
Hardware Acceleration of the Robust Header Compression

(RoHC) Algorithm

Mohammed Al-Obaidi, aso10mma@student.lu.se

Harshavardhan Kittur, aso10hki@student.lu.se

August 28, 2012

This Page is Intentionally Left Blank

Preface

This Masters thesis summarizes our research work carried out at Ericsson AB, Linkoping,
in close collaboration with Product Development Unit LTE. The main contributions for
this thesis are:

• Hardwaware-Software Codesign of RoHC by Harshavardhan Kittur.

• Full Hardware Design of RoHC by Mohammed Al-Obaidi.

Acknowledgements

This thesis was made available and financially supported by Ericsson AB in Linköping.
We are grateful to Stefan Backlund, who gave us the opportunity to do this thesis,
and provided us with all the needful to make our work in Ericsson AB smooth and
pleasant.

The writing of this thesis was one of the most significant challenge in our academic
life. Without the support, guidance, and patience of the following people it would not
have been done at this quality. Our deepest gratitude to all the people who helped us
throughout this thesis.

• Our two supervisors, H̊akan Anderson in Ericsson AB-Linköping and Professor
Viktor Öwall in Lund university, who helped us to hurdle all the obstacles during
this thesis. We appreciate their time and patience in correcting the writing of this
report. We are so happy for getting the chance to work with them in this project
and we will never forget their sincere concern and patience.

• Bo Eriksson and Niclas Hallqwist in Ericsson AB-Linköping, who attended our
weekly supervision meetings, provided us with their advices, and were always con-
fident of our work.

• John Fong and Adrian Turcanu from Ericsson AB-Ottawa, who helped us getting
familiar with the RoHC algorithm, and patiently answered our questions.

• Göran Westerlund and Adam Ashby from Altera, who provided us with the FPGA
board.

• Orges Balla and Johan Karlsson, whose feedbacks on the report were highly ap-
preciated.

• Last but not the least, many thanks to our families and friends for their support,
inspiration, and love.

Abstract

With the proliferation of Long Term Evolution (LTE) networks, many cellular carriers
are embracing the emerging field of mobile Voice over Internet Protocol (VoIP). The
robust header compression (RoHC) framework was introduced as a part of the LTE
Layer 2 stack to compress the large headers of the VoIP packets before transmitted over
LTE IP-based architectures. The headers, which are encapsulated Real-time Transport
Protocol (RTP)/User Datagram Protocol (UDP)/Internet Protocol (IP) stack, are large
compared to the small payload. This header-compression scheme is especially useful for
efficient utilization of the radio bandwidth and network resources.

In an LTE base-station implementation, RoHC is a processing-intensive algorithm that
may be the bottleneck of the system, and thus, may be the limiting factor when it
comes to number of users served. In this thesis, a hardware-software and a full-hardware
solution are proposed, targeting LTE base-stations to accelerate this computationally
intensive algorithm and enhance the throughput and the capacity of the system. The
results of both solutions are discussed and compared with respect to design metrics like
throughput, capacity, power consumption, chip area and flexibility. This comparison is
instrumental in taking architectural level trade-off decisions in-order to meet the present
day requirements and also be ready to support future evolution.

In terms of throughput, a gain of 20% (6250 packets/sec can be processed at a frequency
of 150 MHz) is achieved in the HW-SW solution compared to the SW-Only solution
by implementing the Cyclic Redundancy Check (CRC) and the Least Significant Bit
(LSB) encoding blocks as hardware accelerators . Whereas, a Full-HW implementation
leads to a throughput of 45 times (244000 packets/sec can be processed at a frequency
of 100 MHz) the throughput of the SW-Only solution. However, the full-HW solution
consumes more Lookup Tables (LUTs) when it is synthesized on an Field-Programmable
Gate Array (FPGA) platform compared to the HW-SW solution. In Arria II GX, the
HW-SW and the full-HW solutions use 2578 and 7477 LUTs and consume 1.5 and 0.9
Watts, respectively. Finally, both solutions are synthesized and verified on Altera’s Arria
II GX FPGA.

Contents

1 Introduction 1

2 Background of RoHC in LTE System 3

3 Summary of RoHC Framework Specifications 6
3.1 Classification of Header Fields . 6
3.2 Profiles . 7
3.3 Compressor and Decompressor . 8
3.4 Modes . 8

3.4.1 Unidirectional Mode (U-mode) . 9
3.4.2 Bidirectional Optimistic Mode (O-mode) 9
3.4.3 Bidirectional Reliable Mode (R-mode) 10

3.5 Compressor States . 10
3.6 Decompressor States . 11
3.7 Encoding Methods . 12

3.7.1 LSB Encoding . 12
3.7.2 Scaled RTP Timestamp Encoding 13
3.7.3 Timer-based RTP Timestamp Compression 14
3.7.4 IP-ID Offset Encoding . 14
3.7.5 Self-Describing Variable Length Code (SDVL) Encoding 15

3.8 CRC . 15
3.9 Major RoHC Packet Types . 16

4 Design of RoHC Hardware Accelerators 18
4.1 CRC Hardware Accelerator . 18

4.1.1 Design of Parallel CRCs . 20
4.2 Least Significant Bit Encoding (LSB Encoding) 21

4.2.1 Case 1 when (value < vref) . 23
4.2.2 Case 2 when (value > vref) . 24
4.2.3 Hardware Implementation of LSB Encoding 25

5 HW-SW Solution 29
5.1 Introduction . 29

i

5.2 Porting of RoHC to FPGA . 30
5.3 Profiling . 31

5.3.1 Valgrid . 31
5.3.2 Altera based Performance Counters 31

5.4 Algorithmic Partitioning between Hardware and Software 32
5.5 HW-SW co-design flow for a RoHC system 33
5.6 RoHC Embedded System . 34
5.7 Qsys System Interconnect . 35
5.8 Custom Logic Instructions vs Custom Logic Peripherals 36
5.9 Hardware Accelerators in RoHC System 38

5.9.1 Mixed data-width CRC Hardware Accelerator 38
5.9.2 CRC Hardware Accelerator Architecture 38
5.9.3 WLSB Hardware Accelerator . 39

5.10 Fast prototyping on an FPGA . 40
5.11 HW-SW co-verification . 40
5.12 Results . 40

5.12.1 RoHC Throughput . 40
5.12.2 RoHC Capacity . 42
5.12.3 Memory . 43
5.12.4 Area . 43
5.12.5 Power Consumption . 44

5.13 Observations . 44

6 Full-HW Solution 46
6.1 Introduction . 46
6.2 RoHC Implementation-Specific Parameters 47
6.3 Top-level Architecture of the One-Stage Full-HW Implementation 47

6.3.1 Classifier . 49
6.3.2 Fetching or Initializing The Context 50
6.3.3 Parsing The Input Packet . 51
6.3.4 Detecting IP-ID Pattern . 52
6.3.5 Detecting RTP Pattern . 54
6.3.6 Detecting Context Change . 57
6.3.7 Fields Selection . 58
6.3.8 Packet Selection . 59
6.3.9 Update Context . 62
6.3.10 Packetizer . 62

6.4 Four-Stages Pipeline Architecture . 63
6.5 Results . 65

6.5.1 Throughput and Capacity . 65
6.5.2 Memory Bandwidth . 66
6.5.3 Area . 67
6.5.4 Power Consumption . 67

ii

6.5.5 Execution Time . 67

7 Comparison between Different RoHC Solutions 69

8 Conclusions 71

iii

List of Figures

2.1 RoHC in the LTE protocol architecture 3

3.1 VoIP packet header fields . 7
3.2 Compressor and decompressor blocks in a RoHC system 8
3.3 Modes of operation in a RoHC system . 9
3.4 Compressor state machine . 10
3.5 Decompressor state machine . 11
3.6 WLSB encoder . 13

4.1 Parallel CRC . 18
4.2 Execution time of different CRCs . 19
4.3 Different interpretation interval cases . 21
4.4 LSB encoder . 28

5.1 Software function tree . 31
5.2 Profiling using Valgrid . 32
5.3 RoHC algorithmic partitioning . 33
5.4 HW-SW co-design flow for a RoHC system 33
5.5 RoHC embedded system . 34
5.6 Qsys system interconnect . 35
5.7 Custom logic instructions vs custom logic component 36
5.8 Performance of custom logic instructions vs. custom logic component . . . 37
5.9 Mixed data-with CRC algorithm . 38
5.10 CRC hardware accelerator architecture . 39
5.11 RoHC performance graph for IR packets 41
5.12 RoHC performance graph for UO-0 packets 41
5.13 RoHC performance graph for a average packet stream 42

6.1 Top-level architecture of the full-HW solution 48
6.2 Context structure for profile 1 . 51
6.3 Bit-packing hardware . 53
6.4 TS-SN pattern in video and voice frames 56
6.5 Unidirectional and bi-directional optimistic mode packets’ masks 60
6.6 Packet capability check . 61

iv

6.7 Packetizer flow chart . 63
6.8 Four stage pipeline architecture . 64
6.9 Effects of external DDR2 memory on the execution time of different pro-

tocol stacks . 66
6.10 Analysis of area, power consumption, and execution-time results 68

7.1 Comparison between different full-HW designs with respect to one packet
execution time. 70

8.1 RoHC Performance Graph with respect to the HW-SW partitioning degree 71

v

List of Tables

2.1 RoHC compression gain . 4

3.1 SVDL Encoding . 15
3.2 RoHC packets and their capabilities . 17

4.1 Different CRC Methods . 19
4.2 H1 Matrix . 20
4.3 H2 Matrix . 20
4.4 Parametrization of the shifting value p . 22

5.1 HW-SW implementation features . 30
5.2 Logic utilization of components of RoHC embedded system 44
5.3 Power consumption of components of RoHC embedded system 45

6.1 Full-HW implementation features . 46
6.2 RoHC implementation parameters . 47
6.3 Initialization of context fields . 52
6.4 One-stage Full-HW implementation results of RoHC compressor 65

7.1 Comparsion between one-stage full-HW, HW-SW, and SW-onlly imple-
mentations . 70

vi

List of Abbreviations

3GPP 3rd Generation Partnership Project

ALMs Adaptive Logic Modules

ALUT Altera Lookup Table

BER Bit Error Rates

CISC Complex Instruction Set Computer

CRC Cyclic Redundancy Check

CSRC Contributing Source Identifier

FIFO First-In First-Out

FO First Order

FPGA Field-Programmable Gate Array

FS Field Selection

HAL Hardware-Abstraction Layer

IETF Internet Engineering Task Force

IP Intellectual Property

IP Internet Protocol

IP-ID Internet Protocol-Identification

IR Initialization and Refresh

LOD Leading-One Detector

LSB Least Significant Bit

LSZD Least Significant Zero Detector

LTE Long Term Evolution

LUT Lookup Table

vii

MM Avalon Memory Maped

NBO Network Byte Order

O-mode Bidirectional Optimistic Mode

PDCP Packet Data Convergence Protocol

R-mode Bidirectional Reliable Mode

RoHC Robust Header Compression

RR Receiver Report

RTCP RTP Control Protocol

RTP Real-time Transport Protocol

RTP-SN Real-time Transport Protocol-Sequence Number

RTP-TS Real-time Transport Protocol-Timestamp

SBT Software Build Tools

SDVL Self-Describing Variable Length

SN Sequence Number

SO Second Order

SR Sender Report

SSRC Synchronization Source Identifier

ST Avalon streaming

SW Sliding-Window

TS Timestamp

U-mode Unidirectional Mode

UDP User Datagram Protocol

UID User ID

VoIP Voice over Internet Protocol

vref Reference value

WLSB Window-based LSB

viii

This Page is Intentionally Left Blank

Chapter 1

Introduction

With many cellular carriers following the evolution of telephony over the internet, they
are now seriously considering transmission of voice over all IP based LTE networks via
VoIP. It is a known problem that VoIP packets transmitted via the RTP/UDP/IP stack,
have relatively small payloads compared to the overhead of the packet headers enclosed
by the respective protocol stack. The header overhead is about 40-60 bytes (depending
on IPv4 or IPv6 respectively) while the minimum size payload is 20 bytes, which creates
200-300% overhead. This overhead is expensive, especially on radio links that are affected
by high Bit Error Rates (BER). Here, efficient utilization of the sparse radio bandwidth
for useful payload data is of utmost importance. Redundant packet-header data in the
stream is a waste of resources. This creates a need for some kind of header-compression
technique for efficient utilization of the bandwidth and network resources to deliver a
unit of payload data.

The RoHC framework was introduced by the Internet Engineering Task Force (IETF)
in [1] and adopted by the 3rd Generation Partnership Project (3GPP) as a solution to
this problem. This header-compression method is based on the principle that there is
a significant redundancy between the headers of packets belonging to the same stream.
By sending the static information of the header fields initially and then continuously
sending only the dynamic parts of the headers, the size of the headers can be compressed
significantly. The major advantage of RoHC over other header-compression techniques
is its robustness. It can tolerate packet loss and residual errors on the link without losing
additional packets or introducing additional errors.

Traditional base-stations have implementations in software, with some parts accelerated
in hardware. In [2], a profiling of the most complex algorithms in LTE layer 2 was done
using an ARM-based mobile hardware platform and with LTE data rates of about 100
Mbps. It was shown that the traditional hardware-software partitioning is not a tractable
solution anymore and a new, sophisticated partitioning is needed. It was shown that
the Packet Data Convergence Protocol (PDCP) sub-layer was the most computationally
intensive in LTE Layer 2. Moreover, it was shown that the RoHC algorithm is taking

1

most of the processing power (71%) in this sub-layer, which makes it a suitable target
for hardware acceleration. In [3], an analysis of the memory bandwidth requirements
was done and the hardware implementation of some RoHC functions was proposed. The
authors showed that, in the next generation of mobile networks, network processors need
to be augmented with more hardware in order to support the processing complexity of
the RoHC algorithm.

Also, for base stations to support high capacity (number of users), there is a hard
deadline on the computation of different algorithms. RoHC can be considered one of the
performance-critical algorithms in the LTE stack. In this thesis, a Hardware-Software co-
design and a Full Hardware-based solution are proposed to determine the improvement in
the performance with respect to the degree of the HW-SW partitioning. Both solutions
are targeting the RoHC algorithm in the LTE base stations.

The rest of this report is organized into eight chapters. In chapter 2, RoHC is discussed
with respect to the LTE protocol stack and in chapter 3, the RoHC framework is briefly
reviewed. In chapter 4, the design of hardware accelerators that are used in both solu-
tions are discussed. In chapter 5, the HW-SW co-design of RoHC and the corresponding
results are discussed. In chapter 6, the full hardware implementation of this algorithm
is presented. Subsequently, results from both solutions are compared and presented in
chapter 7. Finally, the conclusions are drawn in chapter 8.

2

Chapter 2

Background of RoHC in LTE
System

PDCP

RoHC

Ciphering

RLC

Segmentation ,

ARQ

MAC

MAC Multiplexing

Hybrid ARQ

PHY

Coding

Modulation

Antenna and

Resource

mapping

Layer 2

Layer 1

Figure 2.1: RoHC in the LTE protocol architecture

LTE is the fourth generation of high-speed and high-capacity wireless communication
standards for mobile and data terminals specified by the release of the 3GPP standard [4].
The protocol architecture is bifurcated into control-plane which deals with signaling and
control functions, and data-plane, which deals with the actual user data transmission.
RoHC is the standard for header compression as proposed by IETF [1]. RoHC resides

3

Table 2.1: RoHC compression gain

Protocol stack Uncompressed header size (bytes) Min. Compressed header size (bytes) Compression gain(%)

IPv4/TCP 40 4 90

IPv4/UDP 28 1 96

IPv4/UDP/RTP 40 1 97.5

IPv6/TCP 60 4 93

IPv6/UDP 48 3 93

IPv6/UDP/RTP 60 3 95

in the PDCP sub-layer 2 in the data-plane of the LTE protocol architecture, as shown
in Figure 2.1 [5].

