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1. Introduction

Searching and comparing biological sequences in genomic
databases are essential processes in molecular biology. The
collection of genetic sequence data is increasing expo-
nentially each year and consists mostly of nucleotide
(DNA/RNA) and amino acid (protein) symbols. Approx-
imately 3 billion nucleotide pairs comprise the human
genome alone. Given the large volume of data, sequence
comparison applications require efficient computing meth-
ods to produce timely results.

Biologists and other researchers use sequence alignment
as a fundamental comparison method to find common pat-
terns between sequences, predict protein structure, identify
important genetic regions, and facilitate drug design. For
example, sequence alignment is used to derive flu vaccines
[1] and by the nation’s BioWatch [2] program in identifying
DNA signatures of pathogens. Sequence alignment consists
of matching characters between two or more sequences
and positioning them together in a column. Gaps may be
inserted in regions where matches do not occur to reflect
an insertion or deletion evolutionary event. A count of
the matching characters results in a measure of similarity
between the sequences. Pairwise alignment involves two
sequences (see Figure 1) and multiple alignment considers
three or more sequences. Finding the optimal multiple

sequence alignment is NP-hard in complexity. As a first
step, multiple alignment algorithms [3, 4] often compute a
pairwise alignment between all the sequences.

Global and local pairwise alignments are the two most
common alignment problems. Global alignment [5] con-
siders both sequences from end to end and finds the best
overall alignment. Local alignment [6] identifies the sections
with greatest similarity and only aligns the subsequences.
Both alignment problems are typically solved with dynamic
programming (DP), which fills a two-dimensional matrix
with score or distance values in a forward scan from upper
left to lower right, followed by a traceback procedure.
Traceback occurs from a designated lower right position
following a path to upper left, thereby determining the best
alignment.

The computational cost for an optimal sequence align-
ment increases exponentially with the length of each
sequence and with the number of sequences. This complexity
poses a challenge for sequence alignment programs to return
results within a reasonable time period as biologists compare
greater numbers of sequences. Using current methods,
an alignment program may run for days or even weeks
depending on the number of sequences and their length.

Unlike most acceleration methods that focus on
sequence comparison, this research describes and evaluates
a space-efficient, global sequence alignment algorithm and
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Figure 1: Example pairwise alignment.

architecture that includes traceback for implementation on
reconfigurable hardware. Given a pair of sequences, the
accelerator returns a list of edit operations constituting the
optimal alignment. A library of accelerator functions is easily
incorporated into multiple sequence alignment programs
that run on platforms equipped with reconfigurable hard-
ware.

2. Related Work

Most efforts to accelerate biosequence applications with
hardware have focused on database searches. Ramdas and
Egan [7] compare several of these architectures in their
survey. Given a query sequence, an entire genetic database
is scanned looking for other sequences that are similar.
Searching a genetic database for matches with a biosequence
is similar in nature to a search of the web that returns
“hits” sorted by relevance. Accelerating a database search
is a simpler problem than alignment. Only the score for
the comparison is computed by hardware in the forward
scan; whereas alignment requires traceback in addition to
the forward scan. The sequence comparison problem can
be mapped to a linear systolic array of processing elements
(PEs) requiring O(min(m,n)) space, where m and n are
the lengths of the sequences. However, global alignment
necessitates extra storage for traceback pointers and a
traceback procedure, which are not addressed by sequence
comparison solutions.

Traceback support in hardware has the most benefit
when the traceback path spans a significant portion of the
DP matrix. Global alignment applications realize the greatest
performance gain because the traceback path extends across
the entire DP matrix; whereas local alignment applications
with a shorter path show less benefit. After a forward scan
in hardware, any alignment in software must recompute the
DP matrix and traceback pointers for the section of interest
before determining an optimal traceback path. For instance,
accelerated database search applications may compute an
alignment in software only between high-scoring matches
and the query sequence after the comparison phase. These
search applications usually run in acceptable time with rela-
tively short query sequences; however, comparative genomic
applications commonly align long sequences at greater
computational cost and stand to benefit from accelerated
alignment. Examples include whole genome alignment [8],
whole genome phylogeny [9], and computation of pathogen
detection signatures [10].

