
Hardware Accelerated Voxel Carving

Abstract

In this paper we present a fast hardware accelerated volumetric method for the reconstruction of real world objects

from a set of calibrated images. The approach is based on carving a bounding volume using a color similarity cri-

terion. The algorithm is designed to use hardware accelerated features from the videocard. Moreover, the data

structures have been highly optimized in order to minimize run-time memory usage. Additional techniques such as

hardware texture mapping and shadow polygons are used to avoid redundant calculations. Hardware texture map-

ping is also used to reach subpixel precision. Moreover, if the image data can be segmented into foreground and

background, a real time implementation of the visual hull algorithm is added to achieve a substantial reduction in

computation time. Experimental results are presented on both synthetic and real imagery, showing excellent visual

quality of the volumetric reconstruction.

Keywords

Volumetric reconstruction and modeling, voxel carving, visual hull, hardware acceleration, OpenGL.

Miguel Sainz Nader Bagherzadeh

Image Based Modeling and Rendering Lab.

Dept. Electrical and Computer Engineering

University of California, Irvine, USA

{msainz,nader}@ece.uci.edu

Antonio Susin

Dynamic Simulation Lab.

Dept. Matematica Aplicada 1

Universitat Politecnica de Catalunya, SPAIN

toni.susin@upc.es

1. INTRODUCTION

In this paper we present a method for extracting a 3D vol-

umetric representation of an object from a set of unstruc-

tured images taken with a still camera or handheld

camcorder. In recent years Image Based Rendering tech-

niques (IBMR) have demonstrated the advantage of using

real image data to greatly improve rendering quality. New

rendering algorithms have been presented ([Debevec96],

[Wood00], [Buehler01]) that reach photorealistic quality

at interactive speeds when rendering 3D models based on

digital images of physical objects and some shape infor-

mation (i.e. a geometric proxy). While these methods

have emphasized the rendering speed and quality, they

generally require extensive preprocessing in order to

obtain accurately calibrated images and geometric

approximations of the target objects. Moreover, most of

these algorithms heavily rely on user interaction for cam-

era calibration and image registration or require expensive

equipment such as calibrated gantries and 3D scanners.

The goal is to extract 3D geometry of the target objects in

the scene, based on given camera locations and their

respective images. Different approaches such as photo-

grammetry, stereo vision, contour and/or shadow analysis

techniques work with similar assumptions. Recently a set

of volumetric techniques based on spatial carving algo-

rithms ([Kutulakos00], [Broadhurst01], [Culbertson99])

was used to reconstruct complex object shapes with excel-

lent results. The common characteristic for these

approaches is that they carve a piece of voxelized virtual

material that contains the object, similar to an artist

sculpting a raw block of marble. A common trade-off for

all these methods is the extended computational cost.

The approach presented in this paper was inspired by the

space carving theory [Kutulakos00] and addresses the

performance problems by improving the data structures

and extensively using the hardware support of the

OpenGL API implementation on today’s video cards.

2. RELATED WORK

The first image based volumetric model reconstruction

algorithms were introduced in the mid 80’s, and used a

visual hull [Laurentini94] to approximate the objects. The

visual hull can be described as the maximal shape that

generates the same silhouette for every reference view

outside of the object’s convex hull. Beneficial properties

of the visual hull include (1) it is guaranteed to enclose the

real object, (2) depending on the number of views and the

geometry of the object, it can be a tighter approximation

than the convex hull, and (3) the size of the visual hull

decreases monotonically with the number of views of the

object, although there is no guarantee that it will converge

to physical object.

On the other hand, Seitz and Dyer [Seitz99] presented a

method that can reconstruct scenes with sufficient color

variation starting from a volume of voxels encompassing

the scene. This method, Voxel Coloring, works by testing

each voxel on the surface of the volume for color consis-

tency among all the images in which it is visible. The

color consistency test consists of projecting the voxel to

all the reference images and performing a similarity test

of all the projections. If the voxel color value is similar in

all the images the voxel is consistent and will be kept.

Otherwise, the voxel is rejected and removed from the

volume. The algorithm will stop when all the visible vox-

els are consistent with the images.

A limitation is that the visibility of each evaluated voxel

has to be calculated. Since this operation is performed

many times during the process it must be done efficiently.