The major use of the RoHC framework is to compress the relatively large packet header,
which would be a big overhead especially for small packets like VoIP packets, in-order
to ensure efficient use of the radio interface and the available bandwidth. LTE is an all
IP-based system where data are transmitted over a packet-switched networks to support
a wide range of services in mobile handsets, VOIP is one of these services. IP-based
traffic on radio links suffers high packet losses because of high bit error rates. Since
the RoHC algorithm is designed to robustly handle the bad channel conditions, it is
specifically useful in the wireless IP-based networks.

Real-time traffic like voice in VoIP packets, which are encapsulated in the IP/UDP/RTP
protocol stack, has header sizes of 40 bytes (20 bytes for IPv4, 8 bytes for UDP, 12 bytes
for RTP) to 60 bytes (40 bytes for IPv6, 8 bytes for UDP, 12 bytes for RTP) and the
payload size is about 20 bytes (G.729 @ 8 Kbps) to 160 bytes (G.711 @ 64 Kbps) 1

depending on the type of encoding used. Thus, the header creates a large overhead but
by using RoHC, the 40-60 byte header can be reduced down-to 1-3 bytes and thereby
considerably reducing the overhead. The typical compression ratios for different protocol
header is as shown in Table 2.1. We see that RoHC is most beneficial to compress VoIP
packets encapsulated in IP/UDP/RTP headers.

RoHC is a new emerging field that has been studied recently after it was adopted by
the LTE system. In [2], the LTE layer 2 protocols was processed on an ARM based
mobile architecture to identify the most time critical algorithms. A single ARM1176
core processor was used to implement most of the layer 2 protocols in software whereas
only the ciphering algorithm is accelerated in hardware. This hardware-software parti-
tioning is a traditional implementation in current mobile handset architectures. It was
shown by [2] that the layer 2 performance was limited by the computation power of the
single-core processor and this traditional partitioning need to be changed to cope with
the LTE requirements of layer 2 in next generation mobile devices. Moreover, It was
shown that a major part of the computation power (71%) in LTE L2 protocol stack is
consumed by the PDCP sub-layer. In the PDCP sub-layer, RoHC is identified as the
major consumer of the computation power (71%) when the encryption in the PDCP

1http://www.cisco.com/en/US/tech/tk652/tk698/technologies_tech_note09186a0080094ae2.

shtml

4

http://www.cisco.com/en/US/tech/tk652/tk698/technologies_tech_note09186a0080094ae2.shtml
http://www.cisco.com/en/US/tech/tk652/tk698/technologies_tech_note09186a0080094ae2.shtml

sub-layer is disabled.

In [6], two implementations of RoHC, hardware and software, are presented by the same
authors as in [2]. The effects of different cache sizes on the execution time of both
solutions were studied. It was shown in [6] that the maximum performance and power
saving were achieved with an instruction and data cache size of 16 kB in the embedded
processor. Whereas, an improvement of 80% was achieved when the dedicated hardware
accelerator is used with a relatively small cache compared to the software solution. The
best execution time achieved by the dedicated hardware is around 40 µs whereas the
software solution can process one packet in 80µs.

In [3], a hardware acceleration of the main encoding method used in RoHC, LSB Encod-
ing, is proposed. An analysis of the memory bandwidth requirement and its implication
on the performance of the next generation network processors is studied. It was shown
that a memory size of almost 264 bytes are required in the compressor side for each user.
The analysis in [3] showed that in order to support a link speed of 2.5 Gbps, a memory
bandwidth of 42 Gbps is needed. This bring the attention to the memory-bandwidth as
one of the limiting factors in supporting high speed links.

Although many authors, such as in [2] and [3], have concluded that RoHC is needed to be
accelerated in hardware, the industrial market for RoHC is still in pure software. In [7],
a software implementation of RoHC is presented based on Intel microprocessor. Even
with the use of a powerful Complex Instruction Set computer(CISC) such as Pentium
4, the number of flows that can be processed in [7] with a 100% processor load did not
exceed the 13k packet flows. Thus we can expect that the industrial market of RoHC
will follow the scientific recommendations soon, at least from the base station side which
has to cater to a full capacity and support a large number of users.

5

Chapter 3

Summary of RoHC Framework
Specifications

3.1 Classification of Header Fields

The basic principle of RoHC is that only a few header fields change randomly across
a packet stream, while most of the fields change in a predictable way or not change at
all. This makes header compression plausible. The header fields of a typical VoIP stack
of IP/UDP/RTP are as shown in Figure 3.1. They can be classified into four different
categories:

1. Inferred: These fields are never sent within a RoHC packet and can be inferred
by the decompressor from the other fields or with the support of lower layers in
the network stack.

2. Static: These fields are seldom sent within a RoHC packet since they never change
during the lifetime of a packet stream.

3. Static known: These fields are never sent since they are constant in any packet
stream.

4. Dynamic: These fields are of prime importance to RoHC to compress efficiently.
They either change within a pattern or randomly.

The dynamic fields, which are of fundamental importance, have to be communicated
either directly or derived from other fields for every packet. For RoHC based on the
VoIP framework, the RTP Sequence Number (RTP-SN) is used to establish functions
to other dynamic fields such as IP Identification (IP-ID), RTP Timestamp (RTP-TS).
Hence, only RTP-SN needs to be reliably communicated while the other fields are derived
from the RTP-SN functions. Other dynamic fields are changing in general but are
expected to be constant during the lifetime of the packet stream. The static fields are

6

 Inferred Static Static known Dynamic

IPv4 Header

0 7 8 15 16 23 24 31

 Version IHL TOS Packet Length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

IPv6 Header

0 7 8 15 16 23 24 31

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

UDP Header

0 7 8 15 16 23 24 31

Source Port Destination Port

Length Checksum

RTP Header

0 7 8 15 16 23 24 31

V P X CC M PT Sequence Number

 Times tamp

Synchronisation Source Identifier

Figure 3.1: VoIP packet header fields

communicated using the uncompressed RoHC initialisation packets. Hence, all the fields
of the IP/UDP/RTP headers are communicated either implicitly or explicitly during the
packet flow.

3.2 Profiles

The RoHC profiles specify the schemes of both compression and decompression for a
packet stream. In the RFC3095 specification [1], four different profiles are defined for
different protocol stacks. These profiles are given below:

• Profile 0: For sending uncompressed packets. (This is the default scheme when
the packets fail to fall within predefined RoHC profiles).

7

• Profile 1: This is for RTP/UDP/RTP compression.

• Profile 2: This is for UDP/IP compression.

• Profile 3: This is for ESP/IP compression.

3.3 Compressor and Decompressor

H

ROHC

Context

IPv4/6 UDP RTP Payload

R
O

H
C

C
o

m
p

re
s
s
o

r

ROHC

Context

R
O

H
C

D
e

c
o

m
p

re
s
s
o

r

Payload

IPv4/6 UDP RTP Payload

Figure 3.2: Compressor and decompressor blocks in a RoHC system

The major components of the RoHC framework are the compressor and decompressor
as shown in Figure 3.2, which are present in PDCP Layer 2 of an LTE system. The
compressor processes the incoming IP/UDP/RTP headers of the VoIP packet stream
and compresses them. The compressed header is transmitted with the payload along
the wireless link while the decompressor does the opposite for its decompression. Both
the compressor and the decompressor use recently stored information from previous
packets for a particular stream for the compression and the decompression processes.
The stored information in the compressor or decompressor is referred to as the context
of that compressor or decompressor, respectively. The contexts of the compressor and
the decompressor must be consistent, to ensure a successful uninterrupted sequence of
compression and decompression.

3.4 Modes

There are three modes of operation as shown in Figure 3.3 which determine the logic of
state transitions and state actions. Depending on the existence of a feedback channel
and the amount of feedback sent by the decompressor to the compressor, three modes
are defined in the RFC3095 specification [1]. These modes: Unidirectional mode, Bidi-
rectional optimistic mode, and Bidirectional reliable mode are briefly explained below.
Transition between modes is possible and occurs when the decompressor triggers the
change with the help of feedback packets.

8

Unidirectional (U) mode

Reliable (R) modeOptimistic (O) mode

Fee
db

ac
k
(O

)
Feedback (R

)

Fee
db

ac
k
(U

)
Feedback (U

)

Feedback (O)

Feedback (R)

Figure 3.3: Modes of operation in a RoHC system

3.4.1 Unidirectional Mode (U-mode)

• This mode is for simplex channels which have no feedback capability; packets are
sent in one direction from the compressor to the decompressor.

• In this mode, state transitions occur because of periodic timeouts and retransmis-
sions because of irregularities in the header fields in the compressed packet streams
from the compressor to the decompressor.

• The compressor in RoHC must start in this mode as the feedback capability of the
channel is not known.

• In case of a packet loss or an unrecoverable error in the received compressed packet,
the context of the decompressor might get invalidated and the sequence of decom-
pression fails. In this mode, the decompressor waits for an uncompressed packet
to resynchronize the context. The uncompressed packets are sent periodically and
if the compressor detects a change in one of the static fields in the packet to be
compressed.

3.4.2 Bidirectional Optimistic Mode (O-mode)

• This mode is similar to the unidirectional mode, but instead of the periodic timeout
and the retransmission of uncompressed packets the feedback channel is used spar-
ingly by the decompressor to send error recovery requests and acknowledgements
of significant context updates.

9

3.4.3 Bidirectional Reliable Mode (R-mode)

• In this mode the feedback channel is used more often to acknowledge all the context
updates. This mode employs stricter logic to maintain context synchronization
between the compressor and decompressor.

• This mode maximizes robustness against loss propagation and damage propaga-
tion.

3.5 Compressor States

IR State FO State SO State

Optimistic Approach / ACK

Optimistic Approach / ACK

Timeout / NACK / Update

Optimistic Approach / ACK

Timeout / STATIC NACK

Timeout /STATIC NACK

 ACK

Figure 3.4: Compressor state machine

The compressor has three states as shown in Figure 3.4 - IR (Initialization and Refresh),
FO (First order) and SO (second order) states. The compressor starts from the lowest
compression state (IR) and gradually transits to higher-order states.

A forward state transition occurs when the compressor is confident that the decompres-
sor has correctly updated the context. The confidence is achieved by either sending
the header information more than once (optimistic approach) or by an ACK feedback
from the decompressor. The optimistic approach is only used in the unidirectional
mode and bidirectional optimistic mode. The number of times the same header infor-
mation is (re)transmitted in the optimistic approach is an implementation-dependent
variable.

A backward state transition occurs when one of the timeout counters are reset, a NACK
or STATIC NACK feedback is received from the decompressor, or the packet to be com-
pressed encounters a change in the static fields or the pattern of the dynamic fields. The
two timeout counters are used to transit to IR or FO states and they are implementation-
dependent variables. The timeout counters are only used in the unidirectional mode and
the bidirectional optimistic mode.

10

IR state: It is used to initialize or to recover the context of the decompressor’s static
and dynamic fields. In this state, the compressor sends the entire header information
by IR packets. The compressor stays in this state until it is fairly confident that the
decompressor has established or updated the context correctly.

FO state: The purpose of this state is to effectively communicate the irregularities in
the packet headers especially related to the dynamic parts of the context. The compres-
sor transits to and from the FO state by forward/backward transitions discussed earlier,
if there are changes in the static context. It enters this state from the IR state after
transmitting static context or from the SO state after changes occur in a dynamic field
(non-conformity of the previous pattern). FO packets carry context-updating informa-
tion and are therefore protected by a CRC.

SO state: The compressor transits to this state when compression is optimal, and
the compressor is sufficiently confident that the decompressor has all the context fields
including the parameters of functions from SN to derive fields like IP-ID and TS to
ensure correct decompression. In this state only a few bits are required for TS/IP-ID
to be transmitted. The compressor changes from the SO to the IR or FO state with
forward/backward transitions discussed earlier when the header pattern changes and it
can no longer be compressed with present context. SO state packets are also protected
by CRC.

3.6 Decompressor States

No context Static context Full context

Successfull

decompression

Successfull

decompressionNo dynamic context

Repeated failure to

decompress / Static NACK

Successfull

decompression

Context not

established

Repeated failure to

decompress / NACK

No

Dynamic

Figure 3.5: Decompressor state machine

The decompressor has three states as shown in Figure 3.5 which are independent of the
modes: No context, static context and full context. It starts from the lowest compression
state, no context, and gradually transits to higher order states.

No context: The decompressor will be in this state at the start of transmission when
the decompressor context has not yet been established. In this state only IR packets are
allowed to be received. Only after a successful decompression involving a CRC check
the decompressor transits to the full context state.

11

Static context: In this state the decompressor is assumed to have the static information
but not the dynamic information or it may have changed. In this state only IR, IR-DYN,
UOR-2 packets described in section 3.9, are decompressed (carrying either an 8 bit or 7
bit CRC). Transitions to No context state from this state are triggered by repeated errors
(unidirectional mode) or NACK/Static-NACK feedback (bidirectional mode).

Full context: Successful reception of any packet in the FO state of the compressor
enables a transition to Full context. In this state, the decompressor has full context
information. Once it enters this state it never leaves unless there are repeated un-
successful decompression attempts (failure of CRC check, in unidirectional mode) or
NACK/STATIC-NACK feedback (in bidirectional mode). Only then does it transit to
the static context.

3.7 Encoding Methods

There are several encoding methods as specified in the RoHC framework employed for
different dynamic fields of an IP/UDP/RTP header stack. These are:

3.7.1 LSB Encoding

As the name indicates, the LSB encoding is used to transmit the change that occurs in the
least significant bits of a field when compared to a reference value stored in the context.
The decompressor derives the original value from the received LSBs and the previously
received reference value (vref) such that the value falls within the interpretation interval
as defined by the function given in equation 3.1. The k received LSBs are enough to
uniquely define the value within the interpretation interval.

f(vref, k) = [vref − p, vref + (2k − 1)− p]. (3.1)

|

Interpretation Interval
︷ ︸︸ ︷
- |

vref − p vref + (2k − 1) − p

The selection function is referred to as g(vref, v) such that k = g(vref, v).

Here p is an integer used to shift the interpretation interval depending on the typical
behaviour of different header fields like IP-ID, RTP-SN, or RTP-TS.

12

vref_0 vref_1 vref_2 vref_3

MINMAX

LSB Encoder LSB Encoder

MAX

g(vref_min,v)g(vref_max,v)

v

k

Figure 3.6: WLSB encoder

Window-based LSB (WLSB) Encoding

The compressor may not be able to determine the exact reference value at the decom-
pressor side. Therefore, it maintains a sliding-window for candidates of reference values
ranging from vrefmin to vrefmax . The compressor chooses the maximum number of
bits(k) to uniquely identify a value v using the equation:

k = max(g(vrefmin, v), g(vrefmax, v)). (3.2)

The sliding-window is advanced by either a CRC confirmation, in case of U or O mode,
and ACK, in case of R mode. WLSB modifies LSB encoding to achieve robustness by
calculating k for a window of the stored field values and selecting the appropriate k.
Figure 3.6 shows a block diagram of the WLSB method which explains how it is related
to the LSB method.

3.7.2 Scaled RTP Timestamp Encoding

Common audio and video codecs have fixed sampling rates. For this reason and since an
RTP packet transmits a constant number of these samples per unit time, the timestamp
in successive RTP packets is usually increased by an integral multiple of some constant
number called ts stride. This property can be used to efficiently compress the timestamp
of an RTP packet by sending a downscaled timestamp. The scaled timestamp can
be expressed using less number of bits than the original timestamp and hence a first
order compression can be achieved. A second order compression can be achieved by
compressing the scaled timestamp using the WLSB encoding method discussed earlier.

13

The down-scaling of the timestamp follows equation 3.3 below:

ts = ts scaled× ts stride+ ts offset. (3.3)

The ts stride is communicated explicitly and ts offset is communicated implicitly, as
discussed in the following stages.

• During initialization: The compressor sends ts stride and absolute value of ts.
The decompressor initializes ts offset using (ts modulo ts stride).

• During compression: Only WLSB or Timer-based encoded ts scaled is sent.

• During decompression: Original RTP-TS value is calculated using compressed
ts scaled and ts stride, which are communicated at initialization using equation
3.3.

• At wraparound: The compressor does not reinitialize ts offset at wraparound
but the decompressor detects wraparound of unscaled ts and updates ts offset.