The predominant, nonparallel algorithms for global
sequence alignment are described by Gotoh [11] and Myers
and Miller [12]. Both algorithms execute in O(mn) time. The
algorithm presented by Gotoh requires O(mn) space, while
the algorithm of Myers-Miller needs only O(logm+n) space,
but it incurs a factor of 2 time penalty. Most of the space

is used to hold values of the DP matrix and the traceback
pointers. Saving all traceback pointers in an array requires
only one forward scan through the DP matrix followed
by one traceback pass. Otherwise, multiple passes through
the DP matrix are required if not saving all the traceback
pointers. The downside of saving all the traceback pointers
is the O(mn) space requirement, which can be significant
for longer sequence lengths or prohibitive when limited by
FPGA memory.

A few efforts propose hardware methods for accelerating
pairwise alignment and traceback. The work presented by
Hoang and Lopresti [13] describes an FPGA architecture
which consists of a linear systolic array of PEs that output
traceback data. However, the type of sequences is limited
to only DNA and the sequence length is limited by the
number of PEs on the accelerator (a couple of hundred
nucleotides). The works by Jacobi et al. [14] and VanCourt
and Herbordt [15] suggest accelerated traceback methods,
but with few details. The sequence length accommodated by
their accelerators is also limited by the number of PEs on
the accelerator like the one described by Hoang. Another
limitation of the Hoang and VanCourt methods is that
traceback cannot be overlapped with another forward scan
since the systolic array is used for both scan and traceback.

The methods presented by Yamaguchi et al. [16] and
Moritz et al. [17] allow longer sequences by partitioning
the sequences through the pipeline of PEs. Nevertheless, the
traceback data must be saved to external memory, since the
size of the data exceeds the amount of available internal
FPGA memory. Hence, the traceback performance of both
methods is limited by the FPGA bandwidth to external
memory. The design described by Benkrid et al. [18] also par-
titions sequences, but the size of FPGA memory ultimately
limits the length of sequences that are aligned with hardware
acceleration. Operating at 100 MHz, a systolic array with
256 PEs requires at least 6.4 GB/s of memory bandwidth to
store 2-bit traceback data from each PE. As PE densities and
clock frequencies increase, the external memory bandwidth
is easily exceeded. Internal FPGA memory has sufficient
bandwidth, but even modest sequence lengths of 16 K require
64 MB of traceback store, which far exceeds current FPGA
internal memory capacities.

The global alignment algorithm presented in this paper
overcomes the memory size and bandwidth limitations of
FPGA accelerators and does not limit the sequence length
by the number of PEs. Long sequences of DNA and protein
are accommodated by the algorithm through a space-
efficient traceback procedure that is accelerated in hardware.
Traceback may occur in parallel with the next forward scan
since it is implemented in a separate process from the systolic
array.

3. Algorithm

The general algorithm is described first followed by the FPGA
architecture in the next section. The algorithm is based on
dynamic programming (DP), but partitions the problem into
slices for the FPGA hardware. A description of the general
sequence alignment problem is also found in [5, 11].
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Figure 2: Forward scan and traceback.

Given a pair a sequences A = a1a2 . . . am and B =

b1b2 . . . bn of length |A| = m and |B| = n from the finite
alphabet Σ, a sequence alignment is obtained by inserting gap
characters “-” into A and B. The aligned sequences A′ and
B′ from the extended alphabet Σ′ = Σ ∪ {“-”} are of equal
length such that |A′| = |B′|. Let the function s : Σ× Σ → Z

determine the similarity of symbol ai with b j , and let the
constant α represent the cost of inserting/deleting a gap.
Let H denote the DP matrix and the element H[i, j] the
similarity score of sequences a1a2 . . . ai and b1b2 . . . b j . An
optimal alignment is obtained by maximizing the score in
each element of H . The values of H are determined by the
following recurrence relations for 1 ≤ i ≤ m and 1 ≤ j ≤ n:

H[0, 0] = 0,

H[i, 0] = H[i− 1, 0] + α,
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(1)

The matrix fill occurs in a scan from upper left
to lower right because of dependencies from neighbor-
ing elements. During the forward scan, a pointer p ∈

{DIAG, ABOVE, LEFT} indicates the current selection of
the max function in (1). Given a tie, fixed priority resolves
the selection. The value of p is saved to the traceback matrix
T , thus T[i, j] = p. Following the forward scan, traceback
proceeds from T[m,n] to T[0, 0], thereby determining the
best alignment. The result is a list of edit operations e ∈
{SUBSTITUTE, INSERT, DELETE}.

