
Hardware and Software Implementations

of Prim’s Algorithm for Efficient Minimum
Spanning Tree Computation

Artur Mariano1,�, Dongwook Lee2, Andreas Gerstlauer2, and Derek Chiou2

1 Institute for Scientific Computing
Technische Universität Darmstadt

Darmstadt, Germany
2 Electrical and Computer Engineering
University of Texas, Austin, Texas, USA
artur.mariano@sc.tu-darmstadt.de,

{dongwook.lee@mail,gerstl@ece,derek@ece}.utexas.edu

Abstract. Minimum spanning tree (MST) problems play an important
role in many networking applications, such as routing and network plan-
ning. In many cases, such as wireless ad-hoc networks, this requires ef-
ficient high-performance and low-power implementations that can run
at regular intervals in real time on embedded platforms. In this pa-
per, we study custom software and hardware realizations of one common
algorithm for MST computations, Prim’s algorithm. We specifically in-
vestigate a performance-optimized realization of this algorithm on recon-
figurable hardware, which is increasingly present in such platforms.

Prim’s algorithm is based on graph traversals, which are inherently
hard to parallelize. We study two algorithmic variants and compare their
performance against implementations on desktop-class and embedded
CPUs. Results show that the raw execution time of an optimized imple-
mentation of Prim’s algorithm on a Spartan-class Xilinx FPGA running
at 24MHz and utilizing less than 2.5% of its logic resources is 20% faster
than an embedded ARM9 processor. When scaled to moderate clock
frequencies of 150 and 250MHz in more advanced FPGA technology,
speedups of 7x and 12x are possible (at 56% and 94% of the ARM9
clock frequency, respectively).

Keywords: Prim’s algorithm, FPGA, Hardware acceleration, MST.

1 Introduction

The minimum spanning tree (MST) problem is as an important application
within the class of combinatorial optimizations. It has important applications
in computer and communication networks, playing a major role in network re-
liability, classification and routing [1]. In many application domains, such as
wireless and mobile ad-hoc networks (WANETS and MANETS), MST solvers

� This work was performed while Artur Mariano was at UT Austin.

G. Schirner et al. (Eds.): IESS 2013, IFIP AICT 403, pp. 151–158, 2013.
c© IFIP International Federation for Information Processing 2013

152 A. Mariano et al.

have to be run online, demanding efficient, low-power, real-time implementations
on embedded platforms.

In this paper, we focus on hardware implementation of one particular, common
MST solver: Prim’s algorithm [2], which is used in several ad-hoc networks [3] for
topology calculation and other maintenance tasks, such as broadcasts, at both
initialization and run time. In particular, several maximum broadcast lifetime
(MBL) algorithms have been proposed in the past, all as derivatives of Prim’s
algorithm, running on a general directed graph [4]. In such applications, Prim’s
algorithm is typically applied to medium to large network models with signif-
icant complexity, e.g. in terms of the number of nodes. In order to adapt to
changing network conditions, the algorithm has to be executed in a distributed
fashion at regular intervals on each node. In mobile and battery-operated nodes,
cost, computational power and energy consumption are often critical resources,
and high performance and low power realizations are required. For this purpose,
platforms increasingly include reconfigurable logic to support hardware acceler-
ation of (dynamically varying) tasks. This motivates an FPGA implementation
of Prim’s algorithm, where our primary focus is initially on improved real-time
performance. To the best of our knowledge, there are currently no other studies
of custom hardware realizations of this algorithm.

The rest of the paper is organized as follows: Section 2 provides a brief re-
view of the theory behind Prim’s algorithm including related work. Section 3
discusses the FPGA realization of the algorithm, and Sections 4 and 5 present
the experimental setup and results. Finally, the paper concludes with a summary
and outlook in Section 6.

2 Prim’s Algorithm

Prim is a greedy algorithm that solves the MST problem for a connected and
weighted undirected graph. A minimum spanning tree is a set of edges that
connect every vertex contained in the original graph, such that the total weight
of the edges in the tree is minimized.