3.7.3 Timer-based RTP Timestamp Compression

With fixed sampling intervals employed by audio and video applications and packets
that are transmitted in lockstep with the sampling, RTP-TS is increased by an integral
multiple. It can also be approximated by a linear function of the time of day taking
into account the delay jitter between the compressor and decompressor. By using the
local clock the decompressor can obtain an approximation of ts scaled in the header
considering its arrival time. This method is discussed in detail in [1], but is not used in
this implementation.

3.7.4 IP-ID Offset Encoding

For IPv4, the IP-ID will increase by the same amount as RTP-SN. Therefore, it is more
efficient to compress only the IP-ID offset relative to RTP-SN by WLSB encoding with
p=0, using the formula

Offset = IP ID −RTP SN. (3.4)

At the decompressor side, the IP-ID is calculated from the reference header (correctly
verified by CRC) using the formula

IP − ID = Offset ref +RTP SN ref. (3.5)

Some stacks do not use a counter to generate IP-ID values but instead they are generated
randomly using a pseudo-random number generator, in such case IP-ID offset encoding
cannot be used.

14

Table 3.1: SVDL Encoding

First bit/bits No. of octets No. of bits transferred

1 1 7

10 2 14

110 3 21

111 4 29

3.7.5 Self-Describing Variable Length Code (SDVL) Encoding

Parameters like ts stride and some others vary widely. For optimal transfer of such
values SDVL is used to encode them. The first few bits of the first octet determine the
number of octets used as shown in the Table 3.1.

3.8 CRC

Cyclic redundancy checks are used by RoHC as the primary means for detecting er-
roneous decompression, just as in many other communication systems. CRCs play an
important role in providing means for verification, especially in U/O mode where feed-
back is absent. Incorrect context update and prevention of residual errors from lower
layer are mitigated by the CRC information carried by the RoHC packets. This adds to
the robustness of the system.

Uncompressed packets like IR and IR-DYN carry an 8-bit CRC computed based on all
the RoHC packet fields excluding the payload. As these are context-updating packets a
larger size of CRC assures the context validation. Also for feedback type 2, as discussed
in section 3.9, an 8-bit CRC is used.

Compressed packets like UO-0 and UO-1 contain 3-bit CRCs and packets like UO-2
contain a 7-bit CRC. For the compressed packets CRCs are computed on STATIC fields
and DYNAMIC header fields of the original IP packets. The 3-bit, 7-bit and 8-bit CRCs
are computed using the following polynomials.

3-bit CRC: C(x) = 1 + x+ x3

7-bit CRC: C(x) = 1 + x+ x2 + x3 + x6 + x7

8-bit CRC: C(x) = 1 + x+ x2 + x8

More details about the polynomials and the CRC calculations can be found in [8].

15

3.9 Major RoHC Packet Types

The RoHC framework defines several kinds of packets; they are discussed in brief be-
low.

1. RoHC packets :

• IR and IR-DYN packets: These are uncompressed RoHC packets used to
initialize/communicate the static and/or dynamic parts of the context. IR-
DYN is used to initialize/communicate only the dynamic part of the context.

• Type 0 packets (Ex: UO-0): These packets are of smallest size (1 byte),
hence, the most efficient. They are used when the decompressor can derive
the necessary fields as a function of RTP-SN.

• Type 1 packets (Ex: UO-1-*): These packets are used when WLSB
encoded bits of RTP-SN exceed those available for Type 0 or when the pa-
rameters to the SN functions for deriving the TS or IP-ID fields change.

• Type 2 packets (Ex: UO-2-*): These packets are used when the WLSB
encoded bits of the RTP-SN exceed those available for Type 0 and Type 1, or
when the parameters to the SN functions for deriving the TS or IP-ID fields
change.

2. Extension Packets: Extension packets are used to convey information other than
what is contained by lower compressed packets (like UO-1, UOR-2) without having
to send uncompressed packets (IR, IR-Dyn). There are three types of extensions
used in combination with base packets of type 1 and 2.

3. Feedback Packets: For RoHC modes that use feedback, they are sent either in
separate RoHC packets or piggybacked on forward packets from the decompressor
to the compressor. There are two types of feedback packets - FEEDBACK 1
packets, which are used to send ACK, and FEEDBACK 2 packets, which are used
to send NACK or STATIC-NACK along with mode information.

Table 3.2 shows the main properties of the RoHC packets such as the CRC type, the
updating capability, and the number of bits that the packet can carry for each of SN,
IP-ID, and TS. The update column in the table specifies whether the packet can update
the context or not. Further information about the structure of the packets and their
properties is given in details in RFC3095 [1].

16

Packet type SN IP-ID-1 IP-ID-2 TS Update CRC Static
context type fields

R-0 6 0 0 0 No 0 No
R-0-CRC 7 0 0 0 Yes 7 No
R-1-ID 6 5 0 0 No 0 No
R-1-TS 6 0 0 5 No 0 No
UO-0 4 0 0 0 Yes 3 No
UO-1-ID 4 5 0 0 Yes 3 No
UO-1-TS 4 0 0 5 Yes 3 No
UOR-2-ID 6 5 0 0 Yes 7 No
R-1-ID-EXT0 9 8 0 0 No 0 No
UO-1-ID-EXT0 7 8 0 0 Yes 3 No
UOR-2-TS 6 0 0 5 Yes 7 No
R-1-TS-EXT0 9 0 0 8 No 0 No
UOR-2-ID-EXT0 9 8 0 0 Yes 7 No
UOR-2-TS-EXT0 9 0 0 8 Yes 7 No
R-1-TS-EXT1 9 8 0 8 No 0 No
UO-1-ID-EXT1 7 8 0 8 Yes 3 No
UO-1-ID-EXT2 7 16 0 8 Yes 3 No
UOR-2-TS-EXT1 9 8 0 8 Yes 7 No
R-1-ID-EXT2 9 16 0 8 No 0 No
R-1-TS-EXT2 9 8 0 16 No 0 No
UOR-2-ID-EXT2 9 16 0 8 Yes 7 No
UOR-2-TS-EXT2 9 8 0 16 Yes 7 No
R-1-ID-EXT3 14 16 16 29 No 0 No
UO-1-ID-EXT3 12 16 16 29 Yes 3 No
UOR-2-ID-EXT3 14 16 16 29 Yes 7 No
R-1-TS-EXT3 14 16 16 32 No 0 No
UOR-2-TS-EXT3 14 16 16 32 Yes 7 No
UO-1 4 0 0 6 Yes 3 No
R-1 6 0 0 6 No 0 No
UOR-2 6 0 0 6 Yes 7 No
R-1-EXT0 9 0 0 9 No 0 No
UOR-2-EXT0 9 0 0 9 Yes 7 No
R-1-EXT1 9 0 0 17 No 0 No
UOR-2-EXT1 9 0 0 17 Yes 7 No
R-1-EXT2 9 0 0 25 No 0 No
UOR-2-EXT2 9 0 0 25 Yes 7 No
R-1-EXT3 14 0 0 32 No 0 No
UOR-2-EXT3 14 16 16 32 Yes 7 No
IR-DYN 16 16 16 32 Yes 8 No
IR 16 16 16 32 Yes 8 Yes

Table 3.2: RoHC packets and their capabilities

17

Chapter 4

Design of RoHC Hardware
Accelerators

Here certain hardware accelerators are designed to be used to accelerate the RoHC
algorithm and are chosen based on profiling results of RoHC software discussed in section
5.3. These accelerators are used for both HW-SW and Full HW implementation of
RoHC.

4.1 CRC Hardware Accelerator

There are different methods of computing CRCs based on both software and hardware
implementations. The choice between hardware and software methods is application-
dependent and is based on parameters such as speed, throughput, memory usage, and
design time. These methods along with their advantages and disadvantages are tabulated
in the Table 4.1.

Parallel CRC Generator

M bit CRC OutputM bit CRC next state

N bit data

Figure 4.1: Parallel CRC

CRC computation requires bit level manipulations which are more efficient and fast in
hardware, therefore CRC blocks are partitioned into hardware accelerators. For the

18

Table 4.1: Different CRC Methods

CRC Implementations Remarks Advantages Disadvantages

Software - based, naive
add-shift method

Software-based add-shift
method emulates LFSR as
shown in [8]

Quick design and prototyp-
ing time.

Large execution time and
inefficient for real-time
data

Software - based CRC ta-
ble method

Data is used to index
the CRCs which are pre-
calculated and stored in a
table

Faster execution time and
greater throughput.

For an N-bit input and an
M-bit CRC a large look-up
table of size M × 2N must
be stored in the memory

Hardware - based LFSR
method

Shift registers with linear
feedback from XOR gates
are used as per the polyno-
mial to construct the CRC

Quick Design and proto-
typing time.

Low throughput and a la-
tency of n clock cycles for
calculation of n-bit CRC

Hardware - based parallel
CRC method

CRC is calculated on data
in parallel by performing
necessary logic operations
and by emulating the state
transitions in the LFSR
with the incoming parallel
data as shown in Figure 4.1

Fastest CRC method with
a throughput of 1 CRC per
clock cycle.

More design and prototyp-
ing time.

RoHC system, the hardware based parallel CRC method is chosen as this gives the
highest throughput. This is also experimentally proven on a NIOS II-based system with
a sample data set of 50 bytes. The execution time for different CRC methods on a NIOS-
based system is as plotted in Figure 4.2, and it can be seen that the hardware-based
parallel CRC method has the fastest execution time.

0

5

10

15

20

25

30

35

Table based CRC Serial CRC Parallel CRC

CRC Execution Time

Time (us)

Figure 4.2: Execution time of different CRCs

In conclusion, we use parallel CRCs as designed by a method described in section 4.1.1,
for both the HW-SW case and the full-HW case. However, in the case of a HW-SW
parallel CRC block, the hardware is used in tandem with software to calculate the CRC
of different data widths ranging from 32 bits to 8 bits as described in section 5.9.1.

19

Table 4.2: H1 Matrix

crc out = fcrc(crc in = 0, din) crc out[0] crc out[1] crc out[2]

din[0] 1 1 0 din[0] = 1

din[1] 0 0 1 din[1] = 1

din[2] 0 1 0 din[2] = 1

din[3] 1 0 0 din[3] = 1

din[4] 1 0 1 din[4] = 1

din[5] 1 1 1 din[5] = 1

din[6] 0 1 1 din[6] = 1

din[7] 1 1 0 din[7] = 1

Table 4.3: H2 Matrix

crc out = fcrc(crc in, din = 0) crc out[0] crc out[1] crc out[2]

crc in[0] 1 1 0 crc in[0] = 1

crc in[1] 0 0 1 crc in[1] = 1

crc in[2] 0 1 0 crc in[2] = 1

4.1.1 Design of Parallel CRCs

The design of a parallel CRC block is done as per the method proposed in [9], which
leverages the serial CRC generator and discrete-time linear-system properties of CRCs
to generate parallel CRCs.The parallel CRC generator block is as shown in Figure 4.1.
The design process involves the following steps:

1. First a C-based serial CRC simulator is implemented. The logic works on 8-bit
data and CRC initialization values to produce an M-bit CRC. For 16 and 32 bit
data, the same logic is used in cascade iteratively 2 or 4 times, respectively. And
the CRC initialization value being updated with the 8-bit CRC output with each
iteration.

2. Then an H1 matrix is formed based on the equation crc out = fcrc(crc in = 0, din)
for 1-shot high values of din like 1, 2, 4, 8, 16..., and neglecting crc in, using the
CRC simulator developed in 1.

3. Then an H2 matrix is formed based on the equation crc out = fcrc(crc in, din = 0)
for 1-shot high values of crc in like 1, 2, 4, 8, 16..., and neglecting din, using the
CRC simulator developed in 1.

4. Then the logical equations from the H1 and H2 matrices are combined by logical
modulo-2 arithmetic to generate parallel CRC equations for 8-bit, 16-bit and 32-bit
data.

For example, the H1 and H2 matrices for 3-bit CRC (1 + x+ x3) and 8-bit data are as
shown in Table 4.2 and Table 4.3. The XOR equations for parallel CRCs based on the
H1 and H2 matrices are as shown in equations 4.1.

20

crc out[0] =

H2 matrix
︷ ︸︸ ︷

crc in[0] ⊕

H1 matrix
︷ ︸︸ ︷

din[0]⊕ din[3]⊕ din[4]⊕ din[5]⊕ din[7]

crc out[1] = crc in[0]⊕ crc in[2]⊕ din[0]⊕ din[2]⊕ din[5]⊕ din[6]⊕ din[7]

crc out[2] = crc in[1] ⊕ din[1]⊕ din[4]⊕ din[5]⊕ din[6]

(4.1)

4.2 Least Significant Bit Encoding (LSB Encoding)

As explained earlier in subsection 3.7.1, LSB encoding makes use of the interpretation
interval technique to efficiently encode a field with respect to a reference value stored
in the context. The decompression of the LSB bits is guaranteed if both the compres-
sor and the decompressor use the same interpretation interval. An illustration of the
interpretation interval is shown in Figure 4.3a below. Since the header fields have finite
number of bits to describe their values, the interpretation interval might wrap around
as shown in Figure 4.3b.

Interpretation interval

upper limitvreflower limit0 max range

(a) Normal interpretation interval

Interpretation interval Interpretation interval

upper limit vreflower limit0 max range

(b) Wraparound interpretation interval

Figure 4.3: Different interpretation interval cases

The terms upper limit and lower limit are defined in equations 4.2 and 4.3 respectively
as

upper limit = vref + 2k − 1− p (4.2)

and

lower limit = vref − p. (4.3)

21

In equation 4.2, k is defined as the least number of bits such that the field value lies
inside the interpretation interval below:

lower limit ≤ value ≤ upper limit.

If the interpretation interval is wrapped around, upper limit < lower limit, then the
condition is changed to :

lower limit ≤ value or value ≤ upper limit.

In equation 4.2, p is defined as the shifting value that shift the interpretation interval
and it differs from one field to another. Below are the p values for the Sequence Number
(SN), the Internet Protocol Identification (IP-ID), and the Time Stamp (TS) as specified
in [1]:

p(sn) =

{

1 ifk ≤ 4

2k−5 − 1 otherwise
, (4.4)

p(ip− id) = 0, (4.5)

and
p(ts) = 2k−2 − 1. (4.6)

To find k, equation 4.4, 4.5 and 4.6 parameterize the shifting value p as follows :

p = a2k−b − c,

where a, b and c are shown in Table 4.4.

Table 4.4: Parametrization of the shifting value p

Field a b c Condition

SN
0 0 −1 if k ≤ 4
1 5 1 if k > 4

IP-ID 0 0 0 -

TS 1 2 1 -

By setting value = upper limit and value = lower limit, k1 and k2 are found respec-
tively. k1 and k2 are calculated in equations 4.7 and 4.8 respectively as

k1 = ⌈log2(Rfd − c+ 1) + b− log2(2
b − a)⌉, (4.7)

and
k2 = ⌈log2(Rbk + c) + log2(2

b)⌉. (4.8)

22

To find the least number of bits, k is calculated as

k = min(k1, k2). (4.9)

where
Rfd : is the absolute forward distance between value and vref

and
Rbk : is the absolute backward distance between value and vref .

In [3], k1 is always assumed less than k2 and hence considered as the solution of k.
In this work, it is shown that any of k1 or k2 can be a solution of k and the earlier
assumption by [3] is not correct and cannot cover all cases.

Since p value is different from one field to another, some special cases are exist. For
instance, the value of p for IP-ID is zero and there are two values of p for the SN. Since
p is equal to zero for IP-ID, k is calculated from equation 4.7 only. Unlike [3], in which
k(sn) is always calculated first for p = 1, k(sn) is considered equal to 4 bits (the least
number of bits that a RoHC packet can transmit) if Rfd ≤ 14 or Rbk ≤ 1. This will
avoid an unnecessary iteration of trying different p values.

The rest of this section focuses on how to find which equation, k1 or k2, is the correct
solution for k without the need to calculate both equations in an attempt to reduce both
processing power and hardware. By looking at the position of value and vref , two cases
are found as follows:

4.2.1 Case 1 when (value < vref)

Rbk
Rfd Rfd

vrefvalue0 max range

The least number of bits is calculated in equation 4.10 as

k =

{
k2 if Rbk ≤ Rbk max

k1 otherwise
, (4.10)

where Rbk max is the maximum backward distance. Rbk max is calculated in equation
4.11 as

Rbk max = 2kmax−b − c, (4.11)

23

where kmax is defined as the maximum number of bits that can describe a field i.e. kmax

is equal to 16 bits for both SN and IP-ID and it is equal to 32 bits for TS.