The scan algorithm presented here builds upon the
space-saving concepts described by Edmiston et al. [19], and
the divide-and-conquer scheme of Guan and Uberbacher
[20]. Since sequence lengths are often longer than the
number of PEs available in a systolic array, the problem
is often partitioned [21]. The forward scan consists of two
fundamental scan procedures ScanPartial and ScanFull. The
Partial and Full descriptors refer to the amount of traceback

data saved by the procedures. ScanPartial partitions the DP
matrix H into slices of width W . The slices are processed
iteratively. The result of processing each slice is a column
of traceback pointers R[k, j] that refer to a row in a prior
slice (see Figure 2). The designated columns k are given by
k ∈ {c | c mod W = 0 ∨ c = m}. The row pointers
form a partial traceback path through H that link only the
right-most columns of each slice. Given that p indicates the
heritage of element H[i, j], the following recurrences for
1 ≤ i ≤ m and 1 ≤ j ≤ n determine R
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(2)

Only the designated columns of R are actually stored, which
correspond to the right-most columns of a slice. The values
for the other columns are retained temporarily with a vector
variable that follows the wavefront of the scan. In contrast,
the ScanFull procedure does not partition the DP matrix and
produces a full matrix T of traceback pointers that refer to
adjacent elements of H .

The TracePartial procedure differs from TraceFull in that
the partial set of traceback pointers from R are followed
instead of the full set from T . The row pointers, from R[m,n]
to R[0, 0] in designated columns, identify waypoints on the
optimal path through the DP matrix. Since the row pointer
in R[k, j] refers to a row in a prior slice, a block between the
columns is identified, along with corresponding segments of
A and B. The segments of A and B are passed to ScanFull
and TraceFull to determine the full path from [k, j] back
to [kprev,R[k, j]]. The alignment results from each block are
concatenated and thereby form a complete path from [m,n]
to [0, 0].

Since the vertical height of a block (the length of a B
segment) is unbounded, the traceback space available to
the Full procedures may be exceeded. To avoid this case,
a vertical threshold Y is defined such that if exceeded, the
Partial procedures are called instead, with the segments of
A and B interchanged in the calls. Algorithm 1 shows the
procedure that is central to bounding the memory required
for traceback. TracePartial is called recursively a maximum
of once. Any segments passed to the Full procedures will not
exceed W and Y in length because of the partitioning done
by ScanPartial. In the worst case, the length of sequence A is
bounded by the first call to ScanPartial and the length of B is
bounded by the second call.
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procedure TracePartial(A,B,m,n,R,E)
{

x2 ← m, y2 ← n
while (x2 > 1) do

x1 ← ⌊(x2 − 1)/W⌋ ·W + 1
y1 ← (x1 > 1∧ y2 ≥ 1) ?R[x2, y2] + 1 : 1
xlen← x2 − x1 + 1, ylen← y2 − y1 + 1
if (ylen = 0) then

Add xlen DELETE operations to E′

else if (ylen ≤ Y) then
ScanFull(Ax1, By1, xlen, ylen, T)
TraceFull(Ax1, By1, xlen, ylen, T , E′)

else // interchange A and B
ScanPartial(By1, Ax1, ylen, xlen, R′)
TracePartial(By1, Ax1, ylen, xlen, R′, E′)
∀e ∈ E′: replace DELETE⇔ INSERT

end if
E ← E ∪ E′

x2 ← x1 − 1, y2 ← y1 − 1
end while

}

Algorithm 1: Procedure for TracePartial.

ABC

PW alignment
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DP FIFO Host interface

PCI Express

Figure 3: System architecture.

4. Architecture

The global alignment accelerator is implemented using Qnet
[22], an open-source packet-switched network architecture
similar to DIMEtalk [23]. Qnet components interconnect the
host and other FPGA accelerator modules in the system. The
architecture facilitates system design with reusable modules
that encapsulate sharable devices or resources. Qnet encour-
ages parallelism by offering concurrent, high-performance
data paths between modules. Figure 3 shows the alignment
system constructed with Qnet modules and components.
A few specifics of Qnet are given before describing the
alignment accelerator module and system operation.