The algorithm starts at a random node of the graph and, in each iteration,
examines all available edges from visited to non-visited nodes in order to choose
the one with the lowest cost. The destination of the chosen edge is then added
to the visited nodes set and the edge added to the MST. The pseudo-code of the
algorithm is presented as Algorithm 1.

2.1 Performance Analysis

As with a majority of graph traversals, Prim’s algorithm has irregular memory
access patterns. In CPUs, this limits cache use and thus overall performance.
As such, the algorithm is memory-bound with low computational requirements,
and its performance is highly dependent on the organization of memory storage
and memory access patterns.

HW and SW Implementations of Prim’s for Efficient MST Computation 153

Algorithm 1: Standard Prim’s algorithm.

Input: A non-empty connected weighted graph G composed of vertexes VG and
edges EG, possibly with null weights;
Result: The minimal spanning tree in the finalPath array;
Initialization: VT = {r}, where r is a random starting node from V ;

while VT �= VG do
minimum←∞;
for Visited nodes s ∈ VT do

for all edges E(s,v) and v /∈ VT do
if Weight(E) ≤ minimum then

minimum←Weight(E);
edge← E;
newV isited← v;

finalPath← finalPath ∪ {edge};
VT ← VT ∪ {newV isited};

Depending on the used data structures, Prim’s algorithm can have differ-
ent asymptotic complexities. For common implementations using an adjacency
matrix, Prim’s complexity is O(V 2). For other implementations using adja-
cency lists with binary or Fibonacci heaps, the complexity reduces down to
O((V +E) log V) = O(E log V)) and O(E+V log V), respectively. This comes
at a higher fixed complexity per step with reduced regularity and exploitable
parallelism. Hence, we focus in our work on the most common form using
adjacency matrix based realizations.

2.2 Parallelism Analysis

Depending on the implementation of Prim’s algorithm, it can exhibit some par-
allelism. For realizations that use an adjacency matrix to represent the graph,
an improved implementation has been reported in [5], which is shown in Algo-
rithm 2. This second version uses a supplemental array d to cache every value if
it represents a cheaper solution than the ones seen so far, which allows lookups
for minimum paths to be done in parallel.

In [5], the authors have pointed out that the outer while loop in this second
implementation is hard to parallelize due to its inherent dependencies. However,
the other operations in the body of the loop, namely minimum edge cost lookups
(i.e. min-reduction steps) and updates of the candidate set can be processed in
parallel over different elements of the supplementary array d. However, min-
reduction operations have to take into account that values representing edges
E(s, d) in which s ∈ VT and d ∈ VT can not be considered.

154 A. Mariano et al.

Algorithm 2: Second implementation of Prim’s algorithm.

Input: A non-empty connected weighted graph G composed of vertexes VG and
edges EG, possibly with null weights;
Result: The minimal spanning tree in the d array;
Initialization: VT = {r} and d[r] = 0, where r is a random node from V ;

for v ∈ (V-VT) do
if E(r,v) then

d[v]←Weight(E);
else

d[v]←∞
while VT �= VG do

Find a vertex u such that:
| d[u] =min{d(v) | v ∈ (V − VT)}

VT ← VT ∪ {u};
for all v ∈ (V − VT) do

d[v]←min{d[v],Weight(u, v)};

2.3 Related Work

There are a number of implementations of Prim’s method on CPUs. Some
work has been done on parallel realizations targeting SMP architectures with
shared address space, growing multiple trees in parallel and achieving a reported
speedup of 2.64x for dense graphs [6]. Additionally, in [7] a distributed mem-
ory implementation, which supports adding multiple vertexes per iteration was
demonstrated using MPI. Next to CPU implementations, GPUs were also used
to compute Prim’s algorithm [8]. Such GPU implementations achieve only lim-
ited speedups of around 3x, highlighting the difficulties in implementing Prim’s
algorithm in an efficient and real-time manner. In [8], the authors argued that the
difficulty in parallelizing Prim’s algorithm is very similar to other SSSP (single
source shortest path) problems, like Dijkstra’s algorithm.