Rbk and Rfd are calculated from the graph as follows:

Rbk = vref − value, (4.12)

and
Rfd = max range+ value− vref + 1. (4.13)

Thus,
Rfd = max range−Rbk + 1. (4.14)

To prove equation 4.10, substituting equation 4.14 when Rbk = Rbk max in equation 4.7
yields:

k1 = log2(2
kmax ·

(2b − 1)

2b
+ 1) + b− log2(2

b − 1) (since a=1). (4.15)

By underestimating

log2(2
kmax ·

(2b − 1)

2b
+ 1) ≃ log2(2

kmax ·
(2b − 1)

2b
),

this yields
k1 ≃ kmax.

By substituting Rbk = Rbk max in equation 4.8

k2 = kmax.

Since an underestimation of the first term in equation 4.15 is done, k2 < k1 when Rbk is
less than or equal Rbk max. Otherwise, k1 is less than k2. Therefore, using this condition
there is no need to calculate both k1 and k2 in order to find k and the processing power
is reduced by half.

4.2.2 Case 2 when (value > vref)

RfdRbk Rbk

valuevref0 max range

The least number of bits is calculated in equation 4.16 as

24

k =

{
k2 if Rbk ≤ Rbk max

k1 otherwise
, (4.16)

where Rfd and Rbk are calculated as

Rfd = value− vref, (4.17)

and
Rbk = max range+ vref + 1− value. (4.18)

Similar to subsection 4.2.1, equation 4.16 can be proved by substituting equation 4.14
when Rbk = Rbk max in equation 4.7 and Rbk = Rbk max in equation 4.8.

4.2.3 Hardware Implementation of LSB Encoding

The hardware complexity of equation 4.7 and 4.8 resides in the logarithmic terms. Since
K should be an integral number of bits, the log2 implementation can be reduced to a
Leading One Detector (LOD)for calculating the integer part of the logarithm.

The improvements in this implementation of the LSB encoder over the one presented
in [3] include accounting for all possible cases with no extra hardware cost, introducing
a zero-error implementation of the logarithmic equations without the need for floating
point logarithm hardware, and reducing the need of calculating k(SN) using two shifting
values p.

In order to find the value of k in [3], the result of equation 4.7 is ceiled only if the integer
remainder of the first logarithmic term (Rfd− c+1)is larger than the integer remainder
of the second logarithmic term (2b − a). Using this method, an error of positive one
might be induced to k. Although sending an extra bit will not lead to a decompression
failure, it definitely influences the decision of which packet to send. Sending a different
packet rather than the optimal one might mean sending more bits for other fields as well
leading to an inefficient compression.

The error induced from using the ceiling operation on the integer remainder comparison
in [3] is related to the fact that the integer remainders might describe fractions on
different binary logarithmic scale. In other words, if the integer parts of both logarithms
are not equal, the comparison is invalid. This is a very typical case.

In this work, a zero-error LSB function is proposed by adding an extra step to the
integer remainder comparison. The remainder of one term should first be shifted to the
same binary logarithmic scale as the other, and then the ceiling is done based on the
comparison. The example below shows the difference between the proposed method and
the original in [3].

25

Example:

Assume the first and the second logarithmic terms in equation 4.7 are 1058 and 31, as
shown below:

(1058)2 = 10000100010 floor(log2(1058)) = 10

(31)2 = 11111 floor(log2(31)) = 4

1. Using the integer remainder comparison method as in [3],

remainder1 = 34 remainder2 = 15

k = 10+5−4+1(since remainder1 > remainder2) =⇒ k = 12 (k should be 11)

2. Using the zero-error proposed method

remainder2 = 15× (⌊log2(1058)⌋)− ⌊(log2(31)⌋)

= 960

k = 10 + 5− 4 + 0(since 34 < 960)) k = 11(correct).

Below is a mathematical proof that the error is always zero in this approach.

Any positive integer number N can be described in its binary form as:

N =
x∑

i=0

2i.N(i). (4.19)

N = 2x +
x−1∑

i=0

2i.N(i). (4.20)

Let r =
x−1∑

i=0

2i.N(i). (4.21)

N = 2x + r (4.22)

log2(N) = x+ log2(2
x + r)− ⌊log2(2

x + r)⌋. (4.23)

Let R = log2(2
x + r)− ⌊log2(2

x + r)⌋. (4.24)

26

In the proposed zero-error comparison method, the integer remainder of one of the
logarithmic terms (N1) is shifted to same binary logarithmic scale of the second term
(N2). The value of the shifting (n) is the difference between the integer results of the
two logarithmic terms i.e. n = x1 − x2. R

′

is defined as the shifted integer remainder
and it is calculated as in the equation bellow:

Let R
′

= log2{2
n · (2x + r)} − ⌊log2{2

n · (2x + r)}⌋. (4.25)

If the error of shifting the remainder is zero, R must equal R
′

R
′

= log2{2
n · (2x + r)} − ⌊log2{2

n · (2x + r)}⌋

= n+ log2{(2
x + r)} − n− ⌊log2{2

n · (2x + r)}⌋

= log2(2
x + r)− ⌊log2(2

x + r)⌋

Thus R
′

= R

Figure 4.4 shows a block diagram of a common hardware for calculating either k1 or
k2 equation. After finding which one of the equations is the solution of k, all of the
parameters shown in Figure 4.2 - X, Y , R1 and R2 - are calculated and sent to the LSB
hardware to calculate the final k. X, Y , R1 and R2 are inner terms in equations 4.7
and 4.8 as follows:

K1 = ⌈log2(

2X+R1
︷ ︸︸ ︷

Rfd − c+ 1)+b− log2(

2Y +R2
︷ ︸︸ ︷

2b − a)⌉ (4.26)

K2 = ⌈log2(

2X+R1
︷ ︸︸ ︷

Rbk + c) + log2(

2Y +R2
︷︸︸︷

2b)⌉ (4.27)

The hardware architecture of the LSB encoder consists of the following components:

1. Leading-one detector (LOD): The LOD is implemented to emulate the integer
part of the log2 function. This component detects the leading one from the MSB
of the data.

2. Encoder: The encoder outputs Y (constant value) as a function of a, b, and c as
earlier defined in this section.

3. Shifter: the shifter is used to shift the integer remainder R2 to the same binary
logarithmic scale of the integer remainder R1.

4. Basic components: Adders, MUXes, comparators

27

+
1

Eq_field

MUX
1

2

X

- shift

R2Y

>

R1

MUX
0

1

0

1MUX
1

2

Eq_field

+

K

LOD Hard coded ROM

2^X + R1 2^Y + R2

> 0

Figure 4.4: LSB encoder

The number of LOD components needed for the LSB encoding method is only one
since only one equation is needed for the calculation and the second logarithmic term
in the equations is a pre-known constant. The LSB encoder occupies 257 ALUT when
it is synthesised on Altera Arria II GX FPGA and can run with a frequency of 150
MHz.

28

Chapter 5

HW-SW Solution

5.1 Introduction

A hardware-software co-design methodology is adopted to evaluate the performance
enhancement that can be achieved by using hardware accelerators. This methodology
will provide a method for evaluating potential future off-loading of LTE Layer 2 (PDCP)
packet-data processing to hardware accelerators. It will also help in evaluating system-
level design trade-offs such as determining if hardware acceleration of certain parts of
RoHC can cater to the increasing capacity needs (taking into account the maximum
capacity that is possible to support in LTE) or if full hardware-based RoHC is needed.
In this chapter, we discuss the hardware-software co-design implementation of RoHC
and also present the results of this methodology in section 5.11.

The reference code used in this case is open source RoHC libraries implemented as
defined in the RFC 3095 spec [1] by the IETF. More information about the reference
code and its features is given in [10].

The requirements for software and hardware partitioning of this co-design framework are
based on profiling of the reference code based on worst-case execution. The concurrency
in the RoHC algorithm can be exploited when looking for synergies between hardware
and software. The features of this hardware-software design are given in Table 5.1.
The RoHC libraries are ported to Alteras NIOS II softcore processors Software Build
Tools (SBT) are used for software design. Certain functionality that can be executed in
parallel is implemented in hardware for increasing the performance of the system and
this is determined by profiling of the RoHC libraries.

29

Table 5.1: HW-SW implementation features

Feature Status

Mode U,O and R

Profile 1

Feedback processing Supported

IP level 2

IPv4 Supported

IPv6 Supported

Compression list Not supported

5.2 Porting of RoHC to FPGA

The GCC RoHC libraries, as mentioned in [10], are used as a reference model and are
ported to a NIOS II-based embedded system. This gives us a common platform for
profiling and capturing the performance metrics. Porting of the libraries was done in
the following steps:

1. Isolation of the compressor and decompressor along with their libraries and depen-
dencies. Removing of shared dependencies between the compressor and decom-
pressor.

2. Inclusion of feedback functions into the compressor and compressor-specific header
files.

3. Optimizing with respect to profile 1. Other profiles and their specific dependencies
are removed and only profile 1 (IP/UDP/RTP) for VoIP application is emphasized.
Several functions are rewritten with respect to profile 1 only.

4. List compression for IPv6 extension headers and the related functions are removed
keeping in mind the requirements to concentrate on profile1 for VoIP application.

5. Certain GCC headers like netinet/ethernet.h, netinet/ip.h, netinet/ip6.h, netinet/
udp.h, and netinet/in.h are removed as NIOS II SBT system does not support
them. The definitions and their respective (network) functions are rewritten in a
custom header file.

6. Dependency on PCAP libraries for reading and writing of packets is removed and
instead the test packets are stored in memory as constant arrays.

7. Several functions are optimized and rewritten to increase the performance.

8. Many unnecessary measurements of statistical parameters are removed from the
code.

In summary, all these measures are taken to efficiently port the RoHC libraries to the
NIOS II-based system to be run on the Altera FPGA board in order to yield optimum

30

performance. The function hierarchy after porting the RoHC library is as shown in
Figure 5.1

Figure 5.1: Software function tree

5.3 Profiling

To degree of partitioning of the RoHC functionality into hardware and software is deter-
mined by software profiling of the RoHC reference code from [10]. The two approaches
used for profiling are the following.

5.3.1 Valgrid

This is a runtime instrumentation framework with tools like memcheck, cachegrind
(cache and branch prediction profiler),and callgrind (call-graph generation profiler).

Valgrid is used to make an initial estimate of worst-case execution times of functions
by approximate profiling of memory footprint/cache and function-call profiling based on
flat profile data (event counts such as data reads, cache misses, etc.) of the GCC-based
RoHC libraries. As shown in Figure 5.2, the metric of self cost multiplied by the called
fields determines the bottleneck in the reference code. This turns out to be the CRC
and WLSB functions.

5.3.2 Altera based Performance Counters

Due to lack of good tools for low-resolution timing profiling, Valgrid is used to estimate
the profiling data. However, after porting the RoHC libraries to the NIOS II SBT
and running on FPGA, performance counters are included in the NIOS-based embedded
system to measure the execution time of different sections of the code. Each performance
counter keeps track of execution time of each section of the code and the number of
occurrences. This runtime performance measurement gives us accurate profiling data
identifying the bottlenecks.

The functions identified as bottlenecks by profiling are recognized as possible candidates
for hardware implementation to increase the performance. The components identified

31

Figure 5.2: Profiling using Valgrid

after profiling are CRC and WLSB because of their computational cost and frequency
of use in a RoHC system.

5.4 Algorithmic Partitioning between Hardware and Soft-
ware

The hardware-software partitioning is done based on the profiling data, which generate
partitioning metrics like:

1. Computation cost: determines how computationally intensive the functionali-
ty/component is.

2. Communication cost: determines if it is beneficial to implement the function-
ality/component as hardware, taking into account the cost of communicating the
data to the accelerator.

3. Frequency of use cost: determines the frequency of usage of the particular
hardware functionality/ component.

The RoHC functionality is captured in the flow chart as shown in Figure 5.3. Each func-
tionality is implemented as a sequence of functions as shown in Figure 5.1, interleaved
efficiently with data structures containing packet data, context data and some neces-
sary statistics. Hardware implementation of WLSB encoding and CRC algorithms is
determined by profiling to be beneficial to boost the performance of the RoHC software
libraries. These hardware accelerators are either implemented as custom logic compo-
nents or custom instructions is a Nios II-based embedded system for RoHC.

32

Get packet

Check if

packet

belongs to

profile 1

Context

exists

Create new

context

Find the

context from

CID

Create

ROHC

packet

Add

Feedback

Add

Payload

Update

Statistics

Y

Use RTP profile /

context to encode

Check IP

header.

Decide State.

WLSB encode

(IP-ID, SN, TS)

 Decide the

ROHC packet.

Calculate

CRC.

Hardware

N

Software

Figure 5.3: RoHC algorithmic partitioning

5.5 HW-SW co-design flow for a RoHC system

Profile and

Partation the Open

source ROHC code

into HW-SW

Optimise and port the

ROHC libraries to NIOS

II SBT based system

Design the custom logic

components for the

hardware previously

partitioned

Software Flow Hardware Flow

Implement the ROHC

libraries on FPGA and

capture metrics without

custom hardware

Add custom logic

hardware to accelerate

the software running on

the FPGA and capture

metrics

Figure 5.4: HW-SW co-design flow for a RoHC system

33

The hardware-software co-design for the RoHC system is as shown in Figure 5.4 consists
of

1. Software flow: Here the RoHC libraries are optimized and ported to NIOS II
SBT to be run on FPGA.

2. Hardware flow: Here the hardware components (WLSB and CRC) are designed
to accelerate the performance of software RoHC libraries.

Finally, cross-verification is used to check the functionality of the RoHC system consist-
ing of the interdependent software libraries and their hardware accelerators after they
have been individually tested.

5.6 RoHC Embedded System

ROHC Embedded System

NIOS 2

Softcore

CPU

Sys ID

Peripheral
JTAG-UART

DDR3 RAM

(128 Mb)

Performance

Counter

On Chip

Memory

(128 KB)

CRC HW

Custom

Instruction

Software

Hardware
WLSB HW

Custom

Instruction

Qsys System Interconnect

Figure 5.5: RoHC embedded system

The embedded system for RoHC is assembled using Qsys of Altera with Altera’s in-
tellectual property (such as performance counters, Sys ID peripheral, JTAG UART),
memories (On-chip and DDR3 RAM) and custom logic components (CRC , WLSB)
interconnected by Qsys interconnect is as shown in Figure 5.5.

1. Software blocks: A Nios II softcore processor of type F with 4 kB instruction
and 32 kB data cache is used along with hardware support for division and mul-
tiplication (DSP blocks) to execute the RoHC code which resides in the on-chip
memory (128 kB). As the number of users increase to support high capacity at
the base station side, maintaining their context data in on-chip memory is not
possible. Therefore, DDR3 RAM was added.

34

2. Hardware blocks: These are the hardware accelerators designed to increase the
performance of the RoHC code running in the NIOS II processor. These hardware
accelerators can be implemented either as custom components or custom instruc-
tions, which are further discussed in 5.8. In this case they are implemented as
custom instructions for the Nios II processor.

3. Other peripherals:

JTAG UART: This is an Altera IP which provides means to communicate with
a host PC via serial character streams between the host and the Qsys system. It
is mainly used for debugging purposes in the Qsys system.

Sys ID Peripheral: This is an Altera-based peripheral which assigns the Qsys
system a unique ID and timestamps. The NIOS II IDE verifies the system ID
before downloading new software to the system. This is to verify that the software
runs on a Qsys System for which it is written and compiled.

Performance Counters: This is a block of counters which can measure the
execution time of selected code by keeping track of time and occurrences of that
section of code. This is used to measure the performance of the RoHC system.

The device drivers to the above-mentioned peripheral and standard interfaces are
provided by Alteras HAL (Hardware-Abstraction Layer). The NIOS software build
tools generate a HAL board-support package from the configuration of our Qsys
system.