4.1. Qnet Components. The basic network components con-
sist of a switch, Qports, and Qlinks. As the central figure in
the network, the switch provides a path for communicating
packets to other modules. Qports are the interface between
modules and the network, and are the addressable endpoints
of communication. Qports are connected by Qlinks, which

Byte 0 Byte 1 Byte 2 Byte 3

Dst ID

Protocol

Src ch

Payload length

SequenceDst chSrc ID

Figure 4: Qpacket header.

consist of paired, unidirectional, point-to-point signaling
channels that are each 32-bits wide in this system, but may
be implemented with other bit widths. Each Qport has
word-based flow control that will apply back-pressure on
a link, delaying communication until the port is ready to
receive. Hence, packets are not arbitrarily discarded, and
the requirement to buffer an entire packet at the input of
a module is removed while still maintaining performance.
Qnet communication performance has been shown to be
very near the theoretical max bandwidth between modules
on the FPGA while also maintaining latencies very near
theoretical minimums.

Qnet reliably transfers data packets between endpoints
through a simple protocol that requires minimal FPGA
resources. Packets consist of a small header (see Figure 4) and
a payload of variable size. The header specifies the source and
destination endpoints with unique port identifiers and also
indicates the payload length. When a packet header enters the
switch, the output port is determined from the destination
endpoint and remains the same for all following words of the
packet. With a cut-through packet forwarding method, the
full packet is not buffered in the switch. Packets that enter
the switch simultaneously with different destinations pass
through concurrently. This architecture allows parallel data
transfer on all ports of an accelerator module.

4.2. System Modules. Host Interface. The host computer
communicates with the FPGA accelerator through the PCI
Express [24] module, which contains DMA engines and
translates PCI packets into Qnet packets. Two ports on this
module allow both sequences to be sent in parallel to the
accelerator.

DP Matrix FIFO. If the length of sequence A is longer than
the number of PEs in the accelerator, the DP matrix H must
be processed in slices of width W = (num. PEs) as described
in Section 3. After processing a slice, the right column of
DP matrix values will exit the pipeline of PEs. These H
values are sent in a packet to the DP matrix FIFO and
retained for processing the next slice through the pipeline.
Any packet sent to the DP matrix FIFO will be returned
to the originating Qport, as indicated by the packet header,
thus cycling the pipeline output to the input. The FIFO may
be implemented with any memory technology of sufficient
bandwidth and size to handle the stream of data from the PE
pipeline. Since only one H value exits the pipeline each clock
cycle, the bandwidth requirement is not excessive.

Pairwise Alignment Module. The compute intensive portions
of the alignment algorithm are performed by the pairwise
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alignment module, which contains the pipeline of PEs. This
module has 3 Qports through which the sequences are
provided and results are returned (see Figure 3). In parallel,
Sequence A is input on port A and sequence B is input on
port B, while the traceback results are returned on port C.

Figure 5 shows the internal architecture of the alignment
module. The front-end of the pipeline synchronizes the A
and B streams of symbols, and the back-end sends the partial
traceback results R out on port A and the H values on port
B. The symbols of sequence B that flow through the pipeline
are merged with the H values on output, since they will also
be needed in processing additional slices. Merged B and H
values that exit the pipeline are sent in a packet to the DP
matrix FIFO. As sequence A is fed into the pipeline, merged
B and H values from the end of the pipeline flow from the
alignment module through the DP matrix FIFO and back
into the front-end of the pipeline at port B. This cycle occurs
for each slice of the scan, except for the last.

Most systems commonly load a segment of A into the
pipeline and then shift in B; whereas this system enters A and
B in parallel [25]. Sequence B is shifted in as usual, but A is
bussed to each PE and latched when the first symbol of B
reaches a PE in the pipeline (see Figure 6). The recurrence
equations described in Section 3 are calculated by the PEs
each time a pair of symbols enter the pipeline. As a forward
scan proceeds from upper left to lower right, the pipeline
of PEs operates in parallel along an antidiagonal wavefront
through the DP matrix. Figure 7 shows the progression of

symbols in the pipeline and shows the mapping of PEs to DP
matrix cells over several cycles.

