations for
OSs and hypervisors as well as orchestration and protocols.

A. OVERARCHING GRAND CHALLENGES

1) COMPLEXITY

As the demands for computing increase, two approaches
can be applied to increase the computing resources: i) hor-
izontal scaling and ii) vertical scaling. In horizontal scaling,
the amounts of computing resources are increased, such as
increasing the number of cores (in case of multi processors)
and the number of platforms. The main challenges asso-
ciated with horizontal scaling are the application manage-
ment that runs on multiple cores to maintain data coherency
(i.e., cache and memory locality), synchronization issues,
as well as the scheduling of distributed systems in large scale
infrastructures. In vertical scaling, the platform capacities
are improved, e.g., with higher core computing capabili-
ties, larger memory, and acceleration components. The main
challenges of vertical scaling are the power management of
the higher computing capabilities, the management of large
memories while preserving locality (see Sec. IV-C1), and
accelerator scheduling. In summary, when improving the
platform and infrastructure capabilities, the complexity of the
overall system should still be reasonable.

2) COST

The cost of platforms and infrastructures should be signif-
icantly lowered in order to facilitate the NF softwarization.

For instance, the 3D stacking of memory within compute pro-
cessors incurs significant fabrication costs, as well as reduced
chip reliability due to mechanical and electrical issues due
to the compact packaging of hardware components [325].
Hardware upgrades generally replace existing hardware par-
tially or completely with new hardware, incurring signifi-
cant cost. Large compute infrastructures also demand high
heat sinking capacities with exhausts and air circulation,
increasing the operational cost. Therefore, future research
and designs need to carefully examine and balance the higher
performance-higher cost trade-offs.

3) FLEXIBILITY

Hardware flexibility is essential to support the diverse
requirements of NF applications. That is, an accelerator
should support a wide range of requirements and support a
function that is common to multiple NF applications such
that a single hardware accelerator can be reused for differ-
ent applications, leading to increased utilization and reduced
overall infrastructure cost. A hybrid interconnect technol-
ogy that can flexibly support different technologies, such as
optical and quantum communications, could allow applica-
tion designers to abstract and exploit the faster inter-core
communications for meeting the NF application deadlines.
For instance, a common protocol and interface definition for
interconnect resource allocation in a reconfigurable hardware
would help application designers to use Application-Specific
Interfaces (APIs) to interact with the interconnect resource
manager for allocations, modification, and deallocations.

4) POWER AND PERFORMANCE

Zhang et al. [326] have extensively evaluated the per-
formance of software implementations of switches. Their
evaluations show that performance is highly variable with
applications (e.g., firewall, DoS), packet processing libraries
(e.g., DPDK), and OS strategies (e.g., kernel bypass). As a
result, a reasonable latency attribution to the actions of the
switching function in the software cannot be reasonablymade
for a collection of multiple scenarios (but is individually
possible). While there exist several function parameter tuning
approaches, such as increasing the descriptor ring (circular
queue) sizes, disabling flow control, and eliminating MAC
learning in the software switches, hardware acceleration pro-
vides better confidence in terms of performance limitations
of any given function.

Software implementations also consume more power as
compared to dedicated hardware implementations due to the
execution on CPUs. Therefore, software implementations of
NF applications are in general more power expensive than
hardware implementations. Nevertheless, it is challenging to
maintain the uniformity in switching and forwarding latency
of a software switch (an example NF application). Hence
a pitfall to avoid is to assume uniform switching and for-
warding latencies of software switches when serving NF
applications with strict deadline requirements.
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On the other hand, hardware implementations generally do
not perform well if offloading is mismanaged, e.g., through
inefficient memory allocation. Also, it is generally inefficient
to offload relatively small tasks whose offloading incurs more
overhead than can be gained from the offloading.