5.7 Qsys System Interconnect

 MASTERS

 SLAVES

NIOS II Processor

M M

Instruction Data

DMA Controller

M M

Read Write

S

Control

 MemoryJTAG UART JTAG UART

SS S
Perfornance

counters

S
User logic

component 1

S

Qsys Interconnect

User logic

component 2

ArbiterArbiter

S

Figure 5.6: Qsys system interconnect

35

The Qsys interconnect is a high-bandwidth structure for interconnecting the components
with Avalon interfaces. There are two types of Avalon interfaces:

1. Avalon Streaming (ST): Connects sources and sinks (components) in a unidi-
rectional data stream.

2. Avalon Memory Maped (MM): This is an address-based interface which con-
nects the master and slave components that communicate using write and read
commands in a memory-mapped fashion.

The Avalon MM implementation of Qsys interconnect is as shown in Figure 5.6, The
M interface signifies masters and S signifies slaves. The Avalon masters, the NIOS 2
processor and DMA controller, are connected to Avalon slaves by Qsys interconnect.
This Qsys interconnect is based on a network-on-chip architecture where transactions
between source and sink are encapsulated in packets [11]. MM read and write protocols
and signal mappings are as discussed in [11].

The Qsys interconnect takes care of arbitration, address decoding, data-path multiplex-
ing and interrupts but the most important function of Qsys is that it eliminates the
need to create arbitration hardware manually. It allows multiple master interfaces to
transfer data to independent slaves simultaneously by slave-side arbitration, unlike tra-
ditional host-side arbitration where each master should wait until it is granted access
to the shared bus. The arbitration logic stalls the master interface only when multiple
masters attempt to access the same slave simultaneously. Hence, there is no unnecessary
master-slave contention.

5.8 Custom Logic Instructions vs Custom Logic Peripher-
als

A

B

NIOS Custom Instruction

 NIOS ALU

+ -

<<

&

Custom

Instruction

Result

NIOS Costom Logic Component

NIOS Processor

PIO Memory Custom Logic

Component

System Interconnect Fabric

Figure 5.7: Custom logic instructions vs custom logic component

36

User-logic hardware blocks can be implemented either as custom-logic instructions or
custom-logic component. HW acceleration has two benefits. Hardware is much faster
and more efficient than software, and implementing functionality in hardware frees up
the processor to perform other functions in parallel.

Custom Logic component:These are user-hardware implementations which can be
included in the build of the Qsys System, as shown in Figure 5.7. In a memory-mapped
system they act as peripherals where the masters (NIOS II System) can write data into
them and results can be read from them, either in single or multiple clock cycles.

NIOS II Custom instructions: These are user-defined instructions which are imple-
mented in custom-logic blocks adjacent to the ALU in the data-path of the NIOS II pro-
cessor, as shown in Figure 5.7. They consist of custom-logic blocks, which are designed
similarly to custom-logic peripherals (either as single-clock cycle or multi-clock cycle
components), and software macros which are used to access the custom-logic block.

The parallel CRC algorithm was implemented both as custom instruction and custom
component and tested for a sample data set. The results are plotted in the form of a bar
graph in Figure 5.8. This shows that a custom instruction is almost twice as fast as a
custom peripheral. This holds for both the case when there is data in external memory
and the case when the data is in on-chip memory. The higher speed of custom instruc-
tions is attributed to the lack of arbitration, address decoding, and FIFO operations,
which are all needed in the case of memory-mapped custom-logic peripherals.

0

20

40

60

80

100

120

140

160

180

On chip memory External Memory

C
lo

c
k
 C

y
c
le

s

Custom Instruction (clock cycles)

Custom component (clock cycles)

Figure 5.8: Performance of custom logic instructions vs. custom logic component

37

Compute 8 bit CRC

Compute 16 bit

CRC

Compute 32 bit

CRC

If ctr-data length =1

While ctr <

data length

If

ctr-data length >1

&& < 4

Else

Increment ctr

7 bytes of data

AA BB CC DD EE FF GG

32 bit CRC

16 bit CRC

8 bit CRC

clock cycle = 1

data length = 7

ctr = 0

clock cycle = 2

data length = 7

ctr = 4

clock cycle = 3

data length = 7

ctr = 6

Figure 5.9: Mixed data-with CRC algorithm

5.9 Hardware Accelerators in RoHC System

5.9.1 Mixed data-width CRC Hardware Accelerator

In the RoHC software model the data is arranged in CRC buffers in 32 bit tiles in the
memory. It is not known that the data for which a CRC is going to be computed will fit
exactly in these 32-bit tiles. Zero padding is not an option since it changes the CRC all
together. Therefore, a 32-bit parallel CRC generator is not enough when implementing
CRC for RoHC, which is the problem.

One solution to this problem is to have a dynamic selection of parallel CRC generators
for 32 bit as well as 16 bit and 8 bit data formats. Then logic is used to combine these
mixed data-width CRCs inorder to compute CRC, irrespective of whether the data end
in 32-bit tiles or not.

The logical flow chart for this kind of CRC computation and an example illustration is
as shown in Figure 5.9. The CRC is calculated in parallel over a data size of 7 bytes,
which includes first the computation of a 32-bit CRC over the first 4 bytes, then a 16-bit
CRC, and finally an 8-bit CRC for the last byte.

5.9.2 CRC Hardware Accelerator Architecture

Due to the better performance of custom instructions over custom-logic components, as
discussed in section 5.8, we choose to implement the CRC hardware accelerator as a
NIOS II custom instruction. The advantage of working with NIOS II embedded system

38

CRC Custom Instruction

8 bit data parallel CRC

XOR Array

(Type 3, 7,8)

16 bit data parallel CRC

XOR Array

(Type 3, 7,8)

32 bit data parallel CRC

XOR Array

(Type 3, 7,8)

Final Output CRC

P
ro

c
e

s
s
o

r
B

u
s

Dynamically select the

CRC for the data

width at run time

MUX

Figure 5.10: CRC hardware accelerator architecture

is that we can use software for implementation of a mixed-data width CRC selection
algorithm, as discussed in section 5.9.1, and the parallel CRC generators for different
data widths can be implemented in hardware as custom instructions.

The architecture consists of parallel CRC generators for 32 bit, 16 bit and 8 bit data
which are selected dynamically by using an option called opcode extension in the NIOS
II custom instruction set. The parallel CRC generators are designed using the equations
as mentioned in section 4.1.1. Since the NIOS CPU is little endian, the CRC equations
must include the necessary mappings to take care of the endianess. Necessary changes in
software are also made to include the CRC custom instruction, which can be reconfigured
for mixed data widths.

5.9.3 WLSB Hardware Accelerator

The LSB Hardware accelerator, which is a pure combinatorial data path, is implemented
as a NIOS II custom instruction as proposed in the previous section. The LSB custom
instruction calculates the number of bits needed to encode one field in one clock cycle.
Other steps in the WLSB encoding, like finding minimum and maximum values from
the window entries, are taken care of in the software. Checking various conditions and
determining which equation to use, as discussed earlier in section 4.2, are also done in
software.

39

5.10 Fast prototyping on an FPGA

The hardware-software solution is implemented in the form of a RoHC embedded system,
as discussed in section 5.6. This embedded system is synthesized on an Altera II GX
FPGA development board. Performance metrics, power dissipation, and design size are
all captured from the synthesized RoHC. This board has the following components which
are relevant to RoHC design:

1. Arria II GX EP2AGX260FF35 FPGA in the 1152-pin (FBGA) package with
244,188 LEs, 102, 600 Adaptive Logic Modules (ALMs) and 11,756 kbit on-die
memory.

2. On-Board memory of 128 Mbyte 16-bit DDR3 memory, 1 Gbyte 64-bit DDR2, 2
Mbyte SSRAM, and 64 Mbyte flash memory.

5.11 HW-SW co-verification

The CRC and WLSB modules, which are identified as candidates for hardware design,
are isolated and individual reference code is implemented, which will aid the hardware
implementation. After hardware implementation these blocks are individually tested
with a sample excitation and the functionality is verified.

The SW-based RoHC design is first ported on FPGA and is verified with standard RoHC
output vectors derived from the reference code, as mentioned in [10], using wireshark.
Once the software design is verified the CRC and WLSB functionalities are removed
and the respective hardware blocks are integrated with the software design as custom
logic instructions in NIOS II-based embedded system. The RoHC functionality is cross-
verified with the RoHC outputs of the reference code.

5.12 Results

RoHC is a performance-critical system. The HW-SW co-design methodology is used
to do rapid prototyping of RoHC on an FPGA board. The performance is accelerated
and evaluated with respect to throughput, capacity, memory usage, area, and power
consumed.

5.12.1 RoHC Throughput

The throughput is a measure of the average rate at which the RoHC system can process
uncompressed headers and generate compressed RoHC header packets for a particular
packet stream. It signifies how fast the RoHC can run and cater to one particular user.

40

Software (IPv4) Software (IPv6)

Hardware

Accelerated

(IPv4)

Hardware

Accelerated

(IPv6)

Compressor Time 229 199 215 183

CRC 11 16 1 2

WLSB 0 0 0 0

0

50

100

150

200

250

E
x

e
cu

ti
o

n
 t

im
e

 (
u

s)

SW vs HW for IR packets

Figure 5.11: RoHC performance graph for IR packets

Software (IPv4) Software (IPv6)

Hardware

Accelerated

(IPv4)

Hardware

Accelerated

(IPv6)

Compressor Time 192 162 160 138

CRC 19 22 4 7

WLSB 14 10 0.3 0.4

0

50

100

150

200

250

E
x

e
cu

ti
o

n
 t

im
e

 (
u

s)

SW vs HW for UO-0 packets

Figure 5.12: RoHC performance graph for UO-0 packets

Here throughput is measured with respect to different RoHC packet types and also
average increase in throughput across a communication stream of 10 packets.

The results for software vs. hardware-accelerated IR packets (the largest RoHC packet)
and UO-0 packets (the smallest RoHC packet) are tabulated as shown in the plot in
Figure 5.11 and Figure 5.12. We see that the performance increase, due to hardware
acceleration, with respect to throughput ranges from 15-17% for IR packets to 20-22%
for UO-O packets for both IPv4 and IPv6 streams.

We see a 15-20% average increase in throughput and a final throughput of 1/160 µs =
6250 packets/s is achieved for IPv4 and 1/150 µs = 6666 packets/s is achieved for

41

Software

(IPv4)

Hardware

Accelerate

d (IPv4)

Software

(IPv6)

Hardware

Accelerate

d (IPv6)

Compressor time 192 163 181 152

CRC 17 3 20 4

WLSB 12 0.2 6 0.15

0

50

100

150

200

250

E
x

e
cu

ti
o

n
 t

im
e

 (
u

s)

HW vs SW for a packet stream

Figure 5.13: RoHC performance graph for a average packet stream

IPv6, as shown in the plot in Figure 5.13. This is for a scenario in which we consider
a communication stream of 10 packets. It is applicable to both IPv4 and IPv6. The
RoHC packets generated range from large IR packets to smaller UO-2, UO-1 packets,
and the smallest UO-0 packets.

5.12.2 RoHC Capacity

Here RoHC capacity refers to the number of users that can be supported by a particular
base station, or more precisely, a particular instantiation of the RoHC algorithm. RoHC
capacity is an important metric for a base station since it has to service many users.
RoHC capacity for VoIP traffic, in the sense of number of supported users, is calculated
by the following formula:

Capacity =
Frequency of VOIP frames

Voice activity factor× RoHC execution time

=
20ms

0.5× RoHC execution time
.

For a given user the frequency of arriving VoIP packets is around 50 packets/s so 20 ms
is the duration of one VoIP packet. The voice activity factor is set to 50% because of
silence suppression. Voice activity factor is the ratio of duration of talk spurts to silence
duration and it signifies how many people talk in a session. It is typically set to 50% as
both users cannot talk at the same time.

42

Considering the RoHC execution time of 160 µs to 200 µs as discussed before, the RoHC
capacity will be 200-270 users.Thus, the capacity increases by 50-60 users when the RoHC
software is hardware accelerated,when compared to pure software implementation. A
base station running hardware-accelerated RoHC can support an increase in capacity of
around 30% in this respect (this may differ based on the actual choice of implementation
of RoHC libraries).

5.12.3 Memory

The amount of memory and memory bandwidth are critical performance factors in or-
der for RoHC to support substantially higher amount of capacity. The RoHC module
prototyping platform, the Altera Arria II GX, has support for both DDR2 and DDR3
external memories to address the problems of both the amount of memory required and
access speed for high capacity.

The code footprint of the ported RoHC libraries with hardware accelerators, including
the ten test VoIP packets is about 80-90 kB. This can be easily accommodated in on
chip memory while external memory can be used to store the context memory for a large
number of users. The external memory should support high bandwidth as the context
data have to be stored and retrieved for many users from the external memory.

With the aim of supporting maximum capacity (which may be 1500 users supported by
a single cell in an LTE system in the near future), with a RoHC context size of 360 bytes
which is read and written into external memory and with he VoIP throughput which is
50 packets/s (20 ms to process one VoIP packet ignoring voice activity factor of 0.5) The
memory bandwidth for the RoHC system for supporting maximum bandwidth is given
by equation as shown below :

BW (RoHC) = N × context size× 2(R/W)× 8(byte)× 50 packets/sec (V oIP throughput)

= N × 360× 2× 8× 50 = 288kbit/sec×N (Memory BW for 1 user)

= 1500× 288kbit/sec ≈ 430Mbps (Memory BW for N = 1500 users).

With a DDR2 interface of 42.6 Gb/s @ 64-bit data bus and a DDR3 interface of 10.6
Gb/s @ 16 bit data bus, the memory bandwidth of the target device is more than enough
to cater to the memory bandwidth needed to support maximum throughput.

5.12.4 Area

The RoHC embedded system is synthesized on an Altera II GX FPGA. The logic uti-
lization in terms of ALUTs is as shown in Table 5.2. This includes the ALUTs for the

43

Table 5.2: Logic utilization of components of RoHC embedded system

Block Combinatorial ALUTs Dedicated Logic Registers Block Memory bits

NIOS II CPU 2215 1680 325504

DDR 3 Memory controller 2805 2112 19072

JTAG UART 125 112 1024

On chip memory 36 2 1048576

Sys ID 26 17 0

Performance Counters 1071 711 0

WLSB Custom Instruction 257 0 0

CRC Custom Instruction 106 0 0

Misc 1178 792 0

Total 7871 /205200 (4 %) 5433/205200(1 %) 1392064 /8755200 (16%)

CRC and the WLSB modules. An ALUT consists of a 6-input LUT, an adder and a
register pair, and is the basic cell of synthesis in the FPGA.

We observe that the number of ALUTs utilized by the entire RoHC system is about
4% of what is available on the board for combinational ALUTs and about 16% for
block memory bits. In this small utilization by the RoHC system,the utilization of the
hardware accelerators is even smaller. The HW accelerators consume roughly 15% of
the ALUTs compared to the NIOS system (excluding peripherals). Thus, the addition
of such accelerators (CRC, WLSB) will not change the FPGA utilization by much as
they occupy negligible number of ALUTs compared to the entire system.

5.12.5 Power Consumption

Alteras PowerPlay Power Analyzer is used to estimate the power consumed by the device.
This is important for thermal planning and power supply planning for the device.

For an average toggle rate set to 12.5% (default), power consumption readings are taken
for the entire RoHC embedded system with NIOS II soft-core processor and all the
peripherals including the custom instruction hardware accelerators like WLSB and CRC.
These power readings are tabulated in the table 5.3. We see that the HW accelerators
roughly consume 2% of the power compared to the entire system (excluding peripherals),
which is negligible.

5.13 Observations

For hardware-software co-design of RoHC, with implementations of CRC and WLSB as
hardware accelerators, the major bottleneck in the overall throughput of the system is
the handling of uncompressed RoHC packets. These are the IR and IR-DYN packets.
They only make use of the CRC HW accelerator and not WLSB HW accelerator. This
is because, the fields are not WLSB encoded in IR and IR-DYN packets. However, in a

44

Table 5.3: Power consumption of components of RoHC embedded system

Block Total Thermal Power (mW)

NIOS II CPU 115.84

DDR 3 Memory controller 223.67

JTAG UART 3.07

On chip memory 141.9

Sys ID 0.17

Performance Counters 10.26

Alt PLL 108.7

WLSB Custom Instruction 2.96

CRC Custom Instruction 0.99

Misc 51.51

Total 659.07

given traffic situation, the probability that the RoHC system has to send only IR packets
for all the users at the same time is statistically very small. Therefore, the potentially
critical impact of uncompressed RoHC packets on the overall throughput is averaged
out.