Both of the forward Scan procedures are implemented by
the pipeline of PEs. ScanPartial enables the R (partial row
pointer) output, while ScanFull enables the T (full traceback
pointer) output. Configuration bits in the packet header of
sequence A determine which pointer type is enabled. For
each slice processed by ScanPartial, a column of R is returned
to the host in a packet. ScanFull will only process one slice,
while saving the full traceback data in FPGA block RAM,
which has the bandwidth to store pointers from every PE in
parallel. The vertical threshold Y , as described in Section 3,
is determined by the depth of FPGA block RAM allocated to
full traceback.

A state machine implements the TraceFull procedure that
follows the pointers saved in block RAM by ScanFull. To
initiate a full traceback, a request packet is sent to Port C of
the pairwise alignment module from the host. The results,
a list of edit operations e ∈ E, are returned to the host
from Port C. TracePartial is implemented in software on the
host, but calls the Full procedures for most of the work (see
Algorithm 1).

Access to traceback pointers T[i, j] in block RAM
requires a skewed addressing scheme because of the storage
method used in the forward scan. Storing a diagonal wave-
front of pointers as a row in block RAM skews the traceback
matrix T in memory (see Figure 8). A full traceback begins
with a request packet that contains the cell address of T[1, 1]
and the lengths of sequences A and B. The address of T[1, 1]
is saved at the start of a full forward scan and will always be
the lowest address in a row (leftmost). From the address of
T[1, 1] and the width W of block RAM in cells, the address
of T[m,n] is calculated

m′ = m− 1,

n′ = n− 1,

addrT[m,n] = addrT[1,1] + W(m′ + n′) + m′.

(3)

Traceback proceeds from T[m,n] to T[0, 0] following the
pointer in each accessed cell. Given a traceback pointer p
from the current cell, the following equation determines the
address of the next cell in block RAM

addr =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

addr− (2W + 1) if p = DIAG,

addr− (W + 1) if p = LEFT,

addr−W if p = ABOVE.

(4)

Since block RAM is dual-ported, traceback reads can
occur while the next forward scan concurrently saves point-
ers in another portion of the traceback memory. Address
calculations into block RAM wrap around when the range
is exceeded.

4.3. System Parameters. Most system parameters are imple-
mented with VHDL generics. For example, symbol width,
number of PEs, traceback memory depth, and various
register sizes are all specified at a high level in the module
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hierarchy and passed as generics to lower modules. This
allows different configurations of the accelerator with min-
imal changes to the source. Protein sequences require 5-bit
symbols and DNA sequences require at least 2-bit symbols.
Mega-length sequences may be handled by the architecture

and algorithm by setting system constants and rebuilding a
system. The number of PEs is scalable to match the target
hardware resources.

Several system parameters affect the maximum sequence
length Lmax that can be processed by the accelerator. As
mentioned previously, the DP matrix FIFO must be deep
enough to hold the merged B symbols and H values that
come from the end of the pipeline. The FIFO length limit
is determined by LF = NFIFO/NBH , where NBH denotes the
number of bytes for a single B-H pair and NFIFO denotes the
DP matrix FIFO size in bytes. Also, the substitution and gap
costs combined with the H register size affect the maximum
sequence length. Each stage of the pipeline increments an
H value by the gap cost α or the result of the similarity
function s(ai, b j). To avoid H register overflow, the H length
limit is LH = (2NH−1 − 1)/Imax, where NH denotes the
number of bits in H registers, and Imax denotes the maximum
absolute value of the gap cost α or the similarity function s.
In conjunction with the other parameters, the R register size
affects the maximum sequence length. A register for R must
hold an index into sequence B without overflow. Given NR,
the number of bits in R registers, the R length limit is LR =
2NR − 1. From the contributing length limits, the maximum
sequence length is determined by Lmax = min(LF ,LH ,LR).

5. Timing Model

A timing model is presented for the sequence alignment
algorithm and architecture described in Sections 3 and 4.
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First, constants for the system are defined with the values in
parenthesis being specific to the evaluation system:

W : number of PEs (256),

Y : threshold for length of sequence B (768),

Cpad : cycles to pad pipeline (8),

ts : communication startup
(

1.5µs
)

,

th : host overhead
(

3µs
)

,

tclk1 : period of clock 1

(

1

100 MHz

)

,

tclk2 : period of clock 2

(

1

150 MHz

)

.

(5)

Timing varies as a function of the following variables:

l =
∣

∣A′
∣

∣ =
∣

∣B′
∣

∣, aligned length,

m = |A|, length of sequence A,

n = |B|, length of sequence B,

Nslice = ⌈m/W⌉, number of slices.