3 FPGA Implementation

We used high-level synthesis (HLS) to synthesize C code for the different Prim
variants down to RTL. We employed Calypto Catapult-C [9] to generate RTL,
which was further synthesized using Mentor Precision (for logic synthesis) and
Xilinx ISE (for place & route). Table 1 summarizes LUT, CLB, DFF and BRAM
utilizations over different graph sizes for both implementations. We have realized
the algorithm for graph sizes up to N = 160 nodes, where graphs are stored as
adjacency matrices with N ×N float values representing edge weights (and with
negative values indicating edge absence).

Within Catapult-C, we exploited loop unrolling and chaining only at a coarse
granularity, i.e. for the bigger outer loops. This allows a fair comparison with

HW and SW Implementations of Prim’s for Efficient MST Computation 155

Table 1. FGPA synthesis results

Graphs size 40 70 100 130 160

Algorithm 1

LUTs 1047 1044 1109 1425 1448
CLBs 523 522 554 712 724
DFFs 563 623 628 635 624
BRAMs 6 12 21 33 48

Algorithm 2

LUTs 1029 1145 1198 1368 1425
CLBs 514 572 599 684 712
DFFs 592 622 635 658 653
BRAMs 7 13 22 34 49

Table 2. Test platform specifications

Device CPUs FPGA

Manufacturer Intel ARM Xilinx
Brand Pentium M ARM 9 Spartan
Model T2080 926EJ-S 3
Max clock 1.73 GHz 266 MHz 400 MHz
Cores 2 1 -
System mem 2 Gbytes 32 Mbytes 1.8 Mbit
L1 Cache 32kB 16kB -
L2 Cache 4MB - -
Pipeline 12 stage 5 stage -
Year 2006 2001 2003
Launch price $134 $15.5 $3.5

CPUs, for which we did not realize manually optimized implementations. Ex-
ploited optimizations of the outer loops did not provide us with substantial per-
formance gains, while unrolling of loops did increase total area. Area increases
by 3 times for a 8x unrolling degree. We were not able to pipeline the loops due
to dependencies. The middle inner loop in Algorithm 1 has shown some small
performance improvements when unrolled, with no significant difference between
unrolling by 2, 4 or 8 times. Overall, the code did not exhibit significant benefits
when applying loop optimizations.

4 Experimental Setup

We tested the performance of Prim’s algorithm on 3 devices: a desktop-class
CPU, an embedded processor and a Xilinx FPGA. Characteristics of tested
platforms are summarized in Table 2. We evaluated algorithm performance on
all platforms in order to measure possible speedups when moving to the FPGA.

For FPGA prototyping, we utilized a development board that includes a
Freescale i.MX21 applications processor (MCU), which communicates with a
Xilinx Spartan 3 FPGA over Freescale’s proprietary EIM bus. The MCU con-
tains an integrated ARM9 processor running at 266MHz, an AMBA AHB bus
and an EIM module that bridges between the AHB and the EIM bus. The ARM9
runs an embedded Linux distribution with kernel version 2.6.16 on top of which
we implemented a testbench that feeds the FPGA with data and reads its out-
put. We utilized both polling and interrupt-based synchronization between the
ARM9 and the FPGA. On the FPGA side, we manually integrated Catapult-
generated RTL with a bus slave interface connection to the EIM bus, using a
custom developed EIM slave RTL IP module to receive and send data from/to
the CPU. Designs were synthesized to run at 24MHz on the FPGA. The bus
interface clock, on the other hand, was set to run at 65MHz.

Measurements of FPGA execution times have been made both including and
excluding communication overhead. To obtain total FPGA execution times, we
measured the time stamps between sending the first data item and receiving the
last result on the CPU side. This includes overhead for OS calls, interrupt han-
dling and EIM bus communication. In addition, we developed a VHDL/Verilog

156 A. Mariano et al.

testbench and performed simulations to determine the raw FPGA computation
time without any such communication overhead.