B. CPU AND COMPUTING ARCHITECTURE

1) HARDWARE BASED POLLING

As the number of accelerator devices increases on a platform,
individually managing hardware resources becomes cumber-
some to the OS as well as the application. In particular,
the software overheads in the OS kernel and hypervisor
(except for pass-through) increase with the task offload-
ing to increasing numbers of accelerator devices; moreover,
increasing amounts of CPU resources are needed for hard-
ware resource and power management. One of the software
overheads is attributed to polling based task offloading. With
polling based task offloading, the CPU continuouslymonitors
the accelerator status for task completion, which wastes many
CPU cycles for idle polling (i.e., polling that fetches a no
task completion result). Also, as the number of applications
that interact with the accelerator devices increases, there is
an enormous burden on the CPU. A solution to this problem
would be to embed a hardware based polling logic in the CPU
such that the ALU and opcode pipelines are not used by the
hardware polling logic. Although this hardware polling logic
solution would achieve short latencies due to the presence of
the hardware logic inside the CPU, a significant amount of
interconnect fabric would still be used up for the polling.

2) CPU BASED HARDWARE ACCELERATION MANAGER

The current state-of-the-art management techniques for
accelerating an NF application through utilization of a hard-
ware resource (component) involve the following steps: the
OS has to be aware of the hardware component, a driver has
to initialize and manage the hardware component, and the
application has to interact with user-space libraries to sched-
ule tasks on the hardware component. A major downside to
this management approach is that there are multiple levels of
abstraction and hardware management. An optimized way is
to enable applications to directly call an instruction set (IS)
to forward requests to the hardware accelerator component.
Although, this optimization exists today (e.g., MOVDIR and
ENQCMD ISs from Intel [327]), the hardware management
is still managed by the OS, whereby only the task submis-
sion is performed directly through the CPU IS. A future
enhancement to the task submission would be to allow the
CPU to completely manage the hardware resources. That
is, an acceleration manager component in the CPU could
keep track of the hardware resources, their allocations to NF
applications, and the task management on behalf of the OS
and hypervisors. Such a CPU based management approach
would also help the CPU to switch between execution on the
hardware accelerator or on the CPU according to a compre-
hensive evaluation to optimize NF application performance.

3) THERMAL BALANCING

In the present computing architectures, the spatial charac-
teristics of the chip and package (e.g., the socket) are not
considered in the heterogeneous scheduling (see Sec. IV-A5)
of processes and tasks. As a result, on a platform with an
on-chip integrated accelerator (i.e., accelerator connected to
CPU switching fabric, e.g., 2D mesh), a blind scheduling of
tasks to accelerators can lead to a thermal imbalance on the
chip. For instance, if the core always selects an accelerator
in its closest proximity, then the core and accelerator will be
susceptible to the same thermal characteristics. A potential
future solution is to consider the spatial characteristics of the
usage of CPUs and accelerators in the heterogeneous task
scheduling. A pitfall is to avoid the selection of accelerators
and CPUs that create a lot of cross-fabric traffic. Therefore,
the spatial balancing of the on-chip thermal characteristics
has to be traded off with the fabric utilization while perform-
ing CPU and accelerator task scheduling.

4) API BASED RESOURCE CONTROL

Although there exist frequency control technologies and
strategies (see Sec. III-A4), the resource allocation is typi-
cally determined by the OS. For instance, the DVFS tech-
nique to control the voltage and CPU clock is in response
to chip characteristics (e.g., temperature) and application
load. However, there are no common software Application
Programming Interfaces (APIs) for user space applications to
request resources based on changing requirements. A future
API design could create a framework for NF applications to
meet strict deadlines. A pitfall to avoid in API based resource
control is to ensure isolation between applications. This appli-
cation isolation can be achieved through fixed maximum
limits on allocated resources and categorizing applications
with respect to different (priority) classes of services along
with a best effort (lowest priority) service class.

C. INTERCONNECTS

1) CROSS-CHIP INTERCONNECT RECONFIGURATION

In accelerator offload designs, the path between CPU and
accelerator device for task offloading and data transfer may
cross several interconnects (see Sec. III-B). The multiple
segments of interconnects may involve both on-chip switch-
ing fabrics and chip-to-chip interconnects of variable capac-
ities. For instance, an accelerator I/O interacting with a
CPU can encompass the following interconnects: i) accel-
erator on-chip switching fabric, ii) core-to-core interconnect
(e.g., 2D mesh), and iii) CPU to memory interconnect
(i.e., DDR). In addition to interconnects, the processing
nodes, such as CPU and memory controllers, are also shared
resources that are shared by other system components and
applications. A critical open challenge is to ensure a dedicated
interconnect service to NF applications across various inter-
connects and processing elements. One of the potential future
solutions is to centrally control the resources in a software-
defined manner. Such a software-defined central interconnect
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control requires monitoring and allocation of interconnect
resources and assumes that interconnect technologies support
reconfigurability. However, a pitfall to avoid would be a large
control overhead for managing the interconnect resources.