(6)

The time for processing a slice is determined by the length
of B or the length of the pipeline plus padding, whichever is
greater. Flush time depends on how much of sequence B is
left in the pipeline after processing a slice and is calculated
from the length of B minus padding (zero limited) or the
length of the pipeline, whichever is less

tslice = tclk1

[

max
(

n,W + Cpad

)

+ 1
]

,

tflush = tclk1 min
(

W , max
(

0,n− Cpad

))

.
(7)

Based on the previous definitions, execution times for the
Scan and Trace procedures are

tscanF = tslice + tflush + 4ts,

ttraceF = tclk2(2l + 4) + 2ts,

tscanP = Nslice(tslice + ts) + tflush + 4ts,

ttraceP = Nslice(tscanF + ttraceF).

(8)

Finally, the time to perform a global sequence alignment is
given by:

talign =

⎧

⎨

⎩

tscanF + ttraceF + th if m ≤W ∧ n ≤ Y ,

tscanP + ttraceP + th, else.
(9)

This analytical model matches experimental results and
predicts the scalability and performance of the architecture
under various system configurations.

6. Experimental Setup

Application. Three global alignment implementations are
tested in the evaluation: (1) as a baseline, a software-only

version of the algorithm presented in this paper; (2) a version
accelerated by the FPGA; and (3) an implementation of the
Myers-Miller global alignment algorithm for an additional
point of reference. The host computer is used to evaluate
the software only versions of the algorithms. Seq-Gen [26]
produced varying lengths of test sequences ranging from 128
to 16383 symbols for the evaluation. The applications use a
gap cost of −2, a substitution score of 1, and a match score
of 2.

Host. The host platform consists of a desktop computer with
a 2.4 GHz Intel Core2 Duo processor running Fedora 6
Linux as the operating system. All benchmark applications
execute in a single thread and are compiled with gcc using
−O3 optimization. For accurate timing, the processor’s
performance counters are used.

Accelerator. An 8-lane PCI Express add-in card with a Xilinx
Virtex-4 FX100 FPGA provides the hardware acceleration. To
conserve FPGA resources, only 4 of the 8 PCI Express lanes
are used in the experimental system. All of the components
are implemented in VHDL. As shown in Figure 3, a 4-port
switch connects the three FPGA modules using 32-bit Qlinks
that run at 150 MHz. For simplicity and minimal latency, the
switch is implemented with a fixed address table and a fixed
port priority resolution scheme. The DP matrix FIFO uses
64 KB of FPGA block RAM, which is enough to hold 16 K
entries of B symbols and H values. Driven by a 100 MHz
clock, the pipeline consists of 256 PEs placed in a tiled
pattern. DNA and protein sequences are accommodated with
5-bit symbol values. An 8-bit look-up table that requires
one block RAM per PE implements the similarity function
s(ai, b j). Each PE outputs a 2-bit traceback pointer p that is
stored in traceback memory, which is instantiated in 64 KB of
block RAM with a width of 512 bits and a depth of 1024. The
traceback memory depth determines theY threshold. Within
the system, DP matrix values H and row pointer values R
both require 16-bits.

Through the use of constraints and floor planning, 90%
slice utilization is achieved. First, an area shape and size
constraint for one PE is determined, in this case, by repeated
place and route trials. Then, given this shape and size, a
simple (75 line) Perl script tiles the PEs in a programed
pattern by generating area constraints for each PE. Keep-out
areas are also given to the Perl script. The text output from
the Perl script is pasted into the user constraints file for use
by the place and route tools along with the other constraints.
Only slice resources are constrained for the PEs, since the
block RAM needed for each PE may not reside within the
area constraint. To meet timing, the first and last PEs of
the pipeline are kept closer to the Qport interfaces of the
switch and alignment module, which is shown in Figure 9
along with the tiling pattern. The traceback block RAMs
are constrained to a centrally located area of the FPGA to
minimize path lengths from distant PEs. For proximity to
the traceback memory, the traceback state machine is also
centrally located. Table 1 shows the relative resource usage of
the various components.
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Table 1: Resource usage.