For our experiments, the algorithm ran on all platforms with fully-connected1

random graphs with orders (sizes) of up to 160 nodes (as determined by FPGA
memory limitations). When compiling the code for the CPUs, we did not perform
any manual tuning, solely relying on standard compiler optimizations using GCC
4.2.3 and GCC 4.5.2 for ARM9 and Pentium processors, respectively.

5 Results

Figure 1(a) shows total execution times of running Algorithm 1 for graphs with
up to 160 nodes on the Intel Pentium, the ARM9 and the FPGA. We report
execution times as the median of 5 measurements.

The Intel CPU clearly outperforms other devices. While a Pentium CPU is
neither common in embedded domains nor comparable to other platforms in
terms of price, we include its results as a baseline for reference.

Compared to the ARM9 processor, execution times on the FPGA are slightly
larger across all graph orders. However, in this setup, measured execution times
include communication overhead, which may limit overall FPGA performance.
On the other hand, computation and communication are overlapped in the
FPGA and computational complexities grow with the square of the graph size
whereas communication overhead only grows linearly. Coupled with the fact
that execution time differences between the ARM and the FPGA increase with
growing graph sizes, this indicates that communication latencies are effectively
hidden and clock frequency and/or hardware resources are limiting performance.

0

5

10

15

20

25

40 70 100 130 160

E
xe

cu
tio

n
Ti

m
e

(s
)

Graph Order

(a) Algorithm 1 (b) Algorithm 2

0

5

10

15

20

25

30

50 100 150 200 250 300 350 400 450 500

(c) Scaled Algorithm 2

Fig. 1. Total runtime and speedup of algorithms for graphs with up to 160 nodes

FPGA-internal storage sizes limit possible graph sizes to 160 nodes in our case.
This limitation could be overcome by taking advantage of matrix symmetries:
the same matrix could be represented with half of the data, enabling the study

1 Graphs with (k − 1)-connectivity with k = order.

HW and SW Implementations of Prim’s for Efficient MST Computation 157

of bigger inputs, e.g. to see if FPGAs could overcome the ARM9. However,
as previously mentioned, execution times are computation bound and relative
differences of both devices are growing for larger inputs. As such, extrapolating
would indicate that the FPGA will not be able to outperform the ARM9 even
for larger inputs.

To take advantage of FPGA strengths with increasing benefits for any addi-
tional parallelism available in the algorithm [10,11], we have tested the second
implementation of Prim’s algorithm on dedicated hardware. Figure 1(b) shows
the results of these experiments as measured on the FPGA and on the ARM9,
where FPGA performance is reported both with and without communication
overhead.

Algorithm 2 clearly performs better on both devices, with speedups of around
37.5x and 68.5x compared to Algorithm 1 for the ARM9 and FPGA, respectively.
Even though the FPGA can take more advantage of the second implementation’s
parallelism than the single-core ARM9, the ARM9 still outperforms the FPGA
in total execution time. However, when considering raw execution times without
communication overhead, the FPGA performs better.

In addition, overall FPGA performance of designs on our board is limited
to a maximum frequency of 24MHz. To extrapolate possible performance, we
scaled raw execution times for a graph with 160 nodes (requiring around 8.8 mil-
lion clock cycles) to other clock frequencies, as shown in Figure 1(c). Assuming
the bus interface is not a limiting factor, running the developed design on an
ASIC or better FPGA in a more advanced technology would result in theoretical
speedups of 5x and 10x for moderate clock frequencies of 100MHz and 200MHz,
respectively, as also shown by Figure 1(c). However, this would most likely also
come at increased cost, i.e. decreased price/efficiency ratios.