The introduction of these hardware accelerators does not cost much in terms of area
and power, as seen in section 5.12. Usually, the LTE physical layers is implemented in
base stations with the help of a number of hardware accelerators, e.g, accelerators for
the computation of CRCs, FFTs, etc. The addition of RoHC dedicated hardware accel-
erators could also be seriously considered as these would greatly boost the performance
of RoHC.

The choice of going for hardware acceleration of RoHC is greatly influenced by the
capability of the lower layers to handle the resulting capacity. If the scheduling in
LTE is not capable of handling the traffic which the hardware-accelerated RoHC is
capable of handling, then it is better to adjust the capacity (throughput) of the RoHC
by using hardware accelerators for only a few functions. Around 20% overall increase in
performance is obtained with the aid of CRC and WLSB hardware accelerators to the
RoHC software. Even more increase in performance can be obtained if more components
are partitioned to be put in hardware which is further investigated in next chapter.

45

Chapter 6

Full-HW Solution

6.1 Introduction

In this chapter, the implementation of the RoHC algorithm for the compressor in full
hardware is discussed. An efficient hardware architecture that can cope with the through-
put requirement of an LTE base station is proposed. The implementation covers most
of the encoding methods defined in RFC3095, [1], for profile 1. However, the main func-
tionality of profile 0 and 2, explained earlier in section 3.2, are also implemented but
their details are omitted in this context. Table 6.1 below summarizes the coverage of
the current implementation.

The rest of this chapter is organized into four sections. In section 6.2, implementation-
specific parameters of the RoHC algorithm are discussed. In section 6.3, the top-level
architecture of the full hardware solution is presented and then explained in detail. In
section 6.4, a more powerful hardware architecture is presented. In section 6.5, key
results and findings of the full-HW solution are presented and discussed.

Table 6.1: Full-HW implementation features

Feature Status

Mode U, O and R

Profile 1

Feedback processing Not supported

IP level 2

IPv4 Supported

IPv6 Supported

Compression list Not supported

46

6.2 RoHC Implementation-Specific Parameters

As mentioned earlier in chapter 3, some parameters defined in the standard, [1], such as
timeout counters, sliding-window size, and the optimistic approach are implementation-
dependent features. Varying these parameters while preserving the channel conditions
influences the overall performance of the algorithm. Table 6.2 shows these parameters
and their chosen values in this implementation.

Although choosing the optimum values for these parameters is not part of this study,
an outline of why these values are chosen is given. The sliding-window size is probably
the most crucial parameter as it affects the compression ratio. The compression ratio
is of course the reason this algorithm was developed in the first place. This is because
the sliding-window size influences the selection of which compressed packet to be sent.
For instance, by choosing the sliding-window size to be 16, it might not be possible to
send UO-0 packets since the required number of bits to encode the sequence number with
respect to 16 values is very likely to be more than 4 bits. The UO-0 packet is the smallest
packet RoHC can send and it can only transmit 4 bits of the sequence number.

Since the transmitted data in LTE downlink are protected by strong checksums and
with the support of retransmission mechanisms, there is a rather small risk that the
decompressor in the LTE uplink has lost a packet. Thus, a sliding-window size of 4
elements seems reasonable for both boosting the compression ratio and reducing the
processing and HW resources. Using the same argument, the other parameter values
are chosen by relying on the efficiency of the LTE system, which is the host of this
implementation, in protecting the transmitted packets.

Table 6.2: RoHC implementation parameters

Parameter Value

IR timeout counter 64

FO timeout counter 32

Optimistic approach 2

Sliding-window size 4

6.3 Top-level Architecture of the One-Stage Full-HW Im-
plementation

The full hardware architecture of the RoHC algorithm is divided into a controller stack
and data-path accelerators connected through a shared bus or point-to-point connection
as shown in Figure 6.1. The controller stack is nothing but a set of functions connected
together in a sequential fashion as shown in the figure.

47

Classifier

Detect IP-ID pattern

Detect timestamp pattern

Detect context change

Fields selection

Packet selection

Update context

Packetizer

Single-port

RAM

(context / outbut

buffer)

Folded divider

Multiplier

CONTROLLER STACK

CRC8

Bit packer 1

Bit packer 2 S

H

A

R

E

D

R

E

S

O

U

R

C

E

S

B

U

S

Single-port

RAM

(Input packet)

ALTMEMPHY

(DDR2 controller)

Input packet

Output packet

WLSB encoder

Search LUT

CRC7

CRC3

Fetch / initialize

 context

Parse input

packet

Figure 6.1: Top-level architecture of the full-HW solution

48

Since most of the operations in the RoHC algorithm are based on comparing the context
data and the received packet data; in order to accelerate these operations these data
are stored in separate RAMs. However, the context RAM might also be used as a
temporary storage for the output packet. Thus, only two single-port RAMs are used in
this implementation as shown in Figure 6.1.

For fetching and updating the context data from and to the external DDR2 memory,
an Altera DDR2 controller Intellectual Property (IP), provided in Quartus II software,
is used. This DDR2 controller is referred to as ALTMEMPHY in Figure 6.1. The
compressor can be interfaced to the outside world using the Altera standard memory-
mapped interface, [11].

6.3.1 Classifier

This classifier is responsible for assigning a profile to the input packet by inspecting the
header fields of the packet. Also, the classifier outputs the User ID (UID), the Stream
ID, the packet length, the payload position, the identified protocol, and their offsets in
the packet to the next controller in the stack. The Stream-ID is the Synchronization
Source Identifier (SSRC) field in the RTP header when profile 1 is assigned.

The classifier assigns profile 1 to the packet if an RTP/UDP/IP protocol stack is identi-
fied, whereas profile 2 is assigned to the packet if an UDP/IP protocol stack is identified.
Profile 0 is assigned if none of the previous protocol stacks is found or the IP protocol
does not meet the RoHC specification for compression.

Classification of IPv4

An IPv4 protocol is identified from the version field in the first octet of the IPv4 header.
It can also be identified from the next header or the protocol field in the outer IPv4 or
IPv6, respectively, if two IP levels1 are found in the packet. The identification of the
protocol fails if the number of octets in the received packet cannot cover all the header
information for a typical IPv4 header size.

If an IPv4 protocol is identified, profile 0 is assigned to the packet unless the fragmen-
tation offset and the flags fields, excluding the don’t fragment field, are not zero, the
protocol field is a UDP protocol, and the IHL field is 5.

Classification of IPv6

An IPv6 protocol is classified from the version field in the first octet of the IPv6 header.
It can also be identified from the next header or the protocol field in the outer IPv4 or

1The inner and outer IPs are used to connect users from two private networks together through a
so-called IP tunnel.

49

IPv6, respectively, if two IP levels are found in the packet. The identification of the
protocol fails, if the the number of octets in the received packet cannot cover all the
header information for a typical IPv6 header size.

If an IPv6 protocol is identified, profile 0 is assigned to the packet unless the next header
field is a UDP protocol.

Classification of UDP

A UDP protocol is classified from next header or the protocol field in the inner IPv4
or IPv6 respectively. The identification of the protocol fails, if the number of octets in
the received packet cannot cover all the header information for a typical UDP header
size.

Profile 0 is assigned if the identification of the UDP protocol fails.

Classification of RTP

An RTP flow is identified from the version field in the first octet of the RTP header which
must be 2. The identification of the protocol fails, if the the second octet in the header,
M and payload type fields, is equal to 200 or 201 as it conflicts with the Sender Report
(SR) or Receiver Report (RR) payload type for the RTP Control Protocol (RTCP). The
identification also fails, if the number of octets in the received packet cannot cover all
the header information for a typical RTP header size.

If an RTP flow is identified, profile 2 is assigned to the packet unless the counter field
is equal to zero. Otherwise, Profile 1 is assigned to the flow. The counter field refers
to the number of the RTP Contributing Source Identifiers (CSRC) found in the packet.
Hence, the compression list of an RTP-CSRC field is not supported in this implementa-
tion.

6.3.2 Fetching or Initializing The Context

Each user has a context stored in the external memory which is fetched when a packet
from the same stream is received. The assigned profile and the UID are used to calculate
the physical address of the context and its size in the DDR2 memory. This controller is
also responsible for initializing the context if the packet is the first packet in the stream.
The packet is considered the first packet in the stream, if the protocol stack and the
Stream-ID, which were identified earlier by the classifier, do not match the ones stored
in the external memory. Figure 6.2 shows the structure of the profile 1 context which
consists of 81 words. A word is considered 32 bits in this implementation.

50

Stream-ID

Identified protocols stack

Reference header

(20 words)

IP-ID pattern signals

(6 words)

RTP pattern signals

(4 words)

Mode status

(3 words)

Timeout counters

(3 words)

Sliding-window administrative part

Context status flags sliding-window

(4 words)

NSFF flags sliding-window

(4 words)

IP-ID offset sliding-window

(4 words)

SN sliding-window

(4 words)

Scaled TS sliding-window

(4 words)

Unscaled TS sliding-window

(4 words)

Feedback administrative part

4 feedback templates

(16 words)

Figure 6.2: Context structure for profile 1

When the context is initialized, some fields need to be set to a specific value. Table 6.3
lists these fields and their initial values in a newly created context. The IP-ID pattern
fields and the RTP pattern fields are discussed in details in subsection 6.3.4 and 6.3.5,
respectively.

6.3.3 Parsing The Input Packet

This controller works in parallel with the previous controller in subsection 6.3.2 as they
are data independent. It is responsible for parsing the input packet into static-dynamic
fields (parsing operation 1) and extracting the fields required to calculate CRC3 and
CRC7 (parsing operation 2). Since both operations share a significant number of fields,
a scheduling to run both operations in parallel is done to reduce the number of times
the memory is accessed, which in return reduces both the processing time and the

51

Field Initial Value

IP-ID pattern fields NBO0 1

RND0 0

NBO1 1

RND1 0

RTP pattern fields TS STRIDE 1

TS JUMP 1

Mode status fields Mode Unidirectional

Mode transition Done

Table 6.3: Initialization of context fields

power.

In order to reduce the memory resources for parsing operation 1, fields of the same
category, i.e., static or dynamic, are concatenated together in a 32 bits memory-word.
Similarly, the extracted fields in parsing operation 2 must be concatenated together
without any gaps or padding before the CRC calculations. Both parsing operations re-
quire bit masking, shifting and concatenating operations. These three logical operations
are executed in one clock cycle using the hardware presented in Figure 6.3, which would
be referred to as the bit-packing hardware throughout this work. The bit-packing hard-
ware is used in other controllers in the stack. Hence, it is among the shared resources
in Figure 6.1.

The bit-packing hardware has four main control signals msb, lsb, shift and sel lft over.
The msb and lsb signals are used to generate a mask for the bits of interest in the
input data. Then, the masked input data is shifted right or left by the barrel shifter
and concatenated together with what was previously stored in the register. The result
of concatenation might be taken out directly in the same clock cycle or stored in the
register. If the register does not have enough space to accommodate all the input bits,
it is possible to save the left-over bits in the concatenation and take the results of the
concatenation out in the same clock cycle.

6.3.4 Detecting IP-ID Pattern

The IP-ID is one of the IPv4 fields that can be compressed by communicating its differ-
ence relative to the sequence number, as discussed earlier in subsection 3.7.4, using the
WLSB encoding method. However, The IP-ID might not be compressed if it is randomly
generated in the network layer. In addition, the IP-ID must be converted to the network
byte order before IP-ID offset encoding is done, if it was transmitted in little-endian
order from the network layer. Network byte order is also referred to as big-endian order
in non-networking fields.

To detect the IP-ID pattern, the previously detected NBO and RND flags are stored

52

Input_data

MSB

Parser_output

__

32

One

 hot

decoder

One

hot

decoder

32

mask

32

Barrel

shifter
REG

shifted
MUX

Left_over

Shift Sel_lft_over

LSB

32

Figure 6.3: Bit-packing hardware

in the context. Moreover, two references to the IP-ID and the SN from the last two
packets are stored in the IP-ID pattern part of the context. Below are some notations
used throughout this work which are consistent with the notations used in the RFC3095
[1].

context(field): represents the value of the field stored in the context.

hdr(field): represents the value of the field with respect to the input packet.

The following procedure is used to detect the IP-ID pattern:

1. Calculate offset, ref offset1 and ref offset2 with respect to context(nbo).

2. If any of the offsets calculated in 1 matches any of the other two offsets, the value
of the context(nbo) and 0 are assigned to hdr(nbo) and hdr(rnd)respectively.

3. Otherwise, calculate offset, ref offset1 and ref offset2 with respect to the inverted
value of the context(nbo).

4. If any of the offsets calculated in 1 matches any of the other two offsets, the inverted
value of the context(nbo) and 0 are assigned to hdr(nbo) and hdr(rnd) respectively.

5. Otherwise, both hdr(nbo) and hdr(rnd) are set.

Both ref offset1 and ref offset2 are calculated from the two IP-ID pattern references
stored in the context as in equation 6.1 and 6.2, respectively.

ref offset1 =swap(context(ip− id1), nbo)− context(sn1), (6.1)

and

ref offset2 =swap(context(ip− id2), nbo)− context(sn2). (6.2)

53

The offset is calculated from the input packet header as in equation 6.3.

offset =swap(hdr(ip− id), nbo)− hdr(sn). (6.3)

The swap function is used to change the byte order of the IP-ID and is defined as in
equation 6.4 below:

swap(x, nbo) =

7∑

i=0

2i+8 · x(i) +
15∑

i=8

2i−8 · x(i) if nbo = 0

x otherwise
. (6.4)

All of the following, hdr(nbo), hdr(rnd) and offset, are stored in the packet RAM.

6.3.5 Detecting RTP Pattern

The timestamp of an RTP packet behaves differently depending upon the application
that the RTP is used for, e.g. audio or video application. For instance, when the RTP
protocol is used with an audio application, the timestamp is increased by the number
of samples which the payload carries regardless of whether the packet is transmitted or
dropped. See the case of silence suppression, as explained in [12]. If the RTP protocol is
used in conjunction with a video application, the timestamp doesn’t change in the packets
that carries the same video frame. However, the sequence number is incremented by one
if and only if the packet is sent. Also, RTP packets might be sent in a different order
than the order they were sampled, e.g., in the case of MPEG encoding is used. Figure 6.4
shows three examples of the timestamp behaviour in video and audio applications.

Another special case handled here is when a retransmission of an RTP packet is sus-
pected. The RTP receiver may request for a packet retransmission from the RTP sender.
As defined in [13], the RTP sender retransmits the same original sequence number as an
indication of a packet retransmission.

To detect the RTP pattern, several flags and fields are used to track the behaviour of the
timestamp such as ts stride, ts scaled, ts offset and ts jump. The notations of ts stride,
ts scaled, and ts offset are explained earlier in subsection 3.7.2. Ts jump is used to refer
to the existence of a silence-period in an audio stream, a new video frame has started,
or the timestamp doesn⁀increase by an integral multiple of the ref ts stride.

The expected pattern of hdr(ts) is when it is increased by context(ts stride) when it
is compared to context(ts), whereas, hdr(sn) is expected to increase by one when it is
compared to context(sn). Providing that the former conditions are true, hdr(ts stride)
is assigned the value of context(ts stride). Otherwise hdr(ts stride) is calculated as in
equation 6.5 below:

54

hdr(ts stride) =

ts delta− sn delta× context(ts stride) if ts jump = 1

context(ts stride) otherwise
.