Component Slices FPGA percentage

PCI Express 6175 14.6%

Host interface 1221 2.9%

4-port switch 448 1.1%

Traceback 283 0.7%

DP FIFO 192 0.5%

PE (one) 111 0.3%

Traceback

PCI Express
core

Host interface
(DMA)

256 PEs

4-port

switch

DP FIFO

PE 255

PE 0

Figure 9: FPGA floorplan.

7. Results

Figure 10 shows the performance of the three global
sequence alignment implementations with varying lengths
of sequences and Table 2 compares the speedup between
the implementations. The host-only version averages a
speedup of 1.6 over the Myers-Miller implementation and
the accelerated version achieves a max speedup of 304 over
the host version. During the forward scan, the accelerator
reaches a peak dynamic programming rate of 25.6 × 109

cell updates/s (CUPS). Traceback occurs at a peak rate of
75× 106 pointers/s. Figure 11 shows the actual performance
compared with the timing model from Section 5. For longer
sequences, the actual performance is near the theoretical
peak. The timing model suggests a high degree of scalability
for the presented algorithm and architecture. For example,
performance predicted by the model gives a speedup of 580
with 512 PEs operating at 100 MHz on a larger FPGA.

Supported by the low communication overhead of Qnet,
sequences of length 10 or greater are aligned faster on
the accelerator. Sending a single packet from the host to
the accelerator takes minimally 1.5 µs. The demonstration
system takes a minimum of 14 µs for an alignment with
most of the time being attributed to the overhead of several
packets, since only 2.65 µs is required for a single pipeline fill
and flush once sequences are ready at the front-end of the
pipeline.

Table 2: Speedup between implementations.

Sequence length tFPGA µs
tMyers

tFPGA

tHost

tFPGA

511 64 131 107

1023 128 171 124

2047 327 264 181

4095 969 357 236

16383 11696 471 304
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Figure 10: Global alignment execution time.

Sequences shorter than W have a lower bound on
alignment time, because unused PEs must be filled with null
symbols. Longer sequences realize greater performance on
the accelerator because the pipeline does not require a flush
between adjacent slices. Adjacent slices need only 1 cycle
of spacing in the pipeline. Longer sequences are also more
efficient because of proportionately less time spent in the
traceback. The average traceback time relative to the forward
scan can be visualized in Figure 2 as the area of the sub-
blocks relative to the area of the whole matrix.

Even though the algorithm presented here requires
O(mn) space, the traceback memory is reduced by a sig-
nificant constant. For example, given sequences with 100 K
symbols, saving all the traceback data requires 2.5 GB. By
saving the partial traceback pointers in a system with 256
PEs, the traceback data is reduced to 78 MB. Perhaps more
importantly, the necessary memory bandwidth to store the
partial traceback pointers is reduced to a practical level that
is achievable between the host computer and the FPGA
accelerator. With the pipeline running at 100 MHz and 16-
bit R values, the partial traceback data rate is only 200 MB/s.

Qnet provides communication bandwidth up to
600 MB/s per link in each direction between modules,
which exceeds the rate needed by the alignment module to
maintain maximum throughput in the pipeline. With excess
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Figure 11: Timing model compared with actual FPGA performance. The model is nearly indistinguishable from the FPGA time. (a)
Sequence alignment execution time, (b) speedup relative to the host-only version.

bandwidth at each end of the pipeline, stalls occur
infrequently. Sequences enter the alignment module on
ports A and B at a rate of 100 MB/s. Concurrently, partial
traceback pointers exit port A at 200 MB/s destined for
the host, and merged B-H values exit port B at 400 MB/s
destined for the DP FIFO.

Notice that the presented algorithm does not limit the
sequence length by the number of PEs or by the amount of
full traceback memory. Matching system parameters, such
as the number of PEs and the size of traceback memory, to
the available FPGA resources maximizes performance. The
experimental results and timing model together demonstrate
the scalability of the algorithm without memory bandwidth
limitations.

8. Conclusion

With the presented algorithm and architecture, long
sequences are globally aligned with supercomputing per-
formance on reconfigurable hardware. A speedup over 300
is achieved with the example implementation on FPGA
technology when compared to a desktop computer. The
architecture is scalable to larger capacity FPGAs for a further
increase in performance. Beyond sequence comparison, the
full alignment of long sequences is accelerated without
memory and I/O bottlenecks through a space-efficient
algorithm. After executing traceback in hardware, the accel-
erator returns a list of edit operations to the host, which
constitutes an optimal alignment. Other global alignment
acceleration methods only address sequence comparison,
limit the sequence length, or exhibit memory and I/O
bottlenecks.