D. MEMORY

1) HETEROGENEOUS NON-UNIFORM

MEMORY ACCESS (NUMA)

Sieber et al. [328] have presented several strategies applied
to cache, memory access, core utilization, and I/O devices to
overcome the hardware-level limitations of the NFV perfor-
mance. The main challenge that has been stressed is to ensure
the performance guarantees of a softwarized NF. Specific to
NUMA node strategies, there can be I/O devices in addi-
tion to memory components that can be connected to CPU
nodes. The cross node traffic accessed by I/O devices can
significantly impact the overall performance. That is, a NIC
connected to CPU1 (socket 1), trying to interact with the cores
of CPU2 (socket 2) would have lower effective throughput
as compared to a NIC that is connected to CPU1 and com-
municates with the CPU1 cores. Therefore, not only the I/O
device interrupts need to be balanced among the available
cores to distribute the processing load across available cores,
but balancing has to be specific to the CPU that the NIC has
been connected into. An important future research direction is
to design hardware enhancements that can reduce the impact
of NUMA, whereby a common fabric extends to connect with
CPUs, memory, and I/O devices.

2) IN-MEMORY NETWORKING

Processing In-Memory (PIM) has enabled applications to
compute simple operations, such as bit-wise computations
(e.g., AND, OR, XOR), inside the memory component, with-
outmoving data betweenCPU andmemory. However, current
PIM technologies are limited by their computing capabilities
as there is no support for ALUs and floating point processors
in-memory. While there are hardware limitations in terms of
size (area) and latency of memory access if a memory module
is implemented with complex logic circuits, many applica-
tions (see Sec. IV-D5) are currently considering to offload
bit-wise operations, which are a small portion of complex
functions, such as data analytics. On the other hand, most
NF packet processing applications, e.g., header lookup, table
match to find port id, and hash lookup, are bit-wise dominant
operations; nevertheless, packet processing applications are
not generally considered as in-memory applications as they
involve I/O dominant operations. That is, in a typical packet
processing application scenario, packets are in transit from
one port to another port in a physical network switch, which
inhibits in-memory acceleration since the data is in transit.
Potential applications for packet based in-memory computing
could be virtual switches and routers. In virtual switches and
routers, the packets are moved from one memory location to
another memory location which is an in-memory operation.
Hence, exploring in-memory acceleration for virtual switches
and routers is an interesting future research direction.

E. ACCELERATORS

1) COMMON ACCELERATOR CONTEXT

As the demands for computing and acceleration grow,
platforms are expected to include more accelerators. For
example, a CPU socket (see Sec. III-B1) can have four
integrated acceleration devices (of the same type), balanc-
ing the design such that an accelerator can be embedded
on each socket quadrant, interfacing directly with the CPU
interconnect fabric. On a typical four-socket system, there
are then a total of 16 acceleration devices of the same type
(e.g., QAT R©). In terms of the PCIe devices, a physical device
function can be further split into many virtual functions of
similar types. All of these developments attribute to a large
number of accelerator devices of the same type on a given
platform. A future accelerator resource allocation manage-
ment approach with a low impact on existing implementation
methods could share the accelerator context among all other
devices once an application has registered with one of these
accelerator functions (whereby an accelerator function cor-
responds to either a physical or virtual accelerator device).
A shared context would allow the application to submit an
offload request to any accelerator function. A pitfall to avoid
is to consider the security concerns of the application and
accelerator due to the shared context either through hard-
ware enhancements, such as the Trusted Execution Environ-
ment (TEE) or Software Guard eXtensions (SGX) [329].

As hardware accelerators are more widely adopted for
accelerating softwarized NFs, the platforms will likely con-
tain many heterogeneous accelerator devices, e.g., GPU,
FPGA, and QAT R© (see Secs. III-D and III-E). In large
deployments of platforms and infrastructures, such as data
centers, the workload across multiple platforms often fluctu-
ates. Provided there is sufficient bandwidth and low latency
connectivity between platforms with high and low accelerator
resource utilization, there can be inter-platform accelerator
sharing through a network link. This provides a framework
for multi-platform accelerator sharing, whereby the accel-
erators are seen as a pool of resources with latency cost
associated with each accelerator in the pool. A software
defined acceleration resource allocation andmanagement can
facilitate the balancing of loads between higher and lower
utilization platforms while still meeting application demands.