To overcome this, Seitz and Dyer imposed constraints on

the camera locations such that the scanning of voxels was

done in increasing distance to the cameras. To avoid eval-

uating voxels that are occluded by consistent voxels pre-

viously evaluated, a mask image is kept per view storing

which pixels of a specific view have been validated.

Overcoming the camera placement limitation, Kutulakos

and Seitz [Kutulakos00] presented Space Carving, an

implementation of Voxel Carving with no camera con-

straints. This approach uses multiple scans, typically

across the positive and negative axes. Each scan is forced

to be near-to-far relative to the active cameras at each

iteration. Occlusion maps are kept to avoid the redundant

evaluation of occluded voxels.

Another approach, Generalized Voxel Carving, described

in [Culbertson99] presents an efficient implementation of

the unconstrained voxel carving algorithm. Culbertson et

al. implement two different approaches that use buffers to

store surface voxel visibility for each pixel. In addition

the Z-Buffer algorithm is used to speed up the carving

process by rendering the voxels depth sorted onto the

images. This approach obtains very good results, at the

cost of performance and rapidly growing data structures.

Eisert, Steinbach and Girod [Eisert99] proposed Multi-

hypothesis Voxel Coloring, which is quite similar to Voxel

Coloring and Space Carving. The advantage is that

instead of evaluating a voxel in each image with the addi-

tional cost of visibility estimation, all the voxels are eval-

uated at once for every image, establishing a color

hypothesis for each of them, and then comparing all the

hypotheses obtained per voxel at the end. The trade-off of

avoiding the visibility computation is that it is necessary

to maintain hypotheses for all voxels (interior ones

included), increasing the number of hypothesis evalua-

tions.

A more extensive survey of the different carving methods

is presented in [Slabaugh01]. While the different

approaches to the voxel coloring problem suggest the use

of some sort of hardware acceleration to improve runtime

performance, none of them have extensively explored the

possibilities that graphic processors provide.

3. ACCELERATED VOXEL CARVING

The algorithm presented in this paper extensively uses the

OpenGL API, greatly supported in hardware by most vid-

eocards.

The presented technique performs six progressive carv-

ings steps by sweeping a plane, the carving plane, along

the positive and negative direction of each axis of the

bounding box that contains the object to be reconstructed

(Figure 1). At each iteration step only the cameras visible

to the carving plane are used to test which voxels in that

plane will be kept.

We assume that the calibration parameters of each image

are well know, that is, we know the camera location, ori-

entation and its intrinsic parameters. Different methods

for the recovery of these parameters are available. For this

implementation these values were obtained for the syn-

thetic images computed from the 3D datasets and used for

validation purposes. In the case when real imagery is used

we apply a method presented in [Sainz02] to perform an

autocalibration of the cameras based on 2D features of the

images.

We use an octree data structure to keep track of the set of

consistent voxels throughout the carving process. The

approaches [Eisert99] and [Culbertson99] start with an

initial solid voxel volume, which during the carving pro-

cess will shrink to the final number of voxels. For higher

resolutions (n=256 or more) the amount of memory

required to store the data becomes very large (Culbertson

et al. report up to 462Mb for a 167x121x101 voxels

dataset). Instead of using a preallocated volume only the

root node of the corresponding octree is initialized. The

octree is then adaptively subdivided as consistent voxels

are found.

The main steps of the algorithm are:

Figure 1: Multiple sweep space carving

Figure 2: Pseudocode for the carving algorithm

1 CARVING(n)

2 initialize carving plane to n^2 voxels and

3 empty octree root node

4 for dir = 1 to 6 sweep directions

5 for coord = 1 to n

6 do select all active cameras

7 for c = 0 to all active cameras

8 do project image c onto plane

9 project shadow voxels onto plane

10 extract visible voxel statistics

11 perform consistency check on voxels

12 for i = 1 to length[new_voxels]

13 if new_voxel[i] exists in octree

14 do check consistency with old data

15 if new_voxel[i] still consistent

16 do merge values

17 else

18 do reject voxel and remove

19 voxel from octree

20 else

21 do add new_voxel[i] to octree

The following subsections will provide more detail about

the primary components of the algorithm.

3.1 Image Projection

The consistency check criterion evaluates the similarity of

the color values of a voxel footprints for each of the

views. A common way to determine how a voxel projects

to an image is to rasterize the voxel in the image plane.