The key features of the algorithm are the bounded space
requirement for full traceback memory and the reduced

space for partial traceback memory. These space reductions
enable high-performance alignment of long sequences on
a reconfigurable accelerator and are a match for FPGA
memory capacities and bandwidth. Only 64 KB of FPGA
block RAM is used for full traceback in the demonstrated
implementation. Partial traceback data sent to the host
at a rate of 200 MB/s is supported by commodity FPGA
boards.

Future work includes combining coarse-grain parallel
methods [27] with the fine-grain parallelism of this method
for multiplied performance gain on reconfigurable comput-
ing clusters. Also, the advantages of the presented method are
applicable to accelerating local alignment. A general-purpose
accelerated alignment library that consists of both local
and global methods may be applied to multiple sequence
alignment codes with minimal effort.

Acknowledgment

An earlier version of this paper appeared as “Sequence
Alignment with Traceback on Reconfigurable Hardware.”
In Proceedings of the 2008 International Conference on
ReConFigurable Computing and FPGAs (ReConFig’08), Pages
259–264, December 2008.

References

[1] C. Macken, H. Lu, J. Goodman, and L. Boykin, “The value of a
database in surveillance and vaccine selection,” in Options for
the Control of Influenza IV, vol. 1219 of International Congress
Series, pp. 103–106, October 2001.

[2] S. N. Gardner, M. W. Lam, N. J. Mulakken, C. L. Torres,
J. R. Smith, and T. R. Slezak, “Sequencing needs for viral
diagnostics,” Journal of Clinical Microbiology, vol. 42, no. 12,
pp. 5472–5476, 2004.



10 International Journal of Reconfigurable Computing

[3] J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL
W: improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, position-specific gap
penalties and weight matrix choice,” Nucleic Acids Research,
vol. 22, no. 22, pp. 4673–4680, 1994.

[4] C. Notredame, D. G. Higgins, and J. Heringa, “T-coffee:
a novel method for fast and accurate multiple sequence
alignment,” Journal of Molecular Biology, vol. 302, no. 1, pp.
205–217, 2000.

[5] S. B. Needleman and C. D. Wunsch, “A general method
applicable to the search for similarities in the amino acid
sequence of two proteins,” Journal of Molecular Biology, vol.
48, no. 3, pp. 443–453, 1970.

[6] T. F. Smith and M. S. Waterman, “Identification of common
molecular subsequences,” Journal of Molecular Biology, vol.
147, no. 1, pp. 195–197, 1981.

[7] T. Ramdas and G. Egan, “A survey of FPGAs for acceleration
of high performance computing and their application to
computational molecular biology,” in Proceedings of the IEEE
Region 10 Annual International Conference (TENCON ’05), pp.
1–6, Melbourne, Australia, November 2005.

[8] P. Chain, S. Kurtz, E. Ohlebusch, and T. Slezak, “An
applications-focused review of comparative genomics tools:
capabilities, limitations and future challenges,” Briefings in
Bioinformatics, vol. 4, no. 2, pp. 105–123, 2003.

[9] F. Delsuc, H. Brinkmann, and H. Philippe, “Phylogenomics
and the reconstruction of the tree of life,” Nature Reviews
Genetics, vol. 6, no. 5, pp. 361–375, 2005.

[10] T. Slezak, T. Kuczmarski, L. Ott, et al., “Comparative genomics
tools applied to bioterrorism defence,” Briefings in Bioinfor-
matics, vol. 4, no. 2, pp. 133–149, 2003.

[11] O. Gotoh, “An improved algorithm for matching biological
sequences,” Journal of Molecular Biology, vol. 162, no. 3, pp.
705–708, 1982.

[12] E. W. Myers and W. Miller, “Optimal alignments in linear
space,” Computer Applications in the Biosciences, vol. 4, no. 1,
pp. 11–17, 1988.

[13] D. T. Hoang and D. P. Lopresti, “FPGA implementation of sys-
tolic sequence alignment,” in Field-Programmable Gate Arrays:
Architectures and Tools for Rapid Prototyping, H. Grünbacher
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