2) CONTEXT BASED RESOURCE ALLOCATION

In terms of the software execution flow, an NF application
which intends to communicate with an accelerator device for
task offloading is required to register with the accelerator,
upon which a context is given to the application. A ‘‘context’’
is a data-structure that consists of an acknowledgment to
the acceleration request with accelerator information, such as
accelerator specific parameters, policies, and supported capa-
bilities. An open challenge to overcome in future accelerator
design and usage is to allocate the system resources based on
context. Device virtualization techniques, such as Scalable
I/O virtualization (SIOV) [175], outline the principles for
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I/O device resource allocation, but do not extend such capa-
bilities to system-wide resource allocation. When an appli-
cation registers with the accelerator device, the accelerator
device can make further requests to system components, such
as the CPU (for cache allocation) and memory controller
(for memory I/O allocation), on behalf of the application.
To note, applications are typically not provided with infor-
mation about the accelerators and system-wide utilization
for security concerns, and therefore cannot directly make
reservation requests based on utilization factors. Therefore,
the accelerator device (i.e., driver) has to anchor the reser-
vation requests made by the application, to coordinate with
the accelerator device, CPU, and other components (such as
interconnects andmemory) to confirm back to the application
with the accepted class of service levels. The NF application
makes request to the accelerator during registration and the
accepted class of service will be provided in the ‘‘context’’
message returned to the NF application.

F. INFRASTRUCTURE

1) SmartNIC OFFLINE PROCESSING WITHOUT CPU

Traditional systems process packets in two modes
(see Sec. II-F1): i) polling mode, such as DPDK Poll Mode
Driver (PMD), and ii) interrupt mode. Most of the widely
adopted strategies for network performance enhancement
focus on improving the network throughput by: i) batching of
packets in the NIC during each batch-period before notifying
the poller, and ii) deferring the interrupt generation for a
batch-period by the NIC (e.g., New API [NAPI] of Linux).
The basic trade-offs between state-of-art based inter-

rupts and polling methods are: i) Polling wastes CPU cycle
resources when there are no packets arriving at the NIC; how-
ever, when a packet arrives, the CPU is ready to process the
packet almost instantaneously. The polling method achieves
low latency and high throughput. However, the polling by
the application/network-driver is agnostic to the traffic class,
as the driver has no context of what type of traffic and whose
traffic is arriving over the link (in the upstream direction) to
the NIC. ii) Interrupts create overhead at the CPU through
context switches, thereby reducing the overall system effi-
ciency, especially for high-throughout scenarios. Although,
there exist packet steering and flow steering strategies, such
as Receive Side Scaling (RSS) at the NIC, interrupt gen-
eration results in significant overheads for heavy network
traffic. To note, either through polling-alone or interrupts-
alone, or through hybrid approaches: The common approach
of the NICs keeping the CPUs alive for delay-tolerant traffic
imposes an enormous burden on the overall power consump-
tion for servers and clients [330]. Thus, future SmartNICs
should recognize the packets of delay-tolerant traffic, and
decide not to disturb the CPUs for those specific packet
arrivals while allowing the CPU to reside in sleep states,
if the CPU is already in sleep states. The packets can directly
be written to memory for offline processing. Extending this
concept, future SmartNICs should be empowered with more

responsibilities of higher network protocol layers (transport
and above), such that the CPU intervention is minimal in the
packet processing. A pitfall to consider in the design is to
ensure the security of offline packet processing by the Smart-
NIC such that the CPU is not distracted (or disrupted) by
the SmartNIC and memory I/O operations, as most security
features on the platform are coordinated by the CPU to enable
isolation between the processes and threads.