Since this is a basic operation supported by the OpenGL

API, it may seem straight forward to render the voxel

from the camera’s point of view. However, when the angle

of the camera in respect to the normal of the carving plane

is large and the voxel resolution is high, some voxels

might be projected to the same pixel locations due to

rounding from 3D floating point to integer pixel coordi-

nates. This may result in some missing projected voxels,

or some voxels with smaller footprints than they should

have, contributing erroneously to the consistency check.

The presented approach overcomes this by projecting the

images onto the carving plane using texture mapping

techniques.

The front faces of the voxels on the carving plane are ren-

dered from a virtual viewpoint perpendicular to the plane.

To maximize the rendered area of the carving plane on the

framebuffer, the view frustum is set to 90 degrees and the

virtual view point is located such that the carving plane

rendering fills the entire image plane. The projection of

the image is then performed with projective texture map-

ping (Figure 3).

During the initialization process all images are stored as

textures in the video card’s memory. For each image that

has to be evaluated, the voxels of the plane are then ren-

dered with texturing enabled. To assign the proper texture

coordinates to a voxel, first the texture matrix stack is set

to the full reference camera projection matrix, that is the

intrinsic*extrinsic matrices of the camera. This generates

texture coordinates that are a perspective projection of

image coordinates from the camera’s location. By assign-

ing the same 3D coordinates of the voxel corners as tex-

ture coordinates, the projection of the texture onto the

voxel surface is achieved.

This approach has two advantages, (1) each voxel pre-

sents a constant footprint for each view, facilitating the

registration of the footprints and the statistical calcula-

tions and (2) since OpenGL texture mapping interpolates

the textures, subpixel accuracy can be reached at no extra

cost.

3.2 Shadow Voxels

To simplify the computation and avoid evaluating voxels

that are occluded by consistent voxels of previous itera-

tions of the same sweep, Kutulakos and Seitz used bit-

masks for each image to mark which pixels were already

assigned to a voxel footprint.

In our approach textures are projected onto the voxels of

the carving plane. Textures can then be modified to reflect

which voxels were already assigned by coloring them

black or creating a transparency mask. Unfortunately,

modifying the textures in OpenGL can be costly as it

implies rasterizing the voxels on each image, rescaling the

images to the right texture size and transferring them back

to texture memory. Furthermore, if an assigned voxel is

deleted later on in another sweep direction, the original

colors in the texture have to be restored. We have found a

better approach that draws the assigned voxels as shadow

polygons onto the carving plane (view Figure 4) instead.

For a specific view, the camera location is considered as a

light source, and the set of accumulated voxels for that

specific carving sweep is rendered in black using the pla-

nar projected shadow method described in [Blinn88].

Given the ground plane equation (our carving plane) and

the homogenous position of the light (the camera location

in 3D) a 4x4 matrix, called planar projected shadow

matrix, can be constructed that projects any 3D polygon

onto the ground plane based on the light position. If this

matrix is concatenated with OpenGL’s modelview matrix,

the shadows will be rasterized on top of the ground plane.

The complete projection of a reference view onto the

carving plane can then be achieved as follows:

1) Render the color coded carving plane and store the

voxel mask.

2) Render the projective texture onto the plane.

Figure 3: Texture projection onto carving plane

Figure 4: Shadow voxels projection

3) Calculate the view specific shadow matrix of the

plane.

4) Concatenate the shadow matrix to the view trans-

form.

5) Render voxel geometry in black.

6) Capture the framebuffer for color consistency check.

Our shadow voxels significantly improve the overall per-

formance of the carving process, by removing useless

voxels before the consistency check is performed.

3.3 Footprint Registration

As described earlier, the textured voxels are painted from

a virtual view point perpendicular to the carving plane

covering the full image space. The color information is

then captured from the framebuffer for each of the active

views once the corresponding texture has been projected.

Next the correct pixel to voxel mapping is determined.

During initialization, a generic color coded mask is cre-

ated to encode the ID of the voxels on the carving plane.

Since the plane contains N x N voxels, a checkered pattern

is created matching the size of the carving plane. Each

square of the mask is then assigned a color that encodes

its location in the mask. Assuming 32-bit color buffers are

supported, a position can be encoded with up to 16 bits

per coordinate (e.g. X = RG and Y = BA). In our imple-

mentation we use an 8-bit encoding, using the red channel

as X and the green channel as Y, limiting the maximum

resolution to N=256. Since the virtual view of the carving

plane always remains constant, the voxel mask is created

once and reused throughout the multisweep carving pro-

cess.