6 Summary and Conclusions

In this paper, we presented an FPGA implementation of Prim’s algorithm for
minimum spanning tree computation. To the best of our knowledge, this rep-
resents the first study of realizing this algorithm on reconfigurable hardware.
Prim’s algorithm plays a major role in embedded and mobile computing, such
as wireless ad hoc networks, where FPGAs may be present to support hardware
acceleration of performance-critical tasks. We followed a state-of-the-art C-to-
RTL methodology using HLS tools to synthesize a high-level C description of
two algorithmic variants down to the FPGA, with high performance being the
primary goal. On our Spartan 3 FPGA with 66,560 LUTs, 33,280 CLB slices and
68,027 DFFs, our designs utilizes less than 2.5% of each type of logic resource.

Our results show that, considering total wall-time for any of the tried im-
plementations, our unoptimized FPGA implementation running at a low clock
frequency dictated by the bus interface reaches about the same performance as
an implementation running on an embedded ARM core. However, in terms of
raw computation cycles without any communication or OS overhead, the FPGA
design achieves a speedup of ≈1.21. Using more advanced FPGA technology,

158 A. Mariano et al.

with a different device, running at a moderate frequency of 150MHz (55% of
the ARM9’s 266MHz frequency), speedups of around 7.5x should be achievable.
Compared to gains of 2.5-3x achieved on multi-core CPUs or GPUs, such an
FPGA implementation can achieve better performance at lower cost and power
consumption.

Prim’s algorithm in its default implementations is limited in the available par-
allelism. In future work, we plan to investigate opportunities for further algorith-
mic enhancements specifically targeted at FPGA and hardware implementation,
e.g. by speculative execution or by sacrificing optimality of results for better
performance.

Acknowledgments. Authors want to thank UT Austin|Portugal 2011 for en-
abling this research collaboration (www.utaustinportugal.org).

References

1. Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem.
IEEE Ann. Hist. Comput. 7(1), 43–57 (1985)

2. Prim, R.C.: Shortest connection networks and some generalizations. Bell System
Technology Journal 36, 1389–1401 (1957)

3. Benkic, K., Planinsic, P., Cucej, Z.: Custom wireless sensor network based on
zigbee. In: 49th Elmar, Croatia, pp. 259–262 (September 2007)

4. Song, G., Yang, O.: Energy-aware multicasting in wireless ad hoc networks: A
survey and discussion. Computer Communications 30(9), 2129–2148 (2007)

5. Grama, A., Karypis, G., Kumar, V., Gupta, A.: Introduction to parallel computing:
design and analysis of algorithms, 2nd edn. Addison-Wesley (2003)

6. Setia, R., Nedunchezhian, A., Balachandran, S.: A new parallel algorithm for min-
imum spanning tree problem. In: International Conference on High Performance
Computing (HiPC), pp. 1–5 (2009)

7. Gonina, E., Kale, L.: Parallel Prim’s Algorithm with a novel extension. PPL Tech-
nical Report (October 2007)

8. Wang, W., Huang, Y., Guo, S.: Design and Implementation of GPU-Based Prim
Algorithm. International Journal of Modern Education and Computer Science
(IJMECS) 3(4), 55 (2011)

9. Bollaert, T.: Catapult Synthesis: A Practical Introduction to Interactive C Synthe-
sis High-Level Synthesis. In: Coussy, P., Morawiec, A. (eds.) High-Level Synthesis,
pp. 29–52. Springer Ned., Dordrecht (2008)

10. Singleterry, R., Sobieszczanski-Sobieski, J., Brown, S.: Field-Programmable Gate
Array Computer in Structural Analysis: An Initial Exploration. In: 43rd
AIAA/AMSE/ASCE/AHS Structures, Structural Dynamics, and Materials Con-
ference, pp. 1–5 (April 2002)

11. Ornl, W.Y., Strenski, D., Maltby, J.: Performance Evaluation of FPGA-Based Bi-
ological Applications Olaf. Cray Users Group, Seattle (2007)

	Hardware and Software Implementations of Prim’s Algorithm for Efficient Minimum Spanning Tree Computation
	1 Introduction
	2 Prim’s Algorithm
	2.1 Performance Analysis
	2.2 Parallelism Analysis
	2.3 Related Work

	3 FPGA Implementation
	4 Experimental Setup
	5 Results
	6 Summary and Conclusions
	References