G. NF ACCELERATION BEYOND PLATFORMS

AND INFRASTRUCTURES

1) OPERATING SYSTEMS AND HYPERVISORS

The Operating System (OS) manages the hardware resources
for multiple applications with the goal to share the platform
and infrastructure hardware resources and to improve their
utilization. The OS components, e.g., kernel, process sched-
uler, memory manager, and I/O device drivers, themselves
consume computing resources while managing the platform
and infrastructure hardware resources for the NF applica-
tions. For instance, moving packet data from a NIC I/O
device to application memory requires the OS to handle the
transactions (e.g., kernel copies) on behalf of the applications.
While the OS management of the packet transaction provides
isolation from operations of other applications, this OS man-
agement results in an overhead when application through-
put and hardware utilization is considered [331]. Therefore,
several software optimizations, such as zero copy and kernel
bypass, as well as hardware acceleration strategies, such as
in-line processing [189], have been developed to reduce the
OS overhead.

Similarly for hypervisors, the overhead of virtualization
severely impacts the performance. Virtualization technolo-
gies, such as single root and scalable I/O Virtualization
(IOV) [84], [175], mitigate the virtualization latency and pro-
cessing overhead by directly allocating fixed hardware device
resources to applications and VMs. That is, applications and
VMs are able to directly interact with the I/O device—without
OS or hypervisor intervention—for data transactions between
the I/O device (e.g., NIC) and system memory of the virtual-
ized entity (e.g., VM). In addition to the data, the interrupt and
error management in terms of delivering external I/O device
interrupts and errors to VMs through the hypervisors (VMM)
should be optimized to achieve short application response
times (interrupt processing and error recovery latencies) for
an event from the external I/O devices. For instance, external
interrupts that are delivered by the I/O devices are typically
processed by the hypervisor, and then delivered to VMs as
software based message interrupts. This technique generates
several transitions from the VM to the hypervisor (known as
VMexits) to process the interrupts. Therefore, themechanism
to process the interrupts to the VM significantly impacts the
performance of applications running on a VM.

A comprehensive up-to-date survey of both the software
strategies and hardware technologies to accelerate the func-
tions of the OS and hypervisors supporting NF applications
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would be a worthwhile future addition to the NF performance
literature.

2) ORCHESTRATION AND PROTOCOLS

Typically, applications running on top of the OS are sched-
uled in a best-effort manner on the platform and infrastructure
resources, with static or dynamic priority classes. However,
NF applications are susceptible to interference (e.g., cache
and memory I/O interference) from other applications run-
ning on the same OS and platform hardware. Applications
can interfere even when software optimizations and hardware
acceleration are employed, as these optimization and accel-
eration resources are shared among applications. Therefore,
platform resource management technologies, such as the
Resource Director Technology (RDT) [332], enable the OS
and hypervisors to assign fixed platform resources, such as
cache and memory I/O, for applications to prevent interfer-
ence. Moreover, the availability of heterogeneous compute
nodes, such as FPGAs, GPUs, and accelerators, in addition
to CPUs results in complex orchestration of resources to
NF applications. OneAPI [333] is an enabling technology
in which applications can use a common library and APIs
to utilize the hardware resources based on the application
needs. Another technology enabling efficient orchestration
is Enhanced Platform Awareness (EPA) [334], [335]. EPA
exposes the platform features, such as supported hardware
accelerations along with memory, storage, computing, and
networking capabilities. The orchestrator can then choose to
run a specific workload on a platform that meets the require-
ments.
In general, an orchestrator can be viewed as a logically

centralized entity for decision making, and orchestration is
the process of delivering control information to the platforms.
As in the case of the logically centralized control decisions
in Software Defined Networking (SDN) [28], protocol oper-
ations (e.g., NF application protocols, such as HTTP and
REST, as well as higher layer protocol operations, such as
firewalls [336], IPSec, and TCP) can be optimized through
dynamic reconfigurations. The orchestration functions can
be accelerated in hardware through i) compute offloading of
workloads, and ii) reconfiguration processes that monitor and
apply the actions on other nodes. Contrary to the centralized
decision making in orchestration, decentralized operations
of protocols, such as TCP (between source and destination),
OSPF, and BGP, coordinate the optimization processes which
requires additional computations on the platforms to improve
the data forwarding. Thus, hardware acceleration can benefit
the protocol function acceleration in multiple ways, includ-
ing computation offloading and parameter optimizations
(e.g., buffer sizes) for improved performance.
In addition to orchestration, there are plenty of protocol-

specific software optimizations, such as Quick UDP Inter-
net Connections (QUIC) [337], and hardware accelerations
[338], [339] that should be covered in a future survey
focused specifically on the acceleration of orchestration and
protocols.