To perform the footprint registration we raster scan the

framebuffer and accumulate the red, green and blue val-

ues on the corresponding voxel data structure, identified

by the color ID in the voxel mask. The values stored in

each voxel are the sum of values of red, green and blue

and the number of pixels per voxel.

3.4 Consistency Check

Once a list of the different footprints of all the visible vox-

els is available, a comparison of the footprints is per-

formed to determine if a voxel is color consistent with all

the images where it appears.

The original algorithm presented by Seitz ([Seitz99]),

considered the color of the projection of the voxel center

as the color value of the footprint. Unfortunately, using a

single pixel color per voxel, important information about

the color distribution in the footprint is lost and the

method is very sensible to the sensor’s noise. Broadhurst

and Cipolla [Broadhurst00] propose to use a statistical cri-

terion based on the variance analysis and the f-snedecor

statistical function. However, when voxel resolution is

large, the footprints have a small area in pixels, and the

low number of samples causes the statistical analysis to be

inaccurate.

In the presented approach we determine the consistency

of a voxel by performing a distance measurement in nor-

malized color space of the pixels of the footprints

[Steinbach00]. That is, between each image pair i, j we

apply the following mapping

with

The normalization of the colors by the sum of components

increases the robustness in respect to varying illumination

conditions between the different images.

All the voxels that pass the footprint consistency check

are stored in a list and later added to the carving volume

octree. It can occur that a voxel has been evaluated under

different views in previous carving sweeps and already

exists in the octree. To guarantee that all cameras visible

to a voxel are taken into account an extra consistency test

is performed between the color values stored in the octree

and the new ones. If the test passes, we merge the color

values for that voxel by averaging them. A failed test indi-

cates that a subset of the cameras visible to that voxel is

inconsistent and that both the new and existing voxel can

be safely removed.

3.5 Visual Hull Computation

When the reconstruction is applied to a set of views

around a target object, most of the voxels in the initial

volume will be carved away as they are outside the object.

Generally, this is not taken into account and all voxels

will still be analyzed and subsequently carved, increasing

the runtime of the algorithm. However, it is possible to

segment the images into foreground (the object itself) and

background. This process can be automated if background

reference images are available, a case commonly encoun-

tered when the object is mounted on a turntable and the

camera is fixed. Alternatively, the user can manually seg-

ment the images with standard image manipulation soft-

ware. Assuming that a set of views of an object is

available, with the background marked in a specific color

or transparency value, it is possible to check if a voxel

belongs to the visual hull of the object. This test will be

true when the footprints of the voxel on all images are in

the foreground pixels. If there exists at least one image in

which the footprint falls into the background pixels, that

voxel is outside the visual hull and will not be considered

during the carving process (Figure 5).

Using transparency, projective texture mapping and sten-

ciling, Lok [Lok01] described a real time algorithm to

obtain the visual hull from a set of segmented images. Our

implementation performs the visual hull calculation right

before projecting the image textures onto the carving

dRi j,

Ri Xi Yi,()

RGBi Xi Yi,()

Rj Xj Yj,()

RGBj Xj Yj,()
--------------------------------–=

dGi j,

Gi Xi Yi,()

RGBi Xi Yi,()

Gj Xj Yj,()

RGBj Xj Yj,()
--------------------------------–=

dBi j,

Bi Xi Yi,()

RGBi Xi Yi,()

Bj Xj Yj,()

RGBj Xj Yj,()
--------------------------------–=

dRi j, dGi j, dBi j,+ + threshold≤

RGBi X Y,() Ri X Y,() Gi X Y,() Bi X Y,()+ +=

plane. The images are projected onto the carving plane

using the projective texture mapping described in Section

3.1. Initially buffers are cleared, stencil and alpha tests

enabled to paint only the foreground of the images and

background pixels are marked with an alpha value of 1

during the initialization stage. Next all views are rendered

for active and inactive cameras. During this process the

stencil buffer will accumulate the number of times a given

pixel was painted. If all n views project foreground pixels

to a voxel on the plane, the corresponding stencil values

will be equal to the number of cameras and the voxel

belongs to the visual hull. Once all n views have been pro-

jected we change the stencil test function to pass only

those pixels that have the maximum value in the stencil

buffer. This way, every time a primitive is rendered using

the calculated stencil buffer, the visual hull is queried to

determine the part of the primitive that is within the real

object. Finally the active views will be rendered one by

one and stored for the consistency test as described in

Section 3.4.