(6.5)
ts delta and sn delta are calculated in equation 6.6 and 6.7 below:

ts delta =

hdr(ts)− ref(ts) if packets are in order

232 −
(
hdr(ts)− ref(ts)

)
otherwise

, (6.6)

and

sn delta =

hdr(sn)− ref(sn)− 1 if packets are in order
(
ref(sn)− hdr(sn)− 1

)
otherwise

. (6.7)

In case of a video frame transmitted in multiple packets, the ts stride may equal zero. In
such a case, ts scaled is always the unscaled timestamp. Equation 6.8 below then takes
precedence over equation 3.3 in subsection 3.7.2:

ts scaled =

hdr(ts)÷ hrd(ts stride) if hdr(ts stride) 6= 0

hdr(ts) otherwise
. (6.8)

Another field that is important in tracking the timestamp behaviour is the ts offset. The
hdr(ts offset) is calculated as follows:

hdr(ts offset) =

hdr(ts) if hdr(ts stride) = 0

context(ts offset) otherwise if hdr(sn) 6= context(sn)

hdr(ts) mod hrd(ts stride) otherwise

.

(6.9)

All of the following hdr(ts stride), hdr(ts offset) and hdr(ts jump) are stored in the packet
RAM. Regarding the division and modulus operations needed in equation 6.8 and 6.9
respectively, a time multiplexed cordic integer divider is used for this purpose as shown
in Figure 6.1.

55

Speech activity

100 101 102 103 104 105 106 107 108 109 110 111

10 20 30 40 50 60 70 80 90 100 110 120

sequence-
number

Timestamp

system clk

(a) Continues voice frames

Speech activity Speech activitySilence period

100 101 102 103 104 105 106 107 108

10 20 30 40 50 60 70 80 90 100 110 120

sequence-
number

Timestamp

system clk

(b) Voice frames with silence period

video frame 1 video frame 2 video frame 3

100 101 102 103 104 105 106 107 108 109 110 111

10 10 10 10 20 20 20 20 30 30 30 30

sequence-
number

Timestamp

system clk

(c) Video frames

Figure 6.4: TS-SN pattern in video and voice frames

56

6.3.6 Detecting Context Change

To detect the context change, different fields from the context are checked with their
equivalent in the received packet. The results of this extensive comparison process are
stored in flags; these flags are then used by other controllers in the stack.

Two sets of the same flags are created, Sliding-Window (SW) flags and Field Selection
(FS) flags. The SW flags are later stored in the sliding-window when the context is
updated. On the other hand, the FS flags are only stored temporarily since they are
only used in the process of packet and fields selection.

The values of these flags before this operation come from the feedback processing. How-
ever, since the feedback processing is not implemented, the values of these flags are
initialized to zero for all the packets in the stream except for the first one. Also, the
values of both SW flags and FS flags are equal after this operation. Nevertheless, the
values of FS flags might be altered in the fields selection process, as it is explained in
the next subsection.

The different flags are defined below:

1. Context status flags:

Stat: This flag is set, if the packet is the first packet in the stream or the static part
of the reference header in the context does not match the received packet’s
static part.

Dyn: This flag is set, if the packet is the first packet in the stream

Mt: This flags is set, if the mode transition is pending or initiated.

Nack: This flags is not changed here.

2. IP flags:

Nsff tos/tc: This flag is set, if the hdr(tos) in IPv4 or the hdr(tc) in IPv6 does
not equal context(ttl) or context(tc).

Nsff ttl/hl: This flag is set, if the hdr(ttl) in IPv4 or the hdr(hl) in IPv6 does not
equal context(ttl) or context(hl) respectively.

Nsff df: This flag is set, if the hdr(df) in IPv4 does not equal the context(df).

Nsff nbo: This flag is set, if hdr(nbo) does not equal context(nbo).

Nsff rnd: This flag is set if hdr(rnd) does not equal context(rnd).

To support two IP-levels, two sets of the IP flags are created, i.e., one for the inner
IP and the second for the outer IP.

3. UDP flags:

57

Nsff checksum: This flag is set, if the hdr(checksum) does not equal context(checksum)
and none of them equals to zero.

4. RTP flags:

Nsff p: This flag is set, if the hdr(p) does not equal context(p).

Nsff x: This flag is set, if the hdr(x) does not equal context(x).

Nsff pt: This flag is set, if the hdr(pt) field does not equal context(pt) field and
non of them equal zero.

Nsff tss: This flag is set, if hdr(ts jump) is equal to zero and context(ts stride)
does not equal hdr(ts stride).

Nsff offset: This flag is set, if the hdr(ts stride) or hdr(ts offset (or both) do not
equal context(ts stride) or context(ts offset), respectively.

If this flag is set, the unscaled TS is encoded using the WLSB encoder. This
flag masks the effect of the nsff ts wlsb flag below.

Nsff ts wlsb: This flag is set, if the hdr(ts jump) is equal to one. When this flag
is set, the scaled TS is encoded using the wlsb encoder.

To accumulate the results of previous comparisons, a logical OR operation and a register
are needed. Since these two elements already exist in the bit-packing hardware, it is used
here as well.

6.3.7 Fields Selection

As discussed earlier in section 3.5, the compressor does not transit to a forward state
until it is fairly confident that the decompressor context is in synchronization with its
context. This forwards transition is analogue to the number of times the same field (or
fields) are transmitted before the compressor assumes that it is safe to stop transmitting
a specific field (or fields). This confidence is achieved through different means depending
on the operational mode. In this controller, the fields which need to be transmitted to
the decompressor are selected with the help of the flags stored in the context and the
flags resulted from the controller in subsection 6.3.6.

In case of the unidirectional or bi-directional optimistic mode, the FS flags are merged2

with the context(sw flags) from previous packets. This merging operation is analogue to
the so called optimistic approach. Since the optimistic approach in this implementation
is only 2, the FS flags are merged with context(sw flags) of the last two context-updating
packets. As explained earlier, the optimistic approach refers to the number of time that
a specific field is sent to the decompressor. Note that in this case only the FS flags are

2Logical OR operation is applied on the flags need to be merged.

58

changed; the SW flags are not altered by this controller. The SW flags are stored in the
sliding-window part when the context is updated.

In case of the reliable mode, the SW flags are merged with context(sw flags) of the last
context-updating packet. This is to keep sending the same field until an acknowledging
feedback is received and the acknowledged elements in the window are deleted. The
operation of deleting the acknowledged elements in the sliding-window is done in the
feedback processing, in case it were to be implemented. However, the FS flags are
assigned the value of the SW flags after the merging with the old flags is done. The
SW flags are stored later in the sliding-window part of the context in case the selected
packet is a context-updating packet.

After merging the flags, the following operations are done on the FS flags:

1. If the Nack bit is set among the FS flags, the tss bit flag is set to send ts stride in
UOR-2-X-EXT3, IR or IR-DYN packets.

2. If the checksum bit is set among the FS flags, the dyn bit is set to send IR-DYN
packet.

6.3.8 Packet Selection

The process of selecting the right packet to send is quite important to ensure a continuing
successful compression and decompression. As discussed earlier for profile 1, there are
38 different compressed packets with different characteristics that the RoHC compressor
can select from.

Unless an initialization packet must be sent, packet selection of a compressed packet
passes through three main processes. Initialization packets are sent depending on the
stat and dyn bits in the FS flags and the time-out counters in case of a unidirectional
transmission. The explanation of the three main processes is as follows:

Excluding unsuitable packets

Not all the packets are suitable for the selection process. This depends on the operational
mode, the status of mode transition, and which fields are selected for transmission.

One 38-bits register, referred to as the disabled pkt register, is initialized to zero before
entering this process. Each bit in the register refers to one compressed packet type.
When a packet is excluded in the register, its bit is set to one. Figure 6.5 shows seven
masks that might be applied to the register to exclude unsuitable packet types from the
selection process when the operational mode is the unidirectional or the bi-directional
optimistic mode. These masks are applied provided that the conditions in their prefixes
are true. For instance, if the RTP-M bit in the received packet is set, the M bit mask

59

from Figure 6.5 is applied to the disabled pkt register to exclude all the packets that
cannot transmit the RTP-M bit.

Since the reliable mode uses some different packet types than the other two modes,
masks values are different than the ones in Figure 6.5.

 R-0 _

 R-0-CRC _ |

 R-1-ID _ | |

 R-1-TS _ | | |

 UO-0 _ | | | |

 UO-1-ID _ | | | | |

 UO-1-TS _ | | | | | |

 UOR-2-ID _ | | | | | | |

 R-1-ID-EXT0 _ | | | | | | | |

 UO-1-ID-EXT0 _ | | | | | | | | |

 UOR-2-TS _ | | | | | | | | | |

 R-1-TS-EXT0 _ | | | | | | | | | | |

 UOR-2-ID-EXT0 _ | | | | | | | | | | | |

 UOR-2-TS-EXT0 _ | | | | | | | | | | | | |

 R-1-TS-EXT1 _ | | | | | | | | | | | | | |

 UO-1-ID-EXT1 _ | | | | | | | | | | | | | | |

 UO-1-ID-EXT2 _ | | | | | | | | | | | | | | | |

 UOR-2-TS-EXT1 _ | | | | | | | | | | | | | | | | |

 R-1-ID-EXT2 _ | | | | | | | | | | | | | | | | | |

 R-1-TS-EXT2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | | | | | | | | | | | | | | | | | | |

 UOR-2-ID-EXT2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |

 UOR-2-TS-EXT2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |

 R-1-ID-EXT3 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |

 UO-1-ID-EXT3 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |

 UOR-2-ID-EXT3 _ _ _ _ _ _ _ _ _ _ _ _ _ _ |

 R-1-TS-EXT3 _ _ _ _ _ _ _ _ _ _ _ _ _ |

 UOR-2-TS-EXT3 _ _ _ _ _ _ _ _ _ _ _ _ |

 UO-1 _ _ _ _ _ _ _ _ _ _ _ |

 R-1 _ _ _ _ _ _ _ _ _ _ |

 UOR-2 _ _ _ _ _ _ _ _ _ |

 R-1-EXT0 _ _ _ _ _ _ _ _ |

 UOR-2-EXT0 _ _ _ _ _ _ _ |

 R-1-EXT1 _ _ _ _ _ _ |

 UOR-2-EXT1 _ _ _ _ _ |

 R-1-EXT2 _ _ _ _ |

 UOR-2-EXT2 _ _ _ |

 R-1-EXT3 _ _ |

 UOR-2-EXT3 _ |

| |

V V V V V V V V V V V V V V V V V V | V V V V V V V V V V V V V V V V V V V

UO_mask 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1

mt_nsff_mask 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1

M_BIT_MASK 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1

rnd_nsff_mask 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1

inv_rnd_nsff_mask 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1

nack_mask 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1

dyn_nsff_mask 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1

Figure 6.5: Unidirectional and bi-directional optimistic mode packets’ masks

Minimal bit encoding using WLSB

SN, IP-ID, and TS are the fields which may be encoded using the WLSB encoder.
However, some special cases must be checked for IP-ID and TS as below:

1. For any existing IPv4 header in the protocol stack whose IP-ID is detected to be
random, the IP-ID field is sent as-is without any encoding.

60

2. The timestamp might be compressed by encoding either the ts scaled or the original
timestamp using the WLSB encoding method. The nsff offset and nsff wlsb bits
in the FS flags control this operation.

TheWLSB encoding method consists of the following operations which run in a pipeline:

1. Finding the minimum and the maximum reference values stored in the sliding-
window for a specific field. This operation might take at most 4 clock cycles if 4
references exist in the sliding-window.

2. Finding the maximum number of bits required to encode a given field with respect
to both minimum and maximum reference values found in previous step. This
operation takes at most two clock cycles if the minimum and the maximum values
are not equal. The LSB encoder in Figure 4.2 is used in this step.

The process of searching the bit vector of the disabled pkt register starts from least
significant bit since the most desirable packet which have high compression ratio
are ordered from the right to the left.

Packet_Options_Register

(Least-Significant Zero Detector) LSZD

masked

Disabled_PKTs

Load

en

MUX
1

0

Packet Capability Look Up Table (PC-LUT)

Check packet capability controller

E
x

t_
ID

_
0

_
k

E
x

t_
S

N
_

k

B
a

s
e
_

T
s

_
k

B
a
s

e
_

Id
_

0
_

k

B
a
s

e
_

S
n

_
k

E
x

t_
ID

_
1

_
k

WLSB_id_1_k

WLSB_sn_k

WLSB_id_0_k

B
a

s
e

_
ID

_
1

_
k

E
x

t_
T

S
_

k

v
a

li
d

WLSB_ts_k

u
p

d
a

te

C
R

C
_

ty
p

e

P
a

c
k

e
t_

ty
p

e

Selected_pkt Selected_pkt_capability CRC_type Update_property

Figure 6.6: Packet capability check

61

Selecting the best packet

In the previous two processes, all the packets that are unsuitable for selection are disabled
and the number of bits required to encode all of the SN, the IP ID and the TS is
calculated. In this process, the best packet which can transmit the number of bits
calculated for the selected fields is chosen from the allowable packets in the disabled pkt
register.

Selecting the best packet requires checking if the capabilities of the packet in question
meet the requirements. This process is repeated until a packet that meets the require-
ments is found.

To find a suitable packet in the register, a Least Significant Zero Detector (LSZD) is used.
After finding a non-disabled packet in the disabled pkt register, the corresponding bit is
disabled. If the packet capabilities extracted from a look-up table meet the requirements,
the packet is considered. If none of the compressed packet types meets the requirements,
an IR-DYN packet is selected for the transmission. Fig 6.6 shows a block diagram of the
hardware needed for this process. The output of the LSZD is one-hot coded; therefore,
there is no need for a decoder in the PC-LUT.

6.3.9 Update Context

Different memory sections are updated depending on whether the selected packet is a
context-updating packet or not. Provided that the selected packet has the updating
property, almost all the sections of the context memory are updated. On the other
hand, only the IP-ID pattern section is updated if the packet is not a context-updating
packet. The updated sections are directly communicated to the DDR2 memory through
the interfacing memory controller the ALTMEMPHY.

The updating of the sliding-window part works the same way the First-In-First-Out
(FIFO) memory works. For instance, if the sequence number field is added, the counter
and the pointer in the administrative part of the sliding-window is altered to reflect the
number of elements and the position of the last element in the sliding-window. Thus,
there is no need to rewrite all the pre-existing elements to the sliding-window or change
their positions in the DDR2 memory.

6.3.10 Packetizer

This is the last controller in the stack. Here, the packet selected by the previous controller
is packetized. Fig. 6.7 shows a flow chart of the packetizer operations. Two intersecting
flows can be recognized in the flow chart, i.e., one for the initialization packets and one
for the compressed packets.

62

Start

Selected

packet
Packetize base header

Packetize extension

header

Packetize random IP-IDPacketize UDP checksum

Packetize payload

Compressed packet

IR

Packetize IR-DYNPacketize IR-STATIC

Selected

packet

Packetize CRC 8

Initialization packet

Send packet out

Compressed packet

IR-DYN

Check packet type

Finish

Initialization packet

Figure 6.7: Packetizer flow chart

For the packetization process of the initialization packets, a CRC8 needs to be calculated
over the entire packetized header (not the payload) before adding it to its place holder
in the third octet of the packetized header. Therefore, in order to add the missing CRC8
field, the packetized packet is temporarily buffered in the output memory before sending
it out. The calculation of CRC8 runs in parallel with the packetization process of the
static and dynamic fields.

The packetization process needs the same logical operations used in the header parsing.
Thus, the bit-packing hardware from the shared resources is used here as well for stuffing
variable-length bit fields together.

6.4 Four-Stages Pipeline Architecture

In [3], the base station link speed is expected to reach 2.5 Gbps in the near future. This
requires the RoHC compressor to handle an input rate of 2.6 million packets per second,
assuming a packet size of a 120 bytes. The full-HW design presented in the previous
section cannot handle such a high-speed link and a more powerful design is needed.
Figure 6.8 shows a four-stage pipeline architecture that can compress at least three time
the number of packets that the one stage hardware design can compress.