VI. CONCLUSIONS

This article has provided a comprehensive up-to-date sur-
vey of hardware-accelerated platforms and infrastructures for
enhancing the execution performance of softwarized network
functions (NFs). This survey has covered both enabling tech-
nologies that have been developed in the form of commercial
products (mainly by commercial organizations) as well as
research studies that have mainly been conducted by aca-
demically oriented institutions to gain fundamental under-
standing. We have categorized the survey of the enabling
technologies and research studies according to the main
categories CPU (or computing architecture), interconnects,
memory, hardware accelerators, and infrastructure.

Overall, our survey has found that the field of hardware-
accelerated platforms and infrastructures has been dominated
by the commercial development of enabling technology prod-
ucts, while academic research on hardware-accelerated plat-
forms and infrastructures has been conducted by relatively
few research groups. This overall commercially-dominated
landscape of the hardware-accelerated platforms and infras-
tructures field may be due to the relatively high threshold
of entry. Research on platforms and infrastructures often
requires an expensive laboratory or research environment
with extensive engineering staff support. We believe that
closer interactions between technology development by com-
mercial organizations and research by academic institutions
would benefit the future advances in this field. We believe
that one potential avenue for fostering such collaborations
and for lowering the threshold of entry into this field could be
open-source hardware designs. For instance, programmable
switching hardware, e.g., in the form of SmartNICs and cus-
tom FPGAs, could allow for open-source hardware designs
for NF acceleration. Such open-source based hardware
designs could form the foundation for a marketplace of open-
source designs and public repositories that promote the dis-
tribution of NF acceleration designs among researchers as
well as users and service providers to reduce the costs of con-
ducting original research as well as technology development
and deployment. Recent projects, such as RISC-V, already
provide open-source advanced hardware designs for proces-
sors and I/O devices. Such open-source hardware designs
could be developed into an open-source research and technol-
ogy development framework that enables academic research
labs with limited budgets to conducted meaningful original
research on hardware-accelerated platforms and infrastruc-
tures for NFs. Broadening the research and development base
can aid in accelerating the progress towards hardware designs
that improve the flexibility in terms of supporting integrated
dedicated acceleration computation (on-chip), while achiev-
ing high efficiency in terms of performance and cost.

Despite the extensive existing enabling technologies and
research studies in the area of hardware-accelerated platforms
and infrastructures, there is a wide range of open challenges
that should be addressed in future developments of refined
enabling technologies as well as future research studies. The
open challenges range from hardware based polling in the
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CPUs and CPU based hardware acceleration management to
open challenges in reconfigurable cross-chip interconnects as
well as improved heterogeneous memory access. Moreover,
future technology development and research efforts should
improve the accelerator operation through creating a com-
mon context for accelerator devices and allocating accelerator
resources based on the context. We hope that the thorough
survey of current hardware-accelerated platforms and infras-
tructures that we have provided in this article will be helpful
in informing future technology development and research
efforts. Based on our survey, we believe that near-to-mid term
future development and research should address the key open
challenges that we have outlined in Section V.

More broadly, we hope that our survey article will inform
future designs of OS and hypervisor mechanisms as well
as future designs of orchestration and protocol mechanisms.
As outlined in Section V-G, these mechanisms should opti-
mally exploit the capabilities of the hardware-accelerated
platforms and infrastructures, which can only be achieved
based on a thorough understanding of the state-of-the-art
hardware-accelerated platforms and infrastructures for NFs.
Moreover, we believe that it is important to understand the

state-of-the-art hardware-accelerated platforms and infras-
tructures for NFs as a basis for designing NF applications
with awareness of the platform and infrastructure capabilities.
Such an awareness can help to efficiently utilize the plat-
form and infrastructure capabilities so as to enhance the NF
application performance on a given platform and infrastruc-
ture. For instance, CPU instructions, such as MOVDIR and
ENQCMD [327], enable applications to submit acceleration
tasks directly to hardware accelerators, eliminating the soft-
ware management (abstraction) overhead and latency.
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