4. EXPERIMENTS AND RESULTS

Several validation and verification tests were performed

with real and synthetic images (Figure 6). The validation

examples consist of a set of segmented images, the cam-

era calibration parameters (orientation, translation and

focal length) and a bounding box encapsulating the

object.

The synthetic datasets ecube (Figure 6 (a)) and sshell

(Figure 6 (b)) were constructed defining virtual camera

paths around synthetic models and capturing the images

from the computer screen. The segmentation of the fore-

ground and the calibration of the cameras were performed

automatically. Identical camera parameters were used for

both synthetic datasets to allow for the comparison of the

results.

Two sets of camera motions were defined consisting of

circular paths on the surface of a sphere centered around

the center of gravity of the synthetic object. The first

motion describes two circles, one at 0 degrees elevation

and the other one at 30 degrees. The second motion adds a

third circle at an elevation of 45 degrees. At all times the

cameras point towards the center of the sphere. All the

images in the synthetic sets have a size of 512x512 pixels.

The real images were obtained using handheld cameras

and differ in the number of reference images and their

size. The dragon dataset (Figure 6 (c)) consists of 5

images and the cup dataset (Figure 6 (d)) of 14 images in

total. The camera calibration was performed using an

implementation of the method of linear factorization

described in [Sainz02] that performs an autocalibration of

the cameras based on 2D features in the images. The seg-

mentation of the images was done manually using stan-

dard image manipulation software.

The experiments consisted in reconstructing all the

datasets using three different thresholds, to evaluate the

influence on the computational complexity and quality of

the reconstruction. All tests were performed on a PC sys-

tem with a 2.2Ghz P4, 1Gb of RAM and a 64Mb NVIDIA

Quadro Pro videocard running MS Windows XP with

Detonator XP drivers (version 23.11).

The results for the real imagery are highlighted in Table 1

and the results for the synthetic datasets in Table 2. From

these values we can conclude that the following factors

greatly influence the overall performance and quality

Consistency threshold. The value of the threshold can

vary between 0 and 3. Three values 0.2, 1.0 and 1.5 were

experimentally chosen. The results indicate that when the

threshold reaches a certain value, it does not alter the

carving results. The reason is that the volumetric recon-

struction converges to the visual hull after a certain limit

is reached.

Shape of original model. Another factor that plays an

important role is the convexity of the object. When recon-

structing an almost convex object such as sshell (Figure 6

(b)), the computation time is low compared to a concave

object such as ecube (Figure 6 (a)). In the later case,

because of the large concavity of the object, no shadow

voxels exist to occlude successive iterations, increasing

Figure 5: Visual hull test

(c) dragon (710x480) (d) cup (352x288)

(a) ecube (512x512) (b) sshell (512x512)

Figure 6: The datasets

the computation time.

Number of Images. Expectedly the impact of a higher

number of images is noticeable when the shape of the

object presents concavities. Generally, the image projec-

tion and voxel shadowing can be performed in hardware

quite efficiently. However, if shadows do not play a sig-

nificant role, the increased image area that has to be pro-

cessed leads to the expected performance loss.

Projected size. Another important factor is the amount of

area the object occupies on the image, leading to longer

processing times for larger projections.

Voxel resolution. It has a direct impact on the computa-

tion time and the visual quality of the result. Although this

parameter can be set to any desired value, a bound

directly related to the size in pixels of a voxel footprint

exists. This value should be at least 1 pixel per footprint

and small enough such that the color variance in a foot-

print is insignificant

Figure 7: Snapshots of the carving process and recovered models of the real datasets. For each of the datasets, the first

row shows from, left to right, one of the reference images, the same view of the reconstructed voxel model at different

resolutions. The second row of each dataset shows a snapshot of the carving process and the two corresponding depth-

maps of the reconstruction (brighter color indicates closer to the camera). The mean square error of each recon-

structed view and the reference image is also shown.