The pipeline architecture can process four packets at the same time. The pipelining
is achieved by dividing the controller stack into four stages and removing the data

63

Input packet

Output packet

WLSB encoder

Search LUT

CRC8

Bit-packer 3

Single-port

RAM 2

Single-port

RAM 1

S

W

I

T

C

H

Context/output

Single-port

RAM 2

Single-port

RAM 1
S

W

I

T

C

H

Input packet

Single-port

RAM 3

Single-port

RAM 4

ALTMEMPHY

(DDR2 controller)

A

R

B

I

T

E

R

CONTROLLER STACK

F

O

U

R

S

T

A

G

E

S

C

O

N

N

E

C

T

O

R

S

Stage 2

Stage 3

Stage 4

Stage 1

Folded divider

Multiplier

CRC7

CRC3

Bit-packer 1

Bit-packer 2

Figure 6.8: Four stage pipeline architecture

64

dependency between the stages. This requires extra storage and hardware resources.
Since each stage in the controller stack needs the data of the input packet under its
processing, four single-port RAMs are connected to the four stage controller through
a full-crossbar switch to provide simultaneous transmissions. Similarly, a full-crossbar
switch is needed to connect the context data to stage 2 and stage 3 in the controller
stack. Also, an arbitration on the external memory controller is needed assuming that
the context is fetched and updated in two different stages.

6.5 Results

The proposed one-stage full-HW design in 6.3 for the RoHC compressor is described in
structural VHDL code and synthesised using a Quartus II compiler. The functionality
of the design is verified on ARRIA II GX board by interfacing the design to a NIOS
II micro-controller which runs the test bench written in C language. The interface
between the NIOS II and the design follows the avalon memory-mapped interfacing
protocol explained earlier in section 5.7. 3

Table 6.4: One-stage Full-HW implementation results of RoHC compressor

Parameter Value

Throughput[packet/second] 244k

#ALUT 7477

Internal memory usage [KB] 1

Flip-Flop 2533

DDR2 bandwidth usage DDR2

Memory bandwidth[kbps] 212.8

Power[Watt] 0.9 @ 90MHz

Max frequency[MHz] 100

Table 6.4 shows that the maximum operational frequency of the RoHC compressor is 100
MHz and the total ALUT used is 7477. The design can compress up to 244 kilo-packet
per second. The analysis of the key results are shown in Figure 6.10. The following
subsections discuss the key results in more details.

6.5.1 Throughput and Capacity

The throughput is calculated in term of the number of packets that the design can
compress in one second. Table 6.4 shows that the execution time of one packet might
take at most 4.1us when an IPv4/UDP/RTP packet is compressed. Assuming such a

3Please note that the results of the four-stages pipeline architecture is not discussed in this report

65

typical traffic of IPv4/UDP/RTP packets, the total number of packets that the full-HW
can compress is 244000 packet/s.

The capacity is calculated in term of the number of active users that the RoHC design
can serve. Assuming a voice activity of 0.5 means that a one user is sending or receiving
25 packets/s. Thus, the number of users is 9760 users.

6.5.2 Memory Bandwidth

Table 6.4 shows that the memory bandwidth needed to fetch and update the context of
one user is 212.8 kbps. The memory bandwidth for one user is calculated as follows:

Memory bandwidth = (context read size+ context write size)× 8bit ∗ 50packet/s
(6.10)

The total size of the context fetched from the DDR2 is 328 bytes, whereas only 204 byes
are needed to be written back in a worst case when the context contains references to
two IPv6 protocols, i.e, when an RTP/UDP/IPv6/IPv6 protocol stack is detected in the
received packet. Figure 6.9 shows that almost 30 % of the execution time is taken by the
communication overhead between the external memory and the compressor when the
context is stored externally. Thus from a system level perspective, the communication
with the external memory can be a limiting factor if other components share the same
external memory.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

IPv4/UDP/RTP IPv6/UDP/RTP

E
x
cu

ti
o

n
 t

im
e

 [
u

s]

Context stored in external

DDR2 memory

Context stored in on-chip

memory

Figure 6.9: Effects of external DDR2 memory on the execution time of different protocol
stacks

66

6.5.3 Area

The pie chart in Figure 6.10a shows that the controller stack occupies 65 % of the
total design ALUTs. This makes sense since the RoHC algorithm is a control inten-
sive algorithm, as discussed earlier. The controller state-machine consists of 211 states
that control the remaining 35 % ALUTs. The controller state-machine occupies 4790
ALUTs.

The remaining 35% consists of CRC accelerators (124 ALUTs), 2 bit-packing hardware
(1200 ALUTs), WLSB encoder (647 ALUTs), search LUT compnent (372 ALUTs), and
arithmetic divider (233 ALUTs).

6.5.4 Power Consumption

Table 6.4 shows that the total power dissipation is 0.9 Watt when clocking the design at
90 MHz. Most of the dynamic power consumption is wasted in fetching and updating
the context as shown in Figure 6.10b. This is because the context is stored in the external
DDR2 memory and a memory controller is needed for the communication.

When thinking about reducing the dynamic power, a clock-gating technique can be used
to switch-off the parts of the design that are in idle state. For instance, this technique
can be applied to the controllers in the controller stack which are in idle state. Moreover,
the dynamic power can be reduced significantly by reducing the clock frequency when
less capacity is required. However, the power analysis tool in the Quartus II software
shows that more than half of the total power dissipation is a leakage power.

6.5.5 Execution Time

Figure 6.10c shows that the execution time almost equally distributed among the con-
troller in the stack. Lacking a dominant component on the execution time is the reason
why the increase in the performance of the HW-SW solution, presented in chapter 5,
is modest. By inspecting the pie chart of the execution time, another 20-30 % increase
in the HW-SW performance might be possible, if more data-path components, such as
the bit-packing and the search-LUT, are implemented in HW. Since the algorithm is
a control intensive algorithm and the control part checks a large amount of data, it is
recommended that the communication cost is inspected when partitioning the controller
into a HW-SW is desired.

67

2%

16%

9%

5%

3%

65%

CRC 3,7 and 8

Bit-packing × 2

WLSB encoder

Search_LUT

Divider

RoHC controller stack

(a) Area analysis

63%

1%

2%

6%

1%

1%

26%
DDR2 controller

CRC 3,7, and 8

Bit-packing × 2

WLSB encoder

Search_LUT

Divider

RoHC controller stack

(b) Power consumption analysis

11%

17%

3%

13%

15%

10%

18%

13%

Classifier

Header Parsing & CRC3/7

Calculations

Detect IP-ID Pattern

Detect TS Pattern

Detect Context Change &

Field Selection

Packet Selection

Update Context

(c) Execution-time analysis

Figure 6.10: Analysis of area, power consumption, and execution-time results

68

Chapter 7

Comparison between Different
RoHC Solutions

The proposed HW-SW and full-HW designs are implemented on the Altera Arria II GX
board. By using the Quartus II software, different design metrics are extracted such as
the maximum frequency with which the system can be clocked, the power dissipation,
and the area in term of the number of the LUTs used. The hardware components in both
solutions are described in structural VHDL and the software part in HW-SW solution
is written in C language [10] and compiled on Nios II softcore micro-controller.1

The HW-SW solution, with a hardware partitioning degree of 10%, occupies 2578 LUTs.
The full-HW solution uses three times as many LUTs as in the HW-SW design. However,
the HW-SW design shows only a modest increase in the capacity metric compared to the
significant improvement that the full-HW can achieve. Moreover, the power consumption
in the full-HW design is around 40% less than the HW-SW design. This is because the
full-HW design runs on a clock that is slower than the HW-SW design. The full-HW,
HW-SW and SW-only designs are compared in Table 7.1.

In [6], a HW design is proposed targeting mobile handset application. The best pro-
cessing time achieved in [6] is 40µs. In [14], a hardware design is modelled in SystemC
targeting wireless mesh networks. The packet processing time in [14] varies between
0.6µs to 22.6µs. Therefore, the proposed Full-HW design can perform 5 to 10 times bet-
ter than the designs proposed in [6] and [14] with respect to throughput. However, since
the target technology, the power consumption, and the area usage of both designs in [6]
and [14] are not available, it is not feasible to compare between these two designs and
the proposed one with respect to any other design metric but the throughput. Figure
7.1 shows a comparison in the execution time between the proposed full-HW solution
and the ones in [14] and [6].

1Please note that the results of the four-stages pipeline architecture is not discussed in this report

69

Table 7.1: Comparsion between one-stage full-HW, HW-SW, and SW-onlly implemen-
tations

Design Metrics Full-HW HW-SW SW

Throughput[packet/second] 244k 6250 4761

Power consumption[Watt] 0.9 1.5 -

ALUT 7477 2578 2215

Flip-Flops 2533 1680 1680

Max frequency[MHz] 100 150 150

Memory[kB] 2 75 75

External Memory Bandwidth[kbps] 212.8 288 288

0

5

10

15

20

25

30

35

40

45

Proposed full-HW REF[5] REF[4]

E
x
e

cu
ti

o
n

 t
im

e
 [

u
s]

Figure 7.1: Comparison between different full-HW designs with respect to one packet
execution time.

70

Chapter 8

Conclusions

Figure 8.1: RoHC Performance Graph with respect to the HW-SW partitioning degree

This thesis work contributes with a study towards boosting the performance of the
RoHC algorithm. A HW-SW and a full-HW solution are proposed and their performance
metrics are compared against the SW-only implementation. These cases are important
since they are the endpoints which determine the improvement in the performance with
respect to the degree of the HW-SW partitioning. The number of users that the RoHC
implementation can support in a base-station is plotted against the degree of partitioning
as shown in Figure 8.1. An increase of 20% in the performance is obtained by a HW-SW
co-design in which around 10% hardware is assisting the RoHC software. This should be
compared to the 45 times increase in the performance that is achieved when a full-HW
solution is used.

71

The plot can be used to empirically determine the percentage of the partitioning neces-
sary to achieve a particular performance. However, when partitioning a control inten-
sive algorithm, such as the RoHC algorithm, the communication cost might appear to
be a bottleneck for achieving a particular performance. This is because partitioning a
state-machine between hardware and software might add more complexity to the overall
picture. Moreover, the RoHC state-machine checks a large amount of data which need
to be reachable by both partitions, i.e., the hardware and the software partition.

From a system perspective, the comparison between a RoHC implementation based
on a full-HW, a HW-SW design, down to a pure software-based implementation will
help in deciding which methodology to choose. Based on the required capacity, the
area and the power results can be used to plan the power and the area budgets for a
system-level planning. When thinking about increasing the RoHC capacity, the external
memory bandwidth must also be considered. The base station is required to maintain
and switch between the RoHC contexts of the users. This puts hard requirements on
the external memory and its bandwidth which might be shared by other components in
the system.

72

Bibliography

[1] C. Bormann, S. BURMEI, and M. Degermark, “Rfc 3095, robust header com-
pression: Framework and four profiles: Rtp, udp, esp and uncompressed,” IETF
Standard, Internet Engineering Task Force, IETF, CH Jul, 2001.

[2] D. Szczesny, A. Showk, S. Hessel, A. Bilgic, U. Hildebrand, and V. Frascolla, “Per-
formance analysis of lte protocol processing on an arm based mobile platform,” in
System-on-Chip, 2009. SOC 2009. International Symposium on. IEEE, 2009, pp.
056–063.

[3] D. Taylor, A. Herkersdorf, A. Doering, and G. Dittmann, “Robust header compres-
sion (rohc) in next-generation network processors,” IEEE/ACM Transactions on
Networking (TON), vol. 13, no. 4, pp. 755–768, 2005.

[4] “LTE Specification by 3GPP,” acessed 19-August-2012. [Online]. Available:
http://www.3gpp.org/LTE

[5] E. Dahlman, S. Parkvall, and J. Sköld, 4G: LTE/LTE-Advanced for Mobile Broad-
band. Academic Press, 2011.

[6] D. Szczesny, S. Traboulsi, F. Bruns, S. Hessel, and A. Bilgic, “Exploration of energy
efficient acceleration concepts for the rohcv2 in lte handsets,” in Industrial Embedded
Systems (SIES), 2011 6th IEEE International Symposium on. IEEE, 2011, pp.
232–237.

[7] Effnet, “Effnet rohc performance on intel core microarchitecture based
processors,” acessed 19-August-2012. [Online]. Available: http://www.effnet.com/
19350 EFFNET Final.pdf

[8] R. Williams, “A painless guide to crc error detection algorithms,” August, 1993,
acessed 19-August-2012. [Online]. Available: http://ceng2.ktu.edu.tr/∼cevhers/
ders materyal/bil311 bilgisayar mimarisi/supplementary docs/crc algorithms.pdf

[9] E. Stavinov, “A practical parallel crc generation method,” Circuit Cellar-The Mag-
azine For Computer Applications, vol. 31, no. 234, 2010.

[10] S. T. French space agency (CNES), Thales Alenia and V. Technologies, “Rohc-1.3.1
library,” acessed 19-August-2012. [Online]. Available: http://launchpad.net/rohc/

73

http://www.3gpp.org/LTE
http://www.effnet.com/19350_EFFNET_Final.pdf
http://www.effnet.com/19350_EFFNET_Final.pdf
http://ceng2.ktu.edu.tr/~cevhers/ders_materyal/bil311_bilgisayar_mimarisi/supplementary_docs/crc_algorithms.pdf
http://ceng2.ktu.edu.tr/~cevhers/ders_materyal/bil311_bilgisayar_mimarisi/supplementary_docs/crc_algorithms.pdf
http://launchpad.net/rohc/

[11] I. Quartus, “Version 11.1 handbook,” Altera Corporation, 2011.

[12] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “Rfc 3550, rtp: a
transport protocol for real-time applications,” July, 2003, acessed 19-August-2012.
[Online]. Available: http://www.ietf.org/rfc/rfc3550.txt

[13] J. Rey, D. Leon, A. Miyazaki, V. Varsa, and R. Hakenberg, “Rtp retransmission
payload format,” Internet Engineering Task Force, RFC, vol. 4588, 2006.

[14] S. Jung, S. Hong, and K. Kim, “On achieving high performance wireless mesh
networks with data fusion,” in World of Wireless, Mobile and Multimedia Networks,
2007. WoWMoM 2007. IEEE International Symposium on a. IEEE, 2007, pp. 1–8.

74

http://www.ietf.org/rfc/rfc3550.txt

	Introduction
	Background of RoHC in LTE System
	Summary of RoHC Framework Specifications
	Classification of Header Fields
	Profiles
	Compressor and Decompressor
	Modes
	Unidirectional Mode (U-mode)
	Bidirectional Optimistic Mode (O-mode)
	Bidirectional Reliable Mode (R-mode)

	Compressor States
	Decompressor States
	Encoding Methods
	LSB Encoding
	Scaled RTP Timestamp Encoding
	Timer-based RTP Timestamp Compression
	IP-ID Offset Encoding
	Self-Describing Variable Length Code (SDVL) Encoding

	CRC
	Major RoHC Packet Types

	Design of RoHC Hardware Accelerators
	CRC Hardware Accelerator
	Design of Parallel CRCs

	Least Significant Bit Encoding (LSB Encoding)
	Case 1 when (value < vref)
	Case 2 when (value > vref)
	Hardware Implementation of LSB Encoding

	HW-SW Solution
	Introduction
	Porting of RoHC to FPGA
	Profiling
	Valgrid
	Altera based Performance Counters

	Algorithmic Partitioning between Hardware and Software
	HW-SW co-design flow for a RoHC system
	RoHC Embedded System
	Qsys System Interconnect
	Custom Logic Instructions vs Custom Logic Peripherals
	Hardware Accelerators in RoHC System
	Mixed data-width CRC Hardware Accelerator
	CRC Hardware Accelerator Architecture
	WLSB Hardware Accelerator

	Fast prototyping on an FPGA
	HW-SW co-verification
	Results
	RoHC Throughput
	RoHC Capacity
	Memory
	Area
	Power Consumption

	Observations

	Full-HW Solution
	Introduction
	RoHC Implementation-Specific Parameters
	Top-level Architecture of the One-Stage Full-HW Implementation
	Classifier
	Fetching or Initializing The Context
	Parsing The Input Packet
	Detecting IP-ID Pattern
	Detecting RTP Pattern
	Detecting Context Change
	Fields Selection
	Packet Selection
	Update Context
	Packetizer

	Four-Stages Pipeline Architecture
	Results
	Throughput and Capacity
	Memory Bandwidth
	Area
	Power Consumption
	Execution Time

	Comparison between Different RoHC Solutions
	Conclusions