Reference Image

Carving snapshot

Voxel model (64x64x64) Voxel model (256x256x256)

MSE = 27.81% MSE = 25.99%

Carving snapshot MSE = 25.55% MSE = 14.24%

Reference Image Voxel model (64x64x64) Voxel model (256x256x256)

.Overall, the algorithm performs well even when high

voxel resolution is requested. Figure 7 and Figure 8 show

snapshots of the process and the results for the four

datasets. The computation time varies between 0.5 to 13

minutes. The ecube was the worst model, for which due to

the large concavity, penalties are incurred resulting in a

similar computation time as the cup dataset at half of the

resolution.

The final voxelized models present good visual quality

from the original calibrated camera positions, and for any

arbitrarily chosen location around those cameras. For

each of the reconstructed views presented in the figures,

we provide the mean of the squared error (MSE) in color

difference with respect to the original polygonal rendering

for the same view. The color difference is measured

between two corresponding pixels as the 3D distance in

Figure 8: Snapshots of the carving process and recovered models for the synthetic datasets. For each of the datasets,

the first row shows from, left to right, one of the reference images, the same view of the reconstructed voxel model at

different resolutions. The second row of each dataset shows a snapshot of the carving process and the three correspond-

ing depthmaps of the reconstructions.

Reference Image Voxel model (64x64x64) Voxel model (256x256x256)Voxel model (128x128x128)

Reference Image Voxel model (64x64x64) Voxel model (256x256x256)Voxel model (128x128x128)

Carving snapshot MSE = 27.82% MSE = 22.49% MSE = 17.48%

Carving snapshot MSE = 27.15% MSE = 22.01% MSE = 18.27%

RGB color space. The reported MSEs are normalized and

denote the percentage of the maximum error in 24bit RGB

color space.

The obtained MSE values are higher than expected as the

images of the reconstructed models present a clear pixel-

ization due to the voxel size and a unique color assign-

ment to each voxel.

For arbitrary views that are too far apart from the original

views the models are not that accurate. This is a well

know limitation of image based model reconstruction

algorithms, since information not captured in the images

can not be reconstructed without additional assumptions.

However, with a set of images that provide a good cover-

age of the object a fairly accurate model can be recon-

structed easily as shown in this work. The algorithm has

been tested on additional objects with large amount of

concavities similar to the one shown in Figure 9. The

images and in particular the depthmaps, show that the

accuracy of the reconstruction is excellent for complex

objects

5. CONCLUSIONS

We have developed a new optimized space carving algo-

rithm that extensively uses OpenGL hardware accelera-

tion. Moreover, an adaptively subdivided octree based

data structure is used to limit the required memory foot-

print.

The system was tested with both synthetic and real world

objects and excellent reconstructions results were

obtained, eventhough some of the models had non convex

surfaces. The proposed method is computationally fast

and is suitable for standard PC’s, making it a very attrac-

tive solution.

Figure 9: Snapshots of the carving process and recovered models for another synthetic object with high degree of con-

cavities.

Carving snapshot MSE = 31.13% MSE = 26.40% MSE = 21.39%

Reference Image Voxel model (64x64x64) Voxel model (256x256x256)Voxel model (128x128x128)

dragon cup

resol. thresh time[s] nVoxels time[s] nVoxels

64 0.2 33 9146 24 7089

1.0 33 9727 26 7578

1.5 32 9748 26 7578

128 0.2 91 39091 105 32328

1.0 95 40340 120 33867

1.5 96 40177 120 33867

256 0.2 439 158490 677 128546

1.0 472 163765 763 130243

1.5 465 163222 768 130385

Table 1: Carving results for real images

sshell ecube

resol. #Views thresh time[s] nVoxels time[s] nVoxels

64 20 0.2 69 6435 75 11676

1.0 70 6591 86 16772

1.5 70 6591 86 16813

128 0.2 228 28946 311 71314

1.0 236 30416 406 81142

1.5 236 30416 406 81065

64 30 0.2 103 6898 101 8954

1.0 106 7057 130 16766

1.5 106 7057 130 16740

128 0.2 360 32294 380 56863

1.0 385 32775 671 85313

1.5 379 32771 670 84967

Table 2: Carving results for synthetic images

The quality of the reconstructed voxel-based models can

be further enhanced by using a surface extraction algo-

rithm, such as marching cubes, to obtain a polygonal

model representation, which then can be texture mapped

with the original images.

6. ACKNOWLEDGMENTS

This research was supported by the National Science

Foundation under contract (CCR-0083080) and by the

Comissió Interdepartamental de Recerca i Innovació Tec-

nològica (CIRIT), Gaspar de Portola grant C01-02.

We thank Professor Falko Kuester for his help and fruitful

discussions. The cup dataset is courtesy of Peter Eisert

(www.lnt.de/~eisert/reconst.html). Some of the synthetic

models were downloaded from www.mitch3dseite.de.

7. REFERENCES

[Blinn88] J. Blinn, Me and my (fake) shadow. In IEEE

Computer Graphics and Applications, vol. 9, no. 1,

pp. 82-86, 1988.

[Broadhurst00] A. Broadhurst and R. Cipolla, A statisti-

cal consistency check for the space carving algo-

rithm. In Proc. 11th British Machine Vision

Conference, pp. 282-291, 2000.

[Broadhurst01] A. Broadhurst, T.W. Drummond and R.

Cipolla, A probabilistic framework for space carving.

In Proc. of Int. Conference on Computer Vision, I,

pp. 282–291, 2001.

[Buehler01] C. Buehler, M. Bosse, L. McMillan, S.

Gortler and M. Cohen, Unstructured Lumigraph Ren-

dering, In Proc. SIGGRAPH’01, pp. 425-432, 2001.

[Culbertson99] W. B. Culbertson, T. Malzbender, and G.

Slabaugh, Generalized voxel coloring. In B. Triggs,

A. Zisserman, and R. Szeliski, editors, Vision Volu-

metric Scene Reconstruction 485 Algorithms: Theory

and Practice (Proc. Int. Workshop on Vision Algo-

rithms) , volume 1883 of Lecture Notes in Computer

Science, pp. 100-115. Springer-Verlag, 2000.

[Debevec96] P.E. Debevec, C.J. Taylor, and J. Malik,

Modeling and rendering architecture from photo-

graphs: a hybrid geometry and image-based

approach. In Proc. of SIGGRAPH'96, pp 11-20,

1996.

[Eisert99] P. Eisert, E. Steinbach and B. Girod, Multi-

Hypotheses Volumetric Reconstruction of 3-D

Objects From Multiple Calibrated Camera Views, In

Proc. of the Int. Conference on Computer Vision, Vol.

1, pp. 415-425, 1999.

[Kutulakos00] K. Kutulakos and S. Seitz, A theory of

shape by space carving. In Int. Journal of Computer

Vision, 38(3), pp. 198-218, 2000.

[Laurentini94] A. Laurentini, The Visual Hull Concept for

Silhouette-Based Image Understanding. In IEEE

Transactions on Pattern Analysis and Machine Intel-

ligence, 16(2), pp. 150-162, February 1994.

[Lok01] B. Lok, Online Model Reconstruction for Inter-

active Virtual Environments. In Proc. of Symposium

on Interactive 3D graphics, 2001.

[Sainz02] M. Sainz, N. Bagherzadeh and A. Susin, Recov-

ering 3D Metric Structure and Motion from Multiple

Uncalibrated Cameras. In Proc. of IEEE Conference

on Information Technology: Coding and Computing,

pp. 268-273, 2002.

[Seitz99] S. Seitz and C. Dyer, Photorealistic scene

reconstruction by voxel coloring. In Int. Journal of

Computer Vision, 35(2), pp. 1067-1073, 1999.

[Slabaugh01] G. Slabaugh, B. Culbertson, T. Malzbender

and R. Schafer, A Survey of Methods for Volumetric

Scene Reconstruction from Photographs. In Proc. of

Int. Workshop on Volume Graphics, pp. 81-100,

2001.

[Steinbach00] E. Steinbach, B. Girod, P. Eisert and A.

Betz, 3-D reconstruction of Using Spatially Extended

Voxels and Multi-Hypothesis Voxel Coloring. In Proc.

of Int. Conference on Pattern Recognition, Vol. 1, pp.

774-777, 2000.

[Wood00] D. Wood, D. Azuma, K. Aldinger, B. Curless,

T. Duchamp, D. Salesin and W. Stuetzle, Surface

Light Fields for 3D Photography. In Proc. of SIG-

GRAPH’00, pp. 287-386, 2000